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We show that the whole of the gravitomagnetic clock effect in the orbit of a spin-
ning test particle which is revolving round a spinning central massive astrophysical
body can be calculated using a gravitational spin-orbit coupling potential which
involves the two spins and the orbital angular momentum of the test particle.

PACS number: 04.20.Cv UDC 530.12

Keywords: clock effect, spinning particle, spin-orbit coupling

General relativity predicts that two freely counter-revolving test particles in the
exterior field of a central rotating mass take different periods of time to complete
the same full orbit; the time difference is termed as the gravitomagnetic clock effect
(GCE). Let us consider circular geodesics in the equatorial plane of a Kerr black
hole of mass M and spin angular momentum J . Let t+ denote the period of co-
rotating (i.e. motion in the same sense of the rotation of the central body) motion
and t

−
denote that of counter-rotating motion along such an orbit according to

asymptotically static inertial observers. Then

t+ − t
−

=
4πJ

Mc2
. (1)

This result was first derived by Cohen and Mashhoon [1]. Subsequently, various
theoretical aspects of this effect have been investigated [2 – 7]. On the observational
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side, the possibility of its detection has been considered by a number of authors
[8 – 13].

A remarkable addition to the scenario of GCE came through the work of Faruque
[14], namely, when the orbiting particle possesses spin, it contributes to the gravit-
omagnetic clock effect an additional amount given by 6πS/mc2, where S is the spin
of the orbiting test body whose mass is m. Subsequently, Bini et al. [15] have shown
that the clock effect can be classified in three simple situations: (1) co-rotating or-
bit with test particle spin up against counter-rotating orbit with test particle spin
up, (2) co-rotating orbit with spin down against counter-rotating orbit with spin
down, and (3) co-rotating orbit with spin up against counter-rotating orbit with
spin down and vice versa. If we picture these situations, we see that actually in the

first case the two spins ~J and ~S are parallel and in the second case they are anti-
parallel. In the third case an orbit of the first case is differentiated with an orbit
of the second case. In this short article, we shall show, in a very concise way, how
the clock effects in all these cases can be obtained using gravitational spin-orbit
coupling. First of all we quote the results from Refs. [14, 15]:

Case I:

t+ − t
−

=
4πJ

Mc2
+

6πS

mc2
, (2)

Case II:

t+ − t
−

=
4πJ

Mc2
−

6πS

mc2
, (3)

Case III:

t+ − t
−

=
4πJ

Mc2
. (4)

The derivation of these results was done by solving Mathisson-Papapetrou equa-
tions in Ref. [15], and the result in Eq. (3) was found in Ref. [14] by approximation
procedures. However, it is shown in Refs. [16] and [17] that in the simple situation of
circular motion of a spinning particle in the equatorial plane of a non-spinning cen-
tral body, the second term in Eqs. (2) and (3) can be obtained using gravitational
spin-orbit coupling. Subsequently, this line of derivation of clock effect is elaborated
by Mashhoon and Singh [18]. As noted in Ref. [19], it is not possible to decide by
the distant static observer whether he is measuring a time delay of spinning clocks
in a non-rotating space-time or a time delay of non-spinning clocks moving on
geodesics in a rotating space-time. That is, there is an equivalence. Hence, we can
assume that the set of Eqs. (2 – 4) should follow from a single Hamiltonian con-
taining spin-orbit coupling potentials where both spins are involved. As shown by
Barker and O’Connel [20], the spin of the central source couples with the orbital
angular momentum of the orbiting particle, and there is coupling between the spin
and orbital angular momentum of the orbiter, too. Hence, in a scenario where the
gravito-electric part of the field is approximated by the Newtonian potential, the
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total Hamiltonian can be written as

H =
p2

2m
+ mΦ + VLJ + VLS , (5)

where

VLJ = ξ1

G

c2r3
~J · ~L , VLS = ξ2

GM

mc2r3
~S · ~L , (6)

where ξ1 and ξ2 are constants of the order of unity. Their exact value can not be
ascertained as yet. However, the results of Eqs.(2 – 4) can be generated by taking
ξ1 = 1 and ξ2 = 3/2. Hence, in what follows we will use these values. In a simple

situation where ~J , ~S and ~L all point either in the +ẑ or −ẑ direction, we can
proceed to calculate the clock effects using the procedure followed in Ref. [16]. In

the equatorial circular orbit, if ~J and ~S point along the +ẑ direction and in the

first consideration we take ~L to point also in the +ẑ direction, then the equation
of motion reads

−mr

(

dϕ

dt

)2

r̂ = −
GMm

r2
r̂ +

2Gm

c2r2

(

J +
3M

2m
S

)(

dϕ

dt

)

r̂ . (7)

When ~J points along the +ẑ direction and ~S points along the −ẑ direction, the
equation of motion reads

−mr

(

dϕ

dt

)2

r̂ = −
GMm

r2
r̂ +

2Gm

c2r2

(

J −
3M

2m
S

)(

dϕ

dt

)

r̂ . (8)

Equation (7) corresponds to the first case we discussed above and Eq. (8) corre-
sponds to the second case. The third case is generated with Eq. (7) and (8). We
shall briefly sketch how Eq. (7) leads to the clock effect in Eq. (2).

Case I: ~J and ~S point along the +ẑ direction

This case is described by Eq. (7) which is reduced to the following form

(

dϕ

dt

)2

+
2G

c2r3

(

J +
3M

2m
S

)(

dϕ

dt

)

−
GM

r3
= 0 , (9)

which is a quadratic equation having solutions, neglecting smaller term issuing
under the square root, given by

dϕ

dt
= −

G

c2r3

(

J +
3M

2m
S

)

±

√

GM

r3
. (10)

Here, the positive sign refers to the co-rotating orbit and the negative sign refers to

the counter-rotating orbit with reference to the direction of ~J . The second term in
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Eq. (10) is larger than the first, so, in finding dt/dϕ, we use the binomial theorem
and obtain the following approximate formulae

(

dt

dϕ

)

+

=
1

ωK

+
G

c2r3ω2
K

(

J +
3M

2m
S

)

=
1

ωK

+
J

Mc2
+

3

2

S

mc2
, (11)

(

dt

dϕ

)

−

= −
1

ωK

+
J

Mc2
+

3

2

S

mc2
, (12)

where ωK =
√

GM/r3 is the Keplerian angular frequency. Now, for the co-rotating
orbit, we obtain the period of circular motion by integrating Eq. (11) from ϕ = 0
to ϕ = 2π. For the counter-rotating orbit, we obtain the period by integrating
Eq. (12) from ϕ = 0 to ϕ = −2π. In this way, we obtain

t+ =
2π

ωK

+
2πJ

Mc2
+

3πS

mc2
, (13)

and

t
−

=
2π

ωK

−
2πJ

Mc2
−

3πS

mc2
. (14)

The period difference is

t+ − t
−

=
4πJ

Mc2
+

6πS

mc2
. (15)

Thus, we have found the result depicted in Eq. (2) for clock effect in co-rotating
orbit with spin up against counter-rotating orbit with spin up.

Case II: ~J points along the +ẑ direction and ~S points along the −ẑ
direction

This case is described by Eq. (8). Following the same procedure just described
for the Case I, we obtain the time periods

t+ =
2π

ωK

+
2πJ

Mc2
−

3πS

mc2
, (16)

t
−

=
2π

ωK

−
2πJ

Mc2
+

3πS

mc2
. (17)

The period difference in this case is

t+ − t
−

=
4πJ

Mc2
−

6πS

mc2
. (18)

Thus we have found the result depicted in Eq. (3) for the clock effect in co-rotating
orbit with spin down against counter-rotating orbit with spin down.
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Case III: Co-rotating with spin up against counter-rotating with spin

down or co-rotating with spin down against counter-rotating with spin

up

In this case the time period in Eq.(17) is subtracted from the time period in
Eq.(13) to get the clock effect. Or the time period in Eq.(14) is subtracted from
the time period in Eq.(16). In both cases we obtain

t+ − t
−

=
4πJ

Mc2
. (19)

Thus we have found Eq. (4) for the clock effect in the co-rotating with spin up
against the counter-rotating with spin down or the co-rotating with spin down
against the counter-rotating with spin up.

We now summarize: The gravitomagnetic clock effect in the orbit of a spinning
particle which is revolving round a spinning central body contains two terms in-
volving the two spins. In previous studies, the results were calculated by solving
Mathisson-Papapetrou equations. Here, we have shown that whole set of the results
can be derived using spin-orbit coupling potential. The signs of the terms came out
here exactly as those in the previous studies. Hence, not only the contribution of
the spin of the orbiting test particle, but also the contribution of the spin of the
central body can be thought of as due to gravitational spin-orbit coupling. This
gives us a complete view for the whole picture of the gravitomagnetic clock effect;
this unified view is, as far as know, not shown elsewhere in literature.
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O GRAVITOMAGNETSKOM SATNOM UČINKU

Pokazujemo da se ukupni gravitomagnetski satni učinak za stazu ispitne čestice,
koja se vrti i kruži oko sredǐsnjeg masivnog astrofizičkog tijela koje se vrti, može
izračunati primjenom gravitacijskog potencijala vezanja spina i staze dviju vrtnji i
staznog momenta impulsa ispitne čestice.

434 FIZIKA B (Zagreb) 17 (2008) 3, 429–434


