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Abstract. Using a representation theoretic approach and considering G to be a finite
primitive permutation group of degree n with a trivial Schur multiplier, we present a
method to determine all binary linear codes of length n that admit G as a permutation
automorphism group. In the non-binary case, we can still apply our method, but it will
depend on the structure of the stabilizer of a point in the action of G. We show that every
binary linear code admitting G as a permutation automorphism group is a submodule
of a permutation module defined by a primitive action of G. As an illustration of the
method, we consider G to be the sporadic simple group M11 and construct all binary linear
codes invariant under G. We also construct some point- and block-primitive 1-designs from
the supports of some codewords of the codes in the discussion and compute their minimum
distances, and in many instances we determine the stabilizers of non-zero weight codewords.
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1. Introduction

Given a prescribed permutation group G, it is an interesting coding theory problem
to determine all non-trivial codes invariant under G, i.e., all non-trivial codes that
admit G as a permutation group of automorphisms, acting transitively on the code
coordinate positions.

Recall that the code C admits the group G as a primitive permutation auto-
morphism group (or C is a G-invariant code) if G is contained in the permutation
automorphism group of C (see Section 3). This justifies our choice of a transitive
group G and the suggestion to construct all G-invariant codes. There are different
methods to construct codes from algebraic structures. Using maximal submodules
of permutation modules defined by the primitive action of some simple groups, in
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[5, 6, 7], Chikamai, Moori and Rodrigues studied some binary codes from 2-modular
representations of some simple groups.

As an attempt to address the problem stated above, in this paper we introduce a
method to construct all G-invariant linear codes. This method is based on a result
of [14]. In particular, given G a finite simple group, we can find all G-invariant
binary linear codes of length |G:M |, where M is a maximal subgroup of the group
G. We can still apply our method in the non-binary case, but it will depend on the
structure of M . We give an example of this situation in Section 7.1. In addition,
using the well-known Assmus-Mattson theorem, we can construct other combinato-
rial configurations which admit G as a permutation group of automorphisms. More
concretely, we can construct point- and block-primitive 1-designs that are invariant
under G.

A finite group T is a covering group of G by a group M if T/M ∼= G and
M ≤ Z(T ) ∩ T ′, where Z(T ) and T ′ are the center and the derived subgroup of T ,
respectively. We call M the Schur multiplier of G and denote it by M(G). Every
finite group G has a universal covering group [9, Theorem 4.226], which is a covering
group of G by M(G) (see also [9, §4.15]). In this paper, we focus on groups with
a trivial Schur multiplier. In the case when the Schur multiplier of the group G is
not trivial, one can still apply the method proposed in the paper by considering the
permutation modules of the covering group of G. We have not done so in this paper,
but in a forthcoming paper [16] we consider this case and a generalization of some
of the results presented in this paper.

To illustrate the applicability of the method, we consider G to be the Mathieu
group M11, this is the smallest sporadic simple group with a trivial Schur multi-
plier and also because its primitive permutation representations are of moderate
size. However, the results of this paper can be generalized to any finite primitive
permutation group with a trivial Schur multiplier.

The paper is organized as follows: in Section 2, we outline the terminology and
notation. In Section 3, we restate some well-known facts on codes. Section 4 is
devoted to modular representation theory. Furthermore, we also prove Theorem 2,
which is the main result of this paper that describes the method of construction
of the codes. In Section 5, we state some results of the Mathieu group M11. In
Section 6, we give a brief overview of triangular graphs and find some codes and
their structures. In Section 7, we apply the method presented in the paper to
determine all linear codes invariant under the Mathieu group M11 and study some
of their most interesting properties.

2. Terminology and notation

Our notation for designs, graphs and groups will be standard, and it is as in [2] , [4]
and ATLAS [8]. An incidence structure is a triple D = (P,B, I) with point set P,
block set B disjoint to P and incidence set I ⊆ P×B. If the ordered pair (p,B) ∈ I,
we say that p is incident with B. We can assume that the blocks in B are subsets
of P, so (p,B) ∈ D if and only if p ∈ B. For a positive integer t, we say that D is a
t-design if every block B ∈ B is incident with exactly k points and every t distinct
points are together incident with λ blocks. In this case, we write D = t − (v, k, λ),
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where v = |P|. We say that D is symmetric if it has the same number of points and
blocks.

A linear code C of length n and dimension k is an Fq-subspace of dimension k
in the vector space Fnq , where Fq is a field of q elements. We may write C = [n, k]q.
If q = 2, then we call C a binary code of most interest. Each element of C is a
codeword and Fq is called the alphabet of C. The Hamming distance of two distinct
codewords c1 and c2 of code C is the number of coordinate positions in which they
differ. We denote the Hamming distance of c1 and c2 by d(c1, c2). The smallest
distance between all pairs of distinct codewords is called the minimum distance of
C and it is denoted by d(C).

Every linear code of length n over Fq contains the zero vector 0 ∈ Fq, all of whose
coordinates are the zero element of the field. The weight of a codeword c is defined
to be d(c, 0). We denote the weight of c by wt(c). Note that the linear property of C
implies that there exists a codeword whose weight equals d(C). Hence the minimum
distance of a linear code is just the minimum weight of the code. Assume that
W = {w1, ..., wn} is the set of weights of all codewords of C, and w1 < ... < wn.
Then the weight distribution of C is defined as below:

WD(C) = {wn1
1 , ..., wnk

k },

where ni for each i is the number of codewords of weight wi. The capability of a
linear code to detect errors depends on the minimum distance of the code. If the
minimum distance of a code is known, then we write C = [n, k, d]q, where d = d(C).
If q = 2, we simply write C = [n, k, d]. Note that by [17], the problem of computing
the minimum distance of a code is an NP -hard problem. Therefore, no efficient
algorithms are known to find d(C) in general. The dual code of C is defined as the
set

C⊥ = {v ∈ C : 〈v, c〉 = 0, for all c ∈ C},

where by 〈v, c〉 we mean the inner product of v and c. A code C is self-orthogonal
if C ⊆ C⊥, and it is self-dual if C = C⊥. The code is called self-complementary if it
contains the all-one vector. The all-one vector will be denoted by 1.

The support of a nonzero vector x := (x1, . . . , xn), where xi ∈ Fq, is the set
of indices of its non-zero coordinates: supp(x) = {i|xi 6= 0}. The support design
of a code of length n for a given non-zero weight w is the design with n points of
coordinate indices and blocks the supports of all codewords of weight w.

3. Some results of codes

In this section, we state some basic results of codes. We start with the following
lemma which gives the minimum distances of the repetition code and its dual. Recall
that a repetition code of length n is a code whose codewords are formed merely by
repeating the message words n times.

Lemma 1. Let C be the repetition code of length n over a finite field Fq and C⊥ the
dual of C. Then C = [n, 1, n]q and C⊥ = [n, n− 1, 2]q.
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Lemma 2. Let C be the code of length n over a finite field Fq and C⊥ the dual
of C. Then the all-one codeword 1 lies in C if and only if q divides the sum of all
coordinates of each w ∈ C⊥. In particular, if q = 2, then 1 ∈ C if and only if the
length of C⊥ is even.

Proof. If 1 ∈ C, then for all w ∈ C⊥ we have 〈w,1〉 = 0. Since 〈w,1〉 is the sum of
all coordinates of w, we get q | 〈w,1〉. This completes the proof.

Corollary 1. A binary code is even if and only if it is contained in the dual of the
repetition code.

Definition 1. Let N be a k × n matrix whose rows generate the linear code C =
[n, k]q. Then the permutation automorphism group of C is the stabilizer of C in the
symmetric group Sn with respect to the action on the set of the columns of N . We
denote the permutation automorphism group of C by PAut(C).

Remark 1. The permutation automorphism group of a code must be distinguished
from the full automorphism group of a code: the stabilizer of the action of F ∗

n

q oSn
sending every column of N to a scalar multiple of another column. Clearly Aut(C) =
PAut(C) in the binary case.

Notice that A := PAut(C) is also of degree n and all codewords in C are of length
n. If g ∈ A, then for 1 ≤ i, j ≤ n we have ig = j if and only if for any codeword
v ∈ C the i-th coordinate of vg is replaced by j. This is how A acts on C. For a
positive integer m, we define:

Wm(C) = {v ∈ C : wt(v) = m}.

If there is no ambiguity, we may simply write Wm. Since the automorphisms of C
preserve the weight of codewords, we deduce that A acts on Wm for every integer
m with Wm 6= ∅. The stabilizer of this action is of interest. If v ∈Wm, then the
stabilizer of v in A is the set of all g ∈ A with vg = v. So if the code is binary, the
stabilizer of v in A is isomorphic to the stabilizer of the support of v in A. We can
see that some 1-designs may be constructed from the codes using this action. We
restate and prove the following result from [15].

Proposition 1. Let C = [n, k, d]2 be a binary linear code admitting G as a permu-
tation automorphism group and Wm(C) 6= ∅. If S is an orbit of the action of G on
Wm, then we have a 1-(n,m,m|S|/n) design with block set B = {Supp(w) : w ∈ S}.

Proof. Let B = {B1, . . . , Bs}, where s = |S| and notice that |Bi| = m for 1 ≤ i ≤ s.
Suppose that x ∈ S lies in exactly λ blocks of B. Since G acts transitively on S,
then every y ∈ S also lies in exactly λ blocks of B. Based on this, we can obtain a

1-(n,m, λ) design, say D. Now observe that
s⋃
i=1

Bi = {1, 2, . . . , n} and each number

is repeated λ times. Therefore, n = sm/λ and the result follows.

Remark 2. If C is not a binary code, a similar result holds. We only need to replace
|S| by |B|, since in the non-binary case it is possible that the supports of two different
codewords coincide.
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4. Modular representation theory

Let G be a finite group and V a vector space of dimension n over a field F . Then
each homomorphism Φ : G→ GL(V ) is called a representation of degree n. We can
easily check that V becomes a G-module by defining g.v := Φ(g)(v) for g ∈ G and
v ∈ V . Conversely, we can naturally obtain a representation of G if V has a G-
module structure. Therefore, to each representation there corresponds an F -vector
space with a G-module structure. A representation is irreducible (simple) if the
corresponding G-module is irreducible. A reducible G-module is either completely
reducible or indecomposable according to whether V can or can not be written as
a direct sum of simple modules. We denote the direct sum of the modules W1 and
W2 by W1 ⊕W2. If F is of characteristic zero or char(F ) - |G|, then according to
Maschke’s theorem, FG is semisimple. In particular, indecomposable modules are
the same as irreducible modules. However, Maschke’s theorem fails if the charac-
teristic of F divides |G|. Therefore, in modular representation theory we may face
indecomposable modules which are not irreducible. It is well-known that the number
of irreducible representations of a finite group is finite. Now let H be a subgroup
of G with an FH-module W . Then we can obtain an FG-module IndGH (W ) called
the induced module of W to G as follows:

IndGH (W ) = FG⊗FH W.

If W is a one-dimensional module, then the image of the representation correspond-
ing to IndGH (W ) is an m×m matrix in which every row and column has exactly one
non-zero entry. Here m is the index of H in G. The representation induced by the
trivial representation of H is called the permutation module of G of degree |G:H|.
The image of a permutation module is a permutation matrix, that is, a matrix in
which each row and column has a unique non-zero entry 1. Conversely, assume that
G acts on a set of size m. Then we can identify the action of G with the action on
the set of rows of the identity m ×m matrix. This clearly defines a representation
P of degree m with the property that all rows and columns of the matrices in the
image of Φ contain precisely a single 1 with 0’s everywhere else. It is not difficult
to show that the FG-module corresponding to P is just the permutation module of
degree m. That is, it is induced from a subgroup of G of index m. Now assume
that G is a finite simple group with a maximal subgroup M . Then we consider the
action of G by conjugation on the set M of all conjugates of M in G. It is easy to
see that the action is primitive. Since G is simple, the action is faithful and we can
view G as a permutation automorphism group of degree m, where m = |G:M |.

For our purpose the relations of these concepts to properties of the “permutation
modules” related to the action of a finite group G are important. Let G act on
the finite set Ω and let F be a field. The formal sums

∑
α∈Ω rαα constitute an F -

vector space on which G acts as a group of F -linear mappings via (
∑
α∈Ω rαα)g =∑

α∈Ω rαα
g, giving the structure of an FG-module denoted by FΩ. This module is

called the permutation module over F to the action of G on Ω (or the permutation
group G if G is a permutation group on Ω). Clearly, the set Ω can be viewed as an
F -basis of the permutation module and (FΩ,Ω) is a Hamming space in the sense
introduced above. Moreover, the action of G on FΩ preserves the Hamming weight
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and the canonical bilinear form with orthonormal basis Ω. So the submodules of
FΩ can be considered as linear codes with ambient space FΩ and ambient basis Ω,
whereas G acts as a permutation group of automorphisms on any such code. For
simplicity - bearing this in mind - we denote the codes and submodules by the same
letters.

Let LC(m, q) be the set of all linear codes of length m over GF (q) that admit
G as their permutation automorphism group. Then one may ask whether LC(m, q)
can be completely determined.

The following result derived from [14] is the starting step towards an answer to
this question.

Theorem 1 ([14], Corollary 3.2). Assume (G,X) is a primitive permutation auto-
morphism group and F is a field such that Ext(G/G′, F ∗) = 0. Let E be a stem
cover of G and E0 the inverse image in E of the stabilizer G0. Induce up to E
all 1-dimensional FE0-modules. Then the submodules of the resulting FE-modules
provide for a complete list of codes over F admitting (G,X) as a permutation auto-
morphism group.

Notice that if G is a perfect group, then Ext(G/G′, F ∗) = 0, and the stem
extension is simply a central extension. We prove the following main result.

Theorem 2. Let G be a finite simple group and M a maximal subgroup of G. Let
P be the permutation FG-module corresponding to the primitive action of G on
M , where F is a finite field. Assume that the Schur multiplier of G is trivial and
(|M/M ′|, |F ∗|) = 1. Then LC(m, q) equals the set of all submodules of P .

Proof. Since the Schur multiplier of G is trivial, then G is its own covering group.
Therefore, by Theorem 1, LC(m, q) is the set of all submodules of the induced
modules of 1-dimensional FM -modules to G. Now, let Φ be a representation of M
of degree 1. We claim that Φ is trivial. Indeed, M/ ker Φ lies in a subgroup of F ∗. As
F ∗ is abelian, we have M ′ ≤ ker Φ. Hence |M : ker Φ| divides both |F ∗| and |M/M ′|.
Thus we have M = ker Φ and the claim is proved. We conclude that LC(m, q) is the
set of all submodules of the permutation module of G of degree |G:M |. The result
now follows.

Remark 3. Under the hypotheses of Theorem 2, if |F | = 2, then the equality
(|M/M ′|, |F ∗|) = 1 holds. So our method can be applied to find all binary codes
of length |G:M |, invariant under G. However, for |F | > 2, the method may not
work for some maximal subgroups.

Corollary 2. Assume the hypothesis and the notation as in Theorem 2. If M = M ′,
then LC(m, q) equals the set of all submodules of P .

Proof. The proof follows as in the proof of Theorem 2 noticing that (|M/M ′|, |F ∗|) =
1 over any finite field F for which |F | ≥ 2.
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5. On the Mathieu group M11

In the sequel, to illustrate the constructed method discussed in the paper we consider
G to be the Mathieu group M11. Recall that M11 is the smallest sporadic simple
group and it is of order 7920 = 24× 32× 5× 11. From the ATLAS [8], we know that
the Schur multiplier of G is trivial. Moreover, up to conjugation, the group has five
classes of maximal subgroups, as listed for example in Table 1, where the notation
used for the maximal subgroups follows that of the ATLAS.

No. Max. sub. Deg.

1 M10 11

2 PSL(2, 11) 12

3 M9:2 55

4 S5 66

5 2.S4 165

Table 1: Maximal subgroups of M11

For each maximal subgroup M of G, the action of G by conjugation on the set
of conjugates of M , gives a primitive action of degree

|G:M | ∈ {11, 12, 55, 66, 165}.

In this and the remaining sections our aim is to apply Theorem 2 to construct
all linear codes invariant under G. Using Remark 3 we deduce that every binary
code of length |G:M | that admits G as a permutation group of automorphisms is
a submodule of the permutation module of degree |G:M |. In general, Theorem 2
holds for codes over GF(q) provided (|M :M ′|, q − 1) = 1.

Observe that M ∼= PSL(2, 11) is a perfect group. It follows from Corollary 2 that
we can determine all linear codes of length 12 over GF (q), with q dividing |G|, and
admitting G as a permutation group of automorphisms. However, for the rest of the
maximal subgroups M of G, the value of |M :M ′| is 2 or 4. Therefore, Theorem 2 is
not applicable in these cases.

We need the following result concerning the number of irreducible F2-modules of
M11.

Proposition 2. Let G be the Mathieu group M11. Then there are four irreducible
G-invariant modules over GF (2), with dimensions 1, 10, 32 and 44. With the excep-
tion of the submodule of dimension 32 which splits into two irreducible modules of
dimension 16 over GF (4), the other submodules are absolutely irreducible.

Proof. Follows from the Atlas of Brauer characters [11] or [1].

Throughout the paper, by Mi (1 ≤ i ≤ 5) we mean a maximal subgroup of
G which appears in the i-th row of Table 1. Denote by Pi(q) the permutation
module over GF (q) with respect to the primitive action of G = M11 on the set of
the conjugates of Mi in G. Our aim is to find the set of all binary codes whose
automorphism groups contain G. According to Theorem 2, the codes are of type
C := [n, k, d]2, where n = |G:M | ∈ {11, 12, 55, 65, 165}. We usually exclude the cases
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k = 0 and k = n. Furthermore, if k = 1, then C = [n, 1, n] is the repetition code.
The repetition code and its dual [n, n − 1, 2] have very restricted and well-known
structures, so we consider these codes along with the codes of type [n, 0, n] and
[n, n, 1] as the trivial codes.

6. On triangular graphs and their codes

For a positive integer n, the triangular graph T (n) is defined to be the line graph
of the complete graph Kn. The codes constructed from the triangular graphs have
been discussed in [10] and [13]. Since we will encounter instances of binary codes
of triangular graphs in the sequel, it seems appropriate at this stage to provide
some background of codes from this class of graphs. In this section, we restate
some definitions and theorems from those references and also prove some additional
results.

The graph T (n) is a strongly regular graph on v =
(

n

2

)
vertices, i.e., on the pairs

of letters {i, j}, where i, j ∈ {1, . . . , n}. If N is the vertex-edge incidence matrix of
Kn, then A = NTN(mod 2) is the adjacency matrix of T (n). The codes generated
by N and A are denoted by CN and CA, respectively. Following the discussion before
[10, Theorem 4.1], we have that CN is an n−1 dimensional binary code and 1 /∈ CN .
According to [10, Theorem 4.1], we have the following result.

Proposition 3. Let CA and CN be as above.

• If n is odd, then CA = CN and the weight distribution of CA is as follows:

WD(CA) = {i(n− i)(
n
i ) : 0 ≤ i ≤ n/2}.

• If n is even, then CA = CN ∩1⊥ and the weight distributions of CA and CN are
as follows:

WD(CN ) = {i(n− i)(
n
i ) : 0 ≤ i < n/2} ∪ {n2/4

(
n
n/2)/2},

WD(CA) = {ij ∈ WD(CN ) : i is even}.

We may view the vertices of T (n) as the sets {a, b}, where a 6= b and {a, b} ⊂
{1, 2, . . . , n}. Each row {a, b} of the adjacency matrix of T (n) affords a codeword
v{a,b} of weight 2(n−2). In fact, {c, d} ∈ Supp(v{a,b}) if and only if |{a, b}∩{c, d}| =
1. Let v{a1...am} be a codeword of weight m in which the position {a1, am} and the
positions {ai, ai+1} (for 1 ≤ i ≤ m− 1) are 1, and 0 elsewhere. We can see that

v{a1...am} = v{a1,a2} + . . .+ v{an−1,an} + v{a1,am}.

Definition 2. For m ≥ 3, assume that the codeword v{a1...am} is as defined above.
Then we say that v{a1...am} is of m-cycle type. We denote the set of all such code-
words by V(m).

Lemma 3. Let CA be as above. Then CA⊥ contains all codewords of m-cycle type
(3 ≤ m ≤ n).
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Proof. Let w = v{a1,...,am} be a codeword of m-cycle type and v = v{x,y} ∈ CA.
We put S := Supp(v) ∩ Supp(w). Since v is a generating vertex of CA, it suffices
to prove that |S| is even. If S = ∅, then we are done. Without loss of generality,
we may assume that x = a1 and consider the following cases: If y = a2, then
S = {{a1, am}, {a2, a3}}. Similarly, if y = an, then

S = {{a1, a2}, {am−1, am}}.

If y = ar, r 6= 1 and r 6= m, then

S = {{a1, a2}, {a1, am}, {ar, ar+1}, {ar−1, ar}}.

Finally, if y 6= ai for 1 ≤ i ≤ m, then S = {{a1, am}, {a1, am}}.

Remark 4. Using an argument similar to that used in the proof of Lemma 3, it can
be shown that for 3 ≤ m ≤ 5, every codeword of weight m in C⊥A is of m-cycle type.
So there are exactly (nm) (m− 1)!/2 codewords of weight m. Furthermore, (CN ⊕1)⊥

is simply the set of all codewords of even weight in CA⊥. Hence the minimum distance
of (CN ⊕ 1)⊥ is equal to 4.

For n = 11 and 12, the codes we constructed from T (n) are clearly invariant
under the Mathieu group M11. We will define another graph related to T (n) in
order to construct more codes invariant under M11. Let B = {B1, . . . , Bn}, where
Bi is the set of vertices {a, b} in T (n), not intersecting at the point i. Then it is clear

that B is a block set for a 1− (
(

n

2

)
,
(

n − 1

2

)
, n− 2) design. Let CB be the linear code

constructed from the incidence matrix of the design. Then we have the following
result.

Lemma 4. The weight distribution of CB is {
(

n

k

)wk

: 0 ≤ k ≤ n}, where:

wk =

{
(n2)−k(n−k) if n is odd,

k(n−k) if n is even.

Proof. The code CB has n generating codewords ci, each of weight
(

n − 1

2

)
. For

each codeword v of length m, we define fv : {1, . . . ,m} → {0, 1}, with fv(i) = 1
if and only if i ∈ Supp(v). Every codeword is the sum of k generating codewords.
Suppose that w = c1 + . . . + ck and let {i, j} be any point. If neither i nor j lie in

{1, . . . , k}, then for 1 ≤ r ≤ k, we have fcr ({i, j}) = 1 and we have
(

n − k

2

)
choices

for r. If both i and j lie in {1, . . . , k}, then for all 1 ≤ r ≤ k with r 6= i and

r 6= j, we have fcr ({i, j}) = 1 and we have
(

k

2

)
choices for r. In either case, we have

wt(v) = k− 2 = k ( mod 2). Now assume that either i or j lies in {1, . . . , k}. Then
we have wt(v) = k − 2( mod 2) and the number of remaining cases is(

n

2

)
−
(

n − k

2

)
−
(

k

2

)
.

If k is odd, then k − 1 = 0( mod 2). Hence we have:
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wt(v) =
(

n − k

2

)
+
(

k

2

)
=
(

n

2

)
− k(n− k),

and if n is even, then:

wt(v) =
(

n

2

)
−
(

n − k

2

)
−
(

k

2

)
= k(n− k).

7. Constructing linear codes invariant under M11

Let G be a group with a trivial Schur multiplier and let M be a maximal subgroup of
G. Then using Theorem 2, we can find all G-invariant linear codes of length |G:M |
that satisfy (|M :M ′|, |F ∗|) = 1. Notice that the latter always holds in the binary
case, i.e., we can find all G-invariant binary codes of length |G:M |. However, for the
case of non-binary codes, we may find all G-invariant codes of length |G:M | only
for some specific types of maximal subgroups (see Corollary 2). In fact, if |F | > 2
and M is a maximal subgroup of G = M11, then (|M :M ′|, |F ∗|) = 1 if and only if
|F | = 3 and |G:M | = 12. So we can only guarantee to find all G-invariant ternary
codes of length 12. Note that applying our method to other maximal subgroups of
G will still give us some G-invariant codes, but the method does not guarantee to
cover all possible such linear codes.

7.1. Linear codes of lengths 11 and 12 invariant under M11

We first show that all binary M11-invariant codes of lengths 11 and 12 are trivial.

Proposition 4. Let C be a binary code of length n = 11 or 12 which is invariant
under M11. Then C is a trivial code.

Proof. Let C be of dimension m. We can assume that m 6= 0 and m 6= n. By
Theorem 2, C corresponds to a submodule of the permutation module of degree n.
Furthermore, by Proposition 2, C is a sum of submodules of dimensions 1 and 10. If
n = 11, then m = 1 or 10, and the result follows. So we can assume that n = 12. In
this case we can easily check that P12(2) has only submodules of dimensions 0, 1, 11
and 12, and so by Theorem 2, C is a trivial code.

In the remainder of this section, we will construct some non-binary codes. Ob-
serve that if M is a maximal subgroup of index 12 in M11, then by Table 1 we have
M ∼= PSL(2, 11). Now, since M = M ′, we can apply Corollary 2 to construct all
non-trivial linear codes of length 12 invariant under G. We will show that the only
non-trivial and non-binary code of length 12 invariant under M11 is the extended
ternary Golay code C = [12, 6, 6]3, which is a self-dual code containing the repetition
code. Moreover, the weight distribution of C is:

{01, 6264, 9440, 1224},

and we have Aut(C) ∼= 2.M12 and PAut(C) ∼= M11.
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In Table 2, we present the structure of the stabilizers of the codewords of C in
PAut(C) and in Aut(C), respectively. The first column give the weight m of the
codewords in C. The second and the fourth column gives the number of the orbits
of the action of Aut(C) and the fourth PAut(C), respectively, on the set Wm. The
stabilizers of these elements are given in columns 3 and 5, respectively.

Weight no. of orbs under Aut Stab in Aut no. of orbs under PAut Stab in PAut

6 1 S6 3 (Sizes: 22, 22 and 220) A6, A6 and S3 × S3

9 1 32:2.S4 2 (Sizes: 220 and 220) S3 × S3 and S3 × S3

12 1 M11 3 (Sizes: 1, 1 and 22) M11, M11 and A6

Table 2: The stabilizers of the codewords of C = [12, 6, 6]3

Proposition 5. Let C = [12, 6, 6]3 be the extended ternary Golay code. Then we
have the following support designs obtained from the non-zero codewords of C. The
notation D6i is used to refer to the i-th design constructed from the codeword of
weight 6.

• D61 = 3-(12, 6, 2);

• D62 = 3-(12, 6, 10);

• D63 = 5-(12, 6, 1) = S(5, 6, 12);

• D9 = 9-(12, 9, 1) = S(9, 9, 12).

Proof. The sizes of the orbits are given in Table 2. So by Proposition 1 and Re-
mark 2, we find 1-designs 1-(12,m,m|B|/120) for m = 0, 6, 9, 12. Since for m = 0
and m = 12 the designs are trivial, we exclude these cases.

Let m = 6, and consider the action of PAut(C) on the set Wm. We can see that

Wm = X ∪ 2X ∪ Y,

where X and 2X are orbits of sizes 22. Moreover, all non-zero coordinates of X
and 2X are 1 and 2, respectively. Furthermore, Y is an orbit of size 220 and the
coordinates of its codewords contain 0, 1 and 2. Taking X or 2X, we can construct
a 1-design 1-(12, 6, λ), where λ = 22 × 6/12 = 11. This design is isomorphic to
a 3-(12, 6, 2) design. So assume that PAut(C) acts on the orbit of size 220. Here
the situation described in Remark 2 occurs, since by switching the 1s and 2s, the
support of the codewords remains unchanged. Hence, the number of blocks is equal
to 110 and we can construct a 1-(12, 6, λ) with λ = 110× 6/12 = 55. This design is
in fact a 3-(12, 6, 10) design.
For m = 9, we have two orbits, say X and 2X, of sizes 220 with 220 blocks each.
Hence, from each of these orbits we construct a 1-(12, 9, 165) design. We can easily
show that this is a 9-(12, 9, 1) design.
Now we construct designs by considering the action of A = Aut(C) on Wm. Note
that A acts transitively on Wm, for m = 6, 9. All designs constructed by using
these orbits are known. Moreover, for m = 6, we have a 1-(12, 6, 66) design with 132
blocks. This is in fact a 5-(12, 6, 1) design, a well-known Steiner system S(5, 6, 12),
whose automorphism group is isomorphic to M12. This completes the proof.
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Remark 5. The support designs, i.e., designs constructed from the supports of the
codewords in Wm are G-invariant. In particular, note that the linear codes con-
structed from these designs will not span new codes (this follows from Theorem 2).
Here we can see that the linear code constructed from D61 is C, while the code con-
structed by D62,D63,D9 and D12 is [12, 12, 11]3, the dual of the repetition code.

7.2. Linear codes of length 55

In this section, we study the binary codes of length 55 that admit G as a permutation
automorphism group. In the following theorem, we have listed all non-trivial binary
codes of length 55.

Proposition 6. Let C be a non-trivial binary code of length 55 which is invariant
under G = M11. Then C is one of the following codes:

• C1 = [55, 10, 10];

• C2 = [55, 44, 4];

• C3 = 1⊕ C1 = C⊥2 = [55, 11, 10];

• C4 = 1⊕ C2 = C⊥1 = [55, 45, 3].

Moreover, P3(2) = 1 ⊕ C1 ⊕ C2 is a semisimple module and for 1 ≤ i ≤ 4 we have
Hull(Ci) = 0. The automorphism groups of Ci (1 ≤ i ≤ 4) are isomorphic to S11.

Proof. The permutation module P3(2) contains six proper non-zero submodules of
distinct dimensions:

1, 10, 11, 44, 45, 54.

Moreover, by Proposition 2 we have that the submodules of dimensions 1, 10 and 44
are irreducible and so P3(2) can be expressed as the direct sum of these submodules.
Hence, P3(2) is semisimple. By Theorem 2, there are exactly 6 G-invariant binary
codes of length 55, four of which are non-trivial. Let C1 and C2 be the irreducible
codes of dimensions 10 and 44. It is clear that C1 is isomorphic to the code CA =
[55, 10, 10]. By Lemma 3 or [13], we have C⊥1 = [55, 45, 3]. The code C2 is the dual
of the code 1⊕C1. We can easily obtain the weight distribution of 1⊕C1 from that
of C1. In particular, we have 1 ⊕ C1 = [55, 11, 10]. To complete the proof, we need

to compute the minimum distance of C2. It suffices to observe that C2 = (1⊕ C1)
⊥

.
Hence, by Remark 4, we have C2 = [55, 44, 4]. The automorphism groups of the
codes are given in [13].

We will now focus on the codes C1 = [55, 10, 10] and C3 = [55, 11, 10]. The weight
distribution of C1 is as follows:

WD(C1) = {01, 1011, 1855, 24165, 28330, 30462}.

Since C3 = [55, 11, 10] is a direct sum of C2 and the repetition code, the weight
distribution of C3 can be immediately computed. In fact, we have:

WD(C3) = {01, 1011, 1855, 24165, 25462, 27330, 28330, 30462, 31165, 3755, 4511, 551}.
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Proposition 7. Let w be a codeword of the code Ci (i = 1, 3) of weight m and
A = Aut(Ci) ∼= S11. If Wm(Ci) 6= ∅, then the action of A on Wm(Ci) is transitive.
The stabilizer of w ∈Wm(Ci) in A is a maximal subgroup of M11 and the support
designs constructed from these codes are given in Table 3.

m s := |Wm| Stabilizer Maximal in A Design

10 11 S10 Yes 1-(55, 10, 2)
18 55 S9 × S2 Yes 1-(55, 18, 18)
24 165 S8 × S3 Yes 1-(55, 24, 72)
25 462 S6 × S5 Yes 1-(55, 25, 210)
27 330 S7 × S4 Yes 1-(55, 27, 162)
28 330 S7 × S4 Yes 1-(55, 28, 168)
30 462 S5 × S6 Yes 1-(55, 30, 252)
31 165 S8 × S3 Yes 1-(55, 31, 93)
37 55 S9 × S2 Yes 1-(55, 37, 37)
45 11 S10 Yes 1-(55, 45, 9)

Table 3: The stabilizers and designs from the code [55, 11, 10]

Proof. If w ∈ C1, then the weight of w equals m: = i(11− i) for some i. Moreover,

the number of codewords of weight m equals v =
(

n

2

)
. So the stabilizer of w permutes

i and 11 − i words. Hence StA(w) = Si × Sn−i, which is a maximal subgroup of
A11. For odd m, we have 55 − (55 −m). Hence StA(w) equals StA(w′), where w′

is a codeword of even weight 55 − m. The support designs constructed from the
codewords of weight m are of type 1-(55,m, λ), where λ is the number of codewords
in Wm whose support contains 1. By Proposition 1, we have λ = ms/55, where m
and s are given in the first two columns of Table 3. This completes the proof.

We devote the last part of this section to the codes of dimensions 44 and 45,
respectively. We know that C1 ⊕ C2 = C4, and the automorphism group of both
codes is isomorphic to S11. Here we only obtain the stabilizers for the codewords
of weight m ≤ 7. A similar approach can be used to construct the stabilizers of
codewords for other values of m. If w is a codeword of weight m, then the support
of w is the set of m unordered 2-subsets {a, b}, where 1 ≤ a < b ≤ n. So we can
construct a graph Γ(w) whose vertex-set is a subset of {1, 2, . . . , 12} and the edge-set
is Supp(w).

Proposition 8. Let w be a codeword of the code Ci (i = 2, 4) of weight m ≤ 8 and
A = Aut(Ci) ∼= S11. The stabilizer of w in A and the designs constructed from C2
and C4 are given in Table 4.

Proof. Let w be a codeword of weight m. It is easy to see that the set V(m) of
all codewords of m-cycle type is an orbit of the action. The stabilizer of an element
w ∈ V(m) is isomorphic to the automorphism group of a 2-regular graph, which
is D2m, the dihedral group of order 2m. On the other hand, StA(w) permutes all
11−m points outside V(m). Therefore StA(w) ∼= S11−m ×D2m. By Remark 4, for
3 ≤ m ≤ 5, every codeword of weight m in CA⊥ lies in V(m). Hence the stabilizers
in these cases are isomorphic to S8 ×D6, S7 ×D8 and S6 ×D10, respectively. Now
suppose that m = 6. If w is of 6-cycle type, then StA(w) ∼= S5 ×D12. If w is a sum
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of two codewords of 3-cycle type, then StA(w) ∼= S11−6 × (U1:2), where U1 is the
automorphism group of the graph of two disjoint copies of K3, i.e.,

StA(w) ∼= S5 × (D6 ×D6):2.

m no. of orbits Orbit sizes Stabilizer Design

3 1 165 S8 ×D6 1-(55, 3, 9)
4 1 990 S7 ×D8 1-(55, 4, 72)
5 1 5544 S6 ×D10 1-(55, 5, 504)
6 3 27720 S5 ×D12 1-(55, 6, 3024)
- - 4620 S5 × [(D3 ×D3):2] 1-(55, 6, 504)
- - 6930 S6 ×D8 1-(55, 6, 756)
7 4 118800 S4 ×D14 1-(55, 7, 15120)
- - 34650 S4 ×D6 ×D8 1-(55, 7, 4410)
- - 83160 S5 × C2 × C2 1-(55, 7, 10584)
- - 4620 S6 ×D12 1-(55, 7, 588)

Table 4: The stabilizers and designs from codes C2 and C4

The final possibility for a codeword of weight 6 is that there exists one vertex in
Γ(w) of degree 4, while the other 4 vertices are of degree 2. In this case, we have
StA(w) ∼= S6 × U2, where U2 is the automorphism group of the following graph,
which is D8.

..

.

. .

.

Now assume that m = 7. We have an orbit of 7-cycle type whose stabilizer is
S4 × D14. Furthermore, if w is a sum of two codewords v1 ∈ V(3) and v2 ∈ V(4),
then we have StA(w) ∼= S4 × D6 × D8. There are two more possibilities in this
case: if there exists a codeword of weight 4 in Γ(w), then StA(w) ∼= S5 × U3, where
U3 = C2 × C2 is the automorphism group of the following graph:

.. .

. .

.

.

In addition, if there are two vertices of degree 4 in Γ(w), then StA(w) ∼= S5×U4,
where U4 = D12 is the automorphism group of the following graph:

.. .

.

.

.

So, the structure of the stabilizers for the codewords of weight m ≤ 7 are as given
in Table 2. The proof is now complete.
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7.3. Binary codes of length 66

In this section, we study the binary codes of length 66 that admit G as a permutation
automorphism group. Here we can find two non-semisimple codes of dimension 11.

The permutation module P4(2) contains 16 proper non-zero submodules of di-
mensions:

1, 10, 113, 12, 21, 22, 44, 45, 54, 553, 56, 65,

where the submodules of dimensions 1, 10 and 44 are irreducible. So by Theorem 2,
we have exactly 14 non-trivial M11-invariant codes of length 66 (excluding the codes
of dimensions 1 and 65), as listed in the statements of the following two theorems.
By Proposition 3, we have dim CA = 10 and dim CN = 11. CA ⊕ 1 is also another
code of dimension 11, not isomorphic to CN .

Proposition 9. The following binary codes of length 66 are invariant under G =
M11.

• C1 = CA = [66, 10, 20], C⊥1 = [66, 56, 3] and

WD(C1) = {01, 2066, 32495, 36462};

• C2 = C1 ⊕ 1 = [66, 11, 20], C⊥2 = [66, 55, 4] and,

WD(C2) = {01, 2066, 30462, 32495, 34495, 36462, 4666, 661};

• C3 = CN = [66, 11, 11], C⊥3 = [66, 55, 3] and,

WD(C3) = {01, 1112, 2066, 27220, 32495, 35792, 36462};

• C4 = CB = [66, 11, 20], C⊥4 = [66, 55, 4] and

WD(C4) = CB = {01, 2066, 31792, 32495, 36462, 39220, 5512};

• C5 = CN ⊕ 1 = [66, 12, 11], C⊥5 = [66, 54, 4] and

WD(C5) = {01, 1112, 2066, 27220, 30462, 31792, 32495,

34495, 35792, 36462, 39220, 4666, 5512, 661}.

Moreover, for 1 ≤ i ≤ 5, we have Aut(Ci) = Aut(Ci⊥) = S12.

Proof. The code C1 is obtained from the binary row span of the adjacency matrix
of T (12). So by Proposition 3, we have C1 = [66, 10, 20] and

WD(C1) = {01, 2066, 32495, 36462}.

Furthermore, by Remark 4, we have C⊥1 = [66, 56, 3]. The weight distribution of
C2 := C1 ⊕ 1 can be easily obtained from that of C1 by adjoining the all one-vector:

WD(C2) = {01, 2066, 30462, 32495, 34495, 36462, 4666, 661}.
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In particular, we have C2 = [66, 11, 20]. Moreover, by Remark 4, we have
C⊥2 = [66, 55, 4]. Let C3 = CN , generated by the vertex-edge incidence matrix of
the complete graph K12; then by Proposition 3 we have C3 = [66, 11, 11] and the
weight distribution of this code is as follows:

WD(C3) = {01, 1112, 2066, 27220, 32495, 35792, 36462}.

Again, using Remark 4, we have C⊥3 = [66, 55, 3]. It is also clear by Lemma 4
that CB is neither isomorphic to C2 nor to CN . So C4 = CB and by Lemma 4 we
have:

WD(C4) = {01, 2066, 31792, 32495, 36462, 39220, 5512};
It is also easy to check that C⊥4 = [66, 55, 4]. On the other hand, since 1 /∈ CN , we

deduce that C5 := CN ⊕ 1 is a code of dimension 12. Hence, the weight distribution
of C5 may be easily obtained. So, we have C5 = [66, 12, 11] and C⊥5 = [66, 54, 4].

Proposition 10. Let C be a non-trivial binary code of length 66 invariant under
G = M11. If C is not one of the codes constructed in Proposition 9, then Aut(C) =
M11 and C is one of the following codes:

• C6 = [66, 21, 16], C⊥6 = [66, 45, 8];

• C7 = [66, 22, 11], C⊥7 = [66, 44, 8].

Proof. Consider the rank 4 action of G on 66 points. Using [12, Proposition 1] we
construct a 1-(66, 15, 15) symmetric design such that the Mathieu group M11 acts
primitively on points and on blocks. Let C7 be the linear code of this design. Since
C7 contains codewords of weight 15, then it is not one of the codes Ci, 1 ≤ i ≤ 5.
Direct computations with MAGMA [3] yield that C7 is a code of dimension 22 and
Aut(C7) = M11. We can also compute the minimum distance of C7. In particular,
C7 = [66, 22, 11]. On the other hand, the submodule lattice of P4(2) shows that the
code C6 of dimension 21 lies in the dual of the repetition code. Since the latter is an
even weight code, we conclude that C6 consists of even weight codewords of C7, i.e.,
C6 = [66, 21, 16]. Using the weight distribution of these codes and the MacWilliams
identities, we have C⊥6 = [66, 45, 8] and C⊥7 = [66, 44, 8].

Proposition 11. Let w be a codeword of the code C5 of weight m and A = Aut(C5) ∼=
S12. Then the action of A on Wm(C5) is primitive. The stabilizer of w ∈Wm in
A and the designs constructed from C5 are given in Table 5. Moreover, StA(w) are
maximal subgroups of A.

Proof. Let w be a codeword of weight m in C5. If w ∈ CN = C3, then m = i(i− 1).
Using an approach similar to that given in the proof of Theorem 7 we deduce for
i 6= 6 that the stabilizer of w in S12 is isomorphic to Si×S12−i. If i = 6, then StA(w)
permutes two subsets of the Supp(w) of size 6. So in the case i = 6, the stabilizer is
(S6 × S12−6):2. If w ∈ C2 or C4, then StA(w) = St(1−w), and we can compute the
stabilizers of the remaining codewords. Examining the list of maximal subgroups of
S12, using MAGMA [3], we observe that all these stabilizers are maximal subgroups
of S12. This completes the proof.
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m Stabilizer Maximal in S12 Design

11 S11 Yes 1-(66, 11, 2)
20 S10 × S2 Yes 1-(66, 20, 20)
27 S9 × S3 Yes 1-(66, 27, 72)
30 (S6 × S6):2 Yes 1-(66, 30, 210)
31 S7 × S5 Yes 1-(66, 31, 372)
32 S8 × S4 Yes 1-(66, 32, 240)
34 S8 × S4 Yes 1-(66, 30, 255)
35 S7 × S5 Yes 1-(66, 35, 420)
36 (S6 × S6):2 Yes 1-(66, 36, 252)
39 S9 × S3 Yes 1-(66, 39, 130)
46 S10 × S2 Yes 1-(66, 46, 46)
55 S11 Yes 1-(66, 55, 10)

Table 5: The stabilizers of codewords and designs from the code C5 = [66, 12, 11]

7.4. Codes of length 165

In this section, we obtain the binary codes of length 165 which are invariant under
M11. The permutation module of dimension 165 over F2 has 156 submodules, and
thus 156 binary linear codes§. We are not going to examine all these codes in this
paper; however, we use a method which is a generalization of triangular graphs to find
the weight distribution and the stabilizers of a code with parameters [165, 11, 45]2.

Recall that a triangle in a graph Γ is the subset {a, b, c} of the vertices of Γ,
where a, b and c are mutually adjacent. We state the following definition which is a
generalization of the notion of a line graph.

Definition 3. For a graph Γ, we define the graphs Γ3,i (0 ≤ i ≤ 2) as follows. The
set of vertices of these graphs is the set of triangles of Γ, and two triangles {a, b, c}
and {c, d, e} in Γ3,i are adjacent if |{a, b, c}∩{c, d, e}| = i. If Γ is the complete graph
Kn, then we write Γ3 := T3,i(n).

Lemma 5. The graphs K3,i(n) is ri-regular and Sn-invariant, where r0 =
(

n − 3

3

)
,

r1 = 3
(

n − 3

2

)
and r2 = 3(n− 3). Moreover, they yield the following 1-designs:

D3,0(n) = 1− (
(

n

3

)
,
(

n − 3

3

)
,
(

n − 3

3

)
)

D3,1(n) = 1− (
(

n

3

)
,
(

n − 1

2

)
, 3)

D3,2(n) = 1− (
(

n

3

)
, n− 2, 3)

Proof. The first part is obvious. So, we only need to find the design parameters.
For D3,0, the block set is the set of

{Brst:1 ≤ r < s < t ≤ n},

and a triangle A = {a, b, c} lies in Brst if {r, s, t} ∩ {a, b, c} = ∅. Hence, we have(
n − 3

3

)
blocks, each of size

(
n − 3

3

)
.

§The submodule lattice of P165(2) is given in https://goo.by/5Ze0u
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Now consider the block set B = {B1, . . . , Bn} for D3,1. A triangle A = {a, b, c}
lies in Bj if j ∈ {a, b, c}. Hence, the design has n blocks and each block is of size(

n − 1

2

)
.

Finally, the block set of the design D3,2 is

{Brs:1 ≤ r < s ≤ n},

and a triangle A = {a, b, c} lies in Brs if {r, s} ⊂ {a, b, c}. Hence, we have exactly(
n

2

)
blocks, and each block is of size n− 2. The proof is now completed.

In what follows,
(

x

y

)
is assumed to be zero for x < y.

Proposition 12. Let C3,1(n) be a binary linear code constructed from the incidence
matrices of the design D3,1(n). Then the weight distribution of this code is as follows:

{k
(

n − k

2

)
+
(

k

3

)(n

k

)
: 0 ≤ k ≤ n}

Proof. The generating matrix of the code contains n codewords of weights
(

n − 1

2

)
.

The support of ci corresponds to the triangles whose vertex set contains i. Let t0
denote the zero codeword 0 and tk for 1 ≤ k ≤ n the sum of k generating codewords.

It is clear that we can choose tk in
(

n

k

)
different ways. It remains to compute the

weight of tk. Assume that tk = c1, . . . , ck. Then the support of tk corresponds to
the triangles which have one or three elements in {1, . . . , k} as their vertices. If

we fix i ∈ {1, . . . , k}, then it is clear that there are exactly
(

n − k

2

)
triangles which

have i as a vertex and the other 2 vertices lie outside {1, . . . , k}. Hence, we have

k
(

n − k

2

)
triangles that have exactly one vertex in {1, . . . , k}. Furthermore, we have(

k

3

)
triangles all of whose vertices lie in {1, . . . , k}. Therefore, the weight of tk is

equal to

k
(

n − k

2

)
+
(

k

3

)
.

Hence, the weight distribution of the code is computed.

Remark 6. It may sometimes happen that for two different values of 0 < k1 < k2 <
n, we have

m := k1

(
n − k1

2

)
+
(

k1

3

)
= k2

(
n − k2

2

)
+
(

k2

3

)
In this case, we have

(
n

k1

)
+
(

n

k2

)
codewords of weight m. So we should replace

m

(
n

k1

)
and m

(
n

k2

)
by m

(
n

k1

)
+

(
n

k2

)
.

For n = 11, we have the following result which gives us one of the codes of length
165 invariant under M11.
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Corollary 3. There exists a binary linear code C3,1(11) = [165, 11, 45], with auto-
morphism group S11. The weight distribution of this code is

{01, 4511, 7255, 77330, 80627, 85627, 88330, 9355, 12011, 1651}.

The set of even weight codewords of C3,1(11) is the irreducible code of dimension
10. Hence, C3,1(11) is of type 1⊕10. It is worth mentioning that the situation stated
in Remark 6 happens here. In fact, we have two types of codewords of weights 80
and 85, respectively. For example, if we put k = 3, then we obtain 165 codewords
of weight 85, while for k = 5, we find 462 codewords of weight 85.

Proposition 13. Let w be a codeword of the code C3,1(11) of weight m and let
A = Aut(C3,1(11)) ∼= S11. Then the action of A on Wm(C3,1(11)) is primitive. The
structure of the stabilizers of w ∈Wm in A and the designs constructed by C3,1(11)
are given in Table 6.

Proof. Using the weight distribution of C3,1(11), we can set the first two columns of
Table 6. Let σ ∈ StA(w) be an element of the stabilizer of w. Since w is a codeword,
then it is a sum of k generating codewords. We can assume that the set of indices
is K := {1, 2, . . . , k}. Each triangle in the support of w has either 1 or 3 vertices
in K. In the former case, σ fixes every i outside K and moves every i inside K. In
the latter case, the converse applies. Therefore, the stabilizer is Sk × Sn−k. The
remainder of the proof is straightforward.

k m Orbit size Stabilizer Maximal in S11 Design

1 45 11 S10 Yes 1-(165, 45, 3)
2 72 55 S9 × S2 Yes 1-(165, 72, 24)
3 85 165 S8 × S3 Yes 1-(165, 85, 85)
4 88 330 S7 × S4 Yes 1-(165, 88, 176)
5 85 462 S6 × S5 Yes 1-(165, 85, 238)
6 80 165 S6 × S5 Yes 1-(165, 80, 80)
7 77 330 S7 × S4 Yes 1-(165, 77, 154)
8 80 462 S8 × S3 Yes 1-(165, 80, 224)
9 93 55 S9 × S2 Yes 1-(165, 93, 31)
10 120 11 S10 Yes 1-(165, 120, 8)

Table 6: The stabilizers and designs from the code C3,1(11) = [165, 11, 45]
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