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1. Introduction

Motivations andFractional Action-Like VariationalApproach (FALVA).
The physics of supermassive black holes dissipative processes and their growth in
galaxies pose very significant challenges in astrophysics. In Einsteins General Rela-
tivity theory they appear as classical solutions to the Einstein’s vacuum equations
and they represent matter that has collapsed down to a point with infinite den-
sity known as ”singularity”. From classical point of view, dealing with singularities
is quite delicate, but in reality the real puzzles of black holes arise at the quan-
tum level. Following Hawking theory, black holes have temperature and can con-
sequently radiate [1]. In fact, for almost thirty years, since Hawking first proposed
the idea of black holes as thermal objects, mathematicians and physicists have been
highly interested in the contradiction to quantum mechanics that arises due to the
nonunitarity of the evaporation and decaying processes. From physical point of
view, the black hole mass decays as does the area of the horizon due to radiation
process, but including the entropy of the emitted radiation, the total entropy in-
creases as demanded by the second law of classical thermodynamics. From other
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sights, there exists some theoretical evidence for extracting energy from accretion
into Kerr (rotating) black hole. In other others, Li and Paczyński proposed a new
efficient process of converting rest mass to energy by alternating the following two
processes: first the ordinary matter is extracted from a thin disk into a Kerr black
hole, then energy is extracted magnetically from the black hole to the disk. These
cycles can be repeated (in principle) for an indefinite period and consequently the
black hole mass increase by 66% per cycle, and up to 43% of accreted mass are
radiated away by the disk [2].

In fact, as suggested by current astrophysical observations, black holes with
mass larger than ≈ 4 × 1024 g would accrete a considerable amount of energy
rather than evaporate in a Hawking process. In this context, all supermassive black
holes masses would increase with time until they reach the critical mass of about
6 × 1055 g, comparable to the mass contained within the present day cosmological
horizon [3]. As a result, one may ask if we really understood the black hole entropy
principle. It has been a mystery for many years what the microscopic degrees of
freedom are that give rise to this entropy and how we can formulate the dissipative
processes occurring in the vicinity of the black hole. Many phenomenological models
were proposed in particular those emerged from string theory [4] but none of them
succeed to describe correctly the dissipative behavior. Since string theory is a quan-
tum theory of gravitation, one would expect to get a possible result from it. But the
major problem has been that due to the large mass of black holes, strong interaction
occurred and string theory as it is known is defined perturbatively. So only after
some difficult non-perturbative tools were obtainable, was this mystery addressed.
From classical point of view, there exist some alternatives. Recently, in order to
interpret black holes decay, Gupta and Sen proposed a novel geometrical formal-
ism for analyzing the near-horizon conformal symmetry (NHCS) of Schwarzschild
black holes using a scalar field probe [5]. The black hole equation is identified as
the geodesic equation in the space of black hole mass. Their approach was based
on conformal group structure in the near-horizon region and on the requirement of
unitarity of the conformal theory and self-adjointness of the associated near-horizon
Hamiltonian. Despite that a precise correction term to the usual expression for the
decay rate of black holes of mass M and to the characteristic logarithmic correction
to the Bekenstein-Hawking entropy was given, dissipative processes were ignored
in their theory. Note that the behaviour of dissipative accreting matter close to a
black hole provides important astrophysical features of galactic and extra-galactic
black holes candidates [6]. In addition, we are interested on the one-way nature
of black hole event horizons where more energy will enter the black hole throat
than will be released and consequently, the black hole can gain mass and thereby,
dM/dt > 0 and the entropy increases for non-adiabatic processes, in contrast to
Gupta and Sen scenario.

We are totally aware that thermodynamics in general is a particular area of
physics where variational principles play a crucial role [7,8]. The reason is that an
investigation based on a mathematical theorem shows that the basic differential
equations of irreversible thermodynamics, the transport equations cannot be de-
rived from a usual Hamiltonian type variational principle. In this paper, we demon-

370 FIZIKA B (Zagreb) 17 (2008) 3, 369–378



el-nabulsi: black hole growth and accretion energy from fractional . . .

strate that the NHCS concerning the self-adjoint extension of the near-horizon
Hamiltonian can yield additional features within the framework of fractionally dif-
ferentiated Lagrangian function where violation of energy conservation via weak
dissipation is one of its basic ingredients. It is worth-mentioning that the gravita-
tional field around the black hole may acts like a dissipative quantum channel and
consequently, the energy is not conserved. In addition, there exist many theoret-
ical arguments that the violation of Noether’s charge and energy conservations is
nothing than a signature for black hole formation [9]. To a good approximation,
energy is conserved for a large black hole as it hardly radiates, but this is not the
case for a small black hole due to Hawking radiation. The system of any size black
hole and Hawking radiation conserves mass-energy. However, this is not the case
for the black hole itself [10]. Moreover, information loss associated with breakdown
of quantum mechanics laws and postulates leads apparently to violations of en-
ergy conservation. One may refer the energy loss to the presence of a friction force
normally present in the geodesic equation.

As one of the main features of the fractional calculus of variations is the violation
of energy, we are interested to explore the fractional dynamics of a black hole.

In reality, it is well believed today that fractional calculus is a quite irreplaceable
means for description and investigation of classical and quantum complex dynami-
cal system with holonomic as well as with nonholonomic constraints [11]. The study
of fractional calculus (FC) opened new branches of thought and fills in the gaps of
traditional standard calculus in ways that as of yet, no one completely assimilates
or understands. FC describes more accurately the complex physical systems and
at the same time, investigates more about simple dynamical systems. FC has re-
cently been applied to many problems in physics, finance and hydrology, polymer
physics, biophysics and thermodynamics, chaotic dynamics, chaotic advection, ran-
dom Brownian walks, modeling dispersion and turbulence, viscoelastically damped
structures, control theory, transfer equation in a medium with fractal geometry,
stochasting modeling for ultraslow diffusion, kinetic theories, statistical mechanics,
dynamics in complex media, wave propagation in complex and fractal media, as-
trophysics, cosmology, etc [11]. Today there exist many different forms of fractional
integral operators, ranging from divided-difference types to infinite-sum types, in-
cluding Grunwald-Letnikov fractional derivative, Caputo fractional derivative, etc.,
but the Riemann-Liouville derivative and integral are still the most frequently used.
Although various fields of application of fractional derivatives and integrals are al-
ready well done, some others have just started in particular the study of fractional
problems of the Calculus of Variations (COV) and respective Euler-Lagrange type
equations is a subject of current strong research and investigations. Many different
approaches were proposed in literature but most of them faced difficult mathemati-
cal manipulations although when dealing with ”simple” dissipative problems (Riewe
[12], Klimek [13], Agrawal [14], Baling and Avkar [15], Klimek [16]). The major
problem with all these approaches is the presence of non-local fractional differential
operators and the adjoint of a fractional differential operator used to describe the
dynamics is not the negative of itself. Other complicated problems arise during
the mathematical manipulations as the appearance of a very complicated Leibniz
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rule (the derivative of product of functions) and the non-presence of any fractional
analogue of the chain rule.

Recently, we proposed a novel approach known as fractional action-like varia-
tional approach (FALVA) or fractionally differentiated Lagrangian function (FDLF)
to model nonconservative dynamical systems where fractional time integral intro-
duces only one parameter while in other models an arbitrary number of fractional
parameters (orders of derivatives) appear [17-30]. The derived Euler-Lagrange equa-
tions are similar to the standard one but with the presence of fractional generalized
external force acting on the system. No fractional derivatives appear in the de-
rived equations. The conjugate momentum, the Hamiltonian and the Hamiltons
equations are shown to depend on the fractional order of integration and vary as
inverse of time. We review rapidly in what follows its basic concepts on classical
and Riemann manifolds.

A)-Consider a smooth classical manifold (configuration space) and denote
L : R × TM → R be the smooth Lagrangian function (smooth map). For any
piecewise smooth path q : [t0, t1] → M we define the fractional action integral by

SL[q] =
1

Γ(α)

t
∫

t0

L(q̇(τ), q(τ), τ) (t − τ)α−1dτ =

t
∫

t0=0

L(q̇(τ), q(τ), τ) dgt(τ) , (1)

where L(q̇, q, τ) is the Lagrangian weighted with (t − τ)α−1/Γ(α) and

Γ(α)gt(τ) = tα − (t − τ)α , (2)

with the scaling properties

gµt(µτ) = µαgt(τ), µ > 0 . (3)

In reality, we consider a smooth action integral (a time smeared measure dgt(τ)
on the time interval [0, t] ∈ R+) which can be rewritten as the strictly singular
Riemann-Liouville type fractional derivative Lagrangian

Sβ∈[0,1][q] = D−1+β
1 L(q̇(t), q(t), t) (4)

=

t
∫

0

L(q̇(t), q(t), t)
dτ

(t − τ)β

β→0
−→

t
∫

0

L(q̇(t), q(t), t)dτ , (5)

and thereby retrieved the standard action integral or functional integral.

In this work, we have β = 1 − α, α ∈ (0, 1). Such type of functionals is known
in mathematical economy, describing, for instance, a so called “discounting” eco-
nomical dynamics. The true fractional derivatives are also often, nowadays, used
for describing so called “dissipative structures” appearing in nonlinear dynamical
systems etc.

372 FIZIKA B (Zagreb) 17 (2008) 3, 369–378



el-nabulsi: black hole growth and accretion energy from fractional . . .

The fractional Euler-Lagrange equations associated to the fractional action in-
tegral (1) was proved to take the form

Ei(L) ≡
∂L

∂xi
−

d

dτ

(

∂L

∂yi

)

=
1 − α

t − τ

∂L

∂yi
=

∂R

∂yi
= Fyi,α (6)

where R(yi) ≡ (1−α)L(yi)/(t−τ) is identified as the fractional Rayleigh dissipation
function. The critical points are then solutions of the fractional Euler-Lagrange
Eqs. (2) with 1 ≤ 1 ≤ N .

B)-Given a smooth Riemann manifold M , we consider C2 curves q : [t0, t] → R
which assign to every point in RN an invertible symmetric matrix with entries gij

(metric) with Lagrangian given by

L(q, q̇) =
1

2

n
∑

i,j=1

gij(q)q̇
iq̇j . (7)

A path q = q(τ) makes the fractional action integral stationary if and only if its
parametric equation xi = xi(τ) in any coordinate system (xi) satisfies the fractional
equation [21]

1

2

∂gij

∂xk

dxi

dτ

dxj

dτ
−

d

dτ

(

gik
dxi

dτ

)

=
1 − α

t − τ

(

gik
dxi

dτ

)

, 1 ≤ k ≤ N . (8)

If U is an open subset of Rn with path γ : [t1, t2], where we may define the fractional
length of γ by Eq. (2), then γk satisfy the fractional differential equation

d2γk

dτ2
+

α − 1

τ − t

dγk

dτ
+

∑

i,j

dγi

dτ
Γk

ij

dγj

dτ
= 0 , (9)

where

Γk
ij =

1

2

∑

γ

(∂igjr + ∂jgir − ∂rgij) grk (10)

is the Christoffel symbol. The one for geodesic motion is

d2xk

dτ2
+

α − 1

τ − t

dxk

dτ
+ Γk

ij

dxi

dτ

dxj

dτ
= 0 . (11)

Written as a system of first-order equations, the integral curves are

dxk

dτ
= vk (12)

dvk

dτ
+

α − 1

τ − t
vk + Γk

ijv
ivj = 0 . (13)
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The term F k ≡ (1 − α)vk/(τ − t) is the decaying force term or the input weak
decaying vector field. In fact, by defining ẋσ ≡ dxσ/dT = yσ (T ≡ τ − t), Eq. (13)
is identical to a Langevin equation with a time-dependent friction term in case
a random source characterizing the properties of medium where motion occurs is
applied. Equation (11) holds for any parametrised curve λ ∈ R

d2xk

dλ2
+

α − 1

λ

dxk

dλ
+ Γk

ij

dxi

dλ

dxj

dλ
= 0 , (14)

or in terms of vk

dvk

dλ
+

α − 1

λ
vk + Γk

ij vivj = 0 . (15)

Equations (11)-(15) represent the basic ingredient of our work, and we expect
that our fractional formalism holds on the space of all self-adjoint extensions for
analyzing the near-horizon conformal structure capable of describing black hole
decay.

2. Black hole decay as fractional geodesic equation

Given a continuous Abelian group [5] for a 4D black hole

G ≡

{

g(M2) = e2πM2

: M2
∈ R

}

, (16)

the group invariant metric can be written as

ds2 = Trace(g−1dg)2 = 16π2M2(dM)2 . (17)

In fact, G acts as a group of transformation in the space of all self-adjoint extensions
denoted by Ω. It was pointed in Ref. [3] that M is a good candidate to describe Ω.
Having this in mind, for any parametrised curve M(λ) ∈ Ω / λ ∈ R, the fractional
geodesic equation in Ω is written as

d2M

dλ2
+

α − 1

λ

dM

dλ
+ ΓM

MM

dM

dλ

dM

dλ
= 0 , (18)

where ΓM
MM = M−1. This equation describes how the mass of the black hole

changes with respect to λ when weak dissipations are present. Equation (18) may
be written as

d

dλ

(

λα−1 dM

dλ

)

+
λα−1

M

(

dM

dλ

)2

= 0 . (19)

With Y = MdM/dλ, one can easily prove that

dM

dλ
=

Cλ1−α

M
, 0 < α < 1 , (20)

374 FIZIKA B (Zagreb) 17 (2008) 3, 369–378



el-nabulsi: black hole growth and accretion energy from fractional . . .

where C is an integration constant. Equation (20) describes in fact how the mass of
the black hole changes with respect to λ up to an overall undetermined constant C.
In order to obtain a decaying process to compensate the energy loss, one possible
realistic choice is λ = M−1T + a, where a is a constant. Equation (20) reduces to

dM

dT
=

D

M3−α
(T + aM)1−α, 0 < α < 1 , (21)

where D is a constant of integration. We thus have a fractional description of the
decay of black holes which depends on the constant a. For α = 1 or T ≪ 1, we find
the standard result for black hole decay. Equation (21) represents a deviation from
the standard case. For the particular case a = 0, M ∝ −T (2−α)/(4−α), the mass
of the black hole (decreases/increases) with time as a power-law (D < 0/D > 0,
respectively)1. This solution holds also at late times or very large black hole mass.
An interesting feature may appear at late times and very low black hole mass if
a < 0. This yields M ∝ T (2−α)/(4−α) and surprisingly, the mass of the black hole
may increase with time. As pointed previously, the mass of a black hole may grow
by accretion or decrease by emission of Hawking radiation. Surprisingly, light black
holes (low mass) may accrete energy and grow larger. This growth may stop if we
define from Eq. (21), and for the particular case a < 0, the characteristic mass
M∗ = −aT for which dM/dT = 0. M∗ represents the mass of a critical black hole,
growing linearly with time [31]. With the choice λ = MT + a, one obtains

dM

dT
=

D

(MT + a)1−α
, 0 < α < 1 , (22)

and thus for α = 1, we find a consistent relation with mass conservation as it is
expected. If for instance, we choose a = 0, one easily finds M ∝ Tα/(2−α) and thus
for 0 < α < 1, M increases slowly with time. In fact, one may allow the black hole
mass to grow slowly with time but one may alter the scale-length of the black hole
potential in galaxy dynamics [32]. In reality, virtual pairs of particles near a black
hole can steal energy from the gravitational field and energy of new particles that
came from gravitational energy of black hole, thus a black hole mass must decrease.
Thus, we favour Eq. (21) with respect to Eq. (22).

If we reinstate Newton’s constant, the black hole entropy is simply given by
S = 4πGM2 and consequently increases with time if M grows with time. One
then expects that the temperature of an accretion disk orbiting a black hole should
decrease with increasing mass or entropy. For M∗ = −aT , S = 4πGM∗2 increases
linearly with time while the entropy is constant (adiabatic process)2. More gen-
erally, one can extend the usual linear black hole entropy to a more generalized

1In Ref. [5], the constant D was chosen negative, based on the expectation that the back-
reaction effects will cause the mass of the black hole to decrease in order to compensate for this
energy loss.

2For a decreasing black hole mass, the entropy may remain constant if we assume that the
gravitational constant increases with time by the same order. Increasing gravitational constant is
widely discussed in the literature. (see for example Refs. [33[, [34] and [35] and references therein).
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fractional formula given by S ∝ T 2(2−α)(4−α). Note that m = (4− 2α)/(4−α) < 1
for 0 < α < 1 and consequently, the entropy increases slowly with time.

For a very massive black hole, the metric takes the form

ds2
≈ 16π2M2

(

1 −
3

16π2M2

)

, (23)

with the corresponding fractional geodesic equation

d2M

dλ2
+

α − 1

λ

dM

dλ
+

(

1

M
+

3

16πM3

)

= 0 . (24)

with the following corresponding solution

dM

dλ
=

Eλ1−α

M
exp

(

3

32πM2

)

, (25)

which gives for λ = M−1T + a

dM

dT
≈

E(M−1T + a)1−α

M2

(

1 +
3

32πM2

)

. (26)

E is a constant of integration3. For α = 1, we find the standard Bekenstein-Hawking
decay rate formula for large black hole mass. At very late times and for a massive
black hole, one can easily deduce that the mass of the black hole decreases with
time as a power-law (E < 0), but may increase for α < 0. In this last case, the
entropy grows with time. Notice that from a classical point of view, the event-
horizon Schwarzschild radius in the expanding Universe should grow with time
due to the isotropy and homogeneity of the cosmos, which, consequently causes
increasing entropy for black holes [36]. Again, for the particular case α < 0, the
characteristic mass M∗ = −aT leads to dM/dT = 0 when the entropy is constant.

3. Conclusions

The fractional action-like variational approach with its corresponding fractional
geodesic equation yields important additional features concerning the growth of
black holes with time, their corresponding fractional entropy and the fractional
generalization of the second law of thermodynamics. The fractional mechanism
described in this work may give some important features concerning primordial
black holes in the early Universe predicted in some inflationary models, non-local
quantum black hole thermodynamics [37], their geometrical aspects and evolution
[38]. Further details are under progress.

3In Ref. [5], the constant is chosen also negative for the same assumption as stated in the
previous footnote.
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PRIMJENA DIJELNOG UČINU-SLIČNOG VARIJACIJSKOG NAČELA ZA
RAST CRNIH JAMA I ENERGIJU SKUPLJANJA

U okviru dijelnog učinu-sličnog varijacijskog načela, nedavno uvedenog ovim au-
torom, raspravljaju se neki zanimljivi izgledi i odlike rasta crnih jama i energije
skupljanja, umjesto isparavanja crnih jama.
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