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Abstract
Data-driven remaining useful life prediction methods have rapidly increased in popularity due
to the availability of Big Data and the Internet of Things. This increased popularity originates
from their ability to improve machine reliability and availability and to decrease maintenance
costs and downtime. These improvements are necessary for companies to ensure service to
their customers. Numerous studies demonstrate the effectiveness of several machine learning
models, but limited studies focus on the application of remaining useful life prediction to
real-world data. These data pose additional challenges. Most importantly, the data are often
censored, as run-to-failure observations are rare and data are noisy. Therefore, this paper
studies the applicability of survival RUL prediction methods to real-world, noisy and right-
censored data. An important extension is the model explainability and interpretability. A
survival tree, gradient-boosting model and random survival forest were fitted to the sorting
machine of DPD Netherlands, which are all decision tree-based methods. These trees cluster
the components based on usage and fit an estimator to each cluster. This study concludes
that these models provide excellent tools for maintenance prioritisation, as their estimation of
the order of failure is satisfactory. However, the exact moment of failure remains difficult to
estimate, especially when the independent variables are subject to high variance. Therefore,
this study extends previous research with the notion that prediction accuracy is insufficient
for implementation in practice. However, the methodology seems promising as the order
of failure can already be accurately assessed with right-censored, noisy data. With further
research into data-driven remaining useful life prediction to data containing high variance,
the applicability of these methods in the industry seems encouraging.
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Executive summary
Introduction

Nowadays, companies are preparing for Industry 4.0 which is characterized by intelligent
systems and Internet-based solutions (Li, Wang, & He, 2016). Within Industry 4.0, the
rise of these advanced analytics and the Internet of Things (IoT) augments the possibilities
for predicting the useful life of assets. Remaining useful life (RUL) prediction of assets
improves maintenance decision-making by allowing timely and better-informed maintenance
decisions. Therefore, many companies are interested in increasing their machine availability
and reliability and decreasing maintenance costs and machine downtime to improve customer
satisfaction (Li et al., 2016).

DPD Netherlands is one of the companies that are interested in remaining useful life pre-
dictions. Their sorting system is essential for the timely delivery of parcels to their clients.
This system consists of four critical components: carts, MCB units, motors and crossbelts.
The sorting system contains 1640 of each component, which are all critical. If one of them
fails, the entire system is down. This has a significant impact on their customer satisfaction.
Therefore, an accurate maintenance strategy is crucially important to DPD.

Component replacements have three triggers: crashes, failures and preventive replacements.
Crashes occur due to parcels moving from their original location and destroying components.
Failures during operation follow regular degradation. Finally, maintenance engineers perform
preventive maintenance when a degraded component is found during the inspections. Cur-
rently, the sorting machine is inspected based on a fixed interval, irrespective of degradation.
However, the usage of the machine is a determining factor in degradation. Therefore, usage
features should be included in the RUL prediction model. As noted, not all components are
replaced due to failure. Therefore, the actual lifetime of these components is unknown, which
is referred to as censored observations. However, these observations cannot be excluded from
the model, as there are too few uncensored observations, and these censored observations
still hold valuable information. Thus, the RUL prediction model should be able to deal with
these observations. Overall, this research aimed to investigate possibilities for data-driven
remaining useful life prediction based on the usage of the sortation system of DPD.

Literature

Data-driven remaining useful life prediction models have gained popularity as a result of their
capacity to manage large amounts of data and capture non-linear correlations between features
and the remaining useful life. Accordingly, several approaches have been suggested, such as
artificial neural networks, support vector machines, Cox’s proportional hazards model, and
ensemble methods. Ensemble methods can deal with the challenges presented by real-world,
noisy, tabular and censored data. Dealing with censored observations is often studied in the
bioinformatics field. Although these models are extremely relevant for the remaining useful
life of machine components, very few studies have been published that study their accuracy
in this field. Moreover, trusting the model and its predictions is essential for deployment.
Therefore, this study extends the applicability of ensemble methods with their explainability
and interpretability.
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Data preparation

This study was performed on one dataset per component. These datasets were created by
integrating data on the parcels and system alarm notifications with the data on the component
lifetimes. Missing values were filled, and erroneous values were corrected. Consequently,
relevant features were determined by interviews with system experts. Thereafter, the dataset
contained 1839, 1940, 1941 and 1943 observations for the cart, MCB, motor and crossbelt,
respectively. Table 1 shows the descriptives of these datasets. As a significant amount of data
is censored, the observations are undersampled to balance the datasets.

Component Degraded components Crashed components Functioning components Total number of observations Percentage censored

Cart 172 27 1640 1839 90.50%

Carrier
MCB 264 36 1640 1940 89.39%
Motor 255 36 1640 1931 86.79%
Crossbelt 267 36 1640 1943 86.26%

Table 1: Description of the number of units per label per subcomponent

Methodology and modelling

As noted, model explainability is essential for trusting artificial intelligence models. Model
explainability refers to the logic of the algorithm, and is inherent to the type of model used
(Linardatos et al., 2020). Decision tree-based algorithms quickly generate findings with fa-
miliar instances that are explainable. Therefore, we fit three decision tree-based models: a
survival tree, a gradient-boosting model and a random survival forest. The latter two meth-
ods combine several decision trees. These methods are evaluated based on their concordance
index, root mean squared error (RMSE), mean absolute percentage error (MAPE), and the
trade-off between underestimating and overestimating the remaining useful life. We split the
dataset into 70% for training and 30% for testing. The training set is split into 80% training
and 20% validation datasets to perform hyperparameter tuning over the minimum number
of samples per split and the number of trees for the gradient-boosting model and random
survival forest. Thereafter, the results are evaluated based on the test set (the remaining 25%
of the data).

Results

For each of the components, a satisfactory concordance index is achieved. The best value for
the cart, MCB, motor and crossbelt are 82.35%, 80.53%, 82.47% and 82.78%, respectively.
For the cart and crossbelt, the random survival forest is optimal, whereas the survival tree
produces the best result for the MCB and motor. Figure 1 shows the comparison of these
models. The gradient-boosting model never performs the best in terms of concordance index.
However, this model produces the best RMSE for all components. The survival tree generally
gives the best MAPE and is the shortest to train. In general, the RMSE and MAPE of
the three RUL prediction models were very high. This means that the prediction differs
significantly from the actual value.

There can be several reasons for the models’ high RMSE and MAPE in general. First off,
there is an excessive amount of long-term uncertainty, leading to bigger prediction errors over
time. As a result, the order of failure (C-index) remains accurate even while the RMSE grows.
Additionally, the size of the dataset may be responsible for the high RMSE and MAPE values.

iv



The likelihood is that there are more failure modes than there are observations along each
path.

The survival tree, gradient-boosting model and random survival forest were also investigated
for their global and local interpretability. Global interpretability refers to the inner logic
of the models. The partial dependence plots showed that the three RUL prediction models
have very different interpretations of the data. Then, local interpretability refers to the logic
behind an individual prediction. Local Interpretable Model-agnostic Explanations (LIME)
were deployed to locally interpret the models. Here, the three models showed similar relations
between the feature (total weight) and its effect on the remaining useful life.

Figure 1: Comparison of concordance index per component for the gradient-boosting model
and random survival forest

Conclusion and recommendations

To summarize, this study aimed to create a model that would anticipate, depending on
use, how long essential parts of the sortation machine at DPD Netherlands’ Oirschot facility
would remain functional. The survival tree, gradient-boosting model and random survival
forest provide excellent estimates of the sequence of failure. Therefore, these three models
are useful for inspection prioritisation. However, the estimations of the moment of failure
are inaccurate. As the survival tree is the most explainable model and interpretability is
achievable for all three models, we recommend DPD to use the survival tree for maintenance
prioritisation of the carts, MCB units, motors and crossbelts. Once more component failures
have been observed, the models should be evaluated again.
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1. Introduction
Nowadays, companies are preparing for Industry 4.0, referring to the fourth industrial rev-
olution characterized by intelligent systems and Internet-based solutions (Li, Wang, & He,
2016). Within Industry 4.0, the rise of these advanced analytics and the Internet of Things
(IoT) augments the possibilities for predicting the useful life of assets. Predicting this re-
maining useful life (RUL) of assets improves maintenance decision-making by allowing timely
and better-informed maintenance decisions. Hence, RUL predictions can significantly impact
maintenance strategies (Barlow, 2015). Therefore, many companies are willing to face the
challenge of assessing the diversity of developments summarized in the term Industry 4.0 and
developing appropriate RUL prediction strategies (Li et al., 2016).

One of these companies is DPD Netherlands (onwards referred to as DPD). DPD is a parcel de-
livery service provider based in the Netherlands. As part of the GeoPost group, a leading Euro-
pean parcel delivery network, DPD offers domestic and international shipping services to con-
sumers and businesses. Therefore, the shipping services include business-to-customer (B2C),
person-to-person/peer-to-peer (P2P) and return streams (C2B) and business-to-business (B2B).
DPD combines cutting-edge technology and their European network to ensure rapid and ef-
fective delivery to clients, with an emphasis on offering a reliable, flexible, and sustainable
delivery experience. This network consists of 11 local depots and two international hubs.
From these hubs, parcels are shipped to 230 countries. These packages are picked up at
the sender and transported to an unloading dock at the local depot or international hub,
where the parcels are sorted by a sortation machine and routed to their loading dock. From
these docks, these packages are loaded into vans and shipped to the receiver, which concludes
their operations. Thus, DPD’s performance is widely dependent on its sortation systems.
These sorting systems have become vital to DPD’s operations as the number of packages
increases tremendously due to the rapid expansion of e-commerce. In this industry, ensuring
timely delivery is decisive for customer satisfaction. Therefore, minimizing unplanned system
downtime is essential to DPD. Limiting unplanned downtime is often managed by designing
maintenance strategies, which has proved challenging for this system. To provide a compre-
hensive problem understanding, Section 1.1 describes the problem context and Section 1.2
delves into a detailed explanation of the problem.

1.1 Problem context

This section discusses the sortation system installed in the international hub located in
Oirschot, which is the focus of this thesis. The sorting of packages at the international
hub is automated by a sizable parcel handling system. Parcels are loaded from trucks onto
the parcel sorting system via an induct at one of the 66 unloading doors. An induct can be
seen as the entryway onto the highway. Then, the sorting system (e.g. the highway) routes
the packages to the corresponding chute, which can be seen as the exit of the highway. In
total, the system encompasses 2.1 kilometres of conveyor belts which can sort 25.000 parcels
per hour. When the parcel arrives at the correct chute, the package is dropped off and loaded
into the truck. This completes the sortation process which is summarized in Figure 1.2.

The parcels are transported from origin A to destination B via a carriage system comprised
of two distinct components: a cart and a carrier. Although physically integrated, these
elements are treated as distinct entities. The cart travels through the rails of the system
to transport the carrier, which in turn is equipped with a conveyor belt, facilitating the
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Figure 1.1: The sortation system (left) and a schematic representation of the cart and
carrier (right)

loading and unloading of parcels. These components are shown in Figure 1.1, where the left
of the picture shows the real system and the right side of the figure represents the highlighted
components. During transportation, sensors scan each package at the entry and exit of the
sortation system. These sensors also weigh each parcel and measure its length, width, and
height at the induct. The system keeps track of various information related to each package,
such as which chute the parcel exits the system from, whether it was transported on one or
two components, how many times it circled the system and the time it spent in the system.
Additionally, the system records whether any alarms were triggered, and if so, it registers
the date, alarm type, duration, and the component on which the alarm occurred. Finally, for
each cart or carrier, the location in the sortation system is recorded, and when it has been
replaced.

This sortation system consists of two sorting machines, labelled one and two, which are
connected. Sorter one facilitates the loading and unloading of 17.000 parcels per hour for
both the hub and depot, whereas Sorter two adds a capacity of 8.000 parcels for the hub.
Sorter one consists of 1120 carts and 1120 carriers, whereas the smaller Sorter two consists
of 520 carts and 520 carriers - each carrier being attached to one cart. These components
operate in series, so each component is critical, as a failure of either one cart or carrier leads
to a complete machine failure. If Sorter two experiences a malfunction, Sorter one can still
operate, albeit with a reduced capacity of 17.000. However, if Sorter one fails, the entire
system is down for at least 30 minutes, causing a delay for 12.500 parcels. As the system
consists of 3280 critical components, an effective maintenance strategy is fundamental.

Figure 1.2: Internal logistics process

1.2 Problem definition

To design an effective maintenance strategy, DPD aspires to gain insights into the quality of
components by predicting their remaining useful life (RUL). Therefore, the explainability of
the RUL prediction is essential to provide this insight. The remaining useful life of an item
is the pertinent life left of that component at a particular time in operation (Si, Wang, Hu,
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& Zhou, 2011). Chapter 2 presents a further explanation of RUL prediction. An accurately
predicted RUL provides practical information for maintenance scheduling because it allows
the plan to be tailored to each component’s expected residual lifespan. Moreover, unexpected
breakdowns can be prevented, resulting in increased production time, lower downtime and
more simple spare parts planning (Buchaiah & Shakya, 2022).

To avoid these issues, DPD seeks to enhance its maintenance strategy by fully utilizing the
useful life of its parts. This approach is subject to several constraints. Firstly, the remaining
useful life (RUL) prediction must be data-driven to facilitate generalization to other locations,
as it is less reliant on the specific characteristics of each sortation system, which is detailed in
Section 1.1. Furthermore, the complex nature of the system limits the possibility of modelling
it based on physics. Secondly, the system’s complexity poses a challenge to measuring its
condition using sensors. As a result, DPD aims to employ system usage information, such as
parcel weight and volume, as a means of predicting RUL since system usage is inherently linked
to degradation. Lastly, the RUL prediction approach should be comprehensible to DPD’s
maintenance engineers and other employees. This understandability is essential to minimize
resistance to maintenance decisions by enabling employees to understand the rationale behind
specific part replacements. The current maintenance practices are described in Subsection
1.2.1.

1.2.1 Maintenance strategy

DPD observes three triggers for component replacement. Firstly, components might get
critically damaged due to a crash. Such a crash can occur when a parcel moves from its initial
position, which is due to the instability of that package. Secondly, regular wear encountered
during inspection triggers a preventive component replacement, which is fully based on the
judgement of the maintenance engineer. DPD agreed on a maintenance contract with the
supplier of the machine. Thirdly, a component can fail during operation, after which the
maintenance team immediately replaces the component to restore the machine’s availability.
A crash, regular wear and failed components all trigger a component replacement, but the
crashes and failures demand immediate replacement during operation. Crashes and preventive
replacements influence the data as the end-of-life of the component remains unknown. This
is also known as censored data. Censored data occurs when the failure data are incomplete
because units are removed from operation before their failure (Ebeling, 2010). In this case,
the failure times for some units are known only to be after a specified time, which is defined
as right-censored data. Figure 1.3 visualises this concept.

The supplier maintains DPD’s sorting system based on a fixed time interval. Each component
is inspected every 26 weeks during their scheduled downs. Due to the nature of the parcel
industry, DPD’s sorting system is operational from 13:00 until 07:00. During the morning,
from 07:00 to 13:00, trucks are still driving to deliver the parcels, causing the system to be idle.
However, not all components can be replaced in this daily maintenance window due to spare
parts and time constraints. Therefore, DPD groups the maintenance of these components,
meaning a few items are reviewed per day, the following couple of units on the next day, and
so forth. For example, components 1-6 are maintained on day one and items 7-12 the day
after until each of the 1640 parts has been inspected. The inspection frequency is determined
by the supplier’s judgment of the expected useful life of the items, the order is solely based
on convenience. Therefore, DPD’s sortation machine is currently maintained by a strategy
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Figure 1.3: Censoring (from Ebeling (2010))

that completely disregards its degradation.

This constant-interval inspection policy does not consider data on component use. Instead,
components are examined after a set time interval, irrespective of failure behaviour (Price
& Mathew, 2000). As a result, this technique may result in the replacement of comparably
decent components more frequently than necessary, resulting in resource waste. While the
actual failure behaviour of the components is currently not part of DPD’s maintenance plan,
this information can assist them in determining a more advantageous approach in terms of part
usage and machine availability. Moreover, if the number of operating hours vary widely, as is
the case at DPD, this constant interval replacement policy is unsuitable (Tinga & Janssen,
2014). Therefore, this research aims to develop a remaining useful life prediction model, that
allows DPD to perform maintenance to their critical components, based on the RUL of each
component. Further details of this research are provided in the next section.

1.2.2 Research definition

This subsection presents the research questions and briefly introduces the methods used to
answer these questions. As discussed, this research aspires to predict the RUL of the critical
components (cart and carrier) for DPD Netherlands based on their usage. Usage data serves
as input to the model as the component degradation is influenced by the system’s usage.
As noted by the system’s supplier, the wear largely depends on the severity of the usage.
Other clients with limited usage, for example, small and light shipments, report significantly
lower degradation rates. Moreover, most companies have not yet implemented sensors into
their machines. Luckily, usage information is generally available in companies, increasing the
practical relevance of this project. Therefore, the main question posed in this research is:

1. How to estimate the remaining useful life of the carts and carriers within DPD
Netherlands’ sorting system in Oirschot based on their usage?

The remaining useful life prediction process consists of four main steps: data extraction, fea-
ture extraction and selection, model building and training and RUL prediction and evaluation
(Ferreira & Gonçalves, 2022). Thus, the input data is the priority for developing a data-driven
remaining useful life prediction model. Therefore, the first and second subquestions hold:
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1.1 What data on system usage is recorded by DPD?
1.2 Which usage-based indicators are relevant for the remaining useful life prediction?

Question 1.1 will be answered by interviews with two parties: DPD and the system’s supplier.
Both parties are knowledgeable about the system and record information about it. Therefore,
we will host several interviews with maintenance managers from both companies. As the
system is so complex, we expect that a simple inspection of the available data, will not
yield a clear definitive answer on the useful indicators. Therefore, expert opinion is used to
define useful indicators. After the indicators are identified, the data are extracted from the
information systems. After the data are collected, the model should be built and trained.
Thus, the next subquestion is as follows:

1.3 Which data-driven remaining useful life prediction method should be used?

The literature will form the basis for finding an accurate RUL prediction method that can
deal with the constraints of this context (e.g. usage-based, noisy and right-censored data and
model interpretability). The consideration of censored values is crucial in this research since
these observations tell us something about the expected lifetime.

Next, performance indicators should be defined to evaluate the remaining useful life prediction
method. Then, the model’s performance should be investigated. This leads to the following
subquestions:

1.4 Which performance metrics should be used to evaluate the remaining useful life
prediction for the key components?

1.5 How to evaluate model performance?

These questions will be answered in three stages. First, suitable performance indicators
will be sought in the literature to assess the predictive models. Second, from the usual
key performance indicators (KPIs) in data-driven methods, such as the mean absolute error,
mean squared error etc. the applicable indicators are selected based on interviews with the
system experts. Third, the model’s performance will be evaluated using these KPIs. Finally,
DPD necessitates that the model is explainable and interpretable. Therefore, the factors that
influenced the prediction are essential to investigate:

1.6 What factors influenced the model to predict this remaining useful life?

Machine learning interpretability is a highly active research area. Therefore, the literature
will be used to search for suitable interpretability methods. Based on these answers, we can
provide a comprehensive overview to DPD with definitive recommendations for the RUL pre-
diction of the critical components of the sortation machine located at DPD’s hub in Oirschot.

1.3 Research scope

This research focused on developing an RUL prediction model for the critical components of
DPD Netherlands, as their failures significantly interrupt operations. As noted by (Tiddens,
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Braaksma, & Tinga, 2018), suitable candidates for predictive maintenance are components
whose failures have the highest impact on the availability and maintainability of the system.
Moreover, these components should have a low failure rate, as components with a high failure
rate should be eliminated from the system. As mentioned, in this case, carts and carriers
are these critical components. The latter unit is split into three parts: the motor controller
board (MCB), motor and crossbelt. The MCB is a physical platform and electrical circuit
to interconnect the various electronic components and enables the functionality of the motor.
The motor drives the movement of the crossbelt, which is a small conveyor belt that moves
perpendicular to the cart when parcels enter or leave the carrier.

Another restraint is that this research focuses on the main sorter one and two of the location in
Oirschot. Therefore, this research includes the hub and depot area. Moreover, we incorporate
the parcels and alarm notifications that have been registered from the system’s installation in
March 2019 until April 2023 for this location. However, the model design should effortlessly
be generalised to other facilities of DPD with a similar sortation system.

Finally, this master thesis excludes the deployment of the methodology into DPD’s systems.
The deployment phase consists of integrating the model into DPD’s systems and using the
outcome after we have evaluated the model. Wirth & Hipp (2000) presents these stages in
their Cross Industry Standard Process for Data Mining (CRISP-DM) visualised in Figure 1.4.
Thus, the final stage of this thesis is evaluation, and the deployment phase is excluded from
the scope of this thesis.

Figure 1.4: CRISP-DM framework

1.4 Research structure

This research is structured according to the RUL prediction process as defined by Ferreira &
Gonçalves (2022). First, we summarize the relevant academic literature and introduce topics
that are pertinent to this research in Chapter 2. Next, we move to the first step of the RUL
prediction process, data preparation, in Chapter 3. Thereafter, we present the methodology
and model building and training in Chapter 4. Then, Chapter 5 discusses the modelling, and
Chapter 6 discusses the results. Finally, Chapter 7 concludes this report with the research
conclusion, implications, recommendations, limitations and future research.
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2. Literature review
This chapter summarizes the relevant literature for this study. Firstly, Section 2.1 presents
maintenance strategies and their advantages and disadvantages. Secondly, Section 2.2 intro-
duces remaining useful life prediction approaches, challenges and solutions. Thirdly, Section
2.3 describes the gap in literature to which this research will contribute.

2.1 Maintenance strategies

The availability of capital goods is essential to remain operational. Maintenance strategies
are designed to improve this availability and can be defined as a set of rules describing
the triggering mechanism for maintenance actions (Arts, 2017). Such efforts can be either
unplanned or planned. Unplanned maintenance actions, also known as breakdown corrective
maintenance, consist of interventions after a component has failed (Arts, 2017). However,
this strategy poses significant requirements for spare parts availability. Therefore, breakdown
corrective maintenance is mainly suitable for components not subject to wear. For other parts,
planning maintenance actions can have significant benefits (Wu, Jennings, Terpenny, Gao, &
Kumara, 2017). These interventions are known as preventive maintenance, which aspires to
replace parts before failures to avoid breakdowns (Arts, 2017). These planned maintenance
interventions can be determined by component age or usage (Arts, Basten, & Houtum, 2019).
The main advantage of applying planned maintenance compared to unplanned maintenance
is that it is typically executed much faster, as the interventions are known beforehand (Arts
et al., 2019).

An advancement in planned maintenance is predicting maintenance tasks, in other words, pre-
dicting component failures. Prognosis deals with forecasting these failures by predicting the
RUL of components (Buchaiah & Shakya, 2022). This remaining useful life is expressed ac-
cording to the primary system measurement, which is industry-specific (Ferreira & Gonçalves,
2022). RUL prediction has become a predominant subject in quality and reliability research.
Section 2.2 explains this active research area in more detail.

2.2 Remaining Useful Life prediction

Remaining useful life can be defined as the period during which an asset or property is
expected usable for the purpose it was acquired. A more general definition for the RUL
is the length from the current time to the end of the useful life or the time during which
the component is able to perform a desired function (Si, Wang, Hu, & Zhou, 2011; Javed,
Gouriveau, Zemouri, & Zerhouni, 2012). Therefore, RUL prediction is crucial in maintenance,
reliability engineering, and prognostics, as this prediction allows for proactive maintenance
and decision-making, improving system reliability and reducing maintenance costs. However,
predicting the remaining useful life of components causes high demands on data access and
quality as well as the capability to deal with these data. Moreover, prediction accuracy is
of crucial importance for the magnitude of the impact on the number of unexpected failures
(Li et al., 2016). Nonetheless, the reduction in unexpected failures, improved reliability, and
financial gains from correctly predicting failures before they occur and acting upon that ensure
that RUL is an active goal for many companies (Prytz, Nowaczyk, Rögnvaldsson, & Byttner,
2015). Thus, RUL prediction is a promising activity that benefits in the form of planning,
safety, availability and maintenance cost reduction (Javed et al., 2012).
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The RUL of an asset is a random variable, and it depends on the current age of the component,
operation environment and health information. Frisk, Krysander, & Larsson (2014) illustrate
this dependency. Let T be the random variable indicating the failure time, then the reliability
or survival function at a given time t is the probability that the component survives past time
t i.e. T ≥ t:

R(t) = P (T ≥ t) (2.1)

Then, Frisk et al. (2014) note that the expected RUL is the difference between the expected
total useful life and the current age. In other words, it is the expected life that the component
has left, given the current age. Therefore, it is the conditional reliability, defined as:

E[RUL(t0)] =
1

R(t0)

∫ ∞

t0

R(t)dt− t0 (2.2)

where t0 is the current component age. Therefore, the RUL of a component is a random
variable dependent.

These formulas can be estimated in varying ways. Ferreira & Gonçalves (2022) and Buchaiah
& Shakya (2022) define three types of RUL prediction methodologies: model-based, data-
driven and hybrid methods (Figure 2.1). Model-based prognostics refer to approaches based
on mathematical models of system behaviour derived from physical laws or probability distri-
bution. To complement these models, data-driven prognostics refer to techniques that build
predictive models using learning algorithms and large volumes of training data. Hybrid mod-
els combine data-driven and model-based methods to produce more accurate results (Ferreira
& Gonçalves, 2022; Ahmadzadeh & Lundberg, 2014; Prytz et al., 2015).

All methodology types have explicit advantages and disadvantages. Model-based approaches
include the proportional hazard rate and cumulative damage models. These techniques are
challenging, expensive and time-consuming to develop as significant prior system knowledge is
required. Assumptions and simplifications aid in dealing with this complexity but also reduce
model accuracy. However, these models often provide high-precision prognostics (Ferreira
& Gonçalves, 2022). Moreover, model-based approaches generally require less data than
data-driven techniques (Ahmadzadeh & Lundberg, 2014). The latter methodologies include
machine learning and statistical methods (Si et al., 2011). Data-driven approaches are less
complex and expensive and are more applicable to the industry, as they provide a trade-off
between complexity, cost, precision and applicability (Ferreira & Gonçalves, 2022). However,
these techniques require large amounts of data with high quality to ensure these merits.
Nonetheless, their high accuracy and fast response outweigh this disadvantage. Therefore,
Section 2.2.1 will highlight these data-driven methods.

2.2.1 Data-driven Remaining Useful Life prediction

Recently, data-driven RUL prediction models have become increasingly popular due to their
ability to handle large amounts of data and capture non-linear relationships between features
and RUL. Numerous studies have demonstrated the effectiveness of several machine learning
models, including artificial neural networks (ANNs), support vector machines (SVMs), Cox’s
proportional hazards model, and ensemble methods (Ahmadzadeh & Lundberg, 2014; Wu,
Jennings, Terpenny, Gao, & Kumara, 2017).
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Figure 2.1: Remaining useful life prediction methodologies

Firstly, artificial neural networks (ANNs) simulate the intricate working process of human
brains by establishing connections among numerous nodes within a complex layered structure.
Therefore, these models are noted to have exceptional performance in the RUL prediction of
complex systems (Lei et al., 2018). However, these models have low transparency and require
significant training time (Ahmadzadeh & Lundberg, 2014). Moreover, they demand high-
quality training data, which is often not available in industrial settings (Lei et al., 2018).
Secondly, support vector machines (SVM) are superior to ANNs to deal with small sample
sizes (Lei et al., 2018). Thus, they may be more suitable for the issues of RUL prediction where
only limited measurements are available, as is often the case in real-world settings. However,
parameter estimation remains a challenge for SVMs. Moreover, their performance is highly
dependent on the selected kernel functions. Thirdly, Cox’s proportional hazards model is a
statistical technique that develops a semi-parametric model limiting the assumptions about
the relationship between dependent and independent variables. Therefore, it is a widely
accepted model for analysing failures (Liao, Zhao, & Guo, 2006). The technique calculates
the hazard ratio and assumes that the hazard rate ratio between any two individuals remains
constant throughout time. In other words, the relative risk associated with a certain factor
remains constant during the research. The hazard ratio describes how the risk of encountering
a failure event increases when the predictor variables vary. However, the model assumes that
the relationship between the log hazard and each covariate is linear, which is a significant
limitation in most applications. Finally, ensemble methods, such as random survival forests
and gradient-boosting models yield flexible predictors which are known to remain stable in
real applications (Hothorn, Bühlmann, Dudoit, Molinaro, & Van Der Laan, 2006; Wang & Li,
2017). Moreover, these models are easy to interpret and do not require elaborate statistical
background (Kundu, Darpe, & Kulkarni, 2020). However, these methods require decisions
on several main parameters as defined by Frisk et al. (2014), which require some background
knowledge. Luckily, they have an inbuilt best health indicator selection capability, which
reduces complexity. Moreover, these ensemble methods generate more accurate predictions
than ANNs (Wu et al., 2017). Furthermore, ensemble methods are non-parametric, and
therefore, do not rely on any assumptions like the proportional hazards model.

Due to crucial data characteristics such as noisy, high-dimensional, aggregated and tabular
data and right-censored observations, most methods are unsuitable. Furthermore, the logic
underlying the aforementioned prediction methods is difficult to explain. Moreover, we cannot
assume that the relationship between the log hazard and each covariate is linear, ruling out
the application of Cox’s proportional hazards model. However, ensemble methods for survival
analysis can deal with these challenges (Hothorn et al., 2006). For a detailed review of survival
ensembles, we refer to Hothorn et al. (2006). For a comprehensive review of data-driven
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techniques in general, we refer to Ferreira & Gonçalves (2022). They also define a framework
for the RUL prediction process, which is shown in Figure 2.2. The first step, data extraction,
consists of raw data extraction and pre-processing. Thereafter, the relevant features are
extracted from the pre-processed data and classified on their sensitivity to detecting the
degradation path. The next step, model building and training, deals with defining the type
of model to use to predict RUL and training the model on the training dataset. The RUL
prediction is established and evaluated based on predefined performance metrics concluding
the remaining useful life prediction process (Ferreira & Gonçalves, 2022).

Figure 2.2: Data-driven Remaining Useful Life prediction process

2.2.2 Feature selection

An important step of this RUL prediction process is feature selection (Ferreira & Gonçalves,
2022). Features are the independent variables, so the characteristics of the component are
used to predict the remaining useful life. Feature selection methods do not alter the original
data, but solely select a subset of these data features (Saeys, Inza, & Larranaga, 2007). The
main objectives of such methods are to (1) prevent overfitting and improve model performance
(i.e. prediction performance), (2) produce faster and more affordable models, and (3) gain
a deeper understanding of the underlying mechanisms that produced the data (Saeys et
al., 2007). The modelling procedure becomes more complicated by choosing the pertinent
characteristics, but by including the classifier’s bias in the search, it becomes possible to
build more accurate classifiers. This increased accuracy is achieved by deleting features that
contain redundant information (Buchaiah & Shakya, 2022). For example, Prytz et al. (2015)
test two feature selection methods: a wrapper approach based on the beam search algorithm
and a new filter method based on the Kolmogorov-Smirnov test. On the other hand, Frisk et
al. (2014) present two approaches: the first is based on the receiver operating characteristics
curve (ROC-curve) whereas the second is a multivariate analysis based on the error rate.
Finally, Breiman (2001) used permutation-based feature importance techniques to identify
the impact of each feature on the prediction output. This technique permutes the data and
evaluates the model performance. In other words, noise is added to the data and compared
to the true value to inspect the effect of permuting the variable on the prediction accuracy
(Breiman, 2001). Therefore, permutation-based feature importance allows the understanding
of the interaction of variables that provide predictive accuracy.

2.2.3 Data balancing

A common issue with survival analysis is class imbalance. This problem occurs when one
class in the data (for example uncensored observations) represents a circumscribed concept
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(for example failures), while the other class represents its counterpart (for example censored
observations) so that examples from the counterpart heavily outnumber examples from the
positive class (Batista, Prati, & Monard, 2004). A practical example is that of continuous
fault-monitoring tasks where non-faulty examples heavily outnumber faulty examples, where
the faulty components are of interest. This class dominance escalates the probability that
the majority class will be the dominant class of the model’s leaf nodes. Such a controlling
class dominates the model predictions. For instance, a 99% accuracy is easily achieved by
predicting all instances as the majority class if the remaining 1% should be classified as the
minority class. Therefore, data balancing methods significantly impact the predictive power
of a model.

Due to this impact, selecting the appropriate data balancing approach is essential. Several
data balancing approaches exist (e.g. under-, oversampling and synthetic sampling). Under-
sampling reduces the number of samples in the majority class until it equals the number
of samples in the minority class. Therefore, this technique reduces the size of the dataset
(Batista et al., 2004). Over-sampling, on the other hand, increases the minority size to
the proportions of the majority class by replicating instances of the minority class (Afrin,
Illangovan, Srivatsa, & Bukkapatnam, 2018). However, this method leads to overfitting. In
other words, the model will be trained too closely to the training dataset, performing worse
in different instances. The latter approach, synthetic sampling, introduces artificial minority
class instances until the minority class achieves the size of the majority class. Thus, several
data balancing methods exist, but the choice is highly dependent on data characteristics such
as the risk of overfitting and the size of the dataset.

2.2.4 Performance measures for RUL prediction

Performance metrics must be specified to identify the best-performing RUL prediction al-
gorithm. In this section, we present five performance measures applicable to right-censored
data and easily interpretable: Harrell’s concordance index (C-index), the mean squared error
(MSE), the root mean squared error (RMSE), the mean absolute percentage error (MAPE)
and the Mean Absolute Error (MAE).

Harrell’s concordance index

The C-index is perhaps the most popular performance indicator in survival analysis (Afrin et
al., 2018). The C-index consists of two main elements: permissible pairs and their concordance
values. Permissible pairs refer to the pairs of samples in the dataset for which a meaningful
comparison can be made in terms of remaining useful life and therefore their order of expected
failure. In survival analysis, this boils down to two possibilities: (1) if both samples in the
pair experienced the event of interest (e.g., failure), or (2) if neither sample experienced the
event by the conclusion of the research (e.g., censored observations). For these cases, the
concordance values are 1, which are then summed and divided over all possible pairs in the
prediction. This index can be expressed as the ratio of the sum of concordance values and the
total number of permissible pairs. In other words, the index measures the extent to which
the model correctly predicts the order in which the components will fail:

11



C =

∑
i,j∈β I

|β|
(2.3)

Where β denotes the set of permissible pairs, and I is the concordance value per pair, which
equals 1 if the order is predicted correctly. As C represents the classification probability of
the model, a higher value is desirable. A concordance index of 0 is useless, and a value of 50
% is essentially no better than random guessing (Afrin et al., 2018; Wang & Li, 2017).

Mean Squared Error

The Mean Squared Error (MSE) is another popular evaluation measure. The MSE quantifies
the average squared difference between the predicted values (Fi) and the actual values (Ai)
in the dataset (Nahmias & Olsen, 2015):

MSE =
n∑

i=1

(Ai − Fi)
2

n
(2.4)

The MSE is a method for calculating the average size of a regression model’s prediction errors.
The squaring operation accentuates greater faults.

Root Mean Squared Error

The Mean Squared Error is a popular evaluation measure. However, its root, the root mean
squared error (RMSE) is more straightforward as it denotes the average deviation between
the actual value (Ai) and the forecasted value (Fi) in the same unit of measurement as the
input (Nahmias & Olsen, 2015):

RMSE =

√√√√ n∑
i=1

(Ai − Fi)
2

n
(2.5)

Thus, the RMSE focuses on the overall accuracy of the predictions. This metric denotes the
average deviation in the same unit as the original input. For example, if the input is in the
number of days, then the RMSE depicts the deviation in the same time unit, whereas the
MSE displays it as unit2, complicating interpretation.

Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) is an indicator which is independent of the
magnitude of the values (Nahmias & Olsen, 2015):

MAPE =

[
1

n

n∑
i=1

|Ai − Fi|
Ai

]
· 100% (2.6)

Thus, this metric denotes the average deviation between the predicted and actual value in
percentage. It emphasises the relative error and is suitable especially when the scale or
magnitude of the predicted value is important.
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Mean Absolute Error

Another common forecast accuracy measure is the Mean Absolute Error (MAE) (Nahmias
& Olsen, 2015). This measure gives the prediction error based on the absolute value of the
difference between the actual value (Ai) and the forecasted value (Fi):

MAE =
1

n

n∑
i=1

|Ai − Fi| (2.7)

Therefore, this indicator does not discriminate between overestimation or underestimation of
the target value.

2.2.5 Model explainability and interpretability

Several model interpretation strategies are available to get a further understanding of prog-
nostic models. First, we define the concepts relevant to these strategies, after which the
techniques are highlighted. Logically, there is an evident trade-off between the performance
and the ability to produce interpretable and explainable predictions of the model (Linardatos,
Papastefanopoulos, & Kotsiantis, 2020). Although these terms are often used interchange-
ably, Linardatos et al. (2020) note that there is a slight difference between the two concepts.
Interpretability is defined as the ability to present the concept or cause of a decision in un-
derstandable terms to a human. Therefore, it is mostly connected with the logic behind
the model’s predictions. However, interpretability alone is insufficient to fully understand the
model. For this complete understanding, model explainability is essential. This explainability
refers to the internal logic of the machine learning algorithm. Therefore, model explainability
should be considered in the model building and training phase of the remaining useful life
prediction process of Figure 2.2.

This model interpretability refers to the transparent decision logic of the model, which al-
lows potential insights into the decision-making process (Ferreira & Gonçalves, 2022). These
insights are vital for ensuring trust in machine-learning tools (Ribeiro, Singh, & Guestrin,
2016). If trust is not in place, the prediction model is useless. As noted, this trust exists
in two forms: (1) trusting an individual RUL prediction sufficiently to take action, and (2)
trusting a model to behave in reasonable ways. The former refers to local explanations, and
the latter to a global explanation of the overall model (Linardatos et al., 2020). An example
to increase the first trust form is partial dependence plots (PDPs). These plots provide insight
into the relation between one input feature and the predicted output based on the relation
established by the model. More specifically, (Friedman, 2001) proposed PDPs to interpret
any black box predictive model by showing how a feature affects the average predicted value.
As noted by (Linardatos et al., 2020) PDPs can often greatly assist in interpreting black box
models and visualising the interactions between features.

To increase the second trust form, (Ribeiro et al., 2016) introduced a method for Local Inter-
pretable Model-agnostic Explanations (LIME) which has arisen into one of the most popular
interpretability methods (Linardatos et al., 2020). As this algorithm is straightforward yet
powerful, we highlight this method in more detail here. This algorithm can explain the pre-
dictions of a model by approximating it locally with an interpretable model. In other words,
a local estimation is made, through which the initial black box model can be interpreted.
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Therefore, LIME can interpret any type of model. Another method is Shapley Additive ex-
planations (SHAP) (Linardatos et al., 2020). This method aims at enhancing interpretability
by calculating the relevance values for each characteristic for individual prediction. However,
it is noted to over-weigh unlikely data points. All in all, two methods, LIME and SHAP are
well-known to address the problem of model interpretability to increase users’ trust in the
prediction model.

2.3 Research gap and conclusion

Due to the increased use of data-driven models, a significant body of scientific research exists.
However, applying these advanced RUL prediction methods remains challenging for the indus-
try (Javed et al., 2012) as labelled failure data is often scarce or most of the data is censored
(Ferreira & Gonçalves, 2022). Moreover, few case studies are available that illustrate the
application of prognostic models to real-world problems in realistic operating environments
(Sikorska, Hodkiewicz, & Ma, 2011). Yet, survival ensembles, in particular, are extremely
important for the industry due to their capacity to cope with right-censored, time-to-event
data and explainability. Despite its considerable practical importance, survival ensembles
have seen minimal use in machine reliability. For example, Frisk et al. (2014) apply a ran-
dom survival forest to lead-acid batteries. Other applications mainly exist in the biostatistics
field. For instance, Hothorn et al. (2006) introduce a random forest and gradient-boosting
algorithm for right-censored survival data for predicting the survival time of patients suffering
from leukaemia. Additionally, Afrin et al. (2018) propose a balanced random survival forest
for extremely unbalanced, right-censored data for acute cardiac patients. Thus, this method
has been widely researched in bioinformatics, but despite its relevance, the application to the
reliability of machine components is lacking. Moreover, none of the works listed above, con-
sider model explainability and interpretability in their research. In the words of Sikorska et al.
(2011), considerably more research is needed to confirm that prognostic models are beneficial
for everyday asset management decision-making. According to Chen, Huang, Chen, Mao, &
Li (2023), this lack is caused by two core challenges in RUL prediction tasks. The industrial
application of a predictive strategy is challenging. After implementation, the interpretability
of the strategies causes added reluctance. Exploring this interpretability of prediction models
is beneficial for engineers to assure decision-making based on the prediction. Therefore, the
main challenges of this study are two-fold: (1) developing a data-driven RUL prediction model
that can deal with right-censored, tabular data and (2) that is explainable and interpretable.
Thus, this research will add to this gap by applying the RUL prediction process in a practical
context and investigating its explainability.

In conclusion, Remaining Useful Life prediction is an active area of research with ongoing
efforts to improve the accuracy, applicability and reliability of the models used. Three groups
of methods are defined: model-based, data-driven and hybrid RUL prediction techniques.
Data-driven models are researched extensively due to their practical application and promising
results. Moreover, as the amount of data recorded increases, machine-learning models will
likely play an even larger role in the future. The RUL prediction methods are assessed on
their prediction accuracy and interpretability to select the most appropriate methods for
DPD. Therefore, this thesis will add to the research of practical applications of data-driven
RUL prediction models.
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3. Data preparation
This chapter elaborates on the data that was used in this research. This chapter consists
of three sections. Section 3.1 describes the data that was acquired for the study, answering
Research Question 1.1. Next, Section 3.2 describes which features are extracted from the raw
data and how the data is prepared for analysis, after which Section 3.3 describes the cleaning
process, and the final input for the modelling phase.

3.1 Data extraction

The first step, data extraction, involves acquiring data about the sorting installation (Ferreira
& Gonçalves, 2022). The required data was established from three datasets with different
contents: components, packages and alarms. These three datasets can be characterized as
follows:

1. Components: contains all components (1839 Carts, 1940 MCB units, 1931 Motors and
1943 Crossbelts) installed in the sortation system between 03/03/2019 and 01/04/2023,
their replacement dates and a short text description of the maintenance action.
The first dataset, extracted from the supplier’s information system, stores the mainte-
nance reports. Each row contained an item replacement for a location in the system
from which the replacement intervals per system location were determined. Based on
these intervals, the lifetime per component in that specific location could be derived,
such that each part received a unique ID.

2. Parcels: contains all 166 million parcels shipped by DPD between 11/02/2020 and
01/04/2023 and their shipment date, weight, volume, time on the sorter, number of
recirculations, carrier count and corresponding induct, chute and component.
The second dataset was obtained from DPD’s data management system, which collects
information about the sortation system and its usage. Different sensor measurements
are included in the dataset that measured the characteristics of each parcel and its
location. The inducts indicate whether the parcel entered the components from the left
or right, whereas the chutes show whether the parcel exited the component to the left or
right. The number of recirculations of a shipment denotes the number of times a parcel
has travelled past the entire installation, which happens when the package cannot be
discharged from the system. A failed discharge can be due to operational causes such as
a blocked chute. The carrier count of a parcel denotes if the item was shipped on one or
two carriers. The item is placed onto two carriers if the length exceeds 55 centimetres
to avoid collisions between packages on adjacent components.

3. Alarms: contains the 45713 alarm notifications of the system from 17/03/2020 to
01/04/2023, the type and duration of the alarm, and the component that caused the
warning.
The third dataset was extracted from DPD’s data management system, which collects
information about the sortation system and its alarms. DPD distinguishes three types
of alarms for their sortation system: Item overhanging belt (IOB), Deflected bellow
fault (DB), and item retract. An IOB notification denotes that an item is hanging over
the side of the component, which can be due to a failure when the parcel enters the
system or package instability causing it to move during operation. These alarm sensors
were installed onto the system on 17/03/2020. A deflected bellow fault occurs when
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such an unstable package moves to the front or back of the component and lands on
the bellow between two components. Such an incident significantly increases the chance
of a crash. Finally, an item retract alarm denotes that the parcel has shifted from its
original location, but the shift was detected in time for the system to correct. The
item retract fault sensors and deflected bellow sensors were installed in the system on
09/07/2021.

The following section, Section 3.2, describes the approach for extracting relevant features
from these datasets.

3.2 Feature extraction

Ferreira & Gonçalves (2022) define feature extraction as ”transforming raw data collected
from the running system into relevant information about the running status of that system”.
These initial parameters are established during interviews with system experts, as the system
is highly complex. The technical maintenance manager and technical contract manager of
DPD and the maintenance manager and a project manager of the system’s supplier shared
their insights on the components’ degradation. Based on these insights, 44 features were
identified that might be relevant to the RUL prediction. These features were aggregated to
the total, mean, and maximum of the following features: parcel volume, weight, density, time
on sorter and load (e.g. the time during which the parcel’s weight was putting stress on the
component in kg ·sec). In addition, the alarm count per type and the parcel count were listed
per component (where the total equals the observed count and the extrapolated observations)
as well as the count that the crossbelt unit turned clockwise and counterclockwise. Finally,
the utilisation, the fraction of time that a component was actively used to transport parcels,
is calculated per component. The data is aggregated in this manner to ensure that only
relevant information for the system degradation is included. Moreover, this aggregation limits
the size of the dataset. Time series data instead of aggregated data would be an interesting
extension. However, the inclusion of such measures would increase the dataset with 166
million observations per parcel feature. In addition, Frisk et al. (2014) reported adequate
results using similar aggregated data. Therefore, this study is limited to these aggregated
measures.

3.3 Data pre-processing

After the correct data has been gathered, it should be prepared for analysis. Ferreira &
Gonçalves (2022) defined data pre-processing as exploiting features associated with the degra-
dation of the system, which are hidden in the raw data. In the context of this thesis, data
pre-processing concerns filling in missing values and observations, and associating the data
on the packages and alarms with the components to extract relevant information on the parts
and their usage.

3.3.1 Missing values

The first step of data pre-processing is to handle missing values. For the component dataset,
missing values were present regarding the replacement reason for a component. This label is
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necessary as the prediction of wear and tear of components is the focus of this thesis. However,
items can also be preventively replaced, in operation or replaced due to damage caused by a
crash. These components still inform us about the degradation of the system, but the outcome
is unknown. Therefore, these observations are used for analysis, but regarded as censored
observations. These missing labels were complemented based on the maintenance reports.
The parcel dataset contained missing values for the weight, volume and time on the sorter of
that parcel which were rectified with the mean of these features. In addition, the incoming
and departure directions are deducted from the induct and chute labels, respectively. Based
on the system layout, each induct and chute has a set direction to enter or leave the system.
Therefore, based on our understanding of the sorting machine, we can register whether the
crossbelt turned clockwise or counterclockwise.

In addition to missing values, we also encountered missing data, as can be derived from the
start dates per dataset, as presented in Section 3.1: the parcel and alarm data are partially
unavailable. For the parcel data, observations between 03/03/2019 and 11/02/2020 are miss-
ing. For the alarm data, the missing observations differ per alarm type as the installation date
of the sensors differs. The installation date is 17/03/2020 for the IOB alarms and 09/07/2021
for the DBS and retract alarms. To correct these values, per component, the number of alarm
notifications and the number of packages were split into four periods, as visualised in Figure
3.1. In interval (4), all parcel information and alarm information is known. In period (3),
the DBS and retract alarm notifications are unknown, but the parcel volumes and IOB alarm
notifications are clear. In time frame (2), we only obtained the parcel information. Finally,
in interval (1), only estimates of the parcel information are known, as the parcel count per
day has been registered. Therefore, these missing values can be estimated by computing the
average number of parcels per component based on these volumes and the number of days
that the part is missing parcel information. For example, a component that was operational
between 03/03/2019 and 01/04/2020 misses every parcel volume between 03/03/2019 and
11/02/2020 (period 1) and is corrected with the average for each of these days, whereas a
component that was only operational between 03/03/2019 and 20/11/2019 would only be
corrected for this period and not the entire interval between 03/03/2019 and 11/02/2020.
In short, the missing data were extrapolated from the available information. So, the IOB
alarm notifications for period (1) were extrapolated based on IOB notifications and parcels
registered during periods (2), (3) and (4), whereas deflected bellow supervision and retract
warnings for periods (1) and (2) were extrapolated based on interval (3) and (4).

Figure 3.1: Timeline of data records

3.3.2 Data cleaning

Data cleaning corrects or removes incorrect or incomplete data within a dataset. In this
case, this mainly consisted of correcting noisy data and identifying erroneous values. First,
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components were identified that failed due to wear but were hardly used. When inspecting the
maintenance reports of these components, mistakes in component failure times were identified.
For example, no failure was registered in the maintenance reports, but a failure was logged
in the system. Thus, the component lifetimes were corrected. Second, incorrect entries were
found for the weight of parcels, as some shipments received a negative weight value. As this
is impossible, the value was set to 0 as the weight will likely have been negligible. Overall,
the other entries are assumed to be correct.

3.3.3 Data integration

Data integration refers to the process of combining data from different sources into a coherent
view. Challenges arise due to variations in data purpose and formats. In this case, the supplier
data on the components (dataset 1) should be combined with DPD’s data on their shipments
and alarm notifications (dataset 2 and 3). This process creates extra challenges as the data
is gathered in different systems. Therefore, data and business understanding are essential.
As mentioned before, based on the replacement intervals per system location, the lifetime of
each component was determined based on replacement intervals specific to its system location.
The component’s labelling is determined by its position within the system and the sequential
order of its installation. By analyzing the installation and removal dates, the useful life
of each component was calculated. This information facilitated the matching of parcel and
alarm data to the components, where the date and component details of each occurrence were
utilized to identify the correct unique identifier associated with the component in question.
The matching procedure was performed using SQL to deal with the large amount of data.

After data cleaning and integration, we obtain a dataset consisting of 1842, 1940, 1931 and
1943 components for the cart, MCB, motor and crossbelt, respectively. A significant amount
of data is censored (i.e. still operational or crashed), 90.5%, 86.4%, 86.8% and 86.3% for
these components, respectively. Table 3.1 summarizes these data descriptions. Please note
that the system consists of 1640 operational components at any point in time, as it is a serial
system, and therefore 1640 censored components. The censored observations are included
in the study since their values tell us how long they will last relative to failed components.
Finally, there is no apparent trend in the frequency of crashes, which makes sense given that
they are caused by unstable parcels on the component, which is fully independent of lifespan.

Component Degraded components Crashed components Functioning components Total number of observations Percentage censored

Cart 172 27 1640 1839 90.50%

Carrier
MCB 264 36 1640 1940 89.39%
Motor 255 36 1640 1931 86.79%
Crossbelt 267 36 1640 1943 86.26%

Table 3.1: Description of the number of units per label per subcomponent

3.3.4 Data exploration

To gain insight into the degradation of these components, we perform exploratory data anal-
ysis. First, we inspect the average lifetime of a component per replacement trigger (censored,
failed or crashed). Figures 3.2, 3.3, 3.4 and 3.5 present the histograms per category for the
carts, MCB units, motors and crossbelts, respectively. Please note that the scale of the ver-
tical axis differs per censoring category to ensure the readability of the graphs. We can see
that each component has a clear peak for components with a lifetime of 1490 days, which
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(a) Censored (operational) (b) Failed due to regular wear (c) Crashed

Figure 3.2: Histogram of carts per replacement label (operational, failed, crashed)

is the time since the machine was installed. Therefore, these are the components that have
been installed at the beginning and have not failed yet. Please note that the censored values
with a useful life lower than 1490 are due to the component being replaced recently, so the
component has been installed a few weeks ago but has not failed yet. Moreover, we observe
that the histograms of crashed MCB units, motor and crossbelt look reasonably similar, this
is because these components are part of the carrier, and if a carrier crashes, the entire compo-
nent is replaced. In addition, the cart, MCB, motor and crossbelt each have a peak of about
40 components that failed around 400, 480, 440 and 500 days, respectively. After that, there
seems to be a moderately decreasing trend in the lifetime.

(a) Censored (operational) (b) Failed due to regular wear (c) Crashed

Figure 3.3: Histogram of MCB units per replacement label (operational, failed, crashed)

(a) Censored (operational) (b) Failed due to regular wear (c) Crashed

Figure 3.4: Histogram of motors per replacement label (operational, failed, crashed)

The average useful life (i.e. the average number of days that the component was functional
in the system) of a cart, MCB, motor and crossbelt are 1328, 1269, 1273 and 1266 days,
respectively. From all components, 172, 264, 255 and 267 carts, MCB units, motor and
crossbelt have failed due to regular degradation. Their mean time to failure of the failed
components is 615, 700, 702 and 705 days, respectively. Finally, we note that the standard
deviation is substantial, namely 308, 364, 369 and 373 days for the cart, MCB, motor and
crossbelt, respectively.
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(a) Censored (operational) (b) Failed due to regular wear (c) Crashed

Figure 3.5: Histogram of crossbelts per replacement label (operational, failed, crashed)

Mean lifetime
(days)

Number of
failed components

Mean time to failure
(days)

Standard deviation
in time to failure

Cart 1328 172 615 308
MCB 1269 264 700 364
Motor 1273 255 702 369
Crossbelt 1266 267 705 373

Table 3.2: Lifetime descriptives

Overall, this chapter detailed the data utilized in this study, as well as the process by which it
was cleaned and integrated. Furthermore, a first look at the data was offered. The methodol-
ogy of this thesis, for which this data was prepared, is described in the next chapter, Chapter
4.
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4. Methodology
This chapter presents the methodology of this thesis. First, Section 4.1 highlights the pre-
requisite of model explainability and how this relates to model building. Then, Section 4.2
discusses the model-building phase of the remaining useful life prediction process, which an-
swers Research Question 1.3. Section 4.3 explains the evaluation measures which are used
in this study to evaluate the performance of the prediction models, providing the answer to
Research Question 1.4.

4.1 Model explainability

As noted in Chapter 1, DPD requests for the model to be both explainable and interpretable
for communication purposes. Model explainability is inherent to the type of model used
(Linardatos et al., 2020). Therefore, this should be discussed before model selection and
building. As defined in Chapter 2, model explainability deals with the internal logic of the
machine learning model. In other words, it deals with the clarity of the inner workings of
the prediction model. As noted, Neural Networks and other deep learning methods are often
difficult to explain. However, decision tree-based models easily produce explainable results
with common examples (Linardatos et al., 2020). Therefore, Chapter 4.2 deals with the
decision tree-based methods used in this research.

4.2 Model building

This section highlights the chosen RUL prediction methods and their characteristics. As noted
in Chapter 2, survival ensemble methods can deal with the challenges posed by the real-world
dataset, such as right-censored tabular data. These approaches yield flexible predictors and
remain stable in high-dimensional settings (Hothorn et al., 2006). Therefore, three methods
are selected for comparison: the survival regression tree (ST), random survival forest (RSF)
and gradient-boosting (GB) model. The former method is chosen to provide insight into the
benefits of the latter two as Wang & Li (2017) reported that these methods have high preci-
sion and are highly flexible due to their non-parametric nature. Therefore, these approaches
alleviate the problematic assumptions of the proportional hazards model. These characteris-
tics ensure the high practical relevance of RSF and GB models. Moreover, these models are
based on regression instead of time-series, which is common for RUL prediction. As noted
in Chapter 3, the dataset contains information on 166 million parcels. Therefore, time-series
data for numerous features per parcel would rapidly increase the data volumes, which poses
significant challenges for dealing with these data. Thus, we choose to use aggregate data
instead of time-series data, which is enabled by survival regression trees, random survival
forests and gradient-boosting models.

Both gradient-boosting models and random survival forests are tree-based ensemble methods,
yet they differ as to how the regression trees are combined. First, Subsection 4.2.1 introduces
survival regression trees to ensure the required base comprehension. Subsections 4.2.2 and
4.2.3 describe the two methods of combination for the random survival forest and gradient-
boosting models, respectively.
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4.2.1 Survival regression trees

Each regression tree has three main parts: a root node, leaf nodes, and decision nodes. Root
nodes are split into decision nodes, and decision nodes are branched as leaf nodes. The leaf
nodes are not split further and thus are the end nodes, as visualised in Figure 4.1. Therefore,
these leaf nodes contain clusters of components with similar usage features. In each leaf
node, an estimator is fitted to predict the target variable. In the case of survival regression
trees, the estimator is tailored to censored data. In other words, Formula 2.2 is estimated
per cluster/leaf node. Therefore, Frisk et al. (2014) adapted Formula 2.2 to consider a usage
profile per cluster V, where the expected remaining useful life for that usage profile is:

E[RUL(t0,V)] =
1

RV(t0)

∫ ∞

t0

RV(t)dt− t0 (4.1)

Thus, regression trees are for dependent variables that take continuous ordered values, with
the prediction error measured by the difference between the observed and predicted values
(Loh, 2011).

Figure 4.1: An example regression tree

The algorithm to construct a regression tree is defined by (Loh, 2011), where X is the set of
features and Y is the remaining useful life:

1. Start at the root node

2. For each X, find the set S that minimizes the sum of the squared deviations about the
mean and the node predicting the sample mean of Y in the two child nodes and choose
the split that gives the overall minimum overall X and S.

3. If a stopping criterion is reached, exit. Otherwise, apply step 2 to each child node in
turn.

Multiple of these survival regression trees are combined into a prediction forest in gradient-
boosting models and random survival forests. Random forests average the prediction outcome
per regression tree, whereas boosting applies a functional gradient descent algorithm mini-
mizing residuals (Hothorn et al., 2006). These trees first cluster the observations and then
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estimate the reliability per cluster. This increases their applicability in this context as the
components are first clustered based on similar usage, and a reliability estimate is made
based on this similarity. Sections 4.2.2 and 4.2.3 introduce the random survival forest and
the gradient boosting model, respectively.

4.2.2 Random survival forest

Ishwaran, Kogalur, Blackstone, & Lauer (2008) introduced random survival forests by ex-
tending the random forests method for the analysis of right-censored survival data. Survival
analysis is used to analyse the time-to-event, where an event can be a failure or censored
observation. A random survival forest is an ensemble method that combines regression trees
adapted for survival analysis. Several regression trees (n) are grown that each predict remain-
ing useful life. The final prediction is the average of all these individual estimations. The
random survival forest network is shown in Figure 4.2. The random survival forest incorpo-
rates randomization in two forms (Ishwaran et al., 2008). First, a random bootstrap sample
is randomly drawn to grow a tree. Second, at each node of the tree, a subset of variables are
randomly selected as candidate variables for splitting. This allows the forest to approximate
rich classes of functions while sustaining a low generalization error (Ishwaran et al., 2008).
The random survival forest algorithm consists of the following steps (Wang & Li, 2017):

1. Drawing L bootstrap samples from a training dataset of size n. The remaining out-of-
bag (OOB) observations will not appear in the bootstrap sample.

2. For each bootstrap sample, grow a full-size survival tree based on the log-rank splitting
rule. At each internal node, randomly select a subset of candidate covariates out of all
covariates.

3. For each tree, the survival probability is estimated. At each terminal node k at the time
point t, the reliability is estimated by the Kaplan-Meier estimator (Ebeling, 2010):

R̂i(t) =
∏

{j:tj≤t}

(
1− 1

nj

)
(4.2)

where tj are the ordered failure times and nj are the number remaining at risk just
before the jth failure.

4. To predict the survival function of a new observation x, the average over all survival
functions from all the L trees is used to obtain the ensemble function of the forest:

R̂E(t|x) =
1

L

L∑
i=1

R̂i(t|x) (4.3)

where R̂i(t|x) denotes the reliability of the tree grown from the i-th bootstrap sample.

Note that the Kaplan-Meier estimator is tailored to censored data. This estimator adapts
the survival function to the survival probabilities at the moment of censoring. Censored
observations are included in the estimator until the moment of censoring. Thereafter, it is
not considered in the risk calculation for an event.
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Next to the survival function, the algorithm also produces an RUL estimation based on the
average of the RUL prediction from all trees. It builds on the idea of bagging, but it provides
an improvement because it de-correlates the trees by adding a random subset of features (m)
to be considered, which usually is determined by m ≈ √

p.

Figure 4.2: Random survival forest network

Model parameters

A random survival forest requires several decisions on parameters. The experiments in this
study are conducted using the Python library Sci-kit Survival (Pölsterl, 2020). The com-
binations of parameters tested in this study are highlighted in Section 5.4. The main six
parameters to be chosen in the software are:

• number of trees to grow in the forest

• minimum number of observations per split

• maximum depth of each tree

• maximum number of leaf nodes

• minimum number of observations per leaf node

• maximum number of features to consider when looking for the best split

The choice of these parameters has a considerable influence on the model’s performance. The
selection of these parameters is explained further in Section 5.4.
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All in all, a random forest builds a predefined number of trees based on a random subset of
features and averages their predictions to obtain a final prediction. This prediction is at least
comparable to the state-of-the-art machine learning methods (Ishwaran et al., 2008). Addi-
tionally, random survival forests inherit the robustness and desirable properties of ensemble
methods, such as increased accuracy and limited bias and variance.

4.2.3 Gradient-boosting model

Friedman (2001) introduced a general gradient-boosting machine. This article concludes
that gradient-boosting of regression trees produces highly robust, interpretable procedures
especially noisy data. Hothorn et al. (2006) extended this algorithm for right-censored data.
Several decision trees are grown based on gradient descent optimization to iteratively fit new
models to the residuals of the previous trees. These residuals ensure that the observations
that had the highest prediction error received the most attention in the next regression tree.
The predictions are combined in an additive manner, where the addition of each base model
improves (or “boosts”) the overall model. The gradient-boosting algorithm is as follows
(Friedman, 2001):

1. Initialize the model with the median of the target value.

2. For each iteration: calculate the residuals between the predicted values and the true
values concerning the current model’s predictions.

3. Fit a decision tree to the negative gradient by minimizing this loss function.

4. Update the model by adding a weak learner, multiplying it by the learning rate, and
adjusting the predictions.

5. To predict the survival function, similar to step 4 in the random survival forest algo-
rithm, the average of all predictions is used.

As can be concluded from this algorithm, gradient-boosting applies a greedy approach to
the loss function and combines each improvement based on the learning rate to decrease
overfitting.

Model parameters

A gradient-boosting model involves numerous parameter choices. The model is built using
the Python library Sci-kit Survival (Pölsterl, 2020). The combinations of parameters tested
in this study are highlighted in Section 5.4. The main eight parameters to investigate:

• number of trees to grow in the forest

• loss function to be optimized

• the learning rate

• minimum number of observations per split
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Figure 4.3: Gradient-boosting network

• maximum depth of each tree

• maximum number of leaf nodes

• minimum number of observations per leaf node

• maximum number of features to consider when looking for the best split

The selection of these parameters has a significant impact on the model’s performance. Section
5.4 goes into further detail on how these criteria were chosen.

Overall, gradient-boosted models are known to be flexible predictors that remain stable in
high-dimensional settings. However, it is important to note that overfitting is a significant
risk for gradient-boosted models. Similar to a random survival forest, these models inherit
the desirable properties of ensemble methods by combining multiple regression trees.

4.3 Evaluation measures

To evaluate the performance of the survival tree, random survival forest and gradient-boosting
model, the general measures for data-driven models were discussed with DPD to select the
most applicable indicators which are also relevant for their interpretation of the performance.
Hence, we select four evaluation measures. First, to evaluate the basic ordering of events,
Harrell’s concordance index is chosen as this metric is tailored to problems containing censored
observations. Second, the RMSE is chosen to evaluate the deviation between the prediction
and the actual value, as this measure is more straightforward to interpret than the MSE.
Third, the mean absolute percentage error is used to evaluate the performance independent of
the magnitude of the values. Fourth, DPD emphasized the trade-off between underestimation
and overestimation of the remaining useful life of a component. The overestimation of the
remaining useful life of a component has a significant impact on the downtime of the system.
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Therefore, DPD prefers underestimation over overestimation. However, the mean absolute
error does not consider this trade-off. Therefore, we separately report the overestimation and
underestimation. Finally, we list the training times of the model to gain insight into the speed
of the model and the time consumption of the training phase.

All in all, we train survival regression trees and two different survival ensemble methods: a
random survival forest and a gradient-boosted model. The random forest seeks to minimize
the empirical risk indirectly via the stabilization of randomized base learners. In contrast,
gradient boosting employs a functional gradient descent algorithm for minimizing the empiri-
cal risk (Hothorn et al., 2006). These models are evaluated based on several measures to pick
the most suitable model for DPD.
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5. Modelling
This chapter presents the modelling phase including feature selection, defining dependent and
independent variables, data balancing and model training and testing. Section 5.1 presents the
feature selection. In other words, this section provides the answer to Research Question 1.2
by discussing the relevant usage indicators. Afterwards, Section 5.2 describes the definition
of both dependent and independent variables. Section 5.3 describes the data balancing for
the datasets. Finally, Section 5.4 describes the parameters to be optimized in the models.

5.1 Feature selection

Feature selection includes determining which extracted features are more sensitive to detecting
the degradation path (Ferreira & Gonçalves, 2022). In other words, this process selects the
features with the strongest predictive power from the full set as described in Section 3.1, as
too many irrelevant features will lead to a poor prediction result of the model (Ma, Chen,
Cao, Yao, & Liu, 2020; Prytz, Nowaczyk, Rögnvaldsson, & Byttner, 2015). Moreover, feature
selection aids in preventing overfitting and reduces complexity and training times (Saeys et
al., 2007; Buchaiah & Shakya, 2022). Therefore, this step consists of selecting the most
important features from the features identified together with the system experts.

As noted by (Javed et al., 2012), feature selection and the remaining useful life prediction
method are decisions that both impact performance and should thereby be considered simul-
taneously. Moreover, tree-based algorithms such as the random survival forest and gradient-
boosting model, have embedded feature selection strategies (Saeys et al., 2007). Therefore,
we fit a random survival forest (150 trees and a minimum of 100 samples per split) and use
permutation-based feature importance to inspect the influence of each indicator on the re-
maining useful life of a component. Permutation-based feature importance is used to assess
the impact of each feature on the final prediction. On the dataset, a baseline measure is
first examined. The measure is then assessed again after a feature column is permuted. The
difference between the baseline metric and the metric from permuting the feature column is
defined as the permutation significance (Breiman, 2001). This assessment is performed 15
times to ensure a valid result. Then, we obtain the mean and standard deviation of the fea-
ture importance. As noted by Kundu et al. (2020), Prytz et al. (2015) and Frisk et al. (2014)
random forests have a built-in health indicator selection capability. Prytz et al. (2015) elabo-
rates that this method outperforms human experts. Hence, we use the random survival forest
and permutation-based feature importance to select the most powerful subset. Per compo-
nent, we retain the 20 most impactful features, and its useful life so far. Figures 5.1a, 5.1b,
5.1c and 5.1d show the mean and standard deviation of the feature importance for the carts,
MCB units, motors and crossbelts, respectively. Thereafter, Table 5.1 shows an overview of
the features that were selected for each component. The selected features per component
are shown with a and the features that were selected by the expert, but excluded after
permutation-based feature importance with a ·. Based on the discussion with system experts
and the permutation-based feature importance, we can draw 11 main conclusions:

1. The utilisation is relevant for the degradation of each component,

2. The direction that the crossbelt turned for each parcel is more important than the
number of parcels for the crossbelt,
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(a) Cart (b) MCB

(c) Motor (d) Crossbelt

Figure 5.1: Mean and standard deviation of the feature importance per component

3. The total and mean weight is impactful for the degradation of each component,

4. The maximum weight is a feature that adds noise to the model and is excluded after
the feature selection for every component,

5. The crossbelt is the only component impacted by the volume of each parcel,

6. The mean, total and maximum time that a component is used to transport a parcel
(time in use) is relevant for the degradation of all components,

7. The mean, total and maximum load (time · parcel weight) is relevant for the degradation
of all components,

8. The IOB alarms are only relevant for the degradation of the cart and crossbelt,

9. The number of DBS alarms has an impact on the degradation of the cart, MCB and
motor, but not on the degradation of the crossbelt,

10. The retract alarm occurrences on the right, left and the total number of occurrences
are only relevant for the crossbelt,

11. The number of two carrier items is only impacting the degradation of the crossbelt.
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Cart MCB Motor Crossbelt

Useful life
Component utilisation
Total number of parcels ·
Mean weight
Total weight
Maximum weight · · · ·
Mean volume
Total volume
Maximum volume
Mean time in use
Total time in use
Maximum time in use
Mean load
Total load
Maximum load
Number of IOB alarms
Number of DBS alarms ·
Number of retract alarms
Number of retract alarms right
Number of retract alarms left
Number of two carrier items
Number of rotations clockwise
Number of rotations counter-clockwise

Table 5.1: Overview of selected features per component

This subset of features will serve as input to the model and form the basis for its RUL
prediction. The input variables are defined in more detail in the next section.

5.2 Dependent and independent variables

The survival tree, gradient-boosting model and random survival forest predict the remaining
useful life (dependent variable) based on the selected features as shown in Table 5.1 (inde-
pendent variables). This section will further explain this input data.

The independent variables (X) are the features that were selected as the most powerful subset
(as shown in Table 5.1). Thus, the model takes 13, 12, 12, and 20 independent variables as
inputs for the cart, MCB, motor, and crossbelt, respectively. This subset is provided to the
model to base the remaining useful life prediction on. As we aspire to predict the remaining
useful life, this is the dependent variable (Y ). Therefore, the input data should be in the same
format. However, the components listed in Table 3.1 are currently described using their entire
lifetime from installation date to a failure or censoring event instead of time-to-event data.
Therefore, we split these observations into weekly intervals, with the corresponding useful
life and remaining useful life. This interval is suitable as DPD foresees that the prediction
will be updated every week when operational. Figure 5.2 visualises the split. In short, the
component lifetime (c), from installation date (t0) until end-of-life (T ), is available. However,
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the remaining useful life (b) is of interest, which is the difference between the cut-off moment
(t) and the end of life (T ). As the entire lifetime is known, we can arbitrarily choose our
cut-off time (t). We choose to pick multiple values for (t) for each week in the lifetime of the
component. For instance, component 1, having a lifetime of 26 weeks (c), can be split into
component 1.1 having useful life (a) = 1 week and a remaining useful life (b) = 25 weeks,
and component 1.2 having a useful life (a) = 2 weeks and a remaining useful life (b) = 24
weeks. Note that both components still have a life span (c) of 26 weeks etcetera. For each
component, it always holds that (c) corresponds with the original lifetime of the components,
the only difference is that (t) shifts one week, changing the length of periods (a) and (b).
This weekly division also increases the number of observations available, as multiple entries
per component become available. Figure 5.3 provides an example of this division into parts.
Here, X denotes the independent variables being the usage features of the component, and y
equals the dependent variable, being the remaining useful life after the cut-off moment (t).

Figure 5.2: Component lifetime (c) split into useful life (a) and remaining useful life (b)

Figure 5.3: Example of how components were split into input format

5.3 Data balancing

As noted in Table 3.1, all four datasets are highly imbalanced. In this case, the censored
observations (e.g. crashed components or components that are yet to fail) exceed the ob-
servations of components that failed due to regular wear. In this case, we undersample the
observations for each censored component. This sampling method does decrease the number
of observations, which could lead to an information loss. On the other hand, a decrease in
observations also reduces training and testing times, and memory usage. As noted by Batista
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et al. (2004) the imbalance problem is a relative problem depending on the concept complex-
ity and overall size of the training set. Due to the high system complexity and large variance
in loads, each component contains valuable information on the degradation. However, as we
obtained multiple entries per component, overfitting is also a significant risk. Therefore, we
undersample per censored component and retain the observations of degraded components to
ensure that each component is represented in the dataset. Ultimately, each dataset consists
of 50% uncensored observations.

After feature selection and data balancing, the final dataset consists of data on 1640 locations
in the sorting chain between 03-03-2019 and 01-04-2023. In total, we obtained 13.610, 27.006,
26.895 and 29.326 RUL intervals for the cart, MCB, motor and crossbelt, respectively, of
which 50% is uncensored. For the cart, 13 features are recorded, for the MCB and motor 12
features and for the crossbelt 20 features are included in this study. These measures contain
aggregated data on the usage of the components, such as the number of parcels transported,
the mean weight of these parcels and the number of alarms triggered by this component.

5.4 Model training and testing

This section presents the model training phase, focusing on parameter optimization, within
the context of the thesis. During this phase, a relationship is established between the health
state and the selected features (Ferreira & Gonçalves, 2022). The data for each component
is divided into training and test sets. Specifically, the data is split into 70% for training and
30% for testing. Consequently, the training set comprises 9.527, 18.904, 18.826, and 20.528
observations for the cart, MCB, motor, and crossbelt, respectively. The remaining 30 % is used
for the test set, to evaluate the model’s performance. To tune hyperparameters, 20 % of the
training set is set aside for validation. The desired output for training includes the remaining
useful life in days and a censoring indication (0 = censored, meaning the component is still
operational or crashed, and 1 = failure due to wear). The optimization of the models revolves
around two parameters: the number of trees and the minimum number of samples per split.
The number of trees is varied from 1 to 750, while the minimum number of samples per split
is tested at 10, 20, 100, and 200. Another option would be to restrain the maximum depth
of the tree instead of the minimum number of samples per split. However, identifying the
right clusters is crucial to obtain an appropriate reliability estimate for those observations.
Therefore, we restrain the minimum number of samples per split instead of the maximum
depth. The optimal combination of the number of trees and minimum number of samples per
split is investigated using a grid search where the number of trees varies from 1 to 750 and the
minimum number of samples per split is either 10, 20, 100 or 200. Another significant issue
is overfitting, especially for the gradient-boosting model. Regularization methods attempt to
prevent overfitting by constraining the fitting procedure (Friedman, 2001). Thus, we use a
smaller learning rate of 0.3 instead of 1.0, which restricts how fast the model learns the data
and limits overfitting. Finally, both ensemble methods are allowed to consider a maximum
number of features (m) that is equal to the square root of the total number of features available
(p): m ≈ √

p.

As the remaining model parameters discussed in the Subsection 4.2.2 and 4.2.3 are linked,
we chose to optimize over the number of trees in the forest and the minimum number of
samples per split. As the number of samples per split is linked to the depth of each tree,
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we do not iterate over the tree depth as well. Moreover, the number of observations per leaf
node is not restricted as the system is highly complex. Finally, Frisk et al. (2014) noted
that the evaluation of the remaining useful life (Formula 2.2) requires integration to infinity.
Unfortunately, the estimated reliability functions have a high degree of uncertainty for large
values of t, especially since we have no observations past t = 1490 days. Therefore, the
lifetime prediction is used as the time to perform maintenance on the component. This timing
is defined as the first moment that the probability of a failure of that component becomes
larger than P. In other words, we perform maintenance when the reliability becomes smaller
than J , where J = 1− P. So,

Tmaintenance ≤ argmin
t

(
RV(t; t0) < J

)
(5.1)

Overall, the modelling process included feature selection, dependent and independent variable
formulation, data balancing, and the generation of training, validation and testing sets. We
obtain a balanced dataset via undersampling with weekly remaining useful life intervals, which
we divide into a training and test set. These datasets are used to train the three models to
predict the remaining useful life based on the input features.
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6. Results and discussion
This chapter presents the remaining useful life prediction and evaluation phase of the RUL
prediction process of Ferreira & Gonçalves (2022). RUL prediction calculates the time to
failure before the failure effectively occurs using the selected features, which the model has
never seen before (Ferreira & Gonçalves, 2022). Therefore, the model predicts on the test set.
Next, the evaluation phase is about evaluating the prediction results based on specific metrics
and relating the prediction to the maintenance approach (Ferreira & Gonçalves, 2022). Thus,
this chapter will highlight the important results, the performance of every tested combination
is presented in Appendix A. Sections 6.1, 6.2, 6.3 and 6.4 present the results for the carts,
MCB units, motors and crossbelt units, respectively. First, the hyperparameters are optimized
for the trained model using the validation set. For visualisation purposes, the error rate
is shown, which is the rate at which the order of events is predicted incorrectly. Thus,
this equals 1 − C, where C is Harrell’s concordance index (Frisk et al., 2014). Then, the
other metrics discussed in Section 4.3 are presented (RMSE, MAPE, average underestimation,
average overestimation and training time), based on the testset. Thereafter, Section 6.5
illustrates model interpretability by presenting an example of one component for the three
RUL prediction methods. Please note that these results are presented for J = 0.5, meaning
that a component is replaced when the estimated reliability drops below 0.5. This threshold
is defined based on DPD’s preference for underestimating the remaining useful life compared
to overestimating it. Finally, Section 6.6 compares the overall performance of the survival
tree, random survival forest and gradient-boosting model. Thus, this chapter provides the
answers to the final Research Questions 1.5 and 1.6.

6.1 Results carts

This section presents the results for the survival tree, gradient-boosting model and random
survival forest for the first component, the cart. Figure 6.1 shows the error rate for the
gradient-boosting model (6.1a) and the random survival forest (6.1b) for all values for the
minimum number of samples per split. We observe that the random survival forest converges
considerably faster than the gradient-boosting model. The error rate stabilizes with 150 trees
in the random survival forest, whereas the gradient-boosting model still decreases slightly
at 700 trees. Moreover, Figure 6.1b shows that the random survival forest is much more
sensitive to the parameter denoting the minimum number of samples per split. Therefore,
the optimal value for the minimum number of splits for the random survival forest is 10.
However, for the gradient-boosting model, this value is not as noticeable. Table 6.1 shows
the best-performing configuration for the three RUL prediction methods and the values for
all performance indicators. From this table, we can conclude that for the gradient-boosting
model, a number of trees of 750 and a minimum number of samples per split of 20 is optimal.
For the survival tree, a minimum of 10 samples per split is optimal. This parameter setting
gives a concordance index of 80.98%, RMSE of 488.49 days and a MAPE of 444.44%. The
gradient-boosting model with 750 trees and a minimum of 20 samples per split provides a
better concordance index of 82.19%. This configuration gives better values for the RMSE
and MAPE of 461.62 days and 442.63%, respectively. The random survival forest with 725
trees and a minimum of 10 samples per split gives the best concordance index at 82.35%.
However, the RMSE and MAPE are 2.00% and 14.09% worse than the gradient-boosting
model with values of 470.86 days and 504.98%, respectively. For all three models, it holds
that the RMSE and MAPE are extremely high. The survival tree, gradient-boosting model
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and random survival forest all have a higher tendency to overestimate the remaining useful
life with on average 401.46, 408.70 and 372.31 days, respectively. The underestimation is
on average lower at 194.48, 215.27 and 235.63 days for the survival tree, gradient-boosting
model and random survival forest, respectively. Finally, the training times vary widely. The
survival tree is the quickest RUL prediction model to train with 147.66 seconds, whereas the
gradient-boosting model and random survival forest are much slower with 690.92 and 2264.30
seconds of training time for the optimal configurations of these models, respectively. Further
interpretation of these results is presented in Section 6.6.

(a) Gradient-boosting model (b) Random survival forest

Figure 6.1: The error rate of the gradient-boosting model and random survival forest for
different values for the minimum number of samples per split for the cart

Evaluation metric
Model type
(number of trees,
minimum samples per split)

Concordance
index

RMSE MAPE
Average
underestimation

Average
overestimation

Training time
(seconds)

ST (1, 10) 80.98 488.49 444.44 194.48 401.46 147.66
GB (750, 20) 82.19 461.62 442.63 215.27 408.70 690.92
RSF (725, 10) 82.35 470.86 504.98 235.63 372.31 2264.30

Table 6.1: Best model performance for the cart when J = 0.5

Overall, all three models produce satisfactory results for the concordance index. On the other
hand, the estimations of the useful life left are inadequate. As a result, the models accurately
anticipate the sequence of failure yet predicting specific future decline is difficult. As a
result, the random survival forest approach is most suited to the cart, as it has the greatest
concordance index. However, the gradient-boosting model achieves a 69.49% reduction in
training time for a decline of 0.16% in the concordance index. The survival tree reduces the
training time by another 78.63% compared to the gradient-boosting model at the cost of a
1.21% reduction in the concordance index. Overall, the best-performing model in terms of the
concordance index is the random survival forest with 725 trees and a minimum of 10 samples
per split.
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6.2 Results MCB units

This section presents the results for the gradient-boosting model and the random survival
forest for the second component, the MCB. The error rate for the gradient-boosting model
and the random survival forest are shown in Figure 6.2. Firstly, we observe that the minimum
number of samples per split is nearly unimpactful to the error rate of the gradient-boosting
model, whereas this parameter significantly influences the performance of the random survival
forest. Moreover, we observe that the random survival forest rapidly converges while the
gradient-boosting model slowly improves in terms of error rate. More specifically, the gradient-
boosting model still slightly decreases the error rate at 700 trees, whilst the random survival
forest is stable after approximately 150 trees. The optimal configuration for the gradient-
boosting model and random survival forest is 750 trees with a minimum of 20 samples per
split. The random survival forest achieves an extraordinary concordance index of 80.03%
meaning that the order of component failure is predicted correctly for 80.03% of the cases. The
gradient-boosting model also achieves a reliable concordance index of 77.80%. Surprisingly,
the survival tree outperforms the other two models with a concordance index of 80.53%.
The MAPE of this model is also best at 448.83% compared to 450.02% and 530.63% for the
gradient-boosting model and random survival forest, respectively. On the other hand, the
RMSE is best for the gradient-boosting model at 401.50 whereas the survival tree achieves
the worst value at 482.18 and the random survival forest is at 474.79. Finally, the models
all tend to overestimate more than underestimate. The average underestimation is 168.39,
174.67 and 172.33 for the survival tree, gradient-boosting model and random survival forest,
respectively. Section 6.6 provides additional clarification of these findings.

(a) Gradient-boosting model (b) Random survival forest

Figure 6.2: The error rate of the gradient-boosting model and random survival forest for
different values for the minimum number of samples per split for the MCB

Evaluation metric
Model type
(number of trees,
minimum samples per split)

Concordance
index

RMSE MAPE
Average
underestimation

Average
overestimation

Training time
(seconds)

ST (1, 10) 80.53 482.18 448.83 168.39 399.69 482.92
GB (750, 20) 77.80 401.50 450.02 174.67 357.46 2450.64
RSF (750, 20) 80.03 474.79 530.63 172.33 404.20 6785.37

Table 6.2: Best model performance for the MCB when J = 0.5
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Overall, the three models produce acceptable concordance indexes. However, the remaining
useful life estimations are erroneous. As a result, the models accurately anticipate the failure
sequence. In other words, while the model can estimate the order of failure rather well,
predicting specific future events is tough. As a result, the survival tree approach with a
concordance index of 80.53% achieves the most suitable result for the MCB.

6.3 Results motors

This section discusses the findings for the survival tree, gradient-boosting model and random
survival forest for the third component, the motor. Figure 6.3 provides a comparison of the
error rate for the gradient-boosting model and random survival forest for the different values
of minimum samples per split. Firstly, the random survival forest converges much quicker
than the gradient-boosting model. In the random survival forest, the error rate stabilizes
around 150 trees, while the gradient-boosting model still declines marginally at 700 trees.
Furthermore, Figure 6.3 implies that the random survival forest is significantly more sensitive
to the parameter representing the minimum number of samples per split. As a result, the ideal
number of samples per split for the random survival forest is 10. However, this number is not
as apparent for the gradient-boosting model. The best-performing configuration for the RUL
prediction methods, as well as the values for all performance measures are shown in Table 6.3.
Based on this table, we can deduce that 750 trees and a minimum number of samples per split
of 10 are best for the gradient-boosting model. This combination has a 78.27% concordance
index, RMSE of 402.57 days and MAPE of 452.28%. The random survival forest is optimal
for 600 trees and a minimum of 10 samples per split. This configuration gives a concordance
index of 81.27%, RMSE of 472.51 days and MAPE of 509.90%. Surprisingly, the survival
tree provides the best concordance index of 82.47% with a minimum of 10 samples per split.
However, the RMSE is the worst for this model. Therefore, the survival tree trained on this
dataset can estimate the order of failure the best of the prediction models, but the timing
of failure is estimated poorly. For all three models, it holds that the RMSE and MAPE
are extremely high. The survival tree, gradient-boosting model and random survival forest
all have a higher tendency to overestimate the remaining useful life with on average 478.32,
402.57 and 472.51 days, respectively. The underestimation is on average lower at 159.35,
171.85 and 171.09 days for the survival tree, gradient-boosting model and random survival
forest, respectively. Finally, the training times vary widely. The survival tree is the quickest
RUL prediction model to train with 375.73 seconds, whereas the gradient-boosting model and
random survival forest are much slower with 2950.08 and 5521.34 seconds of training time
for the optimal configurations of these models, respectively. Further interpretation of these
results is presented in Section 6.6.

Evaluation metric
Model type
(number of trees,
minimum samples per split)

Concordance
index

RMSE MAPE
Average
underestimation

Average
overestimation

Training time
(seconds)

ST (1, 10) 82.47 478.32 400.44 159.35 395.31 375.73
GB (750, 10) 78.27 402.57 452.28 171.85 360.08 2950.08
RSF (600, 10) 1 81.27 472.51 509.90 171.09 391.34 5521.34

Table 6.3: Best model performance for the motor when J = 0.5

Overall, the three models generate acceptable results regarding the concordance index. How-
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(a) Gradient-boosting model (b) Random survival forest

Figure 6.3: The error rate of the gradient-boosting model and random survival forest for
different values for the minimum number of samples per split for the motor

ever, the remaining useful life estimates are insufficient. As a consequence, the models cor-
rectly forecast the order of failure, although it is challenging to predict a precise moment of
failure. As a result, the survival tree approach is most suited to MCB units, as it has the great-
est concordance index and the best values for the MAPE and underestimation. Moreover,
it is the quickest to train. Overall, the best-performing model in terms of the concordance
index is the survival tree with a minimum of 10 samples per split.

6.4 Results crossbelt units

This section highlights the findings for the survival tree, gradient-boosting model and the
random survival forest for the fourth component, the crossbelt. Figure 6.4 depicts the error
rate for the gradient-boosting model and the random survival forest. To begin, we notice that
the minimal number of samples per split has little effect on the gradient-boosting model’s error
rate, however, it has a considerable impact on the random survival forest’s performance. The
error rate decreases by approximately 0.1 when using 10 samples per split compared to 200
samples. Furthermore, the figure shows that the random survival forest quickly converges, but
the gradient-boosting model gradually improves with regard to the error rate. In particular,
the error rate of the gradient-boosting model still marginally reduces after 700 trees, but
the random survival forest is level after roughly 150 trees. The optimal configuration for
the random survival forest is with 475 trees and a minimum of 10 samples per split. The
gradient-boosting model is optimal with 750 trees and a minimum of 10 samples per split. The
survival tree is optimal for a minimum of 10 samples per split. The best concordance index
is 79.28%, 77.49% and 82.78% for the survival tree, gradient-boosting model and random
survival forest, respectively. The gradient-boosting model has the lowest concordance index,
however, the values for the RMSE and average overestimation are better compared to the other
RUL prediction methods at 417.30 and 373.35. The RMSE of the survival tree and random
survival forest are 80.40 and 76.82 days higher. The average overestimation is 410.80 and
414.39 for the survival tree and random survival forest. The lowest average underestimation
is achieved by the random survival forest with an average underestimation of 162.65 days,

1This model was only trained until 600 trees due to memory constraints. However, as can be seen in Figure
6.3b the performance hardly changes at that point.

38



compared to 174.38 and 188.28 for the gradient-boosting model and survival tree. Regarding
the MAPE, the survival tree outperforms the other two models with a MAPE of 457.11
compared to 462.92 and 521.95 for the gradient-boosting model and random survival forest,
respectively. Section 6.6 interprets these results in further detail.

(a) Gradient-boosting model (b) Random survival forest

Figure 6.4: The error rate of the gradient-boosting model and random survival forest for
different values for the minimum number of samples per split for the crossbelt

Evaluation metric
Model type
(number of trees,
minimum samples per split)

Concordance
index

RMSE MAPE
Average
underestimation

Average
overestimation

Training time
(seconds)

ST (1, 10) 79.28 497.70 457.11 188.28 410.80 616.24
GB (750, 10) 77.49 417.30 462.92 174.38 373.35 3064.49
RSF (475, 10)2 82.78 494.12 521.95 162.65 414.39 7392.92

Table 6.4: Best model performance for the crossbelt when J = 0.5

Overall, both models provide adequate concordance indexes. Their RUL predictions, on the
other hand, are erroneous. As a result, the RUL prediction models accurately anticipate
the failure sequence, yet predicting specific future failures is tough. As a result, the random
survival forest approach with 475 trees and a minimum of 10 samples per split achieves the
greatest concordance index and is most suited for crossbelt.

6.5 Case study: model interpretability

As defined in Chapter 2, two types of trust are required for machine learning models. Re-
garding the model in general, global interpretability methods are used. Friedman (2001)
introduced partial dependence plots to explain the interaction between a feature and the
model output globally. As noted by Linardatos et al. (2020), Friedman’s PDPs remain a
popular choice for global model interpretability. Regarding the logic behind one individual
prediction, local interpretability methods are available, such as LIME and SHAP. LIME and
SHAP are by far the most comprehensive and dominant methods for visualising feature in-
teractions (Linardatos et al., 2020). As SHAP is noted to over-weigh unlikely data points,

2This model was only trained until 475 trees due to memory constraints. However, as can be seen in Figure
6.4b the performance hardly changes at that point.
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we use LIME here to explain one example. First, we discuss the global interpretability of the
models using PDPs, after which we highlight the local interpretability utilizing LIME.

6.5.1 Global interpretability

Model interpretability is essential before deployment (Ribeiro et al., 2016). As noted, we
use partial dependence plots to inspect the model’s inner logic. Figure 6.5 shows the PDPs
of the total weight and remaining useful life for the survival tree, gradient-boosting model
and the random survival forest for the optimal models of the cart, as shown in Table 6.1.
Partial dependence plots visualize the relationship between the target variable (remaining
useful life) and a specific input feature (total weight). The y-axis of these plots represents the
average predicted outcome of the target variable (the response) based on the input features
while holding all other input features constant. Figures 6.5a, 6.5b and 6.5c all show different
relations between the total weight and the remaining useful life. The partial dependence plots
of the gradient-boosting model and random survival forest show somewhat decreasing trends.
Especially the gradient-boosting model seems logical, which shows that the remaining useful
life of a component drops steeply when the total weight increases from 120.000 to 200.000
kilograms. A similar decline is visualised in the PDP of the survival tree (Figure 6.5a). On
the contrary, the PDP of the random survival forest shows a two-stage decline in remaining
useful life when the total weight ranges from 150.000 to 200.000 and from 270.000 to 350.000
kilograms. Both the partial dependence plots of the survival tree and random survival forest
show an increase in remaining useful life after the component has moved around 300.000
kilograms of weight. One coinciding feature between these three plots is the uneven flow in
the graphs caused by the noise and large variation in values for the input features. Finally,
the largest difference is the scale of the y-axis. The range of this axis for the gradient-boosting
model is different compared to the survival tree and random survival forest. This is due to the
methodology of these models. The gradient-boosting model focuses on the largest prediction
error to grow a new tree. Due to this focus, this model might find different relations between
the features and the remaining useful life. Moreover, the gradient-boosting model starts model
building from the median RUL value. Hence, the interaction between the input features and
the RUL might be smaller in magnitude. Overall, all three models have their interpretation
of the data, that can globally be visualised by partial dependence plots. Moreover, these
plots inform us about the degradation path of the components, that can be used to adapt
operations.

6.5.2 Local interpretability

Local interpretability increases the trust in one prediction. In other words, this is essential
for the user’s trust in an individual prediction to take action based on it (Ribeiro et al., 2016).
To increase this trust, Local Interpretable Model-agnostic Explanations (LIME) is employed.
Figure 6.6 shows the visualisations for the survival tree, gradient-boosting model and the
random survival forest for a cart that has been in operation for 720 days. During these 720
days, the cart has transported 58225 parcels with a total weight of 326249 kilograms. The red
lines to the left indicate decreasing relations between the feature and the remaining useful life,
whereas a green line to the right means a positive/increasing relation between them. Firstly,
we observe that all three plots look fairly similar. This component has a maximum time in
use larger than 999.27 seconds which all three RUL prediction models point out as the largest
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(a) Survival tree (b) Gradient-boosting model

(c) Random survival forest

Figure 6.5: Partial dependence plots for the total weight for the survival tree, gradient-
boosting model and the random survival forest

negative impact on the RUL of this cart. In other words, this large time that a parcel was
on the component decreases the predicted remaining useful life of this component. Then, the
second most influential characteristic is the mean load for the gradient-boosting model and
the random survival forest, which is noted to have a positive effect on the RUL. The most
notable difference is in the scale of the x-axis, which is similar for the survival tree and random
survival forest but different for the gradient-boosting model. As the gradient-boosting model
starts model building from the median RUL value, the interaction between the input features
and the RUL might be smaller in magnitude.

Overall, the three models interpret the data slightly differently, which is shown by the dif-
ference in partial dependence plots and LIME visualisations. As noted, the survival tree
and random survival forest interpret the data similarly, whereas the gradient-boosting model
differs slightly. Although all three models are suitable for model interpretation using PDPs
and LIME, the survival tree and random survival forest seem more logical. All three models
can be interpreted globally and locally by using partial dependence plots and LIME, which
is essential to decide on maintenance actions and deploying the model.
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(a) Survival tree (b) Gradient-boosting model

(c) Random survival forest

Figure 6.6: LIME visualisation for the example cart for the survival tree, gradient-boosting
model and the random survival forest

6.6 Comparison survival tree, gradient-boosting model and
random survival forest

Based on the results per component, we can compare the three methods on their performance.
Figure 6.7 shows a comparison of the concordance index of the models per component. From
this figure, the first observation is that the concordance indexes are very close for the three
models for each component. The largest performance difference is 5.19%, where the random
survival forest outperforms the gradient-boosting model for the crossbelt by this amount.
The random survival forest for the crossbelt then achieves the best performance of all models
with a concordance index of 82.78%. The best performance for the gradient-boosting model
is 82.19% for the cart, whereas the survival tree performs best with a concordance index of
82.47% for the motor. For the MCB, motor and crossbelt, it holds that the gradient-boosting
model is outperformed by both the survival tree and the random survival forest. For the cart,
it holds that the random survival forest performs best, then the gradient-boosting model and
finally the 80.98% achieved by the survival tree is the worst.

In addition to the concordance index, we can also draw conclusions from the other perfor-
mance indicators (see Table 6.1 to 6.4). For every dataset (i.e. every component), all three
RUL prediction models have an extremely high RMSE and MAPE. In general, the gradient-
boosting model achieves the lowest RMSE, followed by the random survival forest and then
the survival tree. On the other hand, the survival tree generally outperforms the gradient-
boosting model and random survival forest regarding the MAPE and training time of the
RUL prediction methods. Compared to the high RMSE combined with the lower MAPE,
this suggests that the survival tree and gradient-boosting model make smaller percentage
errors. In other words, the survival tree and gradient-boosting model have a smaller relative
error, even though the absolute differences between the predicted and actual values might
be larger, as reflected by the high RMSE. Finally, the survival tree has the shortest training
time, followed by the gradient-boosting model. The random survival forest takes on average
91.52 minutes to train for the optimal configuration.

The final criteria for the RUL prediction model were explainability and interpretability. As
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Figure 6.7: Comparison of concordance index per component for the gradient-boosting
model and random survival forest

all three models are decision tree-based, the explainability is sufficient. However, as a sin-
gle survival tree can easily be visualised, the survival tree is easiest to explain and use for
communication purposes. Section 6.5 showed the model interpretability for all three RUL
prediction models. The survival tree, gradient-boosting model and random survival forest
can all be interpreted using partial dependence plots (PDPs) and local interpretable model-
agnostic explanations (LIME). Therefore, the models are equal in interpretability. However,
the global interpretations are different for the RUL prediction models. Mainly the survival
tree and random survival forest seem logical. Therefore, these two RUL prediction models
are favourable in terms of interpretability.

The high RMSE and MAPE for the three RUL prediction models in general can have several
causes. Firstly, the long-term uncertainty is too high as also described by the variance in
Table 3.2, causing larger errors over time. Therefore, the RMSE increases but the order of
failure (C-index) is still accurate. Moreover, the high values for the RMSE and MAPE could
be caused by the size of the dataset. Most likely, the number of different degradation paths
is too high compared to the number of observations per path.

Another difference between the three methods is the improvement pace of the error rate. As
noted, the random survival forest converges more rapidly than the gradient-boosting model.
Firstly, this is caused by the nature of the methodology as presented in Chapter 4. The
gradient-boosting model is subject to a learning rate to prevent overfitting. Logically, the
model will converge more rapidly if the learning rate is higher, but it also increases the risk
of overfitting. Moreover, the models differ in their sensitivity to the hyperparameters. The
survival tree and random survival forest are more sensitive to varying values for the minimum
number of samples per split.

Finally, the random survival forest poses another limitation, memory usage. As noted in
Chapter 6, the random survival forest with a minimum number of samples per split equal
to 10 was only partially trained for the MCB, motor and crossbelt due to memory issues.
Neither DPD’s server nor local computer programmes were able to deal with the memory
consumed by this configuration. However, this is not a significant issue as the model achieves
similar performance for a much lower number of trees.
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All in all, all three RUL prediction models perform well in terms of the concordance index but
are poor with regard to the root mean squared error and the mean absolute percentage errors.
Thus, the order of failure is straightforward to predict, while the timing has proven to be more
challenging due to the high variance. In general, the random survival forest performs better
in terms of the concordance index. The gradient-boosting model outperforms the random
survival forest and the survival tree in terms of RMSE. The survival tree outperforms the other
two models in terms of MAPE, training time and model explainability and interpretability.
Overall, the remaining useful life predictions are inaccurate, so the best-performing model
based on the concordance index is the survival tree for the MCB and motor and the random
survival forest for the cart and crossbelt.

44



7. Conclusion
This chapter discusses the conclusions, implications, limitations and suggestions for future
research following this study. Firstly, Section 7.1 discusses the main findings. Secondly,
Section 7.2 discusses the business and academic implications and recommendations. Finally,
Section 7.3 describes the limitations and suggestions for future research.

7.1 Research conclusion

This research aimed to develop a model to predict the remaining useful life of the critical
components of the sortation machine of the location in Oirschot of DPD Netherlands based
on its usage. This development was subject to several constraints. The model needed to be
suitable for noisy, aggregated tabular data from right-censored observations. In addition, the
model should be both interpretable and explainable. Therefore, we deployed three models for
comparison: a survival tree, a gradient-boosting model and a random survival forest. In terms
of concordance index performance, all three models delivered satisfactory results. Thus, the
survival tree, gradient-boosting model and random survival forest estimate the order of failure
accurately. This suggests that the usage data does influence the degradation, but the data is
currently insufficient to accurately predict the moment of failure. This follows from the high
values for the RMSE and MAPE which can be attributed to a variety of factors. For starters,
the long-term uncertainty is excessive due to the wide range of usable life. As a result, the
RMSE increases yet the order of failure (C-index) remains correct. Furthermore, the large
RMSE and MAPE values might be due to the size of the dataset. The number of various
deterioration routes is most likely too large in comparison to the number of observations per
path. Moreover, future degradation varies largely, increasing the difficulty in anticipating
the exact moment of failure. Thus, the models identify the clusters of operational profile
well, but within these clusters, the variance in remaining useful life is too high. Finally, both
local and global model interpretation techniques showed that the survival tree and random
survival forest show the most logical relation between input features and the remaining useful
life prediction. Therefore, we conclude that the survival tree, gradient-boosting models and
random survival forest are promising methods to predict the remaining useful life of the
critical components of the sorting machine of DPD Netherlands based on their usage, but
data quality improvements are required to ensure the applicability of these models.

7.2 Implications and recommendations

This section discusses the business and academic implications, as well as recommendations
to DPD Netherlands.

7.2.1 Academic implications

As noted, the main contribution of this research was to investigate the applicability of sur-
vival ensemble methods to complex machinery. The application of these methods has already
been widely proven to be accurate in the bioinformatics field. However, the application to
everyday asset management decision-making was lacking. This research contributed to this
gap by concluding that these methods are not suitable yet. As noted by Frisk et al. (2014);
Hothorn et al. (2006); Afrin et al. (2018) amongst others, the models perform well. How-
ever, these papers solely discuss the concordance index, whereas the prediction accuracy is
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hardly discussed. This research adds that the concordance index is indeed excellent, however,
the prediction accuracy is insufficient for deployment in practice when censoring occurs, and
the components have a long expected lifetime. Thus, we conclude that survival trees, ran-
dom survival forests and gradient-boosting models apply to right-censored tabular data on
machine components solely for predicting the sequence of failure and not yet for remaining
useful life prediction. Moreover, the underestimation and overestimation of these models were
investigated. From that, we conclude that when handling a large number of critical compo-
nents, favouring underestimation of the remaining useful life, the gradient-boosting model is
favourable. Finally, we note that when using noisy data with a large expected lifetime the
widely-noted benefits of ensemble methods are not apparent compared to a single survival
tree. However, when the data contain less variance, ensemble methods might become more
relevant.

7.2.2 Business implications and recommendations

As noted in the previous sections, the concordance index of the three RUL prediction models
is adequate. Therefore, the models accurately assess the risk of failure. Unfortunately, the
remaining useful life prediction is inaccurate. Further data has to be gathered until more
component failures have occurred during the coming years. Then, the models should be able
to detect trends in the data better for the remaining useful life prediction. Therefore, we
advise DPD to use the survival tree, which yields the best trade-off between the concordance
index and model explainability, for maintenance prioritisation. As the order of failure can
be accurately predicted, this research suggests a clear relation between component usage
and degradation. Therefore, maintenance prioritisation based on component usage instead
of a simple constant time interval policy is suggested. As noted by Arunraj & Maiti (2007),
the concept of risk-based maintenance was developed to inspect the component with high
risk more frequently. Therefore, the risk-based maintenance framework comprises two main
phases: risk assessment and maintenance planning based on risk (Arunraj & Maiti, 2007).
The first stage consists of assessing the risk of failure of the components, whereas the second
stage prioritizes the inspection based on this quantified risk so that the total risk can be
minimized using risk-based maintenance. Moreover, we advise reevaluating these models,
once data availability and data quality improves. Thus, as the usage data is promising for
maintenance prioritisation, we advise DPD to adjust their current strategy. Thus, DPD
should shift from a constant interval replacement policy to a risk-based inspection planning,
where the risk estimation is based on the survival tree. This RUL prediction method achieves
a comparable concordance index, but is much more explainable to maintenance engineers.

7.3 Limitations and future research

As noted by Li et al. (2016), RUL prediction causes high demands on data access and quality
as well as the capability to deal with these data. These demands also proved to be the
difficulty in this research. The data quality is insufficient to predict the remaining useful life
accurately. Therefore, additional research is needed on the prediction accuracy (in terms of
RMSE and MAPE, not concordance index) of survival trees, gradient-boosting models and
random survival forests when data contain a high amount of variation. Consequently, the
impact of data discretization techniques on variation in RUL prediction requires additional
research. Moreover, additional effort is needed from the industry to gather the right data
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and ensure that the data is of sufficient quality as a significant part of the data was missing
in this research. This prediction accuracy is expected to improve when more data becomes
available. However, the companies should be able to deal with this data which is also an
important area for research. Moreover, as this research proved that component reliability is
dependent on usage, a more practical research suggestion is to see how DPD can elongate the
useful life of components by optimizing their usage, especially since DPD’s usage is subject
to peak seasons. Moreover, a promising extension of this thesis would be to optimize the
maintenance planning based on the risk of failure predicted by the survival trees, subject to
the limited time available in the daily maintenance window, considering the locations of the
components. Finally, as noted this system is too complex to exclude system experts from the
feature selection process, although (Prytz et al., 2015) noted that this procedure is suboptimal.
Therefore, to increase practical relevance for complex machinery, other approaches should be
designed to include expert opinion and maximize prediction accuracy.

To conclude, this research proved that survival trees, random survival forests and gradient-
boosting models assess the risk of failure of a component noticeably well. However, the
prediction errors require more attention in academic literature before their implementation
in practice is in order. Moreover, we would like to stress the importance of data gathering
by companies in advance of considering remaining useful life predictions. Finally, usage data
proved promising for maintenance prioritisation of the critical components on the sorting
installation of DPD’s location in Oirschot.
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A. Results
This appendix presents a more elaborate presentation of the results of the testing dataset.
The table below shows the optimal number of trees, training time, concordance index, RMSE,
MAPE, and average overestimation and underestimation for the single survival tree, gradient-
boosting model, and random survival forest for a minimum number samples per split of 10,
20, 100 and 200. The best values for all the performance indicators are depicted in bold.

Survival tree Gradient-boosting Random survival forest

Minimum number
of samples per split

10 20 100 200 10 20 100 200 10 20 100 200

Cart

Optimal number of trees 1 1 1 1 750 750 750 750 725 525 575 750
Training time (sec) 147.66 138.64 144.80 137.61 636.28 690.92 641.17 650.75 2264.30 3036.19 1930.95 2494.32
C-index 80.98 80.33 75.32 72.71 82.10 82.19 81.81 80.82 82.35 81.05 75.16 72.03
RMSE 488.49 481.71 493.02 488.02 461.85 461.62 461.11 464.65 470.86 475.55 497.88 508.97
MAPE 444.44 459.51 580.65 572.33 445.37 442.63 447.11 454.85 504.98 549.54 625.80 661.51
Average overestimation 401.46 403.96 437.24 428.02 404.39 408.70 401.01 408.75 372.31 389.86 437.08 455.62
Average underestimation 194.48 196.98 226.42 251.26 224.33 215.27 228.50 230.01 235.63 233.76 262.27 271.05

MCB

Optimal number of trees 1 1 1 1 750 750 750 750 625 * 750 750 450
Training time (sec) 482.92 449.03 452.17 459.58 2749.24 2450.64 2675.62 2451.42 2749.24 6785.37 6635.90 4002.73
C-index 80.53 79.13 72.70 69.07 77.42 77.80 77.55 76.82 77.42 80.03 74.41 70.94
RMSE 482.18 484.67 481.16 480.45 397.73 401.50 402.23 405.92 397.73 474.79 484.47 488.13
MAPE 448.83 467.57 518.02 538.99 443.75 450.02 448.16 455.16 443.75 530.64 584.40 608.93
Average overestimation 399.69 409.36 427.39 440.58 355.67 357.46 363.74 363.59 355.67 404.20 439.59 451.20
Average underestimation 168.39 178.14 195.60 200.08 175.79 174.67 172.69 176.09 175.79 172.33 182.58 186.78

Motor

Optimal number of trees 1 1 1 1 750 750 750 750 600 ** 525 600 750
Training time (sec) 375.73 375.27 374.15 371.47 2950.08 2724.57 2501.80 2497.15 5521.34 4661.59 6796.64 6512.99
C-index 82.47 81.13 74.12 71.10 78.27 78.08 78.15 77.11 81.27 80.51 75.48 71.91
RMSE 478.32 483.73 498.68 478.04 402.57 407.43 403.54 406.47 472.51 484.81 493.39 496.01
MAPE 400.44 434.18 533.96 522.56 452.28 455.08 452.28 463.37 509.90 560.91 623.48 664.51
Average overestimation 395.31 410.10 447.13 431.94 360.08 365.70 360.38 363.15 391.34 415.70 477.99 458.73
Average underestimation 159.35 164.38 203.37 203.22 171.85 170.75 172.28 173.96 171.09 174.00 181.28 184.27

Crossbelt

Optimal number of trees 1 1 1 1 750 750 750 750 475*** 450 275 750
Training time (sec) 616.24 608.38 599.64 595.56 3064.49 3080.53 2997.93 2978.50 7392.92 5415.42 3312.46 10414.14
C-index 79.28 77.81 73.26 70.52 77.49 77.26 76.82 76.66 82.78 81.50 75.39 72.23
RMSE 497.70 498.57 494.38 491.38 417.30 420.63 420.62 425.19 494.12 495.20 501.53 497.23
MAPE 457.11 495.95 520.72 513.44 462.92 465.93 472.04 482.56 521.95 542.58 610.37 623.51
Average overestimation 410.80 417.12 435.93 435.05 373.35 375.11 378.26 379.64 414.39 425.36 455.94 460.10
Average underestimation 188.28 195.14 210.42 229.35 174.38 177.03 174.77 175.68 162.65 162.55 172.87 174.61

* This model was only trained until 625 trees due to memory constraints. However, as can
be seen in Figure 6.2b the performance hardly changes at that point.
** This model was only trained until 600 trees due to memory constraints. However, as can
be seen in Figure 6.3b the performance hardly changes at that point.
*** This model was only trained until 425 trees due to memory constraints. However, as can
be seen in Figure 6.4b the performance hardly changes at that point.
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