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Two-kink and kink-antikink states in φ4-theory with damping are constructed.

1. Introduction and formulation of the problem

The φ4-theory has been used for the description of a large variety of physical
phenomena [1-3]. It is a nonlinear model that has been thoroughly investigated.
When the necessity of description of real processes has appeared, it was necessary
to take into account such aspects of the problem as friction and damping, which are
always present in physical systems. In the φ4-theory, damping is taken into account
by introducing the term proportional to φt in equation of motion:

φtt − φxx + αφt − φ+ φ3 = 0 (1)

where α is the damping coefficient.

Without a loss of generality, all the other coefficients in Eq. (1) may be taken
equal to unity.

When damping is absent (α = 0), the φ4-theory is nonintegrable. For the self-
similarity case the equation of the theory has the solitary wave solution (kink or
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antikink). The problem of construction of the exact solution as a coupled state of
two kinks (or kink and antikink) has not been solved previously. Results of some
numerical experiments point out to the possibility of existence such a quasistable
states [4-6], but the results of analytical investigations are at variance with them
[7].

When we take damping into account (α /=0), Eq. (1) for the self-similarity case
reduces to the ordinary differential equation possessing the Painleve property [8,9].
Such equation is of an integrable type. Therefore, it is possible to consider the
problem of constructing the field configuration corresponding to the coupled states
of solitary waves in φ4-theory.

In this paper the explicit expressions for coupled states of two kinks or of kink
and antikink in self-similarity case are constructed. It should be noticed that the
problem of definition of integrability of a nonlinear partial differential equation
requires additional explanations [10,11]. The nonlinear partial differential equation
will be considered integrable if it has the N -soliton solution, N = 1, 2, 3, . . .. For
such an equation there is an infinite number of conservation laws. So this paper
may be considered as the first step in constructing the N -soliton solution for Eq.
(1) and hence the proof of its integrability. Besides, the construction of a new,
previously unknown solution for Eq. (1) is of general interest.

To construct the solutions corresponding to coupled states mentioned above,
the direct integration metod based on the well-known Hirota method is used with
some modifications.

Let

φ(x, t) = σ
Fx

F
(2)

where F (x, t) is an unknown function and σ is a constant determined below. Sub-
stitution Eq. (2) into Eq. (1) results in the following cubic differential equation

FxttF
2 − 2FxtFtF − FxFttF + 2FxF

2
t − FxxxF

2 + 3FxFxxF

+(σ2 − 2)F 3
x + αFxtF

2 − αFxFtF − FxF
2 = 0. (3)

Usually, at this stage of solving, in accordance with Hirota method the value of the
parameter σ should be chosen. Seemingly, the value σ2 = 2 is the most appropriate,
but such a choice leads to considerable difficulties. As will be shown below, it is
natural to determine σ putting the expression for a single kink into Eq. (1).

Let us represent F (x, t) as a formal series

F (x, t) = 1 + ǫf1 + ǫ2f2 + . . . (4)

where fi(x, t) are unknown functions (i = 1, 2, . . .); generally speaking, ǫ is not a
small constant. By substituting Eq. (4) into Eq. (3) and equating to zero coefficients
for each degree of ǫ, we obtain an infinite system of linear equations that determine
fi(x, t). This system has the form
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ǫ1 :

f1,xtt − f1,xxx + αf1,xt − f1,x = 0 (5)

ǫ2 :

f2,xtt − f2,xxx + αf2,xt − f2,x = 2f1,xtf1,t + f1,xf1,tt

−3f1,xf1,xx + αf1,xf1,t (6)

ǫ3 :

f3,xtt − f3,xxx + αf3,xt − f3,x = 2f1,xtf2,t + 2f1,tf2,xt

+f1,xf2,tt + f2,xf1,tt − 2f1,xf
2
1,t − 3f1,xxf2,x − 3f1,xf2,xx − (σ2 − 2)f3

1,x

+αf1,xf2,t + αf1,tf2,x − f2,xttf1 + f2,xxxf1 − αf2,xtf1 + f2,xf1 (7)

and so on.

It is clear that for every value i, the function fi(x, t) will be determined by
the previous functions only. The remarkable property of the series (4) is that it
contains an finite number of terms for problems of N -soliton solutions. It is not
known whether the problem (1) has such a solution for any N . In this paper we
demonstrate that for N = 2 the series (4) is finite.

2. One-kink solution

A one-kink solution for φ4-theory is well-known [8,9,12]. Here it will be con-
structed again to demonstrate the method of solving. One should use Eq. (5) and
look for its solution in the form

f1(x, t) = eη1 (8)

where η1 = k1x − ω1t + η
(0)
1 and k1, ω1 and η

(0)
1 are constants to be determined.

By using Eqs. (2), (4) and (5) we obtain

φ(x, t) =
σk1
2

{

1 + th[
1

2
(k1x− ω1t+ η

(0)
1 )]

}

. (9)

From Eq. (5) we can derive the relation between k1 and ω1:

ω2
1 − αω1 − k21 − 1 = 0. (10)
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The second linearly independent equation to determine k1 and ω1 is obtained from
the requirement of breaking the series (4) for i = 2 in the case of one-kink solution.
It means that the right-hand side of Eq. (6) should be equal to zero. This leads to
equation

3ω2
1 − αω1 − 3k21. (11)

By solving Eqs. (10) and (11) we obtain

ω1 = −
3

2α
, (12)

k21 =
9 + 2α2

4α2
. (13)

Different signs of k1 obtained from Eq. (13) correspond to the kink and antikink.
As it should be, the velocity and the wave number of the kink are fixed.

From Eqs. (1) and (9) we obtain

σ =
1

k1
.

For

k1 = −
(9 + 2α2)1/2

2α

Eq. (9) yields

φ(x, t) =
1

2

{

1− th[
(9 + 2α2)1/2

4α
(x−

3t

(9 + 2α2)1/2
+ η

(0)∗
1 )]

}

. (14)

This is exactly the solution obtained in Ref. 8. The definition of the constant η
(0)∗
1 ,

which describes the initial phase shift, is obvious. The substitution of the solution
(8) with parameters ω1 and k1 defined by Eqs. (12) and (13) into the right-hand
side of Eq. (6) leads to equating it to zero as in the usual Hirota method.

It is clear that taking damping into account leads to non-trivial generalization
of the kink in φ4-theory. For α → 0 the solution (14) does not reduce to well-known
kink for φ4-theory without damping.

It was pointed out in Ref. 12 that the one-kink solution depends on two arbitrary
constants. This conclusion has been criticized in Refs. 8 and 9 where only one
arbitrary constant in expression for the one-kink solution was argued. Our analysis
agrees with the latter point of view.
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3. Coupled states

Let us construct explicit expressions for field contributions describing coupled
states of two kinks or of kink and antikink in φ4-theory with damping. To do this
we shall use Eq. (6).

By substituting the following expression for f1(x, t)

f1(x, t) = eη1 + eη2 , (15)

ηi = kix− ωit+ η
(0)
i , i = 1, 2, into Eq. (6), we can transform it to the form

f2,xtt − f2,xxx + αf2,xt − f2,x = (3k1ω
2
1 − 3k31 − αk1ω1)e

2η1

+[2(k1 + k2)ω1ω2 + k1ω
2
2 + k2ω

2
1 − 3(k21k2 + k1k

2
2) (16)

−α(k1ω2 + k2ω1)]e
(η1+η2) + (3k2ω

2
2 − 3k32 − αk2ω2)e

2η2 .

Here we don’t require the fulfilment of the condition k1 /=k2 as in the Hirota method.

We shall look for the solution of Eq. (16) in the form

f2(x, t) = R e2η1 +Q eη1+η2 + S e2η2 . (17)

Here R, Q and S are constants to be determined. By substituting Eq. (17) into Eq.
(16) and equating to zero coefficients for the same powers we obtain

2(4ω2
1 − 4k21 − 2αω1 − 1)R = 3ω2

1 − 3k21 − αω1, (18)

2(4ω2
2 − 4k22 − 2αω2 − 1)S = 3ω2

2 − 3k22 − αω2, (19)

(k1 + k2)[(ω1 + ω2)
2 − (k1 + k2)

2 − α(ω1 + ω2)− 1]Q =

2(k1 + k2)ω1ω2 + k1ω
2
2 + k2ω

2
1 − 3(k21k2 + k1k

2
2)− α(k1ω2 + k2ω1). (20)

Although the parameters k1 and ω1 are known, it is impossible to calculate
coefficient R from Eq. (18), since this equation leads to the uncertainty of the type
0/0. The equation of coupling between k1 and ω1 has yet to be constructed. To
determine the coefficients R, Q and S we proceed as for one-kink solution. Let us
substitute Eqs. (15) and (17) into the righ-hand side of Eq. (7) and set it equal to
zero. We obtain the following coupled equations:

(10ω2
1 − 10k21 + 2)R = 2ω2

1 − 2k21 + 1, (21)

(10ω2
2 − 10k22 + 2)S = 2ω2

2 + (
1

k21
− 2)k22 , (22)
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[2k1ω1(ω1 + ω2) + 2ω1(k1 + k2)(ω1 + ω2) + k1(ω1 + ω2)
2

+(k1 + k2)ω
2
1 − 3k21(k1 + k2)− 3k1(k1 + k2)

2 − αk1(ω1 + ω2)

−αω1(k1+k2)−(k1+k2)(ω1+ω2)
2+(k1+k2)

3+α(k1+k2)(ω1+ω2)+(k1+k2)]Q (23)

+[4k2ω1ω2 + 8k1ω1ω2 + 4k2ω
2
1 + 2k1ω

2
2 − 6k22k1 − 12k2k

2
1 − 2αω1k2

−2αω2k1 − 8k1ω
2
1 +8k31 +4αω1k1 +2k1]R− 4k1ω1ω2 − 2k2ω

2
1 − 3(

1

k21
− 2)k21k2 = 0,

[2k2ω2(ω1 + ω2) + 2ω2(k1 + k2)(ω1 + ω2) + k2(ω1 + ω2)
2

+(k1 + k2)ω
2
2 − 3k22(k1 + k2)− 3k2(k1 + k2)

2 − αk2(ω1 + ω2)

−αω2(k1+k2)−(k1+k2)(ω1+ω2)
2+(k1+k2)

3+α(k1+k2)(ω1+ω2)
2+(k1+k2)]Q

(24)

+[4k1ω1ω2 + 8k2ω1ω2 + 4k1ω
2
2 + 2k2ω

2
1 − 6k21k2 − 12k1k

2
2 − 2αω2k1

−2αω1k2 − 8k2ω
2
2 +8k32 +4αω2k2 +2k2]S − 4k2ω1ω2 − 2k1ω

2
2 − 3(

1

k21
− 2)k1k

2
2 = 0.

From Eq. (21) we obtain R = 0.

Now we analyze the expressions for φ(x, t) for coupled states resulting from
different relations between ki and ωi (i = 1,2). If

k21 = k22 =
9 + 2α2

4α2

then ω1 and ω2 are determined by Eq. (12).

There are four different cases.

1) k1 = k2, ω1 = ω2

In this case Eq. (19) for the coefficient S leads to the uncertainty of the type
0/0. To determine S we use Eq. (22) which leads to S = 0. In a similar way Eq.
(20) leads to the uncertainty of the type 0/0 for coefficient Q. To determine Q we
use Eq. (23) which leads to Q = 0. Consequently in this case f2(x, t) = 0 and for
φ(x, t) we obtain

φ(x, t) =
[

e(k1x−ω1t+η
(0)
1 ) + e(k1x−ω1t+η

(0)
2 )

]

×
[

1 + e(k1x−ω1t+η
(0)
1 ) + e(k1x−ω1t+η

(0)
2 )

]

−1

. (25)
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When the initial phase shifts η
(0)
i (i = 1,2) are equal to zero, the only difference

between Eq. (25) from Eq. (14) is a constant phase shift of ln 2.

2) k1 = −k2, ω1 = ω2

In this case R = S = 0. To determine the coefficient Q we use Eq. (26) (Eq.
(27) leads to the same result). We obtain

Q =
6

6 + α2
.

Then

f2(x, t) =
6

6 + α2
e(−2ω1t+η

(0)
12 )

where η
(0)
12 = η

(0)
1 + η

(0)
2 .

Using Eqs. (2) and (4) the final expression for φ(x, t) in this case may be written
in a form

φ(x, t) = (6 + α2)
[

e(k1x−ω1t+η
(0)
1 ) − e(−k1x−ω1t+η

(0)
2 )

]

×
{

(6 + α2)
[

1 + e(k1x−ω1t+η
(0)
1 ) + e(−k1x−ω1t+η

(0)
2 )

]

+ 6e(−2ω1t+η
(0)
12 )

}

−1

. (26)

The behaviour of the function defined by Eq. (26) for α = 0.7, η
(0)
1 = η

(0)
2 =

−1.5 and k1 = (9+2α2)1/2/(2α) is shown in Fig. 1. Notice that the non-monotonic
behaviour of the function in the region |x| ≤ 1 is conserved in time.

3) k1 = k2, ω1 = −ω2

In this case Eq. (21) leads to R = 0 and from Eq. (22) we obtain S = 1/4. It is
possible to calculate the coefficient Q from Eq. (20),

Q =
6 + α2

6 + 2α2
.

So, f2(x, t) takes the form

f2(x, t) =
6 + α2

6 + 2α2
e(2k1x+η

(0)
12 ) +

1

4
e2(k1x+ω1t+η

(0)
2 ).

As for Eq. (26), this allows writting the following expression for the coupled state

φ(x, t) = 2
{

2(3 + α2)
[

e(k1x−ω1t+η
(0)
1 ) + e(k1x+ω1t+η

(0)
2 )

]

+2(6 + α2)e(2k1x+η
(0)
12 ) + (3 + α2)e2(k1x+ω1t+η

(0)
2 )

}
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×
{

4(3 + α2)
[

1 + e(k1x−ω1t+η
(0)
1 ) + e(k1x+ω1t+η

(0)
2 )

]

+2(6 + α2)e(2k1x+η
(0)
12 ) + (3 + α2)e2(k1x+ω1t+η

(0)
2 )

}

−1

. (27)

The behaviour of the function defined by Eq. (27) for α= 0.7, η
(0)
1 = η

(0)
2 = -1.5

and k1 = −(9+2α2)1/2/(2α) is shown in Fig. 2. For this function the non-monotonic
character in the region |x| ≤ 1 vanishes in time.

Fig. 1. The behaviour of φ(x, t) defined by Eq. (26) as function of x for different
t: t = 0 - solid line, t = 1 - dashed line and t = 2 dot-dashed line.

4) k1 = −k2, ω1 = −ω2

It is impossible to determine the coefficient Q in this case. We assume that this
case corresponds to a kink and antikink that move apart from the initial position
in opposite directions. So the coupled state could not be formulated.

4. Conclusion

In conclusion I would like to make a remark. In the usual Hirota method, the
transformation (2) leads to the quadratic type of the differential equation under
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consideration. The property of the Hirota method is such that an exact truncation
in any order equation of the infinite system of linear differential equations guar-
anties that all higher order equations will also give exactly the vanishing of the
further terms in the series of type (4). But in our case Eq. (3) is not quadratic. At
present one can not prove whether this property has been retained. Nevertheless,
the method of construction the N -soliton solution which is presented here requires
the setting equal to zero the right-hand side of the (N + 1)-soliton equation to ob-
tain the parameters of the N -soliton solution. This is why I think the property of
Hirota method mentioned above is fulfilled (at least it is right for one-kink solution
and coupled states derived above).

Fig. 2. The behaviour of φ(x, t) defined by Eq. (27) as a function of x for
different t: t = 0 - solid line, t = 3 - dashed line and t = 10 dot-dashed line.
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NOVA RJEŠENJA U φ4-TEORIJI S GUŠENJEM
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U okviru φ4 teorije konstruirana su rješenja za dvojni prijelom i prijelom-
antiprijelom s gušenjem.
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