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ABSTRACT
This paper focuses on the potential safety hazards of collision in car-following behaviour 
generated by deep learning models. Based on an intelligent LSTM model, combined with a 
Gipps model of safe collision avoidance, a new, Gipps-LSTM model is constructed, which 
can not only learn the intelligent behaviour of people but also ensure the safety of vehicles. 
The idea of the Gipps-LSTM model combination is as follows: the concept of a potential 
collision point (PCP) is introduced, and the LSTM model or Gipps model is controlled and 
started through a risk judgment algorithm. Dataset 1 and dataset 2 are used to train and sim-
ulate the LSTM model and Gipps-LSTM model. The simulation results show that the Gipps-
LSTM can solve the problem of partial trajectory collision in the LSTM model simulation. 
Moreover, the risk level of all trajectories is lower than that of the LSTM model. The safety 
and stability of the model are verified by multi-vehicle loop simulation and multi-vehicle 
linear simulation. Compared with the LSTM model, the safety of the Gipps-LSTM model is 
improved by 42.02%, and the convergence time is reduced by 25s.
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1. INTRODUCTION
The car-following (CF) model has been a popular research topic in the transportation field for many years. 

The first CF model was proposed by Pipes and Chandler [1], after which many scholars began to investigate 
the topic. CF models can be classified based on the model output type, including interval prediction, velocity 
prediction and acceleration prediction. Moreover, they can be categorised into parametric models and nonpara-
metric models based on the implementation method. Parametric models propose a relationship between input 
and output through equations, whereas nonparametric models are often obtained by using machine learning to 
learn CF data.

G. F. Newell proposed a simple homogeneous road CF model, in which the following vehicle has the same 
following trajectory as the preceding vehicle except for the translation in space and time [2, 3]. The famous 
collision avoidance Gipps model is a velocity control model that assumes that the preceding vehicle will have 
another sudden braking acceleration, and the following vehicle can still maintain a safe stopping distance [4]. 
The optimal velocity model (OVM) was proposed as the hyperbolic tangent function of velocity with respect 
to spacing and obtained under traffic congestion [5]. The generalised force model (GFM) studied how to solve 
the unsafe situations that may occur in the CF model [6]. Based on this model, the intelligent driver model 
(IDM) proposed the relationship between the real spacing and the expected minimum spacing and verified 
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that the characteristics of the model under OCT were basically consistent with the real data [7]. Based on the 
GFM model, Rui Jiang also proposed a full velocity difference model (FVDM) to study the properties of the 
model through analytical and numerical analysis methods and found that the model can describe the phase 
change process of traffic flow and estimate the evolution process of traffic flow congestion [8]. Yong proposed 
an improved FVD model considering the two vehicles in the driver’s field of view and the vehicle immediate-
ly behind them [9]. F. Zong proposed a mixed-flow vehicle CF model based on the FVAD model to describe 
the microscopic CF behaviour of conventional vehicles (RVs) and autonomous vehicles (AVs) [10]. Qin and 
Chandan have built some car-following models for CAV [11, 12].

This type of model is characterised by its ability to incorporate dynamic behaviour while maintaining a 
simple calculation method. However, the formula derivation often requires some degree of experience, and 
some models may need adjustments based on actual data. One limitation of this approach is that it may not 
capture the full complexity and intelligence of human driving behaviour. Previous research has attempted to 
address safety concerns associated with the traditional dynamic car-following models. In this paper, we aim 
to address safety concerns related to the use of the intelligent long short-term memory (LSTM) model for car 
following behaviour.

Over the past decade, the development of big data and machine learning has led to their application in 
various research fields, owing to their strong theoretical foundation and remarkable ability to learn from data. 
For instance, the National Highway Traffic Safety Administration launched the Next Generation Simulation 
(NGSIM) project in 2006, making available a dataset that many researchers have utilised to examine micro-
scopic traffic behaviours. Yang employed the Gipps model in combination with this dataset to remove unsafe 
behaviours in trajectories and continuously improved the dataset to train a random forest model [13]. M. Zhou 
proposed a classic cyclic neural network model to learn human driving behaviour data, which resulted in a 
model that was closer to real data than other models, such as the intelligent driver model (IDM) [14]. Heng 
Ding developed a connected and automated vehicle (CAV) driving strategy considering multiple vehicles in 
front, utilising an upgraded Elman neural network (ENN) model optimised by the Sparrow search algorithm 
(SSA) and a time-varying weighted model combined with the classical CF model [15]. F. Hui proposed a 
trajectory prediction model based on deep encoder-decoder and deep neural network (DNN) to address issues 
related to low prediction accuracy, inability to predict for an extended period and single adaptability of road 
segments in traditional prediction models [16]. W. Lu suggested a deep integrated neural network (DENN) 
model, which improves the accuracy of urban traffic state prediction, forming virtual graphs of highly correlat-
ed road sections [17]. Huang employed a LSTM neural network model to verify its capability to reproduce the 
stop-and-go phenomenon [18]. W. Fang incorporated an attention mechanism in the long short-term memory 
network for short-term traffic flow prediction [19]. Wang proposed a short-term traffic flow prediction model 
that leveraged the attention mechanism and 1DCNN-LSTM network [20], which combines the time expansion 
of CNN with the long-term memory advantage of LSTM. While these models can learn from data, they are 
akin to black boxes, making it challenging to explain and optimise the models locally.

The Gipps model was selected as the kinematic-based CF model due to its proven collision avoidance abil-
ity in numerous studies [3, 13, 21] and excellent safety features. By combining the Gipps model with machine 
learning-based CF models, the safety of autonomous vehicles can be enhanced. The Gipps model employs a 
‘safe velocity’ concept to prevent accidents, which depends on the distance and velocity of the preceding ve-
hicle. A detailed description of the Gipps model can be found in the reference [3].

The CF data is a type of time-series data, for which LSTM models have demonstrated superior learning 
ability, higher prediction accuracy and a more precise description of driving behaviour when compared to 
other machine learning models [22]. Additionally, LSTM models have a unique forgetting gate mechanism, 
which theoretically allows them to consider over 1000-time steps of historical time-series data, similar to hu-
man memory. Previous studies have shown that LSTM models that consider driver memory effects can better 
replicate real following behaviour and traffic flow state [22, 23]. However, in the case of autonomous vehicles, 
it is not entirely safe for the LSTM model to learn human following behaviour completely. Such models may 
learn hazardous driving behaviour, which could result in potential safety issues.

In this paper, two datasets, namely Dataset 1 and Dataset 2, were used. In recent years, machine learning 
methods have become increasingly popular for learning CF models, as studies [22, 23] have shown that these 
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models can replicate human CF behaviour. However, these models face urgent safety issues, as their safety 
cannot be verified in the same way as parametric models. To address this issue, this paper attempts to combine 
the advantages of the safety verifiability of parametric models with the learning ability of machine learning 
models to develop new CF models. Building on prior research, we propose a Gipps-LSTM model that com-
bines a kinematic CF model (Gipps) and a data-driven CF model (LSTM). The proposed model retains the 
fundamental features of the classical LSTM model, such as temporality, and learns the intelligent features of 
human driving behaviour. Additionally, the Gipps model, a collision avoidance safety verifiable model, is in-
troduced to address the safety concerns associated with the LSTM model.

2. DATA PREPARATION
2.1 Data collection

This paper employs two distinct datasets, namely Dataset 1 and Dataset 2, which are illustrated in Figure 1. 
Dataset 1, also known as NGSIM, is freely available to download from the official website [20−29]. On the 
other hand, Dataset 2 is collected by UAV, and Simi Motion is utilised to extract the vehicle trajectory data 
from the video. The video is approximately 15 minutes long, and the length of the road segment is around 200 
m. The recording was performed at 10:00 a.m. There are many types of traffic flows in the road segment, such 
as free-flowing, stop-and-go traffic flows etc., which can capture CF behaviours comprehensively. Dataset 1 is 
employed both as a training and testing set, while Dataset 2 is solely utilised as the testing set.

Figure 1 – Scenario of Dataset 1 (left) and Dataset 2 (right)

2.2 Data preprocessing
The difficulty to maintain a stable UAV position at high altitudes leads to errors in vehicle positioning in the 

video each time when extracting the video trajectory. Therefore, this paper adopts the sEMA method (Equations 
1–3) to smooth the displacement trajectories of Dataset 2, and the velocity and acceleration are obtained from 
the first-order and second-order differences of the displacement trajectories [30].

Step 1: Use the symmetric exponential moving average (sEMA) to smooth the displacement trajectory data 
of the vehicle traveling from upstream to downstream of the road section.

Step 2: First-order difference and second-order difference are used to obtain the vehicle velocity and accel-
eration at each time step (0.1s).

Step 3: In steps 1 and 2 of smoothing the data, we will find that the velocity and acceleration of the pro-
cessed data will change abruptly in the first and last small-time range. The reason for the sudden change is that 
the smoothing window for the first and last part of the data is relatively small, so the first and last second of the 
trajectory data of each trajectory should be excluded.
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Dataset 2 processed by this method is shown below. Figure 2a is the time-space diagram of vehicle trajectory 
in Dataset 2 after processing, which uses colour to distinguish the velocity of vehicles at different positions 
and at different times. Figure 2b shows the smoothed spacing and relative velocity scatter points. The spacing 
is mainly within 30 m, and the relative velocity is concentrated in (-2~2) m/s. Figures 2c and 2d show the time 
velocity diagram of a single vehicle, and the smoothing effect is closer to reality. It shows the acceleration 
time diagram of a single vehicle. It can be seen from the diagram that the acceleration value range is mainly 
between (-1~1) m/s2.

̶̶̶̶ ̶̶̶̶ ̶̶̶̶ ̶̶̶̶ ̶̶̶̶  Smoothed curve     - - - - Velocity curve
 

Figure 2 – Comparison between raw data and smoothed Dataset 2

3. MODEL
In this section we first train and test the LSTM CF model with the above two datasets and find that its simu-

lated trajectory will have the problem of collision risk. To address this problem, we construct the Gipps-LSTM 
model by combining the LSTM model with the Gipps model and the concept of potential collision point.

Whether in a kinematic-based CF model or data-driven CF model, many scholars believe that the CF be-
haviour should be related to the spacing between the preceding and following vehicles, the relative velocity, 
the velocity of the following vehicle and the acceleration of the following vehicle. Therefore, in the classic 
LSTM and the modified LSTM (Gipps-LSTM) CF models in this article, the input variables are spacing 

( )1,n nx t−∆  at time t, the relative velocity ( )1,n nv t−∆  and the following vehicle velocity ( )nv t , while the output is 

the acceleration ( )1na t +  at time t+1 as shown in Equation 4.

( ) ( ) ( ) ( )( )1, 1,1 , ,n n n n n na t f x t v t v t− −+ = ∆ ∆  (4)
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3.1 Limitations of the classical LSTM model
LSTM is able to handle data with time-series features, and training models using LSTM can fully learn the 

long-term dependencies in the training data. The output of the LSTM layer is shown in Equations 5−10 and the 
unit structure of the LSTM is shown in Figure 3.
1) Forget gate:

1 1 ( )t hx t ha t t hhch W x W a W c bσ+ += + + +  (5)
2) Input gate:

1 1 ( )t qx t qa t qc t qq W x W a W c bσ+ += + + +  (6)

0 1tanh( )t cx t ca t zc W x W a b+= + +  (7)
3) Memory cell unit:

1 1 1 0 t t t t tc h c q c+ + + ⊗= +⊗  (8)
4) Output gate:

1 1( )t dx t da t dc t oo W x W a W c bσ+ += + + +  (9)

1 1 t ad t aa W o b+ += +  (10)
where  , , , , , , , , , , ,hx ha hc qx qc cx qa ca dx da dc adW W W W W W W W W W W W   represents the weight matrix corresponding to each 
layer, bh, bq, bz, bo, ba is the offset weight corresponding to each gate. And at+1 is the predicted value of the ac-
celeration of the model at the nth vehicle at t+1.

Figure 3 – LSTM unit structure diagram

The LSTM neural network model has a wide range of parameters and configurations, which include but are 
not limited to the activation function, loss function, optimisation algorithm, number of hidden layers, number 
of neural units per layer, learning rate, batch size and epoch. These parameters and configurations require on-
going adjustments to optimise the performance of the neural network. The loss function is an error function 
utilised to measure the disparity between the predicted value of the neural network and the actual value, with 
the MSE typically selected as the loss function. The specific formula for the MSE is presented in Equation 11.
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The findings of this study on the model training results for various combinations of hidden layers and neural 
units are presented in Figure 4a. The results indicate that a neural network with 2 hidden layers and 128 neural 
units per layer demonstrated the lowest model error, with training and testing errors being the closest. The plot 
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presented in Figure 4b illustrates the variation of the loss function during training and testing. The results show 
that an epoch value of 20 is sufficient. After conducting continuous testing and adjustment, the LSTM neural 
network structure was selected and utilised in subsequent simulation analyses. The chosen values for each 
parameter can be found in Table 1.

 a) Train and test errors of different structural models b) Optimal model train and test error
Figure 4 – Parameter adjustment

Table 1 – Parameter adjustment results of the LSTM CF model

Parameter Value Parameter Value

Activation function Sigmoid tanh Learning rate 0.001

Loss function MSE Time step 0.1s

Optimisation algorithm Adam Epoch 20

Number of hidden layers 2 Batch-size 128

Number of neural units 128 Dropout 0.5

The LSTM model is simulated with the leading vehicle trajectory of the fleet in Dataset 1. The following 
vehicle trajectory is obtained by LSTM simulation acceleration under the premise of giving the position and 
velocity of the following vehicles at the initial moment. The simulation trajectory space-time diagram is shown 
in Figure 5.

In Figure 5a, the trajectory is generated using Dataset 1 with vehicle ID 1732 leading the way, and the clas-
sic LSTM model is used to simulate the nine trajectories followed. The initial velocity is the same as that of 
Dataset 1. In Figure 5b, a uniform distribution control error obeying [-0.5,0.5] is added to the simulation of Fig-
ure 5a to account for the inevitable vehicle control errors in real-world scenarios. The simulation results show 
that the model can adapt well to the adverse effects of this control error within a certain range, but it weakens 
the evacuation ability of traffic shock waves. These results indicate that the control error LSTM model is safe 
under normal conditions, but judging its absolute safety based on partial simulation trajectories is unreliable.

However, as shown in Figures 5c and 5d, when the leading vehicle is ID 1429, the LSTM model’s trajectory 
collides with the preceding vehicle. All following vehicles’ initial positions are initialised to be consistent with 
the data set. As the number of simulated vehicles increases, the following simulated vehicles also collide with 
the preceding vehicle. These results indicate that the model’s failure to learn the CF behaviour’s most import-
ant point is to stay safe, and thus the model requires modification.

3.2 Gipps-LSTM model
To address the issue of collision in LSTM, the present study proposes the Gipps-LSTM model, which 

combines the LSTM model and Gipps CF model. While the structure and parameter settings of the LSTM 
model have been previously introduced, this paper introduces the Gipps model, which provides a safe braking 
acceleration without considering the reaction time in the original model. The CF model is a dynamic system, 
and prediction models are established based on certain assumptions. Specifically, the Gipps model assumes 
that the preceding vehicle will decelerate at an-1 until it stops to obtain a safe acceleration an, which is calculated 
through formulas using the most unfavourable assumption. 

0.05

0.04

0.03

0.02

0.01

0.00

0.12

0.10

0.08

0.06

0.04

0.02
1-32 01-64 1-128 2-32 02-64 2-128

Model structure
 Train     Train

0 02 04 06 08 10 12 14 16 18
Epochs

-.-.-.- Training loss    -.-.-.- Test loss

M
SE

Lo
ss

 fu
nc

tio
n 

va
lu

e



386

Promet ‒ Traffic&Transportation. 2023;35(3):380-394.  Traffic Engineering

The Gipps-LSTM model utilises the same unfavourable assumption, assuming that the preceding vehicle 
will decelerate until it stops, while the CF vehicle follows the vehicle using the LSTM model. If the following 
vehicle does not collide with the preceding vehicle when the velocity of the following vehicle is 0, the action 
taken can be fully referenced to the LSTM model. However, if a collision occurs, the LSTM model is consid-
ered a safety risk and the safe braking acceleration that needs to be taken must be calculated through a formula. 
By combining the collision avoidance advantage of the Gipps model and the superior ability of the LSTM 
model to fit sequence data, the new model is named the Gipps-LSTM model. Equations 5−10 present the LSTM 
model formula of the Gipps-LSTM model, while Equations 12−15 show some formulas of the Gipps model.
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1 1
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Putting Equations 12 and 13 into Equation 14, the following can be derived:
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where *
1nx −  represents the position where the preceding vehicle has been braking at the acceleration of an-1 and 

will finally stop. *
nx  represents the position where the following vehicle brakes at the acceleration of an and 

finally stops. Equation 14 is to ensure that the spacing of the two vehicles is greater than the length of the preced-
ing vehicle’s body ln-1 when the two vehicles finally stop, and finally, the maximum value of the safe braking 
acceleration an of the CF vehicle in Equation 15 can be obtained.

Figure 5 – LSTM trajectory simulation
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Based on previous research [18-20], it has been discovered that the data-based CF model cannot verify 
safety through formulas directly. Furthermore, simulation results indicate that not all trajectories of the LSTM 
model can be maintained without collision. To address this issue, a virtual trajectory is constructed for the 
(n-1)th vehicle at each moment. Specifically, it is assumed that the (n-1)th vehicle brakes at that moment with a 
acceleration of an-1 until it comes to a stop, while the LSTM model is used to simulate the following vehicle. If 
the spacing between two vehicles is greater than the length ln-1 of the preceding vehicle when both vehicles are 
at a final standstill, then the LSTM model is deemed safe at this moment. As the preceding vehicle decelerates 
to a stop, the LSTM model can control the following vehicle to stop before a collision occurs. However, if there 
is a potential collision risk at this moment, it is represented as α (Equation 16), and the moment α=1 is referred 
to as the potential collision point (PCP).

* *
-1 -10,  if -

1,  else
n n nx x l

α
 ≥= 
  (16)
Based on this theory, the improved LSTM model proposed in this paper combines the characteristics of 

the safety verifiability of the formula and the characteristics of learning human driving data. It is ensured that 
the model can not only reproduce human intelligent driving behaviour, but also ensure safety. The final output 
formula of the model is as Equation 17.

( ) ( ) ( ) ( ) ( )( )1, 1,1 1 , ,n n n n n n na t f x t v t v t aα α− −+ = − ∆ ∆ +  (17)

where an takes the maximum value of Equation 15; ( ) ( ) ( )( )1, 1, , ,n n n n nf x t v t v t− −∆ ∆  is the output acceleration of the 
classic LSTM model. The Gipps-LSTM model is to use a formula to calculate the safe braking acceleration at 
a time when there is a potential risk of collision (at the time of α=1) and adopt the acceleration to ensure the 
safety of the vehicle. The Gipps-LSTM safe trajectory decision-making method is shown in Figure 6.

Figure 6 – the diagram flow of the Gipps-LSTM decision-making process

4. SIMULATION
4.1 Trajectory simulation

The main problem to be solved by this model is the trajectory collision problem that may occur in the sim-
ulation of the classic LSTM CF model. Therefore, in this paper, the classic LSTM model and the Gipps-LSTM 
model are simulated on the trajectory of Dataset 1 and Dataset 2 to compare the incidence of collisions. Due 
to the limited data extraction method, the length of the preceding vehicle is 5 m. This experiment is based on 
a computer with Intel Core i5-10400F and 16 GB of memory using Python 3.9, trained and run with the Keras 
framework in deep learning TensorFlow under the Jupyter Notebook development environment to implement 
Gipps-LSTM. The parameters in the Gipps-LSTM model were calibrated using the Genetic Algorithm (GA) 
library in Python. The objective function U(s) is Equation 18. The performance indicator RMSE(s,v,a) is Equation 19, 
and the calibration results  are shown for 20 percent of Dataset 1 and Dataset 2 in Table 2. The remaining 80 per-
cent of Dataset 1 and Dataset 2 were used for simulation on Python. The simulation results are shown in Table 3.
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Table 2 – Model calibration results

Data an-1 [m/s2] RMSEs [m] RMSEv [m/s] RMSEa [m/s2]

Dataset 1 -3.21 4.73 0.39 0.17

Dataset 2 -3.61 2.52 0.23 0.10

Table 3 – Model simulation collision rate

Model Data
Collision 
trajectory 
number

Total trajectory 
number

Collision rate 
(%)

Classic 
LSTM

Dataset 1 108 1029 10.5

Dataset 2 75 625 12

Gipps-LSTM
Dataset 1 0 1029 0

Dataset 2 0 625 0

Although it is not possible to present the simulation effect of all trajectories, an example is provided to 
illustrate the effectiveness of the proposed method. Specifically, the braking trajectory of the leading vehicle 
(Vehicle No. 1023) is shown in Figure 7. Figure 7a presents the trajectory diagram of the simulation using the 
LSTM model. As shown, the traditional LSTM model will collide under the trajectory of the preceding vehi-
cle, even if the initial state is relatively safe. In contrast, Figure 7b uses the Gipps-LSTM model to simulate the 
trajectory diagram. The Gipps-LSTM model can identify dangerous states and take safe operations, although it 
may slightly sacrifice efficiency. It is worth noting that efficiency and safety are incompatible, and to enhance 
safety, efficiency must be reduced. Thus, it is reasonable to reduce efficiency to obtain higher safety. 

The classic LSTM model will collide with the preceding vehicle using part of Dataset 2 trajectory for simu-
lation, highlighting the shortcomings of the pure LSTM model. Furthermore, machine learning models are not 
as interpretable as formula models, and mathematical formula derivation cannot be used to verify whether the 
model is entirely safe. Therefore, the proposed model in this article combines the collision avoidance advan-
tages of the Gipps model to compensate for the limitations of the LSTM model.

 a) Classic LSTM b) Gipps-LSTM

Figure 7 – Simulation comparison under different preceding vehicle accelerations
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In this section, we compare the safety of the Gipps-LSTM model and the LSTM model simulated trajecto-
ries in scenarios with the different accelerations of the preceding vehicle. Figure 8 shows the acceleration of the 
preceding vehicle set to -3, -4, -5, -6 m/s2, respectively. As the braking velocity increases, the potential collision 
point (PCP) shows a downward trend. The reason is that the control of the Gipps model will ensure a safer 
spacing between the preceding and following vehicles. The result can be seen in Figure 8.

 a) Preceding vehicle acceleration = -3 m/s2 b) Preceding vehicle acceleration = -4 m/s2

 c) Preceding vehicle acceleration = -5 m/s2 d) Preceding vehicle acceleration = -6 m/s2

 Leader       Gipps-LSTM        LSTM   × α=1
Figure 8 – Simulation comparison under different preceding vehicle accelerations

The simulation assumes that the braking acceleration of the preceding vehicle is 3, -4, -5, and -6 m/s2, rep-
resenting different degrees of danger in emergency situations, and is used to analyse the model’s simulation 
effect under various risk states. As shown in Figure 8, the calculated value of α for each moment of the LSTM 
model is equal to 1, indicating a potential collision risk at each moment. If the simulation continues in this 
state, the LSTM model will collide with the preceding vehicle. 

In contrast, the Gipps-LSTM model can ensure that no collision occurs first and foremost, and secondly, the 
PCP value is significantly smaller than that of the LSTM model. Although the Gipps-LSTM model also calcu-
lates the PCP, the model has adopted the safe braking acceleration of the Gipps model, rendering the trajectory 
entirely safe. Moreover, from the perspective of PCP distribution under dangerous trajectories, the model will 
activate Gipps model control at the beginning stage, so that the Gipps model is rarely activated after the vehicle 
reaches a safer state. Therefore, the two control measures will not frequently switch, avoiding the problem of 
reduced vehicle comfort. 

As depicted in Figure 8, the Gipps-LSTM model always maintains the same efficiency as the LSTM model 
when driving in a relatively safe environment. Hence, it can be concluded that the Gipps-LSTM model only 
sacrifices part of the efficiency during unsafe moments to enhance safety. When driving in a relatively safe 
environment, high efficiency is pursued similar to the LSTM model.

4.2 Multi-vehicle loop simulation
From the simulation in 4.1, the classical LSTM model used in single-lane multi-vehicle simulation has 

very unstable traffic flow characteristics. For example, the velocity will increase indefinitely, and collisions 
with the preceding vehicle will also occur in the simulation. Figure 9a is a simulation time-space diagram of a 

LSTM potential collision point number: 180
Gipps-LSTM potential collision point number: 50

LSTM potential collision point number: 180
Gipps-LSTM potential collision point number: 47

LSTM potential collision point number: 100
Gipps-LSTM potential collision point number: 58

LSTM potential collision point number: 180
Gipps-LSTM potential collision point number: 53
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Gipps-LSTM model with a simulation length of 1km for a single lane and a simulation duration of 200 sec-
onds. Compared to the LSTM model, the velocity and spacing of the traffic flow are relatively stable under 
the simulation of the Gipps-LSTM model. The red area in Figure 9a is the set initial velocity of the fleet. From 
Figure 9a, the velocity of the fleet will continue to increase and then stabilise near a value, indicating that the 
model can intelligently adjust different densities. Velocities increase the efficiency of traffic flow. Figure 9b is 
the density-flow diagram of the Gipps-LSTM model traffic flow simulation. The traffic flow under this model 
is relatively close to the discontinuous curve model. The pre-congestion (K<79) density-flow relationship 
exhibits a quadratic function, which is in excellent agreement with the existing traffic flow theory. Figure 9c 
shows the final stabilisation velocity of each vehicle in the traffic flow under the condition of setting different 
initial simulation velocities. The traffic flow will stabilise at a certain velocity when the set traffic flow density 
is consistent.

 a) b)

               c)

Figure 9 – a) Space-time diagram of traffic flow simulation based on Gipps-LSTM model (initial fleet velocity is 10 m/s),  
b) Time change curve of fleet velocity (vehicle density is 17 veh/km), c) Traffic flow simulation density-flow graph based  

on Gipps-LSTM model

When comparing the risks of the LSTM model and the Gipps-LSTM model, this paper chooses a more 
classic risk assessment index TTC (time to collision), and the TTC formula is as follows [31]:

( ) ( ) ( )
( ) ( ) ( ) ( )1

1
1

        0n n
n n n

n n

x t x t l
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v t v t
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+
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− −
= ∀ − >

−  
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Figure 10 displays the frequency diagram depicting the occurrence of time-to-collision (TTC) values lower 
than 10 in a single trajectory. As the TTC value decreases, the associated risk increases. This paper primarily 
investigates the performance of two models in scenarios where the risks are relatively high. The results in Fig-

ure 10 indicate that, among all time steps where TTC<10 in a single trajectory, the Gipps-LSTM model has a 
significantly higher mean value than the LSTM model. This observation demonstrates that the risk associated 
with the Gipps-LSTM model is considerably lower than that of the LSTM model.
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 Gipps-LSTM          LSTM
Figure 10 – Single trajectory TTC frequency

4.3 Multi-vehicle linear simulation
Based on the Gipps-LSTM model and LSTM model, the movement of multiple vehicles following each 

other is simulated, which is used to analyse the stability and safety of the following fleet. Set the driving state 
of the leading vehicle as to the following four parts [28]:
1) Driving for 50 s at a constant velocity of 5 m/s.
2) Accelerate for 10 s at an acceleration of 0.5 m/s2.
3) Decelerate for 10 s at an acceleration of -0.5 m/s2.
4) Driving 100 s at a constant velocity of 5 m/s.

In the simulation of fleet stability, the initial spacing of vehicles is set as 20 m and the vehicle length is 5 
m. The initial velocity is set to 5 m/s, and the simulation time step to 0.1 s. Figure 11 shows the change in the 
velocity of ten following vehicles in the fleet with time. Assuming that the number of vehicles using the Gipps-
LSTM model in the fleet is different, four different simulation results can be obtained. Table 4 shows the average 
TTC (TTC<10) and velocity of all vehicles in the fleet in the simulation time under the four simulation results, 
which are used to describe the safety and efficiency of the fleet.

Table 4 – Average TTC (TTC<10) and velocity of fleet simulation

Number of Gipps-LSTM model 0 3 6 9 (all)

Average TTC 2.90529 3.12797 3.8038 4.12636

Diff (%) / 7.66 23.12 7.16

Average velocity [m/s] 5.2924 5.2844 5.259 5.251

Diff (%) / -0.15 -0.48 -0.15

In Figure 11, it can be observed that as the leading vehicle accelerates and then decelerates, the velocity of 
the follower also fluctuates, with both the LSTM and Gipps-LSTM models achieving stability after a period 
of time. The stability of the model is thus verified, and it is noteworthy that vehicles using the Gipps-LSTM 
model decelerate significantly faster than those using the LSTM model, as demonstrated in Figures 11b and 11c. 
Furthermore, as the proportion of vehicles using the Gipps-LSTM model increases in the fleet, the stable con-
vergence velocity of the fleet is also improved. Specifically, when the entire fleet is simulated with the Gipps-
LSTM model, the convergence velocity is improved by 50% compared to the simulation using the LSTM 
model, as shown in Figures 11a and 11d. Table 4 also shows that as the proportion of Gipps-LSTM model vehicles 
increases in the fleet, the average TTC of the fleet increases, indicating an overall improvement in the safety 
of the fleet. Notably, the average TTC value increases by 42.02% when the entire fleet is simulated with the 
Gipps-LSTM model, compared to when it is simulated with the LSTM model. However, the average vehicle 
velocity is only reduced by 0.79%, which suggests that the Gipps-LSTM model does not significantly impact 
the fleet’s efficiency while improving its overall safety.
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 c) Number of Gipps-LSTM model is 6 d) Number of Gipps-LSTM model is 9

Figure 11 – Gipps-LSTM model (red) and LSTM (blue) model fleet simulation

5. DISCUSSION
In recent years, there has been an increasing interest in developing machine learning-based models for pre-

dicting CF behaviour in vehicles. While these models have shown promise in accurately predicting future ve-
hicle positions, velocities and accelerations based on historical data, a key challenge is their safety verifiability. 
Machine learning-based models often lack interpretability, making it difficult to explain their decision-making 
processes, which is crucial for verifying their safety and reliability in autonomous vehicle operation. To solve 
this problem, the proposed a novel model, Gipps-LSTM, which combines the strengths of both machine learn-
ing and parametric models. However, there are some areas that require further investigation. Firstly, the Gipps-
LSTM model is not sufficiently interpretable when applied to real-world scenarios. Secondly, the switching 
between the two control modes in the model can cause sudden acceleration under certain conditions, which 
reduces driving comfort. Finally, since there are two behaviours of car-following and lane-changing in real 
traffic flow, a single car-following model may not be enough to simulate the diversity of traffic behaviours, and 
finding internal connections between the two behaviours may be necessary.

6. CONCLUSION 
In order to address the collision problem of some trajectories of the classic LSTM model, a new Gipps-

LSTM model was developed by combining the LSTM model and the Gipps model. Through simulation tests, 
the following conclusions were drawn:
1) The Gipps-LSTM model has higher safety than the classic LSTM model, and the safety can be attributed 

to the Gipps model.
2) The PCP (probability of collision point) of the model will decrease instead of increasing as the dangerous 

situation becomes more urgent, which is related to the Gipps model’s role in adjusting the spacing at the 
beginning.

3) The velocity and spacing of the Gipps-LSTM model will be relatively stable in traffic flow simulation, and 
the basic traffic flow diagram can better match the existing traffic flow theory.

 a) Number of Gipps-LSTM model is 0 b) Number of Gipps-LSTM model is 3
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陈星宇, 柏海舰, 丁恒, 高建设, 黄文娟

基于LSTM的汽车跟踪轨迹规划的安全控制方法

摘要：
本文主要研究深度学习模型产生的跟车行为中存在的碰撞安全隐患。在智
能LSTM模型的基础上,结合安全避撞的Gipps模型,构建了一个新的模型
Gipps-LSTM模型,该模型不仅可以学习人的智能行为,还可以保证车辆的安
全。Gipps-LSTM模型组合的思路如下：引入潜在碰撞点（PCP）的概念,并
通过风险判断算法控制和启动LSTM模型或Gipps模型。数据集1和数据集2被
用来训练和模拟LSTM模型和Gipps-LSTM模型。仿真结果表明,Gipps-LSTM
可以解决LSTM模型仿真中部分轨迹碰撞的问题。此外,所有轨迹的风险水
平都低于LSTM模型。该模型的安全性和稳定性通过多车循环仿真和多车
线性仿真得到了验证。与LSTM模型相比,Gipps-LSTM模型的安全性提高了
42.02%,收敛时间缩短了25秒。

关键词：
跟驰模型; 长短时记忆; 吉普斯模型; 安全控制; 潜在碰撞点


