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1. Introduction

It is important to find exact traveling wave solutions of nonlinear differential
equations for many applications. Several methods have been proposed such as in-
verse scattering method [1], direct method [2], Backlund transformation [3], alge-
braic expansion method (Ref. [4] and references therein), the complete discrimina-
tion system method [5], and so on. Liu [6 – 9] proposed the trial equation method
to find exact solutions to nonlinear differential equations. In order to describe Liu’s
method, we consider a differential equation of u. We always assume that its exact
solution satisfies a solvable equation u′ = F (u) or u′′ = F (u). Therefore, our task
is just to find the function F . Liu has obtained abundant exact solutions of many
nonlinear differential equations when F (u) is a polynomial or a rational function.
In the present paper, we take F as a new irrational function form and propose a
new trial equation. As application, we consider the RLW-Burgers equation

ut + ux + 12uuxx − αuxx − βuxxt = 0 . (1)

RLW-Burgers equation (1) is a model equation for describing the propagation of
surface water in a channel and it represents a balance relation among the dispersion,
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dissipation and nonlinearity. Eq. (1) has been researched in some papers [10 – 14].
We also consider the (2+1)-dimensional Burgers equation

(ut + uux + αuxxx − βuxx)x + γuyy = 0 , (2)

and obtain some of its exact solutions by the same method.

The rest of the paper is organized as follows. In Section 2, the new trial equation
method is described in detail. In Section 3, the application to RLW-Burgers equa-
tion and the (2+1)-dimensional KdV-Burgers equation are given. The last section
is a short summary.

2. New trial equation method

We consider the following nonlinear partial differential equation

N(u, ut, utt, · · · , ux, uxx, · · · , utx, · · ·) = 0 . (3)

Under the traveling wave transformation

u = u(ξ), ξ = kx+ ωt , (4)

Eq. (3) becomes the following ordinary differential equation,

P (u, u′, u′′, · · ·) = 0 , (5)

where the prime means the differentiation with respect to ξ. Sometimes, by inte-
gration, the order of Eq. (5) can be reduced. Now, our method can be described as
follows.

Step 1. Take a trial equation

u′ =

k1
∑

i=0

aiu
i + (

k2
∑

i=0

biu
i)

√

√

√

√

k3
∑

i=0

ciui , (6)

where a0, · · · , ak1
,b0, · · · , bk2

and c0, · · · , ck3
are the constants to be determined.

Using Eq. (6), we derive the following equation

u′′ = (

k1
∑

i=1

iaiu
i−1)(

k1
∑

i=0

aiu
i) + (

k2
∑

i=0

biu
i)(

k2
∑

i=1

ibiu
i−1)(

k3
∑

i=0

ciu
i)

+
1

2
(

k2
∑

i=0

biu
i)2(

k3
∑

i=1

iciu
i−1) +

1

2
(

k1
∑

i=0

aiu
i)(

k2
∑

i=0

biu
i)(

k3
∑

i=1

iciu
i−1)(

k3
∑

i=0

ciu
i)−

1

2
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+

[

(

k2
∑

i=1

ibiu
i−1)(

k1
∑

i=0

aiu
i) + (

k1
∑

i=1

iaiu
i−1)(

k2
∑

i=0

biu
i)

]

√

√

√

√(

k3
∑

i=0

ciui) , (7)

and other derivation terms such as u′′′, and so on.

Step 2. Substituting u′,u′′ and other derivation terms into Eq. (5) yields fol-
lowing expression

G(u) +H(u)

√

√

√

√

k3
∑

i=0

ciui = 0 , (8)

where G(u) and H(u) are two polynomials of u. According to the balance principle,
we can obtain the relation of k1, k2 and k3 or their values.

Step 3. Taking concrete values of k1, k2 and k3, and letting all coefficients of
G(u) and H(u) to be zero yield a system of nonlinear algebraic equations. Solving
the system of nonlinear algebraic equations, we obtain the values of a0, · · · , ak1

,b0, · · · , bk2
and c0, · · · , ck3

.

Step 4. Integrating Eq. (6) gives the solutions of u.

3. Application

Example 1. RLW-Burgers equation (1)

Under the traveling wave transformation(4) and integration, the RLW-Burgers
Eq. (1) becomes

u′′ +Au′ = Bu2 − Cu+D , (9)

where D is an arbitrary constant. We denote A =
α

ωβ
,B =

6

kβω
and C =

ω + k

k2βγ
.

Substituting Eq. (6) and Eq. (7) into Eq. (9) and using the balance principle, it
follows that 2k2 + k3 − 1 = 2 and 2k1 − 1 < 2. Then we obtain k1 = k2 = k3 = 1
or k1 = 0, k2 = k3 = 1.

If k1 = k2 = k3 = 1, Eq. (6) becomes

u′ = a1u+ a0 + (b1u+ b0)
√
c1u+ c0 , (10)

where ai, bi, ci are the parameters to be determined, for i = 0, 1. Furthermore, from
Eq. (10), we have

u′′ =

{

a1 + b1
√
c1u+ c0 +

c1(b1u+ b0)

2
√
c1u+ c0

}

{a1u+ a0 + (b1u+ b0)
√
c1u+ c0} . (11)
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Substituting u′ and u′′ into Eq. (9) yields

G(u) +H(u)
√
c1u+ c0 = 0 , (12)

where

G(u) =
(

Ab1c1 +
5

2
a1b1c1

)

u2 +
(

(A+ 2a1)b1c0 +Ab0c1

+
3

2
a1b0c1 +

3

2
a0b1c1

)

u+ (A+ a1)b0c0 + a0b1c0 +
1

2
a0b0c1 , (13)

H(u) =
(3

2
b2
1
c1 −B

)

u2 + (2b1c1b0 + b2
1
c0 + a2

1
+ a1A− C)u

+b1b0c0 +
1

2
c1b

2

0
+ a0a1 + a0A−D . (14)

In order to find the parameters, we let G(u) ≡ 0, H(u) ≡ 0, and hence we get a
system of algebraic equations

3

2
b2
1
c1 −B = 0 , (15)

2b1c1b0 + b2
1
c0 + a2

1
+ a1A− C = 0 , (16)

b1b0c0 +
1

2
c1b

2

0
+ a0a1 + a0A−D = 0 , (17)

Ab1c1 +
5

2
a1b1c1 = 0 , (18)

(A+ 2a1)b1c0 +Ab0c1 +
3

2
a1b0c1 +

3

2
a0b1c1 = 0 , (19)

(A+ a1)b0c0 + a0b1c0 +
1

2
a0b0c1 = 0 . (20)

By solving the above algebraic equations (15) – (20), we get

a0 = −12A

5B
− AC

5B
− 6A3

250B
, a1 = −2A

5
, b1 = −2,

b0 = −C

B
− 6A2

25B
, c1 =

B

6
, c0 = 1 +

C

12
+

A2

100
, A = ±10 . (21)

With these parameters, the solutions of Eq. (10) give the solution to the RLW-
Burgers equation (1),

u1 =
kα

10

{

4 exp(4(kx+ 10β
α

t− ξ0))

(1− exp(±2(kx+ 10β
α

t− ξ0)))2
− 2− 1

12k2β
− 5

6kα

}

, (22)
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and

u2 = −kα

10

{

4 exp(4(kx− 10β
α

t− ξ0))

(1 + exp(±2(kx− 10β
α

t− ξ0)))2
− 2− 1

12k2β
+

5

6kα

}

, (23)

where k and ξ0 are two arbitrary constants.

When k1 = 0 and k2 = k3 = 1, the corresponding results of Eq. (1) are included
as special cases in the solutions (22) and (23).

Example 2. (2+1)-dimensional KdV-Burgers equation (2)

With the traveling wave transformation

u = u(ξ), ξ = kx+ ly + ωt , (24)

and integrating two times, Eq. (2) becomes

u′′ − β

kα
u′ = − 1

2k3α
u2 −

(

ω

2k3α
+

l2γ

k4α

)

u+D1ξ +D , (25)

where D1 and D are two arbitrary constants. We let D1 = 0, and denote

A = − β

kα
,B = − 1

2k3α
and C = − ω

2k3α
− l2γ

k4α
. Then Eq. (25) beomes Eq. (9).

Using the same procedure as in the case of example 1, we obtain the exact solutions
of the (2+1)-dimensional KdV-Burgers equation (2) as follows

u1=
3β3

250α2

{

4 exp(4(− β
10α

x+ ly + ωt− ξ0))

(1−exp(±2(− β
10α

x+ly+ωt− ξ0)))2
− 2+

125α2ω

3β3
− l2γα3

12β4

}

, (26)

and

u2=− 3β3

250α2

{

4 exp(4( β
10α

x+ ly + ωt− ξ0))

(1+exp(±2( β
10α

x+ly+ωt− ξ0)))2
−2− 125α2ω

3β3
− l2γα3

12β4

}

, (27)

where l, ω and ξ0 are three arbitrary constants.

4. Conclusion

We propose a new trial-equation method. As application of the method, we
give some exact traveling wave solutions of RLW-Burgers equation and (2+1)-
dimensional KdV-Burgers equation. The solutions of RLW-Burgers equation in
references [13 – 14] are included in ours. Furthermore, our method is simpler than
theirs. The method can also be applied to other diffusion equations, such as BBM-
Burgers equation, Fisher equation, and so on.
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NOVA METODA S PROBNOM JEDNADŽBOM ZA TOČNA RJEŠENJA
NELINERNIH DIFERENCIJALNIH JEDNADŽBI ZA PUTUJUĆE VALOVE

Predlažemo novu metodu s probnom jednadžbom za rješavanje diferencijalnih jed-
nadžbi. Tom metodom nalazimo neka točna rješenja RLW-Burgersove i (2+1)-
dimenzijske KdV-Burgersove jednadžbe.
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