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1. Introduction

Fractional calculus (FC) is considered today as a successful tool for describ-
ing dynamical systems with different levels of complexity and which are far-from
equilibrium displaying scale-invariant properties, dissipation and long-range corre-
lations that cannot be illustrated using traditional analytic functions and ordinary
differential operators. Despite the fact that FC has been studied for over 300 years
now, it has been regarded mainly as a mathematical curiosity until about 1992,
where dynamical equations involving fractional derivatives and integrals were pretty
much restricted to the realm of mathematics. Physicists and mathematicians have
begun to explore the realm of applications of fractional calculus with ever new
developments rapidly taking place in several fields including stochastic processes,
finance and economics [1 – 12].

The fractional derivative/integral implies nonlocal effects either in space or time.
On the other hand, they are nonlocal operators that do not correspond to a frac-
tional derivative. However, a growing body of empirical evidence supports the im-
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portance of fractional integral in chaotic dynamics and economics where important
economic data series might be fractionally integrated.

In fact, over the course of the last two decades, social scientists have made sig-
nificant steps in modeling time-series data. One of the central areas that have made
important developments is the study of long memory, in particular, the study of
fractional integration. Fractional integration gives researchers more precise math-
ematical tools with which to describe in a better way their time series. By appro-
priately treating data as fractionally integrated when modeling time series data,
considerable insight may be gained into the nature of political change. Fractional
integration and, more generally, long memory can produce empirical data that ap-
pear to be stationary, but that nonetheless have high-order autocorrelations that
are too large to be taken into account in applications [13].

Evidence of long memory has been found in finance and economics, in particular
traditional business cycle indicators such as aggregate economic activity [14] and
prices indices [15]. There is also strong evidence of long memory in asset price and
exchange rate volatility [16]. Aggregate employment is shown to be fractionally
integrated if few firms have long lifetimes given the turnover in new firms. Asset
price volatility is shown to be fractionally integrated if a small number of asset
positions last longer than would be predicted by the lifetimes of typical positions.
An outstanding survey of the literature on fractional integration and long memory
was provided by Baillie [17]. It is worth mentioning that the importance of random
walks in finance (financial markets) has been known since the seminal work of
Bachelier [18], considered as the first tentative model known in finance to describe
stock market dynamics and give a price for a European call option which was
completed nearly a hundred years ago and was further carried out by Mandelbrot
[19], who introduced the concept of Levy flights and stable distributions [20, 21] in
finance, and by the MIT school of Samuelson [22, 23]. In 1976, Cox and Ross used
the Bachelier ordinary random walk approach to offer a discrete time analog to the
well-known Black-Scholes option price. In addition, they obtained a special limiting
process when the number of time steps is large, hence finding that the binomial
model leads naturally to a Poisson jump process. Other offerings of the financial
random walk formalism extend the binomial model by taking into account the crash
as a third possible event, and observe the implications of it to the European option
price [24].

In this work we essentially consider the continuous view-point based on the
Riemann-Liouville fractional integral. While various fields of application of frac-
tional derivatives and integrals are already well done, some others have just started
in particular the study of fractional problems of the calculus of variations (COV)
which is a subject of current strong research and investigations [25 – 29]. Recently,
we proposed a novel approach known as the fractional action-like variational ap-
proach (FALVA) to model nonconservative dynamical systems where fractional time
integral introduces only one fractional parameter α ∈ [0, 1], while in other models
an arbitrary number of fractional parameters (orders of derivatives) appear [30].
The resulting equations of motion that result from the fractional action functional,
namely the Euler-Lagrange equations, contain time-dependent dissipative terms
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where many applications with encouraging results were discussed in Refs. [31 – 50].

In this paper we consider some applications of the fractional path integral for-
malism of quantum mechanics to financial modeling based on FALVA. To frac-
tionally generalize the Feynman path integral approach, the integration has been
expanded from the standard integral to the fractional action integral for the free
particle [51].

The Feynman path integral, which is in fact the integration over Brownian-like
quantum mechanical paths, is defined as a limit of the sequence of finite sums.
Hence, the path integral is non-standard but rather an infinite multidimensional
integral consisting of a convolution of standard integrals. If an exact analytical so-
lution is not obtainable straightforwardly, then powerful approximation techniques
such as the WKB method can be applied for approximate solution to a path in-
tegral. Moreover, path integrals can be numerically evaluated by making use of
the Monte Carlo simulation, or by a deterministic discretization scheme. Many au-
thors reported in the last years very fast numerical methods for computing option
price using Feynman path integrals. Path integrals are much more general than
standard stochastic integrals with respect to semi-martingales. It is noteworthy
that the path integral representation of averages can be obtained directly as the
Feynman-Kac solution to the partial differential equation describing the time evo-
lution of the quantum stochastic dynamical system, e.g. Schrödinger equation in
quantum mechanics or Fokker-Planck-Kolmogorov diffusion equation in the the-
ory of stochastic processes. More recently, the construction of the path integral
representation which allows treating both fractional subdiffusion and fractional su-
perdiffusion on an equal footing was introduced by Calvo and Sanchez [52]. In this
paper, the fractional path integral is addressed in a different fashion starting from
a fractional action integral as mentioned above. This particular choice avoids the
use of fractional derivatives and fractional initial conditions.

In economics and finance, to develop a robust and consistent model of markets,
we require dynamical modeling of actions augmented hopefully by algorithms in
order to fit parameters in these models to real data.

It is interesting to note that starting with nonlinear, multivariate, nonlinear
stochastic differential equation descriptions of the price evolution of cash and fu-
tures indices, one may build an algebraic cost function in terms of a Lagrangian. In
fact, the basic principle is the absence of arbitrage [53]. In finance, it plays a role
analogous to the least-action principle and the energy-conservation law in physics.
Consequently, one can introduce naturally Lagrangian functions and action func-
tionals for financial models, e.g. the Hamiltonian formulation of the evolution of an
option price in the presence of stochastic volatility [54, 55]. Most financial models
are based on some stochastic processes, and it is well-known that the path integral
method is an integral formulation of the dynamics of a stochastic process as it al-
lows computing the transition probability associated to a given financial stochastic
process where the action functional for the underlying risk neutral price process
defines a risk neutral measure on the set of all paths, i.e. the path integral formula-
tion of the Black-Scholes (BS) partial differential equation and the model of barrier
options, resorting to a Lagrangian path integral formulation [56].
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Use of a path integral formulation has some advantages. First, it can provide fast
and precise predictions for a large class of financial derivatives with path-dependent
features, by means of a careful estimation of the transition probability and an ap-
propriate choice of the integration limiting points needed to evaluate the averaged
quantities of financial interest. Second, it opens the way to the use of quantum me-
chanical standard methods, i.e. the BS equation for the option price with constant
volatility is reformulated in terms of a non-Hermitian Hamiltonian and hence stan-
dard methods used in quantum mechanics can be applied. In fact, the BS partial
differential equation is a finance counterpart of the Schrödinger wave equation of
quantum mechanics, and the risk neutral valuation formula is interpreted as the
Feynman-Kac representation of the partial differential equation solution. Note that
the BS model assumes that the log price is an arithmetic Brownian motion [20, 57].

Accordingly, if we went to go beyond the BS standard model in order to price
options on assets whose log price is a Levy stable process, we need to assure our
peace with pricing options in the presence of jumps. Every stochastic differential
equation has correspondingly a path integral representation. In other words, the
transitional probability density function can be explicitly expressed as a Feynman
path integral. It is well-known that Brownian motion driven stochastic differential
equations can not reproduce the fat Levy tail and the infinite Levy moments of
observed distribution for price returns. We believe that it is possible (at least,
theoretically) to represent the real distribution by a Feynman path integral. Thus,
the path integral formalism provides a natural bridge between the risk neutral
martingale pricing and the arbitrage free partial differential equation based pricing
exhibiting non-Gaussian price fluctuations. An introductory overview of the path
integral approach to financial modeling and options pricing is given in [56 and
references therein]. Analytic and geometrical methods for heat kernel applications
in finance are found in [58].

Finally, it should be noted that two practical methods for computation of path
integrals are the familiar perturbation theory and the numerical simulation. Ana-
lytically, one looks at first for critical points of the standard action, which represent
classical trajectories. After that, we expand the action in a functional Taylor series
near these trajectories, leaving the quadratic terms in the exponent and expanding
the rest in a power series. The Gaussian path integrals are the only that appear
for which very similar techniques are available as for finite dimensional Gaussian
integrals.

The paper is organized as follows: in Section 2, we give a brief overview of
the FALVA and the corresponding fractional path integral. A general framework
of the fractional path integral options pricing and the path integral representation
(Feynman-Kac formula) for a fractional path dependent option by considering a
single asset Black-Scholes model as an example is discussed in Section 3. Conclu-
sions and perspectives are discussed in Section 4. We introduce the main notations,
conventions and assumptions that underlie the remainder of the present work:

1. In the notation t→ f(t), t is a dummy variable.

2. Exactly the same function can be written, for example (q̇, q, τ) → f(q̇, q, τ);
q̇, q, τ are here dummy variables.
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3. For (q̇, q, τ) → f(q̇, q, τ), the partial derivative of f with respect to the first
argument is denoted by ∂L/∂q̇.

4. No fractional derivatives of any type and any order will be introduced.

5. It is assumed that at least one stationary point for the fractional functional
exists.

6. We expect that the reader is familiar with the standard Feynman path integral
and Feynman-Kac formula.

7. We expect also that the reader is familiar with the BS model, martingales,
integrability and with the notion of Brownian motion.

8. The non-local property of the fractional integral can be useful when dynam-
ically hedging options. To the best of our knowledge, this work represents the first
attempt to apply the concept of FALVA to financial modeling and option pricing.

2. Fractional action-like variational approach, fractional

path integral and motivations

2.1. FALVA

FALVA is based on the concept of Riemann-Liouville fractional integral func-
tionals with multi-time and multi-scales. In fact, this multi-time characteristic is
important and plays a crucial role in many physical applications and is the main
ingredient of the theory being developed by Udriste. In 2005, the author of the
present paper introduced the one-dimensional FALVA problem as follows [31].

Problem 2.1: Find the stationary points of the integral functional

S[q(•)] =
1

Γ(α)

t
∫

a

L(q̇(τ), q(τ), τ)(t− τ)α−1dτ ≡

t
∫

a

L(q̇(τ), q(τ), τ)dgt(τ) , (1)

under the initial condition q(a) = qa, where q̇ = dq/dτ , Γ is the Euler gamma func-
tion, 0 < α ≤ 1, τ is the intrinsic time, t is the observer time, t /= τ , and the smooth
Lagrangian function L : [a, b]×R

n×R
n → R is a C2-function with respect to all its

arguments. Here L(q̇(τ), q(τ), τ) is the Lagrangian weighted with (t− τ)α−1/Γ(α)
and Γ(α+1)gt(τ) = tα−(t−τ)α with the scaling property gkt(kτ) = kαgt(τ), k > 0.

Remark 2.1: In reality, the fractional smooth action integral (1) can be rewrit-
ten as the strictly singular Riemann-Liouville type fractional derivative Lagrangian

Sβ∈(0,1)[q]=D
−1+β
t L(q̇(t), q(t), t)=

t
∫

0

L(q̇(t), q(t), t)
dτ

(t−τ)β
β→0
→

t
∫

0

L(q̇(t), q(t), t)dτ ,
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and thereby retrieve the standard action integral or functional integral. In our
formalism, we have β = 1 − α, α ∈ (0, 1). Such type of functionals is known in
mathematical economy, describing, for instance, the so called “discounting” eco-
nomical dynamics.

Theorem 2.1: If q(•) are solutions to the previous problem, i.e. q(•) are critical
points of the function (1), then q(•) satisfy the following Euler-Lagrange equations

∂L(q̇(τ), q(τ), τ)

∂q
−

d

dτ

(

∂L(q̇(τ), q(τ), τ)

∂q̇

)

=
1− α

t− τ

∂L(q̇(τ), q(τ), τ)

∂q̇
. (2)

The previous arguments may be generalized to Lagrangian involving higher deriva-
tives L(q(m)(τ), . . . , q̇(τ), q(τ), τ) as follows [59].

Problem 2.2: Find the stationary points of the integral functional

Sm[q(•)] =
1

Γ(α)

t
∫

a

L(q(m)(τ), . . . , q̇(τ), q(τ), τ)(t− τ)α−1dτ , (3)

m ≥ 1, under the initial condition q(i)(a) = qa, i = 0, 1, 2, . . . ,m, where q(i) =
diq/dτ i, Γ is the Euler gamma function, 0 < α ≤ 1, τ is the intrinsic time, t is the
observer time, t /= τ , and the smooth Lagrangian function L : [a, b]×R

n×(m+1) → R

is a C2m-function with respect to all its arguments.

Theorem 2.2: If q(•) are solutions to the problem 2.2, i.e. q(•) are criti-
cal points of the function (4), then q(•) satisfy the following higher-order Euler-
Lagrange equations in (0+1) dimensions

m
∑

i=0

(−1)i
di

dτ i
∂i+2L(q

(m)(τ), . . . , q̇(τ), q(τ), τ)

=
1− α

t− τ

m
∑

i=1

i(−1)i−1 di−1

dτ i−1
∂i+2L(q

(m)(τ), . . . , q̇(τ), q(τ), τ) (4)

+

m
∑

k=2

k
∑

i=2

(−1)i−1 Γ(i− α+ 1)

(t−τ)iΓ(1−α)

(

k
k−i

)

dk−i

dτk−i
∂k+2L(q

(m)(τ), . . . , q̇(τ), q(τ), τ) .

Here ∂iL denotes the partial derivatives of L(•, •, . . . , •) with respects to its ith
argument. In the particular case when m = 1, Problem 2.2 reduces to Problem 2.1.

Problem 2.1 was explored recently to the multidimensional case as follows [48].
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Problem 2.3: Find the stationary points of the four-dimensional integral func-
tional

Sα[q](ξ; ξ ∈ Ω) =
1

4
∏

i=1

Γ(αi)

∫ ∫ ∫ ∫

Ω(ξ)L(q̇(x), q(x), x)

4
∏

i=1

(ξi − xi)
αi−1dx , (5)

where the admissible paths are smooth functions q : Ω ⊂ R
4 → M , satisfying the

Dirichlet boundary conditions on ∂Ω. Here x = (x1, x2, x3, x4) is the intrinsic time
vector, ξ = (ξ1, ξ2, ξ3, ξ4) ∈ Ω is the observer time vector, x ∈ Ω(ξ) ⊆ Ω with
xi /= ξi (i = 1, 2, 3, 4), dx = dx1dx2dx3dx4 and α = (α1, α2, α3, α4), 0 < αi < 1
and (qx1

, qx2
, qx3

, qx4
, q, x1, x2, x3, x4) → L(qx1

, qx2
, qx3

, qx4
, q, x1, x2, x3, x4) is a

sufficiently smooth Lagrangian function.

In four-dimensions, for simplicity, we use the following notation: the 3D intrinsic
space notations (x1, x2, x3) = (x, y, z) and the intrinsic time notation (x4) = (τ),
where associated, respectively, each xi → αiξi.

Theorem 2.3: If q(•) are solutions to the previous problem, i.e. q(•) are critical
points of the function (5), then q(•) satisfy the following Euler-Lagrange equations

4
∑

i=1

[

d

dτ

(

∂L

∂qxi

)

+
1− αi

ξi − xi

(

∂L

∂qxi

)]

−
∂L

∂q
= 0 . (6)

Remark 2.2: The previous problems, in particular Problems 2.1 and 2.3, were
explored for Lagrangian holding fractional derivatives [48], but in this paper, we will
restrict ourselves to fractional integration and we leave the presence of fractional
derivatives for a future work.

2.2. Fractional path integral

In this work, the fractional path integral (FPI) is expected to describe the
motion from the initial position xi(ti) to the position xf (tf ) with a fractional
quantum amplitude given by

Kα(xf , tf ;xi, ti) ∝
∑

{γ}

exp

(

i

~
Sα[γ]

)

≡
∑

{γ}

exp





i

~

1

Γ(α)

t
∫

a

L(t− τ)α−1dτ



 ,

(7)
where {γ} is the set of all trajectories satisfying x(ti) = xi and x(tf ) = xf .

The standard result is expected to be resurrected in the α = 1 limit, and classical
physics is expected to be recovered for ~ = 0 (~ is the Planck’s constant). Normally,
to get an estimate of the mean square displacement of a free particle moving from

FIZIKA A (Zagreb) 19 (2010) 1, 11–30 17



el-nabulsi: application of the fractional problem of the calculus of . . .

an initial point x(ti) = xi → x(tf = t) = xf , we follow the Feynman standard
technique and write the fractional quantum mechanical kernel in the form

〈

xf

∣

∣

∣e−(T−t)H
∣

∣

∣xi

〉

≡ Kα(xf , tf ;xi, ti) =

xf
∫

xi

D[x(τ)] exp





i

~

1

Γ(α)

t
∫

a

L(t− τ)α−1dτ





≡

xf
∫

xi

D[x̄α(τ)] exp





i

~

t
∫

a

Ldgt(τ)



 , (8)

with the boundary conditions x(ti) = xi and x(tf ) = xf , and where

xf
∫

xi

D[x(τ)]... = lim
N→ ∞

∞
∫

−∞

N−1
∏

j=1

(2πiǫ~)1/2dxj..., ǫ =
tf − ti
N

, (9)

xf
∫

xi

D[x̄α(τ)]...= lim
N→ ∞

∞
∫

−∞

N−1
∏

j=1

(2πiǭα~)
1/2dxj..., ǭα=

[

tαf −(tf−τ)
α
]

−
[

tαi −(ti−τ)
α
]

NΓ(α+ 1)

(10)
denotes the sum over all paths between (xi, ti) → (xf , tf ). H in Eq. (8) denotes
the Hamiltonian part. Normally, the wave function ψ(xf , tf ) at (xf , tf ) is given in
terms of ψ(xi, ti) at (xi, ti) by the equation

ψ(xf , tf ) =

xf
∫

xi

dxiKα(xf , tf ;xi, ti)ψ(xi, ti) . (11)

This fractional equation describes, therefore, the evolution of the stochastic process
in terms of the wave equation. The FPI was applied recently to quantum field
theory [60] and subdiffusive processes [61] and many appealing consequences were
revealed. It should be mentioned that in economy, one can interpret the option
price as a ket |f〉 in the basis of |x〉. The pricing price is represented, therefore, by
p(x, x′, T − t) = 〈x| exp(−(T − t)H)|x′〉. Here T − t is referred to time to maturity
[62, 63].

2.3. Motivations

As we mentioned in the Introduction of the present paper, movement of asset
price is normally modeled by stochastic differential equations (SDE) which have
a path integral representation. More precisely, the transitional probability density
function (pdf) can be explicitly expressed as a path integral. Moreover, the price
of an option is explicitly represented as a multiple integral. Further, the discounted
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price of a dividendless security with a given future payoff is a martingale under
risk-neutral probability measure in an ideal market. If Vt is a dividendless option
with a future payoff of VT , T > t ≥ 0, Mt is a continuous time Markov process
such that:

a) Mt at time t depends only on the available information at time t,

b) the expectation Et[MT ] = Et[MT |Mt] =Mt, T > t ≥ 0,

c) dMt
△
=Mt+dt −Mt, t ≥ 0, dt > 0,

d) taking T = t+ dt, it follows that E[dMt] = 0, t ≥ 0,

The Feynman-Kac formula gives us a unique arbitrage-free price of an option
in an ideal market as follows,

Vt = E
Q
t



exp



−i

t
∫

0

rudu



VT



 , T > t ≥ 0 . (12)

Options price corresponding partial differential equations (PDE), i.e. the BS-PDE,

will consequently be obtained from d) as follows: E
Q
t [dMt] = 0, t ≥ 0. The payoff

function of the option is simply the terminal boundary condition to the resulting
PDE.

Normally, a path-independent option, e.g. the European call option, is defined
by its payoff at expiration at time T by OT = max(ST , 0) = F (ST ), T > 0, where
F is a given function of the terminal asset (stock) price ST which pays no dividend
and obeying a standard geometric Brownian motion or Wiener stochastic process
dSt/St = mdt+σdWt with the initial condition S0 = s0. Here m and σ denote the
instantaneous expected rate of return on asset S and the volatility. The filtration is
generated by the stock price, similarly to the filtration generated by the Brownian
motion Wt. These dynamics mean the asset price S is lognormally distributed, i.e.
ST = St exp[σ(WT −Wt) + (m − σ2/2)(T − t)]. The BS option pricing formula is
based on a dynamic hedging argument, i.e. the price is the price because the risk
can be hedged away by trading the asset itself. There are no transaction costs or
taxes and trading in the cost is continuous. The option prices can be calculated
via martingale methods and were the discounted expectation under the equivalent
martingale measure making the discounted price process a martingale [62, 63]. In-
formally, the martingale representation theorem states that in equilibrium prices
represented as the present discounted value of future payoffs from the asset must
satisfy a martingale under a given measure. As Mt = e−rtO(t, St) is a martin-
gale under risk-neutral dynamics the standard absence of arbitrage argument, i.e.

E
Q
t [dMt] = 0, t ≥ 0 leads us to constructing a replicating portfolio consisting of the

underlying asset and the risk-free bond and to the BS-PDE for the present value
of the option at time t preceding expiration

∂Ot

∂t
+

1

2
σ2S2

t

∂2Ot

∂S2
t

+ rSt
∂Ot

∂St
− rOt = 0 . (13)
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This has the form of the backwards Chapman-Kolmogorov equation with the risk-
free rate r. The quantum mechanical version of this equation is obtained by the
change of variable x = lnSt, and we obtain the beautiful result

∂Ot

∂t
+

1

2
σ2 ∂

2Ot

∂Stx2
+

(

r −
1

2
σ2

)

∂Ot

∂St
− rOt = 0 , (14)

augmented by O(exT , T ) = F (exT ). The PDE (14) is exactly the Chapman-Kolmo-
gorov equation, corresponding to the Fokker-Planck PDE (the 2nd Kolmogorov
equation). This well-known formula was found to be very useful for pricing many
other options, such as, geometric Asian option. A unique solution to the previous
problem is given by the Feynman-Kac formula where the average can be represented
as a path integral over the set of all paths defined as a limit of the sequence of finite-
dimensional multiple integrals as represented in Eq. (9). We give here the final result
and we refer the reader to reference [56] for the details of the calculation

Ot(S, t) = e−r(T−t)
E
Q
t [F (exT ), 0]

= e−r(T−t)

+∞
∫

−∞







x(T )=xT
∫

x(t)=x

F (exT ) exp



−

T
∫

t

LBS dτ



D[x(τ)]






dxT (15)

defined on the path x(τ), t ≤ τ ≤ T . Here

A− LBS =
1

2σ2

(

dx

dτ
−

(

r −
1

2
σ2

))2

is the BS Lagrangian function and B −E
Q
t denotes averaging over the risk-neutral

measure conditional on the initial price S at time t under a certain risk-neutral
measure Q.

Our main aim in the next section is to explore the general framework of the
fractional path integral options pricing by considering again a single-asset BS model
as an example. Then, we develop the fractional path integral formalism for a multi-
asset economy with asset and time-dependent volatilities and correlations based on
the fractional extension of Eq. (15) as follows,

Ōt(S, t) = e−r(T−t)
Ē
Q
t

[

F (eXT ), 0
]

=e−r(T−t)

+∞
∫

−∞







x(T )=xT
∫

x(t)=x

F (eXT )exp



−
1

Γ(α)

T
∫

a

LBS(T−τ)
α−1 dτ



D[x(τ)]






dxT (16)
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≡ e−r(T−t)

+∞
∫

−∞







x(T )=xT
∫

x(t)=x

F (eXT ) exp



−

T
∫

a

LBS dπ(τ)



D[xα(τ̄)]






dxT , a ≤ τ ≤ T ,

(17)

where Ōt(S, t) and Ē
Q
t

[

F (eXT ), 0
]

denote the fractional counterpart of Ot(S, t) and

E
Q
t

[

F (eXT ), 0
]

, respectively.

3. Risk neutral valuation and the standard

Wiener-Feynman path integrals

To explore the fractional counterpart, we will perform the calculation for math-
ematical convenience with respect to the new scaling time π(τ) with the scaling
property π(λτ) = λαπ(τ). We first write the Black-Scholes Lagrangian with respect
to the new scaling time as follows,

LBS=
1

2σ2

(

dx

dτ
−µ

)2

→ L̄BS=
1

2σ2

(

dx

dgt(τ)
−µ

)2

=
1

2σ2

(

dx

dgt(τ)

)2

+
µ2

2σ2
−
µ

σ2

(

dx

dgt(τ)

)

(18)
where µ = r − σ2/2, and hence the FALVA gives easily

SBS

[

x(gt(t
′))
]

=
1

Γ(α)
=

T
∫

a

LBS(T − τ)α−1 dτ =

T
∫

a

LBS dgt(τ)

=

T
∫

a

[

1

2σ2

(

dx

dgt(τ)

)2

+
µ2

2σ2
−

µ

σ2

(

dx

dgt(τ)

)

]

dgt(τ) (19)

=
µ2gt(τ)

2σ2
−

µ

σ2
(x(T )− x) +

1

2σ2

T
∫

a

(

dx

dgt(τ)

)2

dgt(τ). (20)

Then, discretizing paths and substituting

T
∫

a

· · · dgt(τ) →

N−1
∑

i=0

· · ·∆a(gt(τ)) ,

and
dx

dgt(τ)
→

xi+1 − xi
∆a(gt(τ)

,
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we find

SBS

[

x(gt(t
′))
]

=
µ2gt(τ)

2σ2
−
µ

σ2

(

x(gt(T ))−x(gt(t))
)

+
1

2σ2∆a(gt(τ))

N−1
∑

i=0

(xi+1−xi)
2 .

(21)
In our formalism, the time to expiration T is discretized into N equal time steps
∆a(gt(τ)) = (gt(T ) − gt(a))/N bounded by N + 1 equally spaced time points,
gti(τ) = gt(τ) + i∆gt(τ), i = 0, . . . , N , where Γ(α+ 1)gt(τ) = tα − (t− τ)α.

Hence Eq. (21) in the standard time is written as

SBS

[

x(gt(t
′))
]

=
µ2
[

tα−(t−τ)α
]

2Γ(α+ 1)σ2
−
µ

σ2

(

x(gt(T ))−x(gt(t))
)

+
1

2σ2∆a(gt)

N−1
∑

i=0

(xi+1−xi)
2,

(22)
where

∆a(gt) =
gt(T )− gt(a)

N
=

1

NΓ(α+ 1)

[

(t− a)α − (t− T )α
]

, i = 0, . . . , N . (23)

The fractional path integral is now written as follows,

x(T )=xT
∫

x(t)=x

F (eXT ) exp



−
1

Γ(α)

T
∫

a

LBS(T − τ)α−1 dτ



D[x(τ)] (24)

= lim
N→∞

+∞
∫

−∞

· · ·

+∞
∫

−∞

F (eXT ) exp



−

T
∫

a

LBS(xi) dgt(τ(xi))





dx1(gt) · · · dxN−1(gt)
(

√

2πσ2∆a(gt)
)N−1

and consequently the payoff is written as

Ōt(S, t) = e−r(T−t)
Ē
Q
t

[

F (eXT ), 0
]

(25)

=e−r(T−t)

+∞
∫

−∞

F (eXT ) exp

(

µ

σ2

(

x(gt(T ))−x(gt(t))
)

−
µ2gt(τ)

2σ2

)

Kα(xT , T ;x, t) dxT ,

where

Kα(xT ,T ;x,t)≡ lim
N→∞

+∞
∫

−∞

· · ·

+∞
∫

−∞

exp

(

−
1

2σ2∆a(gt(τ))

N−1
∑

i=0

(xi+1−xi)
2

)

dx1(gt)· · ·dxN−1(gt)
(

√

2πσ2∆a(gt)
)N−1
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Making use of the Gaussian integration formula [56], we find after simple mathe-
matical manipulation

Kα(xT , T ;x, t) =
1

√

2πσ2N∆a(gt)
exp

(

−
(xT − x)2

2N∆a(gt)σ2

)

(26)

=

√

Γ(α+ 1)

2πσ2
[

(t− a)α − (t− T )α
] exp

(

−
Γ(α+ 1)

[

(t− a)α − (t− T )α
]

(xT − x)2

2σ2

)

(27)

α=1
−→

√

1

2πσ2(T − a)
exp

(

−
1

T − a

(xT − x)2

2σ2

)

, (28)

where Eq. (28) is the standard result. Equation (27) implies

|xi − xi−1| ∝
[

(t− a)α − (t− T )α
]1/2

, 0 < α ≤ 1.

The functional measure defined by Eq. (24) is generated by a fractional stochas-
tic process (fractional Levy motion). Further, Eq. (27) is Gaussian-like unless the
volatility is time-dependent, i.e. σ2

α ≡ σ2
[

(t − a)α − (t − T )α
]

/Γ(α + 1) with a
dependence on the past. It is noteworthy that stochastic volatility models must
possess efficient numerical methods for pricing European options and hence they
are only accessible for stochastic volatility models with time-homogeneous param-
eters. Empirical facts from many markets suggest nevertheless that the parameters
of the volatility smile are different for different option expiries. Therefore, we antic-
ipate that the previous results may be useful to model stochastic volatility model
with time-dependent skew. The conclusions in Ref. [63] are that, as far as one aims
to conserve market completeness, a volatility model depending on the whole past
trajectory of the asset should be investigated.

In fact, it is easy to prove that Eq. (27) is the solution of the modified diffusion
equation,

σ2

2

(t− a)α−1

Γ(α+ 1)

ασ2
[

(t− a)α − (t− T )α
]

− x2Γ(α+ 1)

σ2
[

(t− a)α − (t− T )α
]

− x2Γ(α+ 1)

∂2Kα

∂x2
= −

∂Kα

∂a
, (29)

with a diffusion coefficient which depends on space and time. For a large distance,
the dominant term is the multiplicative factor (t − a)α−1σ2/(2Γ(α + 1)) which
approximates to the asymptotic power law (t − a)α−1. For a small distance, the
asymptotic power law behaves also like (t − a)α−1. For a large distance, Eq. (29)
takes the special form,

σ2

2

(t− a)α−1

Γ(α+ 1)

∂2Kα

∂x2
= −

∂Kα

∂a
. (30)

By defining the new time variable τ̂ = t− a, Eq. (30) is written as

σ2

2

τ̂α−1

Γ(α+ 1)

∂2Kα

∂x2
= −

∂Kα

∂τ̂
, (31)
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and hence the invariance of Eq. (31) under the transformation (x, τ̂) → (ξα/2x, ξτ̂)
is apparent. Obviously, when α = 1, Eq. (31) is reduced to the standard diffusion
equation and the fractional functional action is reduced to the standard form. No-
tice that the term τ̂α−1 is the leading term in the fractional action functional (7)
and it is quite amazing that the same term appears in the diffusion coefficient. This
remarkable fact may help to select the right choice of fractional integral in each ap-
plication of the approach described in the paper. It is noteworthy that diffusion
with time-dependent diffusivity has been observed in different aspects, including
turbulence [64], composite materials [65, 66], biological systems [67] and anomalous
transport [68] and many others [69]. Obviously, for α = 1, we retrieve the stan-
dard diffusion equation associated to standard Brownian motion. It is noteworthy
that the Green’s function for diffusion with constant drift rate µ is obtained by
multiplying the zero-drift Green’s function by the drift-dependent factor, i.e.

Kµ
α(xT , T ;x, t) = exp

(

µ

σ2

(

x(gt(T ))− x(gt(t))
)

−
µ2gt(τ)

2σ2

)

Kα(xT , T ;x, t) (32)

=

√

Γ(α+ 1)

2πσ2
[

(t−a)α−(t−T )α
] exp

(

−
Γ(α+ 1)

[

(t−a)α−(t−T )α
]

(xT −x−µ(T−a))
2

2σ2

)

. (33)

It is easy to check that Kµ
α(xT , T ;x, t) is the solution of the following modified

diffusion equation,

σ2

2

∂2Kµ
α

∂x2
+

µ(T − a)Γ(α+ 1)
[

(t− a)α − (t− T )α
]

∂Kµ
α

∂x
= −Γ(α+ 1)

∂Kµ
α

∂a
+

Γ2(α+ 1)

2σ2
Kµ

α (34)

×

{

(xT −x)
2−µ2(T−a)2

[

(t−a)α−(t−T )α
]2 −

(xT −x)−µ(T−a)

(t−a)α−(t−T )α

[

(xT −x)−µ(T−a)

(t−a)α−(t−T )α
(t−a)α−1+2µ

]

}

.

Evidently, for α = 1, we retrieve the standard diffusion equation with drift. Sur-
prisingly, Eq. (34) is similar to the BS equation with space and time-dependent
parameters which play an interesting role in finance [70 – 72]. The RHS of Eq. (34)
may be interpreted as a potential V (x, a); a ≤ τ ≤ T . The option price Ōt(S, t)
satisfies then the fractional BS-like equation

σ2

2

∂2Ōt

∂x2
+

µ(T − a)Γ(α+ 1)
[

(t− a)α − (t− T )α
]

∂Ōt

∂x
= −Γ(α+ 1)

∂Ōt

∂a
+

Γ2(α+ 1)

2σ2
Ōt (35)

×

{

(xT −x)
2−µ2(T−a)2

[

(t−a)α−(t−T )α
]2 −

(xT −x)−µ(T−a)

(t−a)α−(t−T )α

[

(xT −x)−µ(T−a)

(t−a)α−(t−T )α
(t−a)α−1+2µ

]

}

.

It can be interpreted as the fractional BS-like equation with time and space-
dependent continuous dividend fractional yield with

V (x, a) =
Γ2(α+ 1)

2σ2
(36)
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×

{

(xT −x)
2−µ2(T−a)2

[

(t−a)α−(t−T )α
]2 −

(xT −x)−µ(T−a)

(t−a)α−(t−T )α

[

(xT −x)−µ(T−a)

(t−a)α−(t−T )α
(t−a)α−1+2µ

]

}

.

It is now easy to compute the propagator for a path-dependent option defined
by its payoff at expiration O(T ) = F (S(t′)), where F (S(t′)) is a given functional
on price paths {S(t′), a ≤ t′ ≤ τ} rather than a function dependent just on
the terminal asset price. Assuming the risk-neutral price process dSt/St = rdt +
σ dWt and assuming that F = f(ST ) exp(−I[Sα(t

′)]), where f(ST ) depends only

on ST , and I[Sα(t
′)] =

T
∫

a

V (x(t′), t′)dπ(t′) is the fractional action of some potential

V (x(t′), t′), x = lnS, then one finds after similar mathematical manipulations of
the above calculations

Ō(S, t)=e−r(T−t)

+∞
∫

−∞

F (eXT ) exp

(

µ

σ2

(

x(gt(T ))−x(gt(t))
)

−
µ2gt(τ)

2σ2

)

Kµ
α(xT , T ;x, t)

(37)
where

Kµ
α(xT , T ;x, t)=

x(T )=xT
∫

x(t)=x

exp



−

T
∫

a

[

1

2σ2

(

dx

dgt(τ)

)2

+ V

]

dgt(τ)



D[x(τ)] dxT (38)

=

√

Γ(α+ 1)

2πσ2
[

(t−a)α−(t−T )α
] exp

(

−
Γ(α+ 1)

[

(t−a)α−(t−T )α
]

(xT −x−µ(T−a))
2

2σ2
−V

(T−a)α

α

)

.

It is easy to check that Kµ
α(xT , T ;x, t) is the solution of the equation

σ2

2

∂2Kµ
α

∂x2
+

µ(T − a)Γ(α+ 1)
[

(t− a)α − (t− T )α
]

∂Kµ
α

∂x
= −Γ(α+ 1)

∂Kµ
α

∂a
(39)

= Kµ
α

(T − a)α−1

α
V +

Γ2(α+ 1)

2σ2
Kµ

α

×

{

(xT −x)
2−µ2(T−a)2

[

(t−a)α−(t−T )α
]2 −

(xT −x)−µ(T−a)

(t−a)α−(t−T )α

[

(xT −x)−µ(T−a)

(t−a)α−(t−T )α
(t−a)α−1+2µ

]

}

.

This equation holds also for the option price and is written as

σ2
α

2

∂2Kµ
α

∂x2
+ µ̄α

∂Kµ
α

∂x
= −

∂Kµ
α

∂a
+Kµ

α

[

r̄α + V (x, a)
]

, (40)
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where

σ2
α =

σ2

Γ(α+ 1)
, (41)

µ̄α =
µ(T − a)

[

(t− a)α − (t− T )α
] , (42)

r̄α =
(T − a)α−1

Γ(α+ 2)
V . (43)

We entitle Eq. (40) by the fractional BS equation. The present model exhibits
similar behavior to option pricing with fractional volatility driven by fractional
Brownian motion [8]. Those parameters need to be confronted to observations when
applied to a specific model. Time-varying parameters are an important concern
because in applied economics, one may want to integrate the market’s view on
the direction of the future behaviour of variables which the call price depends on,
thus offering more elasticity to the model. Moreover, their term structures reflect
expectation and dynamics of market factors.

Unlike the standard European options, the estimation of barrier options with
time-dependent parameters is not an inconsequential extension, and has been the
center of some recent work [73]. A general and appealing solution of Eq. (40) is
given in Ref. [74]. An alternative derivation of the BS solution with time-dependent
parameters was given through the use of a generalized change of variable tech-
nique. The derived solution shows that the price of a European call option on a
non-dividend paying equity is decomposed as a product of three simple terms con-
sisting of a BS price for the case of constant-coefficient in a non-dividend-paying
setup, the ratio of two strike prices and a modified factor characterizing the pa-
rameterized time. In reality, the market process exhibits approximate self-similar
properties, therefore mathematical simplicity suggests looking for descriptions in
terms of fractional Brownian motion.

In reality, the standard BS model is based on unrealistic assumption about the
geometric nature of Brownian motion with constant non-stochastic fine-tuning of
the portfolio and no transaction fees. Moreover, the assumption of zero interest
rate or known constant interest rate is unrealistic. The empirical limitations of
BS model originated a vast amount of alternative modified models [75 – 77], with
effort to elucidate the deviations from BS model by introducing supplementary
degrees of freedom. Most of these alternative models have no compact closed-form
solution and numerical solutions most often do not reproduce appropriately the
data profiles. It is worth mentioning that geometric Brownian motion models well
the lack of memory in liquid markets where the autocorrelation of price changes
decays to negligible values in a short period of time, consistent with the absence of
long-term statistical arbitrage. We expect interesting consequences in more realistic
models with time-dependent skew [78, 79].
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4. Conclusions and perspectives

To the best of our knowledge, this work represents the first attempt to build a
fractional finance modeling and option pricing based on criteria of fractional action
integral operators. Our contribution is meant to serve as an informal introduc-
tion and not as a rigorous and comprehensive treatment of the topic discussed
through this paper. We have laid out the groundwork for non-local fractional fi-
nance using the methodology of fractional integral operator within the framework
of the fractional action-like variational approach by introducing the basic settings.
By performing the fractional action integral for the Black-Scholes Lagrangian, we
have obtained a diffusion equation with time-dependent diffusivity which exhibits a
similarity with the fractional Brownian motion and therefore may have interesting
consequences on jump-diffusion processes in continuous time. The paths exhibit a
non-Gaussian process, non-stationary random process whose increments are inde-
pendent and distributed in a similar way to the Levy sable distribution which plays
a crucial role because they are the attractors of distributions of sums of random
variables with divergent second moments according to the generalized central limit
theorem. Moreover, the fractional distributions obtained through this work display
slowly decaying tails describing stochastic processes with large events. Further,
their self-similarity properties make them practical in the description of fractal
processes.

We find a departure from the normal distribution which in fact is observed
when the irregular random behaviour of stock price changes is superposed on an-
other regular periodic pattern. There is a definite support of periodic behaviour
of price changes matching to intervals of a day, week, quarter and year, according
to the rhythm of individual action. Obtained Black-Scholes equation is not enough
complicated, and we expect solutions to be found using advanced numerical tech-
niques and computational simulations. In this paper we have shown how to use
the fractional action integral to derive fractional Brownian motion and fractional
Black-Scholes price of a call option. An extension is the application of this type
of fractional Black-Scholes formula to price different derivatives augmented by nu-
merical simulations.

We expect developing more appropriate stochastic optimal portfolio models us-
ing the results obtained. Concurrent research efforts are needed to confirm or falsify,
develop or disprove fractional BS equation with time-dependent fractional param-
eters and our preliminary findings.
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PRIMJENA INTEGRO-DIFERENCIJALNE VARIJACIJSKE RAZLOMNE
ZADAĆE I RAZLOMNOG PRISTUPA INTEGRALIMA PO PUTEVIMA

STOHASTIČKOM MODELIRANJU

Proučavaju se stohastički modeli primjenom integrala po putevima, a posebno se
razlažu novčane izvodnice i mogućnosti u odred–ivanju cijena u okviru razlomnog
djelotvornog varijacijskog pristupa nedavno uvedenog autorom. Mnoge se zani-
mljive odlike i posljedice otkrivaju djelomično.
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