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Abstract

In this project, we analyze the network of bordering countries and territories of the world, which we
refer to as the worldgraph. We attempt to identify a random geometric graph model with properties
that match those of the worldgraph in expectation, focusing our attention on the number of edges,
the number of triangles, and the degree distribution.

In this thesis, we look into three families of graphs: the ε-neighborhood graph, the k-nearest-
neighbors graph, and neighborhood graph models. We describe these models and prove theoretical
results concerning their properties. Using stochastic simulation, we generate sample graphs of all
models, and we analyze the effect of certain parameters on the properties of the graphs.

We conclude that the worldgraph can be best described by the ε-neighborhood graph model in
terms of the number of edges, number of triangles, and average degree distribution. Alternatively,
the k-nearest-neighbors graph model with maximal edge length is a good visual model for the
worldgraph, as the triangulation pattern observed in the worldgraph is more evident here. We
discuss reasons why the neighborhood graph models we studied are less suitable as models for the
worldgraph, and we hypothesize a few improvements that can be made.

ii Using Random Graphs to Model the Network of Countries



Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 The worldgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Nodes on the sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 Modeling the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Uniform distribution on a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Uniform distribution on Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Graph models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1 Epsilon neighborhood graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 K-nearest neighbors graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Delaunay triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Relative neighborhood graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 Beta skeleton graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.6 Relations between graph models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1 Scaling of neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.1 Neighborhood graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.2 Other graph models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 Epsilon neighborhood graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.1 Degree distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.2 Number of edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2.3 Number of triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 Neighborhood graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3.1 Number of edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.2.1 Epsilon neighborhood graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2.2 K-nearest neighbors graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2.3 Generalized relative neighborhood graph . . . . . . . . . . . . . . . . . . . . 35
7.2.4 Beta skeleton graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Using Random Graphs to Model the Network of Countries iii



CONTENTS CONTENTS

8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.1 Epsilon neighborhood graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.2 K-nearest neighbors graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.2.1 2NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2.2 3NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.2.3 4NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.2.4 5NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2.5 6NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.3 Generalized relative neighborhood graph . . . . . . . . . . . . . . . . . . . . . . . . 50
A.4 Beta skeleton graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.1 Jacobian determinant of spherical to Cartesian mapping . . . . . . . . . . . . . . . 52
B.2 Area of a neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.3 Area of intersection of neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.4 Probability of closing a triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.5 Minimum distance of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

C List of countries and territories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iv Using Random Graphs to Model the Network of Countries



List of Figures

3.1 Worldgraph embedded on the world map. . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Degree distribution of the worldgraph. . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Binomial distribution fit to the degree distribution. . . . . . . . . . . . . . . . . . . 6

4.1 Error in distance due to spherical model. . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Relative error in distance due to spherical model. . . . . . . . . . . . . . . . . . . . 8
4.3 Correct uniform distribution on the left compared to the wrong distribution on the

right where θ (the inclination) is uniformly sampled on [0, π]. . . . . . . . . . . . . 9

5.1 The ε-neighborhood of vi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Sample εN graph, ε = 1500 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Sample εN graph, ε = 2000 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Sample kNN graph, k = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5 Sample kNN graph, k = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.6 Sample kNN graph, k = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.7 Sample kNN graph, k = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.8 Sample ε-4NN graph, ε = 1500 km. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.9 Sample ε-4NN graph, ε = 2000 km. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.10 Voronoi diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.11 Delaunay triangulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.12 Sample Delaunay triangulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.13 N (vi, vj) in RNG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.14 Sample MST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.15 Sample RNG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.16 Sample DT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.17 N (vi, vj) in λ-RNG, λ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.18 N (vi, vj) in λ-RNG, λ = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.19 Sample λ-RNG, λ = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.20 Sample λ-RNG, λ = 1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.21 N (vi, vj) in βS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.22 Sample βS graph, β = 1 (GG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.23 Sample βS graph, β = 2 (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.24 Diagram showing relations between random graph models. . . . . . . . . . . . . . . 19

6.1 Plot of p(ε), ε from 0 to πr⊕ ≈ 20 000 kilometers. . . . . . . . . . . . . . . . . . . . 21
6.2 Plot of q(ε, δ), ε from 0 to πr⊕/2 kilometers, δ from 0 to πr⊕ kilometers. . . . . . 22
6.3 Plot of p̃(ε), ε from 0 to πr⊕/2 ≈ 10 000 kilometers. . . . . . . . . . . . . . . . . . 23
6.4 Plot of ρ(n), n from 2 to 200 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.1 Average degree distribution of εN graph, ε = 1800 km. . . . . . . . . . . . . . . . . 31
7.2 Average degree distribution of εN graph, ε = 1900 km. . . . . . . . . . . . . . . . . 31
7.3 Optimal graph sample of εN graph, ε = 1800 km. . . . . . . . . . . . . . . . . . . . 31
7.4 Optimal graph sample of εN graph, ε = 1900 km. . . . . . . . . . . . . . . . . . . . 31

Using Random Graphs to Model the Network of Countries v



LIST OF FIGURES LIST OF FIGURES

7.5 Average degree distribution of ε-2NN graph, ε = 1700 km. . . . . . . . . . . . . . . 33
7.6 Average degree distribution of ε-3NN graph, ε = 1700 km. . . . . . . . . . . . . . . 33
7.7 Average degree distribution of ε-4NN graph, ε = 1900 km. . . . . . . . . . . . . . . 33
7.8 Average degree distribution of ε-4NN graph, ε = 2100 km. . . . . . . . . . . . . . . 33
7.9 Average degree distribution of ε-5NN graph, ε = 1800 km. . . . . . . . . . . . . . . 33
7.10 Average degree distribution of ε-5NN graph, ε = 2000 km. . . . . . . . . . . . . . . 33
7.11 Average degree distribution of ε-6NN graph, ε = 1800 km. . . . . . . . . . . . . . . 33
7.12 Average degree distribution of ε-6NN graph, ε = 1900 km. . . . . . . . . . . . . . . 33
7.13 Optimal graph sample of ε-2NN graph, ε = 1700 km. . . . . . . . . . . . . . . . . 34
7.14 Optimal graph sample of ε-3NN graph, ε = 1700 km. . . . . . . . . . . . . . . . . 34
7.15 Optimal graph sample of ε-4NN graph, ε = 1900 km. . . . . . . . . . . . . . . . . 34
7.16 Optimal graph sample of ε-4NN graph, ε = 2100 km. . . . . . . . . . . . . . . . . 34
7.17 Optimal graph sample of ε-5NN graph, ε = 1800 km. . . . . . . . . . . . . . . . . 35
7.18 Optimal graph sample of ε-5NN graph, ε = 2000 km. . . . . . . . . . . . . . . . . 35
7.19 Optimal graph sample of ε-6NN graph, ε = 1800 km. . . . . . . . . . . . . . . . . 35
7.20 Optimal graph sample of ε-6NN graph, ε = 1900 km. . . . . . . . . . . . . . . . . 35
7.21 Average degree distribution of λ-RNG graph, λ = 1.15. . . . . . . . . . . . . . . . . 36
7.22 Optimal graph sample of λ-RNG graph, λ = 1.15. . . . . . . . . . . . . . . . . . . . 36
7.23 Average degree distribution of βS graph, β = 1. . . . . . . . . . . . . . . . . . . . . 37
7.24 Optimal graph sample of βS graph, β = 1. . . . . . . . . . . . . . . . . . . . . . . . 37

8.1 Road network of the Netherlands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.2 Smoothened road network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi Using Random Graphs to Model the Network of Countries



List of Tables

2.1 Glossary of terms and abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Degree distribution of the worldgraph. . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Some properties of the worldgraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6.1 Relative neighborhood sizes of an edge with length δ km for various models. . . . . 24
6.2 Summary of εN graph theoretical results. . . . . . . . . . . . . . . . . . . . . . . . 25

7.1 Optimal simulation results of εN graph model, N = 10 000. . . . . . . . . . . . . . 30
7.2 Optimal simulation results of ε-kNN graph model, N = 10 000. . . . . . . . . . . . 32
7.3 Optimal simulation results of λ-RNG graph model, N = 10 000. . . . . . . . . . . . 35
7.4 Optimal simulation results of βS graph model, N = 10 000. . . . . . . . . . . . . . 37

A.1 Simulation results of εN graph model, N = 10 000. . . . . . . . . . . . . . . . . . . 44
A.2 Simulation results of ε-2NN graph model, N = 10 000. . . . . . . . . . . . . . . . . 45
A.3 Simulation results of ε-3NN graph model, N = 10 000. . . . . . . . . . . . . . . . . 46
A.4 Simulation results of ε-4NN graph model, N = 10 000. . . . . . . . . . . . . . . . . 47
A.5 Simulation results of ε-5NN graph model, N = 10 000. . . . . . . . . . . . . . . . . 48
A.6 Simulation results of ε-6NN graph model, N = 10 000. . . . . . . . . . . . . . . . . 49
A.7 Simulation results of λ-RNG graph model, N = 10 000. . . . . . . . . . . . . . . . . 50
A.8 Simulation results of βS graph model, N = 10 000. . . . . . . . . . . . . . . . . . . 51

C.1 List of countries and territories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Using Random Graphs to Model the Network of Countries vii





Chapter 1

Introduction

Consider the set V of all countries in the world and the set E of all links between a country
and its neighbors, that is the countries with a shared border. We identify the pair (V,E) with a
network of worldwide countries G which we call the worldgraph. Figure 3.1 in Chapter 3 shows
a representation of this network. A quick glance can reveal a lot of interesting facts about this
graph: Russia and China have many neighbors, Africa has a lot of triangles, and Europe has lots
of very small links. In this report, we attempt to approximate this particular graph with random
graphs, by using geometrical rules that tell us how to link nodes together. We can summarize the
problem we are trying to solve as follows:

Can we define a random graph model embedded on the surface of the Earth, that generates
random graphs with properties (e.g. degree distribution, number of edges, number of triangles)
matching those of the worldgraph in expectation?

Our strategy to answer this question is as follows. First, we analyze some relevant properties of
the worldgraph we want to recreate. Second, we define how we model the Earth, generate random
nodes on its surface, and compute distances between nodes. Third, we select a few random graph
models that we suspect to resemble the worldgraph. Finally, we generate a great number of
samples for each model and compare their behavior to that of the worldgraph. We complete
our experiments with a theoretical analysis of the models to validate our results and eventually
pinpoint the best model to approximate the worldgraph.

The remainder of this report is organized as follows. In Chapter 2 we provide some basic
definitions, along with a glossary defining some less common terms and notation used throughout
the report. In Chapter 3 we define the worldgraph. In particular, we specify the set of countries
and territories included as its nodes. We further list some basic properties of this graph. In
Chapter 4 we discuss some geometrical models for the Earth and provide reasons why we chose
the spherical model. We define the distance function on the sphere and explain our sampling
method.

Having covered all this groundwork, Chapter 5 allows us to introduce a variety of random graph
models, provided with concise descriptions and sample plots of each model. Specifically the class
of neighborhood graphs is introduced, along with some relationships between these graph models.
Chapter 6 is dedicated to proving some preliminary functions useful for theoretical calculations,
then used to show results on the ε-neighborhood graph model and on neighborhood graphs. In
Chapter 7 we present and analyze simulated results for all random graph models. Chapter 8
contains a list of potential improvements and extensions to this project, such as other random
graph models, node distributions, other real-life networks to recreate, and theoretical results left
to prove. Finally, in Chapter 9 we provide a conclusion, discussing which graph models best suit
our search for a model of the worldgraph, and why we chose them.
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Chapter 2

Notations

A graph (also network) is a pair G = (V,E), where V is a set of elements called vertices (also
nodes or points), and E ⊆ V × V is an unordered set of paired vertices called edges (also links
or connections). A simple graph is a graph where all edges are distinct, and no edge connects a
vertex to itself. A planar graph is a graph that can be drawn on the plane in such a way that
no edges cross. The degree of a vertex vi ∈ V is the number of edges it is part of. A triangle
is a triple of vertices that are pairwise connected. A subgraph of a graph G = (V,E) is a graph
G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. A graph is connected when there exists a path of
edges from any vertex to any other vertex in the graph. A connected component of a graph is a
connected subgraph that is not part of any larger connected subgraph. The complete graph Kn

is the graph on n vertices, where all vertices are pairwise connected. The complete bipartite graph
Km,n is the graph with two sets of vertices, one of size m and one of size n, where each vertex in
one set is connected to each vertex in the other set.

Term Definition

G = (V,E) Graph G composed of a set of vertices V and a set of edges E ⊆ V × V

Insular node Node with degree 0

∆ Number of triangles

r⊕ Arithmetic mean of Earth’s radius, approximately 6 371.009 km

S2⊕ Earth’s surface, modelled as a sphere of radius r⊕

dist(vi, vj) Distance in km between points vi and vj along Earth’s surface modelled as S2⊕
B⊕(v, ε) Set of points on S2⊕ within ε km from the point v

N (vi, vj) (5) Neighborhood of the edge (vi, vj)

εN (5.1) ε-neighborhood graph

kNN (5.2) k-nearest neighbors graph

ε-kNN (5.2) k-nearest neighbors graph, max. edge-length ε km

DT (5.3) Delaunay triangulation, dual of the Voronoi diagram

RNG (5.4) Relative neighborhood graph

MST (5.4) Minimal spanning tree

λ-RNG (5.4) Generalized relative neighborhood graph

βS (5.5) Beta skeleton graph

GG (5.5) Gabriel graph

dTV Total variation distance of two probability distributions

Table 2.1: Glossary of terms and abbreviations.
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Chapter 3

The worldgraph

In this chapter, we take a first look at the worldgraph. We start by precisely defining the set of
nodes, composed of countries and territories around the world. Then we look into some simple
properties of the graph, including its degree distribution and planarity.

Defining the worldgraph

The worldgraph is the graph WG = (VWG, EWG), composed of the set of vertices VWG corres-
ponding to a selection of countries and territories in the world (to be specified), and a set of edges
EWG consisting of all pairs of countries/territories who share a border. Every vertex in VWG is
coupled with a pair of coordinates, which correspond to the centroid (that is, the arithmetic mean
or the center of gravity) of the associated area of the world1. The set of edges EWG

2 contains
mostly land borders, though it does also connect a few countries separated by a relatively small
stretch of water, e.g. France and the United Kingdom. See Figure 3.1 for a world map showing
the embedding of the worldgraph.

Figure 3.1: Worldgraph embedded on the world map.

1github.com/gavinr/world-countries-centroids/blob/master/dist/countries.csv
2github.com/geodatasource/country-borders/blob/master/GEODATASOURCE-COUNTRY-BORDERS.CSV
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CHAPTER 3. THE WORLDGRAPH

Defining the set of countries and territories

It is important to have a clearly defined set of countries that is consistent throughout the research.
This set of worldwide countries is not exactly set in stone: a lot of territories are recognized as sov-
ereign, independent countries by some number of countries or institutions, and not recognized by
others (e.g. Kosovo and Northern Cyprus). It also seems wrong not to include certain autonomous
or dependent territories: Greenland is part of the Kingdom of Denmark and about 50 times as big
as ’Denmark proper’; French Guyana is a department of France and over 7 000 kilometers distant
from Metropolitan France.

Various online databases are loaded and converted into Python dictionary objects. These
databases are expected to cooperate in order to produce interesting graphs, but they are heavily
inconsistent. As an example, what one database calls ’Laos’, another one calls ’Lao People’s
Democratic Republic’. Luckily all databases include a two-letter country code for each country or
territory. The ISO 3166-1 alpha-23 standard is used for country codes, which assigns two-letter
codes to a total of 249 countries, (e.g. NL for the Netherlands). Though this standard does not
include it, we chose to also include Kosovo (code: XK) in this list, since it is recognized by a
good number of countries, and many databases include it anyway. This then gives us a total of
250 countries and territories. We refer to this set of countries and territories as VWG, the set
of vertices of the worldgraph. If any database contains entries about other territories, they will
simply be ignored. If any database lacks entries from this list, they will be added manually with
the help of other sources. See Table C.1 in the Appendix for a comprehensive list of all countries
and territories.

Planarity

It would be natural to expect that the worldgraph is a planar graph, but this is not the case.
More precisely, the worldgraph is very nearly a map graph, an undirected graph formed as the
intersection graph of finitely many simply connected, internally disjoint regions of the plane. Even
more precisely, it is very nearly a 3-map graph, which means that at most 3 regions can meet at
any point on the map. There are cases where a quadripoint border almost exists (two separate
tripoints exist about 150 meters apart), but they are not present in the worldgraph. A map graph
cannot contain (subdivisions of) the K3,3 graph due to the regions being simply connected, and a
3-map graph, in turn, cannot contain (subdivisions of) the K5 graph: hence the 3-map graph is a
planar graph due to Kuratowski’s theorem [3], stated below.

Theorem 3.1 (Kuratowski’s theorem) Let G be a graph. Then G is nonplanar if and only if
G contains a subgraph that is a subdivision of either K3,3 or K5.

A subdivision of a graph G is another graph constructed from G, where any edge can be
subdivided in a string of consecutive edges, separated by vertices. Now, the worldgraph does not
contain any K5 subgraphs (or subdivisions thereof), but it does contain one subdivision of a K3,3

graph. By Kuratowski it is therefore not a planar graph. The reason for containing this subdivision
is an exclave of Azerbaijan called the Nakhchivan Autonomous Republic that causes there to be
a border between Azerbaijan and Turkey, which in turn completes the K3,3 subgraph. Hence the
worldgraph does not qualify as a map graph, since Azerbaijan is not a simply connected region.
Barring this particular exclave the worldgraph is a map graph and thus also a planar graph. We
are therefore still interested in generating planar graphs, as they are meant to model 3-map graphs
and can ignore exclaves as a first approximation.

3www.iso.org/iso-3166-country-codes.html

4 Using Random Graphs to Model the Network of Countries



CHAPTER 3. THE WORLDGRAPH

Degree distribution

The worldgraph has many insular nodes (that is, nodes without connections to any other nodes)
and a large proportion of nodes with degrees between 1 and 5. For degrees higher than 5, the
number of nodes slowly tapers off, up to a pair of nodes of degrees 15 and 17. See Table 3.1 and
Figure 3.2 below for the precise degree distribution of the worldgraph.

Degree 0 1 2 3 4 5 6 7 8 9 10 15 17
Number 79 26 31 28 26 26 13 10 4 4 1 1 1

Table 3.1: Degree distribution of the worldgraph.

Figure 3.2: Degree distribution of the worldgraph.

From now on, when referring to the worldgraph, we do not include the 79 insular nodes that
are part of it anymore. This is because insular nodes are not particularly interesting for the
purpose of recreating the network of bordering countries and territories. These insular nodes are
generally small islands, except for Antarctica, New Zealand, Madagascar, and a few others. Also,
some countries technically surrounded by water are connected to nearby countries, e.g. Australia
to Papua New Guinea. Hence we feel that not much information is lost by deleting these nodes
from our set VWG, which now reduces to 171 nodes. The new degree distribution is shown as the
shaded part of the histogram in Figure 3.2.

The mean of the distribution is approximately 3.883, and the variance is approximately 6.092.
Purely from a visual perspective, it doesn’t seem too unreasonable to fit a binomial distribution
(with matching mean and variance) to the degree distribution. This gives the bell-curve shape
observed in Figure 3.3.
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Figure 3.3: Binomial distribution fit to the degree distribution.

Other properties

Table 3.2 below lists some general properties of the worldgraph. Of particular importance are
the number of edges (332) and the number of triangles (173), which together with the degree
distribution form the properties which we will try to optimize when evaluating our random graph
models.

Property Value Remark
nodes 250
edges 332

triangles 173
connected components 83

non-insular connected components 4 Americas, Afro-Eurasia, Saint Martin, Hispaniola
mean degree 2.656

maximum degree 17 China
insular nodes 79

mean edge length (km) 1 006.857
std edge length (km) 885.389

minimum edge length (km) 4.296 Saint Martin (FR) - Sint Maarten (NL)
maximum edge length (km) 4 743.131 Poland - Russia (via Kaliningrad exclave)

Table 3.2: Some properties of the worldgraph.

The two largest connected components are comprised of North and South America on one
hand, with a total of 24 countries and territories, and Africa, Europe, Asia, and part of Oceania
on the other hand, with a total of 143 countries and territories. Saint Martin and Hispaniola both
contain two nodes, and the rest are all islands.
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Chapter 4

Nodes on the sphere

In this chapter, we explain how we sample points on the Earth. In Section 4.1, we choose a
geometrical model for the Earth and define a distance function for pairs of nodes, with a brief
consideration of the error our simplified model produces. Then, in Sections 4.2 and 4.3, we
look at ways of generating uniformly distributed nodes on the Earth, respectively with spherical
coordinates and with the more commonly used (latitude, longitude) coordinates.

4.1 Modeling the Earth

There are three options for how to model the shape of the Earth:

- The simplest option is to model the Earth as a sphere. The sphere is centered at the Earth’s
center of mass, and the radius is stipulated by the International Union of Geodesy and
Geophysics (R1 in [6]) as approximately 6 371 008 meters. This value is defined by 2a+b

3 ,
where a and b are respectively the semi-major and semi-minor axes of the Earth. There
are concise equations and efficient computational methods for calculating the great-circle
distance between two points on the surface of a sphere.

- The next option is to model the Earth as a spheroid, which is an ellipsoid of revolution.
The spheroid is centered at the Earth’s center of mass, has a semi-major equatorial axis
of constant length b = 6356 752.314 245 meters, and a semi-minor polar axis of length
a = 6378 137 meters. Several computational methods for the geodesic distance between two
points are available, notably one by Karney [1] which improves on the more widely used
method by Vincenty [9].

- The most accurate option is to model the Earth as an irregular spheroid constructed from
the geoid. The geoid describes the combined effects of irregularities in elevation and density
of the Earth’s surface and the Earth’s rotation on the gravitational field. To obtain the
distances between any two points on the surface, there are methods that compute the geodesic
distance, then correct it by taking into account the topology of the Earth with the help of
observed data. Naturally, this method is very computationally costly and should be avoided
for repeated queries.

For this project, the choice of modeling the Earth as a perfect sphere works best. Though the
Python library GeoPy1 provides methods for both the great-circle distance and the geodesic dis-
tance, the former is notably more time-efficient. Computational results are derived via stochastic
simulation with a considerable number of runs to improve confidence intervals. To construct ran-
dom graphs from n nodes typically all pairwise distances need to be computed, so the method is

1Release 2.3.0, https://geopy.readthedocs.io/en/stable/
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run in O
(
n2
)
time. For these reasons, it is unfeasible to use the more accurate geodesic distance

method.
In terms of analytical derivations, it is much simpler to work with the spherical model of the

Earth: the rotational symmetry ensures the neighborhood of each node is identical regardless of
its position on the surface. Indeed, in this case, the area and shape of the neighborhood of an edge
are only given by the length of the edge and not by the position of its incident nodes. Furthermore,
there are formulas for computing the area of intersection between two neighborhoods on a sphere,
but not on a spheroid.

To understand the difference between the simplest model of the sphere and the most accurate
one of the irregular spheroid, we show in Figure 4.1 the difference between these two distances
compared with the distance between the two points, and in Figure 4.2 the corresponding relat-
ive error. As one can see, the relative error is higher for smaller distances, topping at roughly
0.5%, which remains very low and precise enough for this project. These figures were created by
generating a set of 1 000 uniform nodes, computing all pairwise distances for both models, and
computing the absolute and relative difference.

Figure 4.1: Error in distance due to spherical model.

Figure 4.2: Relative error in distance due to spherical model.

4.2 Uniform distribution on a sphere

Let S2⊕ be the 2-sphere, that is the set of points in 3-dimensional Euclidean space which are at a
fixed distance r⊕ > 0 from the origin. In order to uniformly sample points on S2⊕, we are looking
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for a constant probability density function f such that∫
S2⊕
f(Ω) dΩ = 1,

where dΩ is the volume element defined on all measurable subsets of S2⊕. The area of S2⊕ is equal
to 4πr2⊕, so for normality and uniform density we want to define

f(Ω) :=
1

4πr2⊕
.

We wish to transform from Cartesian coordinates to spherical coordinates. See Appendix B.1 for
details on the derivation of the Jacobian determinant below. By the Change of Variables formula,
we have

dΩ =

∣∣∣∣δ(x, y, z)δ(r, θ, ϕ)

∣∣∣∣ · drdθdϕ = r2 sin(θ) · drdθdϕ.

The term sin(θ) in the Jacobian determinant slightly skews the distribution so we cannot just
sample θ (the inclination) uniformly on [0, π]: many samples picked this way would accumulate
near the poles of the globe (see Figure 4.3 below). Note that it is however fine to sample ϕ (the
azimuth) uniformly on [0, 2π].

Correct — sideview Correct — topview Wrong — sideview Wrong — topview

Figure 4.3: Correct uniform distribution on the left compared to the wrong distribution on the
right where θ (the inclination) is uniformly sampled on [0, π].

To confirm that this definition of dΩ is correct we substitute in the previous equation and obtain
that ∫

S2⊕
f(Ω) dΩ =

(∫ 2π

0

∫ π

0

1

4πr2⊕
· r2⊕ sin(θ) dθ dϕ

)
=

∫ 2π

0

∫ π

0

sin(θ)

4π
dθ dϕ = 1.

Using the previous computations, we see that f̃ := sin(θ)
4π is a probability density function over

the space (θ, ϕ) ∈ [0, π] × [0, 2π). We can compute the marginal density functions of θ and ϕ by
integrating respectively over all values of ϕ and θ, as such

f̃inc(θ) =

∫ 2π

0

sin(θ)

4π
dϕ = 2π · sin(θ)

4π
=

sin(θ)

2
,

and

f̃az(ϕ) =

∫ π

0

sin(θ)

4π
dθ =

1

2π
.
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Now we compute the corresponding cumulative distribution functions:

F̃inc(θ) =

∫ θ

0

f̃inc(θ) dθ =

∫ θ

0

sin(θ)

2
dθ =

(
−cos(θ)

2

) ∣∣∣∣θ
0

=
1− cos(θ)

2
,

and

F̃az(ϕ) =

∫ ϕ

0

fŨ (ϕ) dϕ =

∫ ϕ

0

1

2π
dϕ =

(
1

2π

) ∣∣∣∣ϕ
0

=
ϕ

2π
.

Now that we have the CDFs, we can use Inverse Transform Sampling to generate samples of the
two marginal probability distributions above, and thus generate uniformly distributed samples on
the space S2⊕. Let u = F̃inc(θ), and v = F̃az(ϕ) be two independent uniform random variables on
[0, 1]. Both these functions are invertible, so solving for θ and ϕ gives

θ = F̃−1
inc (u) = cos−1(1− 2u),

and
ϕ = F̃−1

az (v) = 2πv.

In summary, a uniformly random point on S2⊕ has spherical coordinates (r⊕, cos
−1(1− 2U), 2πV ),

where U and V are two independently distributed uniform random variables on [0, 1].

4.3 Uniform distribution on Earth

If we are modeling the Earth as S2⊕, then we can define the following transformation in terms of
latitudes and longitudes: 

lat(θ) =
(
π
2 − θ

)
· 180◦

π ,

lon(ϕ) = (ϕ− π) · 180◦

π ,

r⊕ ≈ 6 371.009 km.

Latitudes take values in the interval [−90◦, 90◦], and longitudes in the interval [−180◦, 180◦). The
south pole has latitude −90◦, the equator has latitude 0◦, and the north pole has latitude 90◦.

It may be desirable to generate points within particular subsets of latitudes and/or longitudes.
For two measurable subsets A ⊆ [−90◦, 90◦], B ⊆ [−180◦, 180◦), we can easily generate points
uniformly at random on the space {x ∈ S2 : lat(x) ∈ A, lon(x) ∈ B} as follows.

Let Ã := F̃inc

(
lat−1(A)

)
⊆ [0, 1] and B̃ := F̃az

(
lon−1(B)

)
⊆ [0, 1) be the corresponding sets

in [0, 1] × [0, 1). Now a uniformly random point on the space {x ∈ S2 : lat(x) ∈ A, lon(x) ∈ B}
has spherical coordinates distributed as (r⊕, cos

−1(1− 2U), 2πV ), where U is uniform on Ã, V is
uniform on B̃, and they are independent of each other.

The interest of the previous sub-sampling can be multiple. One could for example use A =
[50◦, 54◦] and B = [3◦, 8◦] to sample points around the region of the Netherlands. Similarly, one
could use A = [−66◦, 66◦] and B = [−180◦, 180◦) to reproduce the fact that very few people live
within both Arctic circles.
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Chapter 5

Graph models

In this chapter, several random graph models are defined, described and some samples are shown.
The chapter ends with a short discussion on the relationships between these graph models, in
Section 5.6.

All graphs are built starting from a set of points V = {v1, . . . , vn} ⊂ S2⊕. It is worth noting
that this can be applied to any set of points on S2⊕, however all samples will be obtained by
uniformly placing n = 171 nodes on S2⊕. Each random graph model is characterized by a specific
procedure that defines which nodes are to be connected via edges. Contrary to what the name
’random graph model’ might suggest, this procedure is actually rather deterministic: given a fixed
set of points V and a fixed model, the resulting graph G = (V,E) is uniquely determined. The
randomness is only given by the distribution of the nodes on the globe.

We present a couple of simple random graph models, the ε-neighborhood graph in Section 5.1
and the k-nearest neighbors graph in Section 5.2. The former connects nodes if they are within a
certain distance of each other, and the latter connects nodes if one node is part of the k nearest
neighbors of the other node.

So-called neighborhood graphs form a large class of random graph models. These graph models
define a way to associate a ’neighborhood’ N (vi, vj) ⊆ S2⊕ for each distinct pair of nodes vi, vj ∈ V .
Such a neighborhood N (vi, vj) is typically a connected area situated around the nodes vi and vj ,
scaling in size with the distance between the nodes. If there are no nodes within this neighborhood
other than vi and vj , then the neighborhood graph model dictates that (vi, vj) is an edge of
the graph. For many known neighborhood graphs, there are alternative definitions in terms of
distances between nodes which are usually much easier to work with for simulations. Sections 5.3,
5.4, and 5.5 provide some examples of neighborhood graphs.

All random graph models in this chapter have one or more parameters that can be varied to
influence the procedure of creating edges and by extension influence the behavior of the sampled
graphs. The inclusion of such parameters allows for greater control of the properties of the resulting
graphs, making it easier to compare them with the worldgraph.
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5.1 Epsilon neighborhood graph

ε

vi vj

vk

Figure 5.1: The ε-neighborhood of vi.

The ε-neighborhood graph (εN) on a set of points V = {v1, . . . , vn} ⊂ S2⊕ is obtained by
connecting all distinct unordered pairs of nodes (vi, vj) if and only if their distance is less than ε
kilometers, for some ε > 0 of choice, as represented in Figure 5.1. See Figures 5.2 and 5.3 below
for some examples of εN graphs. The set of edges E is thus defined as

E := {(vi, vj) ∈ V × V : dist(vi, vj) < ε}.

Recall that we only consider simple graphs and thus never connect a node to itself, even though
dist(vi, vi) = 0 < ε. For small enough ε the graph is empty, and for large enough ε the graph is
complete. Moreover, given ε1 < ε2, the ε1NN graph is a subgraph of the ε2NN graph since any
edge within ε1 kilometers length is also within ε2 kilometers length.

Figure 5.2: Sample εN graph, ε = 1500 km. Figure 5.3: Sample εN graph, ε = 2000 km.

The εN graph is the simplest model for the worldgraph and is based on the assumption that
countries are connected if and only if their centroids are close enough.
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5.2 K-nearest neighbors graph

The k-nearest neighbors graph (kNN) on a set of points V = {v1, . . . , vn} ⊂ S2⊕ is obtained by
including (vi, vj) as an edge whenever vi is one of the k nearest neighbors of vj or vj is one of
the k nearest neighbors of vi, for some k ∈ N of choice. In the case of a tie we can use the
lexicographic ordering to identify the k neighbors, though this happens with zero probability for
uniformly distributed points V . See Figures 5.4, 5.5, 5.6, and 5.7 below for some examples of kNN
graphs with different values of k. The kNN graph is a simple graph as a node is not considered to
be its own neighbor. Moreover, given k1 < k2, the k1NN graph is a subgraph of the k2NN graph
since one of the k1 nearest neighbors of a node is also one of the k2 nearest neighbors.

Figure 5.4: Sample kNN graph, k = 1. Figure 5.5: Sample kNN graph, k = 2.

Figure 5.6: Sample kNN graph, k = 3. Figure 5.7: Sample kNN graph, k = 4.

The kNN graph is a reasonable choice as a model for the worldgraph, based on the assumption
that a country is more likely to border another country if there are few other countries closer to
it, and much less likely if that other country has many other countries closer to it. However, as
shown in Figures 5.4, 5.5, 5.6, and 5.7, it tends to create very long edges, something we want to
avoid. For this reason we define the next model, mixing the kNN graph with the ε-neighborhood
graph.
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Epsilon-k-nearest neighbors graph

The kNN graph can be filtered to only include edges up to a certain length. The ε-kNN graph on
a set of points V = {v1, . . . , vn} ⊂ S2⊕ is obtained by including (vi, vj) as an edge if vi and vj are
in the kNN graph and their distance is less than ε, for some ε > 0 of choice. See Figures 5.8 and
5.9 for some examples of this extension of the kNN graph model. For large enough ε the graph is
equivalent to the kNN graph, while for large enough k the graph is equivalent to the εN graph.
Given ε1 < ε2, the ε1-kNN graph is a subgraph of the ε2-kNN graph, and similarly, given k1 < k2,
the ε-k1NN graph is a subgraph of the ε-k2NN graph.

Figure 5.8: Sample ε-4NN graph, ε = 1500 km. Figure 5.9: Sample ε-4NN graph, ε = 2000 km.

We will consider ε-kNN as a family of graphs indexed by k ∈ {1, 2, . . . }. The adaptation of
the kNN graphs to include a varying parameter ε allows for greater control of the properties of
the resulting graphs.
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5.3 Delaunay triangulation

vi vj

vk

vl

Figure 5.10: Voronoi diagram.

vi vj

vk

vl

Figure 5.11: Delaunay triangulation.

The Voronoi diagram (shown in Figure 5.10) is a partition of the surface S2⊕ into regions (called
Voronoi cells), such that each region contains exactly one node vi, together with every point that
is closer to vi than to any other node in V . The Delaunay triangulation (shortened to DT and
shown in Figure 5.11) is the dual of the Voronoi diagram: nodes are connected via an edge if
their respective Voronoi cells share an edge. One can choose to model the nodes in V as country
centroids and the Voronoi cells as the countries themselves; then the DT is a natural way to model
the graph of bordering countries. There are a few other ways to define this graph. For instance,
a triple of nodes (vi, vj , vk) forms a triangle of the DT if there are no other nodes within the
circle passing through this triple, as can be seen in Figure 5.11). Alternatively, a pair of nodes
(vi, vj) forms an edge of the DT if there exists a circle of any size passing through both nodes that
contains no other nodes.

Figure 5.12: Sample Delaunay triangulation.

The Delaunay triangulation is not a good model for the worldgraph as it is composed solely of
triangles and all nodes are of degree at least 3, as is evident in Figure 5.12; in reality, the world
landmass is not as connected and contains many countries bordering strictly less than three others.
The DT works better in the absence of oceans — accurate results can be achieved by restricting
nodes to the world landmass with edges that cross relatively little ocean surface.
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5.4 Relative neighborhood graph

δ

δ

δ

vi vj

Figure 5.13: N (vi, vj) in RNG.

The relative neighborhood graph (RNG) on a set of points V = {v1, . . . , vn} ⊂ S2⊕ is a type of
neighborhood graph. Given a pair of nodes (vi, vj) at distance δ, define the neighborhood N (vi, vj)
as the intersection of two balls centered at vi and vj with radius δ, like in Figure 5.13. If N (vi, vj)
contains no other nodes vk ∈ V \ {vi, vj}, (vi, vj) is included as an edge of the RNG. Equivalently,
the RNG is obtained by including (vi, vj) as an edge when

dist(vi, vj) ≤ max (dist(vi, vk),dist(vj , vk)) for all vk ∈ V \ {vi, vj}.

The RNG was defined in 1980 by Toussaint [8], who proved it is a supergraph of theminimum span-
ning tree (Theorem 1) and a subgraph of the Delaunay triangulation (Theorem 2). Figures 5.14,
5.15, and 5.16 show samples of the MST, RNG, and DT from the same distribution of nodes, and
highlight this relationship. Given a set of points V ⊂ S2⊕, the minimum spanning tree (MST)
is the graph that minimizes the total length of its edges while maintaining connectedness (using
lexicographic ordering as a tiebreaker). The MST contains no triangles since any edge can be
removed while remaining connected, and hence it is not appropriate for modeling the worldgraph.

Figure 5.14: Sample MST. Figure 5.15: Sample RNG. Figure 5.16: Sample DT.

The RNG is a suitable intermediate between the MST and the DT in terms of modeling
the worldgraph. The same paper by Toussaint [8] discusses its ability to extract a ’perceptually
meaningful’ structure from the set of points V . It is suggested that the RNG is a powerful model
of low-level visual processes involved in the perception of dot patterns.
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Generalized relative neighborhood graph

δ

2δ

2δ

vi vj

Figure 5.17: N (vi, vj) in λ-RNG, λ = 0.5.

δ

2
3δ

2
3δ

vi vj

Figure 5.18: N (vi, vj) in λ-RNG, λ = 1.5.

The RNG is uniquely defined given a set of points V . It can be adapted to include a parameter
λ to allow for more control of its properties. We define the λ-RNG as a generalized relative
neighborhood graph, where the neighborhoodN (vi, vj) is now the intersection of two balls centered
at vi and vj with radius δ/λ, as shown in Figures 5.17 and 5.18. If N (vi, vj) contains no other
nodes vk ∈ V \ {vi, vj}, the edge (vi, vj) is part of the λ-RNG. Equivalently, the λ-RNG contains
all edges (vi, vj) such that

dist(vi, vj) ≤ λ ·max[dist(vi, vk),dist(vj , vk)] for all vk ∈ V \ {vi, vj}.

Figures 5.19 and 5.20 below show some samples of the λ-RNG. For λ = 1 this is the regular RNG.
For λ ≥ 2, the neighborhood N of any pair of nodes is an empty set, hence trivially containing no
other nodes, which results in it being a complete graph. Given λ1 > λ2, the λ1-RNG is a subgraph
of the λ2-RNG.

Figure 5.19: Sample λ-RNG, λ = 0.8. Figure 5.20: Sample λ-RNG, λ = 1.2.

The adaptation of the RNG to include a varying parameter λ allows for greater control of the
properties of the resulting graphs.
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5.5 Beta skeleton graph

δ

1
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β = 1 (GG)
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β = 1.5
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vi vj

β = 2 (RNG)

Figure 5.21: N (vi, vj) in βS.

The Beta skeleton graph (βS) on a set of points V = {v1, . . . , vn} ⊂ S2⊕ is a class of neighbor-
hood graphs. Though different variants exist, we solely focus on the ’lune-based’ version. Given
a pair of nodes (vi, vj) at distance δ, we define the neighborhood N (vi, vj) as the intersection of
two balls, as follows.

N (vi, vj) := B⊕

((
1− β

2

)
· vi +

β

2
· vj ,

β

2
δ

)
∩ B⊕

((
1− β

2

)
· vj +

β

2
· vi,

β

2
δ

)
.

The parameter β can take values in the interval [1, 2]. For β = 2 the Beta skeleton graph is
equivalent to the RNG, as shown in Figure 5.21. The graph for β = 1 is commonly referred to
as the Gabriel graph (GG), where the two balls coincide which makes N a ball centered at the
midpoint of vi and vj that passes through both points. A sample of the Gabriel graph is shown
in Figure 5.23. As β increases from 1 to 2, the centers of the balls linearly move towards the
endpoints of the edge (see Figure 5.21).

Figure 5.22: Sample βS graph, β = 1 (GG) Figure 5.23: Sample βS graph, β = 2 (RNG)

The Beta skeleton graph was defined in 1985 by Kirkpatrick and Radke [2]. It is created
with the assumption that all nodes of some empirical network are equally significant, and hence
neighborliness is the dominant factor determining connections. More information on this notion
of neighborliness is given in [2, Section 3.2]. By comparing the connections of the βS graph and
those of the real network, it is possible to focus attention on parts of the network where forces
other than neighborliness are at work. The paper shows success in this methodology in artificially
constructed networks and a few empirical networks, both planar road networks and non-planar
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airline networks. When applied to model the worldgraph and compared to the real network of
countries, it might give interesting insights into how influential cultural/administrative/topological
factors are in determining borders, compared to simply neighborliness.

5.6 Relations between graph models

ε-1NN

λ-RNG,
λ ≤ 0.5

1NN MST RNG GG DT

βS,
β = 2

βS,
β = 1

kNN

λ-RNG,
λ > 1

ε-kNN

εN

ε

k

β

λ

λ

k

ε

Figure 5.24: Diagram showing relations between random graph models.

See Figure 5.24 above for a quick overview of how the random graph models relate to each
other (given a common set of points V ⊂ S2⊕). An arrow A → B indicates that A is a subgraph

of B. A double arrow A ↔ B indicates that A and B are equivalent graphs. An arrow A
π−→ B

indicates that by continuously varying the parameter π, common to both graphs A and B, the
sample graphs will also continuously vary from graph A to graph B.

Given a set of nodes V uniformly distributed on the surface S2⊕, all these models uniquely
construct a graph — all distances of pairs of nodes are a.s. distinct so there is no ambiguity in
the construction. Many of these relations are easily verified by considering the neighborhoods
of both models: say graph A defines a neighborhood NA for each edge, and graph B defines a
neighborhood NB for each edge. If NA ⊇ NB for each edge, then A is a subgraph of B. The
remaining relations are shown here.

Proof that 1NN ⊆ MST: Let V = {v1, . . . , vn} be a set of nodes uniformly distributed on S2⊕.
Suppose there is an edge e = (vi, vj) in 1NN that is not in MST. Either vi is the nearest neighbor
of vj, or vice versa. Suppose w.l.o.g. that vi is the nearest neighbor of vj. Since MST is a connec-
ted graph, vj must connect to another node vk ̸= vi. But we know that dist(vj , vi) < dist(vj , vk).
Hence exchanging the edge (vj , vk) for the edge (vj , vi) in the MST gives a strictly smaller spanning
tree, contradicting the minimality of MST.

Proof that MST ⊆ RNG: Let V = {v1, . . . , vn} be a set of nodes uniformly distributed on
S2⊕. Suppose there is an edge e = (vi, vj) in MST that is not in RNG. Deletion of e from MST
yields two subtrees, Ti containing vi and Tj containing vj. Each node in V is either in Ti or Tj.

Since e is not in RNG, there must be another node vk ∈ B⊕(vi, δ) ∩ B⊕(vj , δ), where δ =
dist(vi, vj). If vk is part of Ti, then Ti ∪ Tj ∪ {(vk, vj)} is a strictly smaller spanning tree than
MST, since dist(vk, vj) < dist(vi, vj) = δ. The same argument holds if vk is part of Tj. This
contradicts the minimality of MST.
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Proof that GG ⊆ DT: Let V = {v1, . . . , vn} be a set of nodes uniformly distributed on S2⊕.
Consider an edge e = (vi, vj) of GG. That means that there is no other node vk inside the ball
B⊕(m, δ/2), where m is the midpoint of e, and δ = dist(vi, vj). The boundary of this ball passes
through both vi and vj. By definition of how DT is constructed, this edge e must therefore also be
part of DT.

A clear picture of these relationships is useful when optimizing computational methods for creating
sample graphs. For example, when constructing the RNG from a set of points V = {v1, . . . , vn},
one can naively choose to define the neighborhood N for each pair of nodes (O

(
n2
)
operations)

and verify they are empty. Alternatively, given that RNG ⊆ GG ⊆ DT, one can more efficiently
create the DT first (O (n log n) operations) and then filter edges to arrive at the RNG (DT has
O (n) edges). Another advantage is that it can allow one to easily extrapolate the theoretical
results of one graph model to a related one.

Given that the DT is a triangulation, all its random graph samples are planar embeddings
on the surface S2⊕. As is evident from Figure 5.24, given a common set of points V ⊂ S2⊕, most
random graph models generate subgraphs of the DT. Hence they are also planar graphs. The
only exceptions are the εN graph, the kNN or ε-kNN graphs for k ≥ 2, and the λ-RNG graph for
λ > 1.
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Chapter 6

Theoretical results

For the sake of legibility and conciseness, it is useful to define a few functions that are often used in
deriving other results. The results are presented in this introductory section, and the derivations
can be found in Appendices B.2, B.3, B.4, and B.5.

In Section 6.1 we discuss how the considered random graph models behave when varying the
number of nodes |V | = n, in particular for large n. We wish for consistent local behavior in the
graph samples regardless of the size of n: the neighborhood graph models scale naturally with n,
while the other graph models must have their parameters manually adjusted to retain consistency.
The remainder of this chapter is dedicated to a variety of theoretical results of properties of the
random graph models, particularly the εN graph in Section 6.2.

Area of a neighborhood

Given a point x ∈ S2⊕ and a radius ε > 0, we define the ε-neighborhood of x as the set of points on
S2⊕ which are within a great-circle distance of ε kilometers from x. We denote this neighborhood
by B⊕(x, ε). The area of the neighborhood is

|B⊕(x, ε)| = 2πr2⊕

(
1− cos

(
ε

r⊕

))
.

Figure 6.1: Plot of p(ε), ε from 0 to πr⊕ ≈ 20 000 kilometers.

See Appendix B.2 for the full derivation. Henceforth we define the function p : R → R as the
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proportion of the globe covered by an ε-neighborhood, as shown in Figure 6.1 above.

p(ε) :=
1

2

(
1− cos

(
ε

r⊕

))
.

Area of intersection of neighborhoods

Let ε > 0 and u, v be two distinct points on S2⊕. Consider their two neighborhoods B⊕(u, ε)
and B⊕(v, ε) and denote by δ the great-circle distance between u and v. We use the following
definitions for computing the area of the intersection.

θ :=
ε

r⊕
, θv :=

δ

r⊕
,

θmin := tan−1

(
1

sin(θv)
− 1

tan(θv)

)
,

Given these definitions, the area of the intersection is

|B⊕(u, ε) ∩ B⊕(v, ε)| = 2πr2⊕ ·
∫ θ

θmin

sin(ϕ) · I

(
1−

(
tan(θmin)

tan(ϕ)

)2

,
1

2
,
1

2

)
dϕ,

where I(z, a, b) = Iz(a, b) is the regularized incomplete beta function. See Appendix B.3 for the
full derivation. The formula is accurate on the condition that θ ∈ [θv/2, π/2), which entails that
the intersection of neighborhoods is not empty and that both neighborhoods are strictly smaller
than half the globe (roughly speaking, ε must be smaller than 10 000 kilometers).

Figure 6.2: Plot of q(ε, δ), ε from 0 to πr⊕/2 kilometers, δ from 0 to πr⊕ kilometers.

Henceforth we define the function q : R×R → R as the proportion of the globe covered by the
intersection of neighborhoods, as shown in Figure 6.2 above. Keeping the same definitions for θ,
θv, and θmin as above,

q(ε, δ) :=
1

2
·
∫ θ

θmin

sin(ϕ) · I

(
1−

(
tan(θmin)

tan(ϕ)

)2

,
1

2
,
1

2

)
dϕ.

Probability of closing a triangle

Given a neighborhood B⊕(u, ε) for some u ∈ S2⊕ with positive radius ε > 0, and two other points
v and w that are uniformly distributed in the neighborhood B⊕(u, ε), the probability that v and
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w are also in each others’ respective ε-neighborhoods is

1

(1− cos(ε))2
·
∫ ε

0

sin(θ)

∫ ε

θmin(θ)

sin(ψ) · I

(
1−

(
tan(θmin(θ))

tan(ψ)

)2

,
1

2
,
1

2

)
dψ dθ,

where I(z, a, b) = Iz(a, b) is the regularized incomplete beta function, and θ, θv, θmin are defined
as in the previous section. See Appendix B.4 for the full derivation. We denote this probability
as the function p̃(ε) : R → R shown in Figure 6.3.

Figure 6.3: Plot of p̃(ε), ε from 0 to πr⊕/2 ≈ 10 000 kilometers.

Minimum distance of nodes

Given a set of points V = {v1, . . . , vn} ⊂ S2⊕ for some n ≥ 2, the expectation of the great-circle
distance in kilometers from an arbitrary node vi to its nearest neighbor is

ρ =
πr⊕
4n−1

(
2n− 2

n− 1

)
.

See Appendix B.5 for the full derivation, and Figure 6.4 below for its plot. As n→ ∞, ρ converges
to zero at a rate of order n−1/2.

Figure 6.4: Plot of ρ(n), n from 2 to 200 nodes.
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6.1 Scaling of neighborhoods

6.1.1 Neighborhood graphs

The neighborhood graph models define a precise neighborhood N (vi, vj) for each pair of nodes vi
and vj in V . Though the position of the neighborhood is determined by the position of these nodes,
the shape and size of the neighborhood are solely determined by the great-circle distance dist(vi, vj)
due to the rotational symmetry of S2⊕. We denote by Nδ the relative size of a neighborhood of a
pair of nodes at a distance of δ kilometers. By relative size we mean the proportion of the globe
covered by the neighborhood, which can be stated in terms of the functions p and q defined at
the start of this Chapter 6. Table 6.1 below lists the relative sizes of the neighborhoods of all
neighborhood graph models.

Neighborhood graph model Relative size Nδ Integral bounds I

RNG q(δ, δ) [0, πr⊕/2]

λ-RNG q
(
δ
λ , δ
)

[0, λπr⊕/2]

GG p
(
δ
2

)
[0, πr⊕]

βS q
(

βδ
2 , (β − 1)δ

)
[0, πr⊕/β]

εN 0 [0, ε]

Table 6.1: Relative neighborhood sizes of an edge with length δ km for various models.

The column Integral bounds refers to the bounds of the integral in (∗) in Section 6.3.1 below.
This is the interval of distances δ that we condition on to determine the expected number of edges
for a given neighborhood graph model. The εN graph with fixed ε, though not a real neighborhood
graph model, can also be expressed in these terms by integrating over distances up to ε kilometers.
The relative size Nδ is zero in this case because the interaction with other nodes has no influence
on determining edges.

6.1.2 Other graph models

As the number of nodes n increases, the nodes become more densely packed on S2⊕. This can be
seen by considering ρ(n), the expected minimum distance of a node’s nearest neighbor, defined
before. This minimum distance decreases at a rate of order n−1/2. It is important to adjust the
random graph models according to n to make sure the local behavior remains somewhat consistent.
Take for example an εN graph with fixed ε, and let n grow to infinity: any node will asymptotically
connect to linearly many other nodes.

All the neighborhood graphs and the kNN graph take care of this naturally. Indeed, the
edges tend to have small localized neighborhoods, since large edges are bound to have other nodes
situated in their neighborhoods. Similarly, the kNN graph only creates localized edges, since the
distance of a node to any k nearest neighbors scales along with ρ(n) at a rate of order n−1/2.

The εN and the ε-kNN graphs must be manually adjusted according to n to retain consistent
local behavior. Hence we must find an appropriate function ε(n) to scale the maximal edge length
down as n grows to infinity. If ε(n) converges to 0 too quickly, the resulting εN and ε-kNN graphs
are empty graphs for large enough n. Conversely, if ε(n) converges to 0 too slowly, the resulting
εN graph has node degrees growing to infinity, and the ε-kNN converges to the regular kNN graph.
A good middle-ground is to scale ε(n) linearly in ρ(n):

ε(n) := c · ρ(n) = c · πr⊕
4n−1

(
2n− 2

n− 1

)
,
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for some constant c > 0 of choice. The presence of a binomial coefficient can be computationally
problematic for large n (Mathematica gives false results for n larger than about 500). However,
there is a handy approximation derived from Stirling’s formula which shows that

ε(n) ≈ c ·
√
πr⊕√
n
.

6.2 Epsilon neighborhood graph

In many aspects, the εN graph model is the simplest one. This holds especially true in terms
of theoretical analysis of its properties. Whereas all other random graph models (kNN and all
neighborhood graphs) must take the positioning of other nodes into account when generating edges
between two nodes, edges in the εN graphs are selected solely based on their length.

In this section, we consider a set of points V = {v1, . . . , vn} of n nodes uniformly distributed
on the surface S2⊕. Given a parameter ε > 0, we construct the εN graph on V and refer to it as
G = (V,E), where E is the set of edges. We then prove some general results of the properties of
this graph, such as the number of edges, the number of triangles, and the degree distribution. See
Table 6.2 below for a quick summary of the obtained results.

Property Value

Distribution of node’s degree Bin(n− 1, p(ε))

Expected number of edges
(
n
2

)
· p(ε)

Expected number of triangles
(
n
3

)
· p̃(ε)p2(ε)

Table 6.2: Summary of εN graph theoretical results.

6.2.1 Degree distribution

Consider an arbitrary node vi ∈ V . The ε-neighborhood of node vi is B⊕(vi, ε), and the probability
that a node uniformly distributed on S2⊕ is within this neighborhood is equal to p(ε). The n − 1
nodes in V \ {vi} are i.i.d. uniformly distributed, and hence the probability distribution of the
degree of vi is the sum of n− 1 independent Bernoulli variables with probability p(ε):

deg(vi) ∼ Bin(n− 1, p(ε)).

The same holds for the degree of every node in V . Though the degrees of the n nodes are identically
distributed, they are not independent. One can easily imagine a situation where one node has an
extremely high degree which affects the probability distribution of the degree of the other nodes.
The degrees of nodes are also not pairwise uncorrelated. Consider for example a simple case where
n = 3, and let X,Y, Z be the degrees of the three nodes:

E[X] · E[Y ] = 4p2(ε),

whereas, since it is possible that X = Y = 1, we have

E[XY ] =

4∑
k=0

k · P(XY = k) >

4∑
k=2

k · P(XY = k)
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and moreover,

4∑
k=2

k · P(XY = k) = 2 · P(X = 1, Y = 2)

+ 2 · P(X = 2, Y = 1)

+ 4 · P(X = 2, Y = 2)

= 4 · P(X = 2, Y = 1)

+ 4 · P(X = 2, Y = 2)

= 4 · P(X = 2),

where the last equality follows from the fact that X = 2 implies Y ≥ 1. This eventually leads to

E[XY ] > 4 · P(X = 2) = 4 · p2(ε) = E[X] · E[Y ].

6.2.2 Number of edges

We wish to know the expectation of the number of edges |E|. Express |E| as the sum of indicator
functions over all distinct pairs of nodes, and take expectations on both sides to obtain

|E| =
∑

vi ̸=vj∈V

1{(vi, vj) ∈ E},

and
E[|E|] =

∑
vi ̸=vj∈V

P((vi, vj) ∈ E).

Due to the uniform distribution of nodes, this probability is equal for any pair of nodes, hence we
can simplify the sum to

E[|E|] =
(
n

2

)
P((u, v) ∈ E),

where u and v are now arbitrary nodes uniformly distributed on S2⊕. To compute the probability
we must condition on the distance dist(u, v) = δ as follows.

E[|E|] =
(
n

2

)∫ πr⊕

0

P((u, v) ∈ E |dist(u, v) = δ) · fdist(δ) dδ (∗)

where fdist(δ) =
sin(δ/r⊕)

2r⊕
is the p.d.f. of the distance between two uniformly distributed nodes on

S2⊕. The conditional probability can now be simplified to the indicator function.

E[|E|] =
(
n

2

)∫ πr⊕

0

1{δ < ε} · fdist(δ) dδ

=

(
n

2

)∫ ε

0

fdist(δ) dδ

=

(
n

2

)
· Fdist(ε)

=

(
n

2

)
· p(ε).

The Handshaking lemma allows us to verify that, for arbitrary vi ∈ V ,

E[deg(vi)] =
2

n
· E[|E|] = 2

n

(
n

2

)
p(ε) = (n− 1)p(ε);

which confirms results from Section 6.2.1.
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6.2.3 Number of triangles

We denote by ∆ the total number of triangles in G, and we denote by ∆(vi) the number of
triangles that node vi ∈ V is a part of. Node vi is part of a triangle when two of its neighbors
are themselves connected, which means that they are also within ε kilometers of each other. The
probability that two vertices, uniformly distributed in the ε-neighborhood of vi, are within each
others’ ε-neighborhoods is denoted by p̃(ε). Hence the expected number of triangles that node vi
is a part of is

E[∆(vi)] = E

E
 ∑
u,v∈B⊕(vi,ε)

1{(u, v) ∈ E}
∣∣∣∣ deg(vi)


= E

[(
deg(vi)

2

)
· p̃(ε)

]
=

E[deg(vi) · (deg(vi)− 1)] · p̃(ε)
2

.

Since node vi was taken arbitrarily, we can compute the expectation of the total number of triangles
by summing over all nodes, with an added factor of 1/3 because each triangle is counted three
times.

E[∆] =
1

3
·
∑
v∈V

E [∆(v)]

=
n

3
· E[∆(v)]

=
np̃ε
6

·
(
E[deg(v)2]− E[deg(v)]

)
=
np̃(ε)

6
·
(
(n− 1)p(ε)(1− p(ε)) + (n− 1)2p2(ε)− (n− 1)p(ε)

)
=

(
n

3

)
· p̃(ε)p2(ε).

6.3 Neighborhood graphs

In this section, we provide some theoretical results that hold for general neighborhood graphs.
We consider a set of points V = {v1, . . . , vn} of n nodes uniformly distributed on the surface S2⊕.
Given a neighborhood model of choice that defines a neighborhood N (vi, vj) for every distinct
pair of nodes vi, vj ∈ V , we construct the neighborhood graph on V and refer to it as G = (V,E).
Then we prove some general results regarding the properties of this graph.

6.3.1 Number of edges

We wish to know the expectation of the number of edges |E|. We can start similarly to what we
did for the εN graph in Section 6.2.2. Specifically, we start from the expression labeled by (∗).

E[|E|] =
(
n

2

)∫ πr⊕

0

P((u, v) ∈ E |dist(u, v) = δ) · fdist(δ) dδ.

The size of the neighborhood N (u, v) is uniquely determined by the distance dist(u, v) = δ. We
can refer back to Table 6.1 for the relative sizes of the neighborhoods Nδ, that is the proportion
of the sphere S2⊕ covered by the neighborhood.

Given that the distance between nodes u and v is δ, they form a neighborhood of size Nδ.
Since there are n− 2 other nodes which are uniformly distributed on S2⊕, we have that

P((u, v) ∈ E |dist(u, v) = δ) = (1−Nδ)
n−2

.
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When substituting this into the integral, it is important to realize that some neighborhoods are
measured with the function q, which is only accurate for neighborhoods smaller than half the
globe. Hence the integral bounds must be restricted to those stated in Table 6.1. This means we
are only counting edges with lengths below a certain threshold. Note however that is threshold is
at least πr⊕/2 and that the average nearest neighbor is approximately at distance

√
πr⊕/

√
n, so

even n ≥ 2 already provides us with a node at a distance within this threshold. We denote the
integral bounds given for the particular neighborhood graph model by I.

E[|E|] ≈
(
n

2

)∫
I
(1−Nδ)

n−2 · sin(δ/r⊕)
2r⊕

dδ.

Due to the Handshaking lemma, it immediately follows that the average degree of a node vi ∈ V
is

E[deg(vi)] ≈ (n− 1)

∫
I
(1−Nδ)

n−2 · sin(δ/r⊕)
2r⊕

dδ.
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Chapter 7

Simulation results

Stochastic simulation is a powerful tool that has the potential to generate a great variety of
accurate results. Though it requires a substantial number of trials (N = 10 000 in our case),
through optimization and the use of clever libraries the computational times can be significantly
reduced. For this report, we use Python and the networkx 1 library. See the public repository
geographic-graphs2 on GitHub for more info about the Python code used for the simulations.

In this chapter, we display and discuss the simulation results. In Section 7.1 we discuss some
techniques applied during simulation and define some useful metrics for evaluating the results. In
Section 7.2 the optimal results are displayed and discussed for every random graph model.

7.1 Methodology

The sampling of uniformly distributed nodes on the sphere is done as described in Section 4.3. For
each trial run, a set of n points is generated uniformly on the set [0, 1]2. Then the transformations
denoted by F̃−1

inc and F̃−1
az are applied to the coordinates of these points. The result is a set V of

(latitude, longitude) coordinates which are uniformly distributed on S2⊕.
With the help of the networkx library, a variety of methods taking the set of nodes V , applying

some random graph model procedure, and generating samples of the graph models are defined.
The diagram of related graph models in Figure 5.24 is useful for optimizing these sampling meth-
ods: if a naive approach of comparing all pairwise candidates for edges is not feasible, one may
use a comparable graph model to start from and add/remove edges to generate the desired sample
graph. In particular, the Delaunay triangulation (DT) turns out to be very useful since it con-
tains most other graph models considered in this report. With the help of a method (called
scipy.spatial.Delaunay) the DT graph can be constructed in O (n log n) time. Then the O (n)
edges of the DT can be filtered to fit the desired graph model, giving an overall complexity of
O (n log n). A naive approach that looks at all pairs of nodes has complexity O

(
n2
)
, and is hence

much more time-consuming.
To compare a sample degree distribution to the worldgraph’s degree distribution, we can meas-

ure the total variation distance between them as defined below, provided that we normalize both
distributions to probability distributions.

Definition 7.1 (Total variation distance) Given a measurable space (Ω,F) and probability
measures P and Q defined on (Ω,F), we define the total variation distance between P and Q
as

dTV := sup
A∈F

|P (A)−Q(A)| .

Informally, this is the largest possible difference between the probabilities that the two prob-
ability distributions P and Q can assign to the same event A ∈ F . Given that the set Ω ⊂ N

1Release 3.1, https://networkx.org/documentation/stable/
2https://github.com/aronvv1996/geographic-graphs
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is discrete, we simply take the power set of Ω as the σ-algebra: F = 2Ω. Hence, in practice, we
could iterate over all possible subsets A of the set Ω of possible degrees attained by either degree
distribution and take dTV to be the highest difference in probability between the two distributions
attaining the event A. However, a much more efficient way is to use the following identity which
holds when Ω is countable [5, Proposition 4.2].

dTV =
1

2
∥P −Q∥1 =

1

2

∑
ω∈Ω

|P ({ω})−Q({ω})| .

7.2 Results

In this section, we systematically examine the simulation results for each random graph model,
with emphasis on the best-performing parameter values for each model. For the comprehensive
lists of results, we refer the reader to Appendix A.

The results for the random graph models are accompanied by figures showing plots of ’optimal’
sample graphs. To generate these samples, first a set of 100 distinct configurations of nodes
(n = 171) on S2⊕ is generated. Then each random graph model is applied to these 100 sets of
nodes. Finally, for each random graph model, the best-performing sample out of the 100 in terms
of total variation distance is then chosen to be shown as a figure in the following sections.

7.2.1 Epsilon neighborhood graph

We have iterated N = 10 000 simulations of εN graphs for values of ε ranging from 100 to 3 000
km in steps of 100 km. See Table 7.1 for optimal results, and Table A.1 for all results.

ε Edges Var edges Triangles Var triangles dTV

1800 287.8939 281.6880 188.9290 1322.0830 0.1402
1900 320.9791 309.0801 235.4559 1771.1231 0.1277
WG 332 - 173 - -

Table 7.1: Optimal simulation results of εN graph model, N = 10 000.

For ε = 1800 km the sample εN graphs optimize the number of triangles. The number of
triangles of the worldgraph is within 1 standard deviation (SD) of the mean.

For ε = 1900 km the sample εN graphs optimize the number of edges and the total variation
distance. The number of edges of the worldgraph is within 1 SD of the mean, and the total
variation distance is 0.1277, which is the optimal value over all random graph models in this
report.

We can compare these empirical results with the theoretical optimal values that follow from
the formulas in Section 6.2. Optimizing the number of edges gives

332 =

(
171

2

)
· p(ε),

which resolves to ε ≈ 1 933.16 km. Optimizing the number of triangles gives

173 =

(
171

3

)
· p̃(ε)p2(ε),

which resolves to ε ≈ 1 759.06 km. This does not contradict the experimental results.
Figures 7.1 and 7.2 show the average degree distributions of εN graphs, with the sample

distribution in blue and the WG distribution in grey. The sample distributions are notably similar
to binomial distributions, particularly when comparing them to the binomial fit from Figure 3.3.
This gives credit to the notion that the degrees of separate nodes are largely independent of one
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Figure 7.1: Average degree distribution
of εN graph, ε = 1800 km.

Figure 7.2: Average degree distribution
of εN graph, ε = 1900 km.

another. The probability distribution of the degree of a single node is Bin(n− 1, p(ε)), and if all
degrees in the graph were independent the overall degree distribution would be simply equivalent
(when normalized to a probability distribution that is). An argument as to why this dependence of
degrees seems to have little effect is that, for large values of n, we have the following relationship.

Bin(n− 1, p(ε))
d−→ Poi(n · p(ε)).

Hence we can approximate the uniform binomial point process we’re using to generate nodes on S2⊕
by a much simpler Poisson point process. It is important to note that p(ε) is roughly proportional
to ε2, which in turn scales at a rate of O

(
n−1/2

)
(using ε(n) as defined in Section 6.1.2). Hence

the product n · p(ε) has a constant limit λ for n→ ∞, which is equal to c2π/4. The Poisson point
process has two important properties: any Borel measurable subset of S2⊕ (such as ε-neighborhoods,
see Appendix B.2) has a number of nodes given by Poi(λ), which is also the distribution of
the degree of a single node. Additionally, the numbers of nodes in two disjoint Borel sets are
independent, which means that nodes at a distance of at least 2ε km have independent degrees.
By allowing some simplifications, we can thus show that the degrees of nodes are only locally
dependent.

Figure 7.3: Optimal graph sample of
εN graph, ε = 1800 km.

Figure 7.4: Optimal graph sample of
εN graph, ε = 1900 km.

Figures 7.3 and 7.4 show some samples of graphs that are optimized in terms of total variation
distance from the WG degree distribution. These samples also perform fairly well in terms of edges
and triangles. However, a large deal of these triangles are situated in large cliques. One can easily
spot a set of five or six nodes that are clustered together enough to form a K5 or K6 subgraph;
seeing as a Kn clique contains

(
n
3

)
triangles, it is clear how easily this number of triangles is
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achieved. The actual pattern of triangles we aim for is more akin to a Delaunay triangulation
pattern: the main difference here is the conservation of planarity.

7.2.2 K-nearest neighbors graph

We have iterated N = 10 000 simulations of ε-kNN graphs for k ∈ {2, 3, 4, 5, 6} and for values of ε
ranging from 1 000 to 4 000 km in steps of 100 km. See Table 7.2 for optimal results of each value
of k ∈ {2, 3, 4, 5, 6}, and Tables A.2-A.6 for all results.

k ε Edges Var edges Triangles Var triangles dTV

2 1700 183.6532 32.6435 40.1012 21.5336 0.4380
3 1700 226.2579 77.1386 87.6401 98.4846 0.2912
4 1900 293.6258 109.7048 164.4103 280.0372 0.2064
4 2100 335.1260 77.3499 203.7909 267.8722 0.2749
5 1800 282.2988 192.2227 170.7785 588.4872 0.1394
5 2000 338.8322 163.9550 236.1235 632.9852 0.1944
6 1800 286.3045 245.1154 182.7368 912.1153 0.1420
6 1900 317.7360 247.8865 223.2462 1076.2178 0.1398
- WG 332 - 173 - -

Table 7.2: Optimal simulation results of ε-kNN graph model, N = 10 000.

The above Table 7.2 lists all optimal values of ε for each value of k. For k = 2 and k = 3, the
numbers of edges and triangles are simply too low to be reasonably considered. The ε-kNN graphs
converge in the limit ε→ πr⊕ to the simple kNN graphs. The 2NN graph has in expectation only
220 edges and 51 triangles, and the 3NN graph has only 318 edges and 144 triangles. So, regardless
of some nice properties such as planarity, the 2NN and 3NN graphs are simply not feasible models
of the worldgraph.

One can always optimize ε (by, say, binary search) to perfectly match either the expected
number of edges or triangles of the sample graphs with the worldgraph, just like was done for
the εN graph. Say we find two optimizing values of ε, εE and ε∆ respectively for the number
of edges and triangles. As we increase k, simulations suggest that the gap between εE and ε∆
monotonically decreases. Hence for higher values of k, we can identify a single optimizing value ε
that performs reasonably well in both regards. In the limit k → n − 1, we are simply generating
εN graphs, which turn out to have the smallest gap between εE and ε∆ (about 174 km).

Figures 7.5-7.12 on the next page show the average degree distributions of ε-kNN graphs, for
the values presented in Table 7.2, with the sample distribution in blue and the WG distribution
in grey. To see how the degree distribution evolves, we can fix k and gradually increase ε. The
first thing to notice is that, for small ε, the graphs behave similarly to the regular εN graphs. To
be more specific, for large enough n, the expected distance from a node to its kth nearest neighbor
is roughly

E[distance to kth nn] ≈ 2k − 1

2k − 2
· E[distance to (k − 1)th nn]

=

k∏
i=2

2i− 1

2i− 2
· ρ(n),

where ρ(n) is the expected distance to the nearest neighbor. Hence if ε is smaller than this value
for a given k and n, the restriction of connecting to only k nearest neighbors is ’overshadowed’
by the restriction of maximum edge length. As ε surpasses this value, the degree distribution
resembles more that of a geometric distribution with minimal degree k. This is what causes there
to be high peaks in the degree distributions for the smaller values of k, like in Figures 7.5 and 7.6.
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Figure 7.5: Average degree distribution
of ε-2NN graph, ε = 1700 km.

Figure 7.6: Average degree distribution
of ε-3NN graph, ε = 1700 km.

Figure 7.7: Average degree distribution
of ε-4NN graph, ε = 1900 km.

Figure 7.8: Average degree distribution
of ε-4NN graph, ε = 2100 km.

Figure 7.9: Average degree distribution
of ε-5NN graph, ε = 1800 km.

Figure 7.10: Average degree distribu-
tion of ε-5NN graph, ε = 2000 km.

Figure 7.11: Average degree distribu-
tion of ε-6NN graph, ε = 1800 km.

Figure 7.12: Average degree distribu-
tion of ε-6NN graph, ε = 1900 km.
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Figures 7.13-7.20 show some samples of graphs that are optimized in terms of total variation
distance from the WG degree distribution. It is evident in these plots how the ε-kNN graphs
approach the εN graph as k increases. For given k, one can expect cliques up to Kk+1 present in
the sample graphs. This is partly the reason why we have chosen to investigate the ε-kNN graphs:
to try and mitigate the presence of highly connected subgraphs present in the εN graphs. However,
it is now clear that in order to preserve planarity and avoid K5 subgraphs (K3,3 subgraphs seem
to be hardly present in general), one must sacrifice accuracy in terms of degree distribution. In
these terms, the best we can achieve is setting k = 4 and ε between 1 900 and 2 100 km: this
generates decent-looking graph samples (which can be observed in Figures 7.15 and 7.16), at the
cost of a significant increase in total variation distance.

Figure 7.13: Optimal graph sample of
ε-2NN graph, ε = 1700 km.

Figure 7.14: Optimal graph sample of
ε-3NN graph, ε = 1700 km.

Figure 7.15: Optimal graph sample of
ε-4NN graph, ε = 1900 km.

Figure 7.16: Optimal graph sample of
ε-4NN graph, ε = 2100 km.

34 Using Random Graphs to Model the Network of Countries



CHAPTER 7. SIMULATION RESULTS 7.2. RESULTS

Figure 7.17: Optimal graph sample of
ε-5NN graph, ε = 1800 km.

Figure 7.18: Optimal graph sample of
ε-5NN graph, ε = 2000 km.

Figure 7.19: Optimal graph sample of
ε-6NN graph, ε = 1800 km.

Figure 7.20: Optimal graph sample of
ε-6NN graph, ε = 1900 km.

7.2.3 Generalized relative neighborhood graph

We have iterated N = 10 000 simulations of λ-RNG graphs for values of λ ranging from 0.5 to 1.5
in steps of 0.05. See Table 7.3 for optimal results, and Table A.7 for all results.

λ Edges Var edges Triangles Var triangles dTV

1.15 356.8429 200.7916 132.1616 402.7249 0.3739
WG 332 - 173 - -

Table 7.3: Optimal simulation results of λ-RNG graph model, N = 10 000.

We find that λ = 1.15 is the best-performing parameter in terms of numbers of edges and
triangles, and degree distribution. Then again, it’s evident how distant the simulated mean of
the number of triangles (132.16) is from the desired number (173). The next value for λ = 1.2 is
already at 223.19 triangles in expectation. This underlines how quickly this number grows once
the threshold of λ = 1 (with no triangles) is surpassed. It wouldn’t be too hard however to find
a more appropriate value for λ somewhere in the interval (1.15, 1.2). The main issue is the total
variation distance, also minimized for λ = 1.15, but equal to 0.37 which is considerably higher
than the previous random graph models.

Using Random Graphs to Model the Network of Countries 35



7.2. RESULTS CHAPTER 7. SIMULATION RESULTS

We can compare the stochastic results for the number of edges with the theoretical optimal
value that results from the formula in Section 6.3.1. We have a relative neighborhood size of
Nδ = q

(
δ
λ , δ
)
. Hence we must solve for λ in

332 =

(
n

2

)∫ λπr⊕/2

0

(
1− q

(
δ

λ
, δ

))n−2

· sin(δ/r⊕)
2r⊕

dδ,

where we substitute n = 171, and r⊕ ≈ 6 371.009 km. Solving this numerically with Mathematica
gives an optimal value of λ ≈ 1.1283.

Figure 7.22 shows a sample graph that is optimized in terms of total variation distance from
the WG degree distribution. Though it has fewer triangles than the optimal εN graph, they
are much more visually evident since they behave more like an actual triangulation and less like
highly connected subgraphs. So, while from a numerical standpoint the εN graph performs better
in terms of triangles, visually the λ-RNG graph is much more adherent to the worldgraph in terms
of triangles.

Figure 7.21 shows the average degree distribution of the λ-RNG graph, with the sample dis-
tribution in blue and the WG distribution in grey. When one observes the evolution of the degree
distribution as λ increases, there is always a clear peak with low variance. This peak slowly moves
to the right, and the variance slowly increases; however, the variance only reaches a reasonable
size when λ > 1.5, at which point the graph is not far from being a complete graph (which occurs
at λ = 2). Simply put, the λ-RNG samples are too ’uniform’ on the whole surface. This causes
most nodes to have a very similar degree, whereas we wish for a similar number of nodes with
degrees 1 up to 5.

Figure 7.21: Average degree distribu-
tion of λ-RNG graph, λ = 1.15.

Figure 7.22: Optimal graph sample of
λ-RNG graph, λ = 1.15.

We wish to reiterate that the shape of a neighborhood of a given neighborhood graph model
has no influence on the total number of edges of its samples. The size of the neighborhood Nδ is
the only determining factor. However, the number of triangles is determined by both the shape
and the size of the neighborhoods. Hence we are looking for a particular shape of neighborhood
when trying to optimize both the number of edges and triangles simultaneously. The neighborhood
shape dictated by the λ-RNG is not great. Other neighborhood graph models can provide a larger
ratio of triangles to edges, with the Delaunay triangulation as an extreme case.
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7.2.4 Beta skeleton graph

We have iterated N = 10 000 simulations of βS graphs for values of β ranging from 1 to 2 in steps
of 0.05. See Table 7.4 for optimal results, and Table A.8 for all results.

β Edges Var edges Triangles Var triangles dTV

1.00 321.9711 92.0405 79.2850 97.2028 0.4003
WG 332 - 173 - -

Table 7.4: Optimal simulation results of βS graph model, N = 10 000.

Even the optimal results are not great in terms of modeling the worldgraph. A look at the
full results in Table A.8 suggests that all properties (edges, triangles, and degree distribution)
improve gradually as β decreases from 2 (the relative neighborhood graph) down to 1 (the Gabriel
graph). It may thus be tempting to increase the range of the parameter β to include values in
the interval (1/2, 1) — the definition of the beta skeleton graph can easily be extended to these
values. However, this will probably not turn out to be fruitful seeing as for β = 1 the number of
edges is fairly close to the target and the number of triangles is far from the desired number. This
makes it difficult to identify a value for β that optimizes both these values.

Figure 7.23 shows the average degree distribution of the Gabriel graph, with the sample dis-
tribution in blue and the WG distribution in grey. The same issue arises as with the generalized
RNG model: the variance in degrees is too low, which causes a surplus in nodes of degrees 3 and
4 and virtually no nodes of degree 1.

Figure 7.24 shows a sample graph that is optimized in terms of total variation distance from
the WG degree distribution. It again seems at first glance to have a larger quantity of triangles
when compared to Figure 7.3 of the εN graph. This is due to the absence of highly connected
subgraphs, which in turn is due to the planarity of βS graphs (since βS ⊆ DT when constructed
on the same set of points V ).

Figure 7.23: Average degree distribu-
tion of βS graph, β = 1.

Figure 7.24: Optimal graph sample of
βS graph, β = 1.
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Discussion

We discuss a few potential extensions to the contents of this report.

- Other random graph models: the graph models presented in this report are just a
handful. There are many other available models, including other neighborhood graph models,
such as the sphere-of-influence graph (connecting two vertices if their nearest-neighbors-
circles intersect) or the circle-based beta-skeleton. There are virtually limitless many options
for adjusting the existing graph models into new models.

- Conceiving new neighborhood graph models: as is discussed in Sections 7.2.3 and
7.2.4, which feature the neighborhood graph models considered in this report, a recurring
issue is that the distribution of degrees is too concentrated around the mean — in other
words, the graphs are too uniform. A solution to this might be to conceive a neighborhood
definition that generates graphs that are not connected: except for λ-RNG graphs with λ < 1,
all neighborhood graphs in this report are supergraphs of the MST and hence connected.
The difficulty lies in defining a neighborhood graph model which is not connected but still
generates an appropriate amount of edges and triangles.

A different type of neighborhood shape that could be interesting is one that matches a perfect
number of edges and a perfect number of triangles for modeling the worldgraph. Though
the Delaunay triangulation model can be stated in terms of neighborhoods, it is not strictly
a neighborhood graph model like the others as it does not define a unique neighborhood
for every pair of nodes. It may be interesting to see what shape of neighborhood would
maximize the number of triangles while keeping a constant number of edges. Though any
shape of neighborhood can be defined, it is recommended to use neighborhoods defined in
terms of distances for ease of use.

- Other distributions of nodes: the nodes in this report are always uniformly distributed
on the whole surface of the Earth. One glance at the worldgraph in Figure 3.1 shows that
this is not the case in reality, as is evident when comparing Europe to North America. The
reason is the variance in country sizes on one hand, and the presence of oceans on the other.

A point process is a collection of mathematical points randomly located on a mathematical
space. The point process used in this report is a uniform binomial point process, meaning a
fixed number of points n are i.i.d. uniformly distributed on the surface of the sphere. Other
point processes exist, such as the Poisson point process, which is similar but has a randomized
number of points. Some interesting behavior is shown by Heterogeneous Poisson and Thomas
cluster point processes, which allow for creating less uniform point distributions with visible
clusters. For general point processes there is a so-called avoidance function defined on a
subset B of the underlying space (S2⊕ in our case) as the probability of B containing no
points. This is exactly the probability of creating an edge in a neighborhood graph, where
B is the neighborhood. A result for Poisson point processes called Rényi’s theorem states

that this probability is given by e−Λ(B) = e−n·|B|/|S2⊕|.
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- Modelling other topological networks: there are numerous other real-life networks of
a geographical nature that can be analyzed and modeled by random graph models. One
could model the map graphs of smaller regions like states or provinces, within the confines
of countries or continents, and analyze how appropriate random graph models might differ
from one part of the world to another. Since these graphs are also map graphs, it seems
reasonable to assume they would more or less resemble the worldgraph analyzed in this
report. However, confining the scope of the graph to, say, a country rather than the entire
world might affect how homogeneous the graph looks: many countries are simply connected,
compactly shaped, without many large protrusions, and subdivided fairly uniformly into
equally sized regions. The graphs resulting from this kind of countries would probably be
more similar to the Delaunay triangulation — it is possible to see this similarity even in
the worldgraph (Figure 3.1), as Africa is a fairly compact shape with evenly sized countries,
thus displaying a noticeable triangulation pattern.

A different type of network might be the global network of roads, shipping routes, or air
traffic. There are extensive resources freely available for a worldwide network of roads by
NASA1, which are more or less detailed in certain countries. One might choose to smoothen
out the resulting graph to generate the simplest subdivision, as the actual shape of the
stretches of road is not of interest, but the connections between road crossings are. In
addition, this greatly simplifies the graph, as can be seen in Figures 8.1 and 8.2 depicting
the road network of the Netherlands.

Figure 8.1: Road network of the Netherlands. Figure 8.2: Smoothened road network.

The smoothened road network graph seems to feature a large number of cycles of various
degrees. It bears a resemblance to the samples generated by the relative neighborhood graph,
the Gabriel graph, or other beta-skeleton graphs. Though different from the worldgraph, the
road network is also inherently a physical planar network and is therefore naturally modeled
by localized graphs such as neighborhood graph models. Shipping- and air traffic routes,
on the other hand, feature connections that are less bound to physical restrictions. The
links can be much larger and the graphs do not preserve planarity. Instead of the localized

1https://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1
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behavior of the graphs presented in this report, they might more accurately be modeled
by scale-free networks, with a power-law degree distribution and several nodes of extremely
high degree (hubs) identified with large cities.

- Beta-skeleton analysis: as was described in the original paper [2] that defined the beta-
skeleton, the purpose of this model is to analyze where factors other than simple neighbor-
liness are at play in defining the links between nodes. By comparing the actual network
with the beta-skeleton generated on its nodes, one can identify these links as being somehow
logistically/culturally/administratively significant. It might lead to some interesting insights
when applied to various geographical networks around the globe.

- Theoretical results: there are a number of theoretical results left unproven, in particular
concerning the first and second moments of various properties (number of edges, number of
triangles, degree distribution) of the random graph models. Though many results of this
kind exist for the same graph models defined on random point processes in Euclidean space,
some work must be done to extend these results to our case of the 2-sphere. A paper by
Penrose and Yukich [7] provides a very useful CLT-like result for functionals on Poisson and
binomial point processes on a very general class of regions. In the same paper, CLT-like
results are then shown to hold for the number of edges, components, and total edge length
of various graph models. A few technical conditions on the type of graph model and the
considered region (in our case, the 2-sphere S2⊕) make it difficult to extend those results to
our case. The stochastic results seem to approach some normal distributions, which seems
to suggest there might be similar results in our case, but this would require a more detailed
understanding of the proofs in [7].
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Conclusion

We have considered a number of different random graph models and evaluated their potential to
model the worldgraph. The three graph properties that we have studied are the number of edges,
the number of triangles, and the degree distribution.

The four random graph models that we have analyzed are the epsilon-neighborhood graph, the
epsilon-k-nearest neighbors graph with maximal edge length ε, the generalized relative neighbor-
hood graph, and the beta skeleton graph. The feature shared by all these models is a parameter
that takes a continuous range of values (ε, λ, and β). Since the expected number of edges and
triangles are continuous functions dependent on the value of these parameters, by the Intermediate
value theorem we can pinpoint a value for each parameter such that the expected number of edges
or triangles matches perfectly with that of the worldgraph. That is, as long as this particular value
is within the range of considered values for the parameter. This optimizing value can be found by
solving the formula for number of edges or triangles from Sections 6.2 and 6.3, if such a formula
is available. Otherwise, it can be found fairly easily with a binary search procedure. Hence we
can find random graph models that perfectly match either the number of edges or triangles of the
worldgraph. The exceptions are the ε-kNN graph for k = 2, 3 and the βS graph, though the latter
can easily be adjusted with values of β < 1.

The difficulty lies in finding a random graph model with particular parameters that can op-
timize the number of edges and triangles simultaneously. If we denote by πE and π∆ respectively
the optimizing values of the parameter π for number of edges and triangles, we wish for |πE − π∆|
to be minimized. The minimal difference we can achieve is with the εN graph, which gives
|εE − ε∆| ≈ 174.10 km. Setting ε = 1836.20 km provides a good balance between optimizing both
the number of edges and triangles.

Though the εN graph outperforms all other random graph models from a numerical perspective,
from a visual perspective it has a clear issue. The presence of highly connected cliques makes the
graph non-planar and artificially inflate the number of triangles. The ε-kNN graph with k = 4
and ε in the range [1900, 2100] is a good alternative, as it performs fairly well in numerical terms
and also avoids these highly connected cliques. The triangles in these graphs are visually more
evident, as together they look more like actual triangulations — the sort that we would expect in
a 3-map graph.

Regarding neighborhood graph models, we know that the number of edges is determined solely
by the size of the neighborhoods, whereas the number of triangles also depends on their shape.
Since there are neighborhood graph models with relatively few triangles and relatively many
triangles, we hypothesize that we could find a shape of neighborhood that matches the number
of edges and triangles of the worldgraph exactly ; by continuously varying from one shape to
another, the Intermediate value theorem again says there is some optimal intermediate shape.
The challenge is defining how to continuously vary the shape while keeping the area constant and
the shape simple (that is, able to be defined in terms of distances).

The last property to consider is the degree distribution. We have measured the accuracy of
degree distribution by the total variation distance from the worldgraph’s degree distribution. The

Using Random Graphs to Model the Network of Countries 41



CHAPTER 9. CONCLUSION

ε-neighborhood graph with ε = 1900 km is the best-performing model in this regard, with a total
variation distance of about 0.1277. The ε-kNN graphs generally perform worse, though for higher
values of k they approach the εN graph. The neighborhood graphs considered in this report are
not able to approximate the worldgraph’s degree distribution, given their total variation distances
of around 0.40. In all cases, the degree distribution is far too concentrated around the mean. It is
not presently clear to us how one could define a neighborhood graph model that solves this issue,
or whether it is possible at all.
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Appendix A

Results

A.1 Epsilon neighborhood graph

ε Edges Var edges Triangles Var triangles dTV

100 0.9195 0.9090 0.0021 0.0021 0.9893
200 3.5761 3.5590 0.0279 0.0291 0.9590
300 8.0699 8.2764 0.1528 0.1985 0.9100
400 14.2814 13.9836 0.4690 0.5862 0.8461
500 22.3408 22.5805 1.1412 1.6947 0.8194
600 32.2402 31.9625 2.3787 4.0269 0.7926
700 43.8465 43.2957 4.3679 8.1525 0.7542
800 57.2911 57.5750 7.4551 16.4416 0.7026
900 72.4350 71.6928 12.0024 31.0720 0.6397
1000 89.1912 89.6206 18.0253 52.8933 0.5792
1100 107.9395 105.9166 26.4292 86.8868 0.5332
1200 128.5479 125.1823 37.6160 139.9831 0.4752
1300 150.6618 149.4644 51.5222 215.8281 0.4076
1400 174.5109 175.3987 69.4054 331.7655 0.3537
1500 200.5592 195.5111 91.7535 474.3973 0.2935
1600 228.4119 229.3670 119.3066 728.3410 0.2239
1700 257.3943 252.1802 151.5313 998.5898 0.1703
1800 287.8939 281.6880 188.9290 1322.0830 0.1402
1900 320.9791 309.0801 235.4559 1771.1231 0.1277
2000 354.9458 345.6787 287.7680 2455.7004 0.1554
2100 391.1673 376.9563 349.8490 3139.9980 0.1932
2200 429.0839 430.6805 421.5947 4420.5868 0.2566
2300 467.9676 453.9808 501.1981 5373.2283 0.3125
2400 509.5436 481.7977 595.1218 6848.1428 0.3768
2500 552.1842 532.0329 699.1325 8763.2215 0.4416
2600 597.2765 568.4616 819.6954 11054.5184 0.5125
2700 643.1303 603.6695 950.8765 13502.1300 0.5735
2800 690.7085 666.4313 1097.5889 16973.1911 0.6279
2900 739.4750 685.2276 1257.0520 19724.5531 0.6717
3000 791.0739 754.8052 1441.4340 25188.5084 0.7058

WG 332 - 173 - -

Table A.1: Simulation results of εN graph model, N = 10 000.
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A.2 K-nearest neighbors graph

A.2.1 2NN

ε Edges Var edges Triangles Var triangles dTV

1000 85.4920 61.9501 12.2927 12.2188 0.6051
1100 101.0602 60.5412 16.1604 14.0265 0.5774
1200 116.9272 61.4835 20.4693 16.3501 0.5435
1300 132.4591 55.7115 24.8579 18.0473 0.5054
1400 147.1744 49.5266 29.1291 19.5688 0.4660
1500 160.8988 43.1954 33.2739 20.5759 0.4540
1600 173.0287 36.8813 36.8884 21.5947 0.4436
1700 183.6532 32.6435 40.1012 21.5336 0.4380
1800 192.4780 28.0909 42.7538 22.3726 0.4615
1900 199.8098 24.5766 45.0488 22.5934 0.4811
2000 205.5520 22.5805 46.6447 23.1707 0.4970
2100 209.8771 19.9812 47.8894 22.6412 0.5102
2200 213.2572 19.3354 48.9022 24.0432 0.5192
2300 215.6268 18.3641 49.5333 24.3293 0.5264
2400 217.2318 17.5605 49.9206 24.4865 0.5318
2500 218.3729 17.2616 50.3522 25.3868 0.5352
2600 219.1588 17.1736 50.5392 25.0655 0.5378
2700 219.6376 17.2463 50.6524 24.6620 0.5391
2800 220.0247 16.9097 50.6948 24.9517 0.5399
2900 220.2098 16.7038 50.8541 25.1194 0.5403
3000 220.3801 16.9330 50.8797 24.7784 0.5405
3100 220.3815 16.4212 50.7987 24.9214 0.5413
3200 220.3152 16.9474 50.8088 25.6550 0.5418
3300 220.4377 16.9149 50.8105 25.5150 0.5412
3400 220.4023 16.9435 50.8920 24.7477 0.5418
3500 220.3760 16.6232 50.8171 25.3234 0.5417
3600 220.3775 17.0532 50.8258 24.8439 0.5418
3700 220.4132 16.4399 50.7995 24.8301 0.5413
3800 220.5229 17.2867 50.8997 24.7396 0.5411
3900 220.4550 16.9450 50.8332 25.0576 0.5414
4000 220.4466 16.7147 50.8727 25.7447 0.5415

2NN 220.4401 17.0096 50.8328 24.6812 0.5414
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Table A.2: Simulation results of ε-2NN graph model, N = 10 000.
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A.2.2 3NN

ε Edges Var edges Triangles Var triangles dTV

1000 88.8976 80.2535 17.0333 33.2744 0.5781
1100 107.0543 93.0882 24.1073 47.5396 0.5319
1200 126.0432 100.4001 32.2894 60.2776 0.4759
1300 146.0772 104.9900 42.1602 74.6163 0.4270
1400 166.9557 101.3501 53.1722 83.9677 0.3940
1500 187.4749 95.5836 64.5199 90.0522 0.3561
1600 207.4332 87.6649 76.1818 95.3755 0.3144
1700 226.2579 77.1386 87.6401 98.4846 0.2912
1800 243.6841 63.1879 98.3822 95.4937 0.3081
1900 259.0955 54.1654 107.9548 96.0806 0.3370
2000 272.6394 45.1744 116.4969 96.2994 0.3752
2100 283.8091 38.9701 123.4319 93.6586 0.4076
2200 293.0336 34.8301 129.1139 91.9453 0.4344
2300 300.1082 32.4789 133.4986 92.1130 0.4555
2400 305.6089 29.7589 136.8466 94.4743 0.4721
2500 309.7990 28.3602 139.5450 93.0890 0.4836
2600 312.7009 27.5442 141.0713 95.8518 0.4931
2700 314.6989 26.2492 142.3080 94.5565 0.4992
2800 316.1305 25.4711 143.0437 93.1034 0.5037
2900 316.9731 26.1676 143.5322 96.9204 0.5067
3000 317.4849 25.6642 143.8576 98.4093 0.5086
3100 317.9759 25.9589 144.1058 98.9558 0.5090
3200 318.2176 25.7799 144.2020 96.1304 0.5103
3300 318.2753 25.9791 144.3413 96.0052 0.5106
3400 318.5053 25.3728 144.4627 96.0710 0.5103
3500 318.4698 25.4551 144.3653 93.6993 0.5108
3600 318.5217 25.9695 144.4054 95.2335 0.5104
3700 318.5133 26.0856 144.4609 96.4359 0.5107
3800 318.5141 25.5450 144.4457 93.6917 0.5109
3900 318.5370 25.6906 144.4026 96.4041 0.5108
4000 318.5454 25.6985 144.4634 96.3233 0.5107

3NN 318.3983 26.8457 144.3700 97.6133 0.5112
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Table A.3: Simulation results of ε-3NN graph model, N = 10 000.
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A.2.3 4NN

ε Edges Var edges Triangles Var triangles dTV

1000 89.1496 86.3178 18.0306 47.3461 0.5784
1100 107.8054 103.4229 26.0523 72.9250 0.5330
1200 128.2281 118.1765 36.6051 106.3462 0.4750
1300 149.7802 133.6463 49.2142 143.3549 0.4078
1400 172.8394 143.3856 64.4847 186.2944 0.3532
1500 197.1747 151.1702 82.4141 227.5468 0.2936
1600 221.6933 146.5660 101.7074 256.8988 0.2502
1700 246.4018 139.7468 122.4726 273.6964 0.2171
1800 270.5258 126.8025 143.2310 283.4590 0.2080
1900 293.6258 109.7048 164.4103 280.0372 0.2064
2000 315.4864 91.4946 185.0792 270.9131 0.2391
2100 335.1260 77.3499 203.7909 267.8722 0.2749
2200 352.3806 65.6801 220.6179 255.0733 0.3319
2300 366.9253 55.7525 234.3797 250.3543 0.3830
2400 379.0776 48.1354 246.0342 243.3692 0.4260
2500 388.7064 44.6632 255.1035 240.6430 0.4604
2600 396.2416 40.4220 262.5677 234.7768 0.4878
2700 401.8930 38.1224 267.9498 241.4603 0.5094
2800 406.0732 36.0058 271.6305 237.5652 0.5245
2900 409.0023 34.8847 274.3726 236.6082 0.5355
3000 410.9553 35.4437 276.1672 241.6560 0.5430
3100 412.2934 35.0549 277.4117 243.4288 0.5480
3200 413.1850 34.5956 278.1218 240.6554 0.5516
3300 413.6772 35.3778 278.5245 247.0344 0.5539
3400 414.1317 36.0548 279.0630 251.8934 0.5546
3500 414.1452 36.3463 278.8282 249.1109 0.5559
3600 414.1850 36.5468 278.8218 251.3360 0.5566
3700 414.2556 36.7473 278.7236 248.4854 0.5566
3800 414.3644 36.4432 279.0724 253.3818 0.5568
3900 414.3793 36.6658 278.8848 242.6611 0.5570
4000 414.4062 37.1106 279.1527 252.8428 0.5568

4NN 414.3902 35.9845 278.8011 248.1925 0.5567
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Table A.4: Simulation results of ε-4NN graph model, N = 10 000.
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A.2.4 5NN

ε Edges Var edges Triangles Var triangles dTV

1000 89.2584 89.6802 18.0960 52.1848 0.5786
1100 108.0901 104.1628 26.5634 83.4334 0.5324
1200 128.2785 122.7065 37.2414 129.0507 0.4759
1300 150.7241 146.8646 51.3872 195.4859 0.4068
1400 174.3818 164.1470 68.4165 268.2760 0.3534
1500 199.4900 178.8501 88.7065 350.4050 0.2949
1600 226.7601 196.4657 113.7948 464.0161 0.2237
1700 253.9958 202.3416 140.6269 539.0213 0.1705
1800 282.2988 192.2227 170.7785 588.4872 0.1394
1900 310.8313 180.1676 202.9436 616.1526 0.1598
2000 338.8322 163.9550 236.1235 632.9852 0.1944
2100 365.3918 139.7923 268.7726 621.0637 0.2212
2200 390.6247 123.1782 300.6323 612.7967 0.2784
2300 413.6419 100.3629 330.4017 566.3583 0.3330
2400 433.7459 82.9189 356.5369 542.5488 0.3949
2500 451.1818 70.2177 379.2315 507.1483 0.4552
2600 465.8443 63.5993 398.7054 511.6702 0.5061
2700 477.4844 55.7666 413.8319 487.5828 0.5485
2800 486.6965 52.0220 425.9940 490.6890 0.5825
2900 493.5793 49.4479 434.7234 503.4343 0.6081
3000 498.6603 48.2733 441.2890 494.6841 0.6272
3100 502.1322 46.8291 445.5828 492.9697 0.6409
3200 504.6729 46.3171 449.1198 516.1808 0.6510
3300 506.2970 46.1176 450.9078 506.4329 0.6571
3400 507.3831 47.5285 452.1156 511.4128 0.6616
3500 507.9652 46.1308 452.6353 498.9719 0.6643
3600 508.4731 47.9871 453.6036 513.0431 0.6660
3700 508.6987 47.6925 453.5277 514.7080 0.6670
3800 509.0016 48.4146 454.4241 520.6942 0.6674
3900 509.0276 48.0038 454.1369 509.0352 0.6678
4000 509.0385 48.9802 454.0572 533.9853 0.6681

5NN 509.0393 48.8056 454.2125 520.1785 0.6681
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Table A.5: Simulation results of ε-5NN graph model, N = 10 000.
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A.2.5 6NN

ε Edges Var edges Triangles Var triangles dTV

1000 89.4180 87.3067 18.2370 52.6812 0.5782
1100 108.0286 105.3556 26.5059 84.9254 0.5327
1200 128.4398 128.3174 37.4556 136.2024 0.4756
1300 150.8207 149.3378 51.7951 216.1129 0.4073
1400 174.6230 169.6063 69.3329 308.7937 0.3528
1500 200.3017 191.9239 90.9164 430.3584 0.2940
1600 227.4872 216.6002 116.9684 584.3448 0.2246
1700 256.2652 230.8367 147.6723 749.6393 0.1715
1800 286.3045 245.1154 182.7368 912.1153 0.1420
1900 317.7360 247.8865 223.2462 1076.2178 0.1398
2000 349.0150 237.5122 265.3880 1169.4667 0.1659
2100 381.0151 219.8873 311.7405 1206.7780 0.2069
2200 412.3150 201.3346 359.1912 1215.6512 0.2639
2300 442.1815 175.8128 405.7001 1208.8656 0.3132
2400 470.0823 142.1631 450.3330 1087.7381 0.3775
2500 495.6599 115.4966 492.0296 1018.4051 0.4435
2600 518.4481 100.2993 529.9884 990.9355 0.5159
2700 537.9246 86.0193 562.3086 952.1520 0.5803
2800 554.1896 74.6555 589.0157 908.7457 0.6352
2900 567.3999 69.2256 611.2687 877.2465 0.6813
3000 577.6020 64.3846 628.1383 887.0264 0.7175
3100 585.4231 61.5193 641.3832 903.7600 0.7462
3200 591.1569 60.3425 650.2755 923.7002 0.7675
3300 595.0636 56.9576 656.6551 883.0789 0.7829
3400 597.8221 57.7659 661.1194 917.0277 0.7935
3500 599.7436 59.2417 664.0271 923.6008 0.8006
3600 600.8608 59.9756 665.6703 952.5488 0.8054
3700 601.4882 60.0023 666.5531 934.6434 0.8083
3800 602.1446 61.0929 667.7760 939.4100 0.8103
3900 602.3129 62.9756 668.0601 952.6101 0.8114
4000 602.4522 62.3487 668.3469 948.8860 0.8121

6NN 602.6693 63.3613 668.4256 940.2173 0.8129
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Table A.6: Simulation results of ε-6NN graph model, N = 10 000.
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A.3 Generalized relative neighborhood graph

λ Edges Var edges Triangles Var triangles dTV

0.50 31.2208 15.6250 - - 0.8480
0.55 39.5483 17.5445 - - 0.8409
0.60 49.2790 19.2852 - - 0.8201
0.65 60.8248 22.4873 - - 0.7802
0.70 74.2705 27.8755 - - 0.7149
0.75 89.8198 32.8375 - - 0.6588
0.80 108.0308 37.0061 - - 0.6418
0.85 129.1893 41.2625 - - 0.6020
0.90 153.7553 42.4274 - - 0.5227
0.95 182.4430 35.9970 - - 0.4952
1.00 215.5010 18.4384 - - 0.5876
1.05 255.7518 54.8198 27.4962 39.0328 0.4640
1.10 302.0098 109.8019 69.3286 138.8364 0.4247
1.15 356.8429 200.7916 132.1616 402.7249 0.3739
1.20 421.8129 323.7791 223.1866 1002.1660 0.3791
1.25 499.2141 512.3987 354.3028 2294.6913 0.4560
1.30 592.3572 791.3772 542.4894 5098.0821 0.5697
1.35 705.7187 1203.7286 813.7904 11024.6489 0.7070
1.40 842.3748 1777.4387 1199.6006 22896.0589 0.7896
1.45 1015.1351 2732.4862 1777.9757 49885.8163 0.8780
1.50 1228.1240 3969.9650 2618.8958 104364.6577 0.9341
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Table A.7: Simulation results of λ-RNG graph model, N = 10 000.
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A.4 Beta skeleton graph

β Edges Var edges Triangles Var triangles dTV

1.00 321.9711 92.0405 79.2850 97.2028 0.4003
1.05 318.7092 94.4490 74.4443 94.7473 0.4088
1.10 315.6950 87.3720 71.1877 87.9193 0.4142
1.15 310.7042 81.7655 66.2472 80.4371 0.4231
1.20 305.1693 80.5268 60.9773 75.5376 0.4284
1.25 299.8445 74.3479 56.1006 67.6795 0.4318
1.30 294.3574 70.4875 51.4940 63.3100 0.4313
1.35 289.3792 69.5688 47.4248 59.7967 0.4272
1.40 284.1860 65.9464 43.4370 54.5108 0.4202
1.45 279.4799 61.8022 39.9512 49.7112 0.4175
1.50 274.5234 58.3595 36.5477 46.1705 0.4243
1.55 269.7637 55.7195 33.2696 42.4615 0.4301
1.60 264.8063 52.7060 30.1148 37.9056 0.4355
1.65 259.8147 48.6858 27.0320 33.5068 0.4399
1.70 255.1322 45.8681 24.1819 31.1000 0.4436
1.75 250.0819 42.7502 21.3222 26.4740 0.4594
1.80 245.1202 38.3772 18.4393 22.8605 0.4771
1.85 240.0620 34.4660 15.5849 18.8912 0.4943
1.90 234.4390 30.6373 12.3437 14.6306 0.5139
1.95 226.9626 27.4538 7.5779 8.9639 0.5430
2.00 215.4726 18.6076 - - 0.5873
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Table A.8: Simulation results of βS graph model, N = 10 000.
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Appendix B

Derivations

B.1 Jacobian determinant of spherical to Cartesian map-
ping

We wish to transform a particular integral from Cartesian coordinates to spherical coordinates (as
defined according to ISO standard 80 000-2:20191). In short, spherical coordinates are described
by the tuple (r, θ, ϕ), resp. the radial distance, polar angle, and azimuthal angle. These take values
in

r ≥ 0, θ ∈ [0, π], ϕ ∈ [0, 2π).

Cartesian coordinates may be retrieved from spherical coordinates by
x = r sin(θ) cos(ϕ),

y = r sin(θ) sin(ϕ),

z = r cos(θ).

When applying an integral change of variables from Cartesian to spherical, we need to multiply
by the Jacobian determinant

∣∣∣∣δ(x, y, z)δ(r, θ, ϕ)

∣∣∣∣ =
∣∣∣∣∣∣
sin(θ) cos(ϕ) r cos(θ) cos(ϕ) −r sin(θ) sin(ϕ)
sin(θ) sin(ϕ) r cos(θ) sin(ϕ) r sin(θ) cos(ϕ)

cos(θ) −r sin(θ) 0

∣∣∣∣∣∣
= r2

(
cos2(θ) sin(θ) cos2(ϕ) + cos2(θ) sin(θ) sin2(ϕ) + sin3(θ) cos2(ϕ) + sin3(θ) sin2(ϕ)

)
= r2 sin(θ).

B.2 Area of a neighborhood

Define B⊕(x, ε) ⊆ S2⊕ as the set of points on the globe which are within a great-circle distance
of ε km from the point x ∈ S2⊕. This is the ε-neighborhood of x, and it is a measurable set:
by rotational symmetry of S2⊕, we can rotate x onto the ’north pole’ of the globe (where the

inclination θ is zero); then the set B⊕(x, ε) is the preimage of [0, α) under the function F̃−1
inc

defined in Section 4.2. The angle α = ε/r⊕ is the angular distance, that is the angle at the center
of the globe that subtends the radius of the ε-neighborhood.

The ε-neighborhood is the intersection of a cone of angle α, with its apex at the center of S2⊕,
and the surface S2⊕. Given this angle α, we can integrate the volume element dΩ = r2 sin(θ)·drdθdϕ

1https://www.iso.org/standard/64973.html, or freely accessible on
https://en.wikipedia.org/wiki/Spherical coordinate system.
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over the appropriate subset of the globe:

|B⊕(x, ε)| =

(∫
B⊕(x,ε)

dΩ

)

=

∫ 2π

0

∫ α

0

r2⊕ sin(θ) dθ dϕ

= 2πr2⊕

(
1− cos

(
ε

r⊕

))
.

We define the function p : R → R as the area of the neighborhood over the total area of the globe.
It is also the probability that a vertex taken uniformly from the surface of the globe is within a
given ε-neighborhood. By rotational symmetry of S2⊕ there is no need to specify the center point
of the neighborhood.

p(ε) :=
|B⊕(v, ε)|
4πr2⊕

=
1

2

(
1− cos

(
ε

r⊕

))
.

B.3 Area of intersection of neighborhoods

Let B⊕(u, εu) and B⊕(v, εv) be two neighborhoods on the same surface of the sphere. If u and v
are close enough, these neighborhoods will intersect in a lune-shaped area. The shape and area of
this intersection depend on both the radii εu and εv and the distance between the centers u and
v. By rotational symmetry, the actual positions of u and v on the sphere are not important. Only
the great-circle distance δ = dist(u, v) is of influence.

A paper by Lee and Kim gives a comprehensive list of formulas [4, Table 1] for the surface area
of the intersection of two hyperspherical caps, which we typically call neighborhoods. Depending
on the values of εu, εv, and δ, it provides many formulas based on case distinction. Case 8 from
their paper is the appropriate choice if we slightly restrict the values of our parameters, and
corresponds to:

- δ < εu + εv (the two neighborhoods intersect, and the intersecting area is nonzero);

- εu + εv ≤ 2πr⊕ − δ (the two neighborhoods do not cover the entire sphere together);

- εu, εv ∈ [0, πr⊕/2) (both neighborhoods are smaller than a hemisphere);

- εu = εv (the two neighborhoods have the same shape and area).

Typically we are dealing with relatively small intersecting identical neighborhoods, so these as-
sumptions are naturally respected. For Case 8, the paper provides the following definitions.

θ1 = θ2 :=
εu
r⊕

=
εv
r⊕
, θv :=

δ

r⊕
, (1)

θmin(θv) := tan−1

(
cos(θ1)

cos(θ2) sin(θv)
− 1

tan(θv)

)
= tan−1

(
1

sin(θv)
− 1

tan(θv)

)
. (2)

Given these definitons, the formula for the area of the intersection is

|B⊕(u, εu) ∩ B⊕(v, εv)| = 2πr2⊕ ·
∫ θ2

θmin

sin(ϕ) · I

(
1−

(
tan(θmin)

tan(ϕ)

)2

,
1

2
,
1

2

)
dϕ,

where I(z, a, b) = Iz(a, b) is the regularized incomplete beta function. The formula works only if
the area is nonzero, and θ1 = θ2 ∈ [θv/2, π/2), which means that ε must be smaller than roughly
10 000 km. On this domain, the function is smooth, as can be seen in Figure 6.2.
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We define the function q : R × R → R as the area of the intersection of two neighborhoods
over the total area of the globe. It is also the probability that a vertex taken uniformly from the
surface of the globe is within both neighborhoods.

q(ε, δ) :=
|B⊕(u, ε) ∩ B⊕(v, ε)|

4πr2⊕
=

1

2
·
∫ θ2

θmin

sin(ϕ) · I

(
1−

(
tan(θmin)

tan(ϕ)

)2

,
1

2
,
1

2

)
dϕ.

The definitions labeled by (1) and (2) above hold in the above formula.

B.4 Probability of closing a triangle

Let B⊕(u, ε) be a neighborhood on the surface S2⊕. Suppose there are two other vertices v, w ∈
V \{u} uniformly distributed within this neighborhood. What is the probability that v and w are
within each others’ ε-neighborhoods?

Define the function p̃ : R → R, which takes a distance of ε kilometers and returns this particular
probability.

p̃(ε) := P (dist(v, w) < ε |dist(u, v) < ε , dist(u,w) < ε) .

Given ε ∈ (0, π/2), we can compute p̃(ε) by conditioning on the position of, say, vertex v within
B⊕(u, ε). We calculate what fraction of that neighborhood is within the ε-neighborhood of v (by
using the formula for the area of intersection in Appendix B.3), which gives the probability that
vertex w is within the ε-neighborhood of v:

p̃(ε) =
1

|B⊕(u, ε)|
·
∫
B⊕(u,ε)

P (w ∈ B⊕(v, ε) |w ∈ B⊕(u, ε)) dv

=
1

|B⊕(u, ε)|
·
∫
B⊕(u,ε)

|B⊕(u, ε) ∩ B⊕(v, ε)|
|B⊕(u, ε)|

dv

=
1

4π2r2⊕(1− cos(ε/r⊕))2
·
∫ 2π

0

∫ ε/r⊕

0

sin(θ) · |B⊕(u, ε) ∩ B⊕(vθϕ, ε)| dθ dϕ

=
1

(1− cos(ε/r⊕))2
·
∫ ε/r⊕

0

sin(θ)

∫ ε/r⊕

θmin(θ)

sin(ψ) · I

(
1−

(
tan(θmin(θ))

tan(ψ)

)2

,
1

2
,
1

2

)
dψ dθ.

This is a well-behaved function ranging between roughly 0.58 and 0.69, steadily increasing as ε
increases, as one can see in Figure 6.3. The value of p̃ for ε = 0 is undefined due to the presence
of (1 − cos(ε/r⊕))

2 in the denominator. However, the limit limε→0 p̃(ε) is defined and equal to
approximately 0.59. The exact value is

lim
ε→0

p̃(ε) = 1− 3
√
3

4π
,

which is precisely what p̃(ε) would be if the underlying space was R2 instead of S2⊕. It makes sense
intuitively, since S2⊕ is locally (ε → 0) indistinguishable from R2. The maximal value of p̃(ε) for
ε→ π/2 is approximately 0.68, and in exact form is

lim
ε→π/2

p̃(ε) =
π − 1

π
.

The intersection of two hemispheres is a spherical lune, whose area scales linearly with the angle
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between the two hemispheres.

p̃(ε) =
1

2π
·
∫ 2π

0

∫ π/2

0

sin(ψ) · π − ψ

π
dψ dϕ

=
1

π

∫ π/2

0

sin(ψ)(π − ψ) dψ

=
1

π

∫ π/2

π

ψ · sin(−ψ) dψ

=
π − 1

π
.

Values strictly within the interval (0, π/2) are not so easily computed and take some computa-
tional time to approximate with Mathematica’s numerical integration methods. Without loss of
generality, we can set r⊕ = 1 to improve computational time and accuracy.

B.5 Minimum distance of nodes

Let ρ be the expected great-circle distance from a node v on S2⊕ to its nearest neighbor, given that
there are a total of n nodes. If the nearest neighbor to v has an angular distance of θ, then the
probability density function of this θ is given by

f(θ) =
1

2
sin(θ),

and the cumulative distribution function of θ is

F (θ) =

∫ θ

0

f(ψ) dψ =

(
−1

2
cos(ψ)

) ∣∣∣∣θ
0

= −1

2
cos(θ) +

1

2
.

We can use the double-angle formula to simplify further as such:

F (θ) = −1

2
cos(θ) +

1

2

= −1

2

(
2 cos2

(
θ

2

)
− 1

)
+

1

2

= sin2
(
θ

2

)
.

Given this c.d.f., we can compute the c.d.f. Λ(θ) of the minimum out of n− 1 samples of F (θ) as
follows.

Λ(θ) = P (∃ vi : d(v, vi) ≤ θ)

= 1− P (∀ vi : d(v, vi) > θ)

= 1− (P(d(v, vi) > θ))
n−1

= 1− (1− F (θ))n−1

= 1−
(
1− sin2

(
θ

2

))n−1

= 1− cos2n−2

(
θ

2

)
.

Then we differentiate to compute the corresponding p.d.f. λ(θ).

λ(θ) =
d

dθ

(
1− cos2n−2

(
θ

2

))
= (n− 1) sin

(
θ

2

)
cos2n−3

(
θ

2

)
.
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Now we take the expectation and multiply by r⊕ to convert angular distance to great-circle
distance.

ρ := E[λ(θ)] = r⊕ ·
∫ π

0

θ · λ(θ) dθ

= r⊕(n− 1) ·
∫ π

0

θ sin

(
θ

2

)
cos2n−3

(
θ

2

)
dθ.

We use the power-reduction formula for cosines to turn the function cos2n−3 into a sum of simpler
terms:

ρ = r⊕(n− 1) ·
∫ π

0

θ sin

(
θ

2

)
2

22n−3

n−2∑
k=0

(
2n− 3

k

)
cos

(
(2n− 3− 2k) · θ

2

)
dθ.

We can exchange the integral and the summation and then apply the product-to-sum trigonometric
identity:

ρ =
r⊕(n− 1)

22n−4
·
n−2∑
k=0

(
2n− 3

k

)∫ π

0

θ sin

(
θ

2

)
cos

(
(2n− 3− 2k) · θ

2

)
dθ

=
r⊕(n− 1)

22n−3
·
n−2∑
k=0

(
2n− 3

k

)∫ π

0

θ (sin((n− k − 1) · θ)− sin((n− k − 2) · θ)) dθ.

The final term in the sum k = n−2 is considered separately here. Integrating this particular term
by parts gives

r⊕(n− 1)

22n−3
·
(
2n− 3

n− 2

)∫ π

0

θ sin(θ) dθ

=
r⊕(n− 1)

22n−3
·
(
2n− 3

n− 2

)(
(−θ cos(θ))|π0 +

∫ π

0

cos(θ) dθ

)
=
r⊕(n− 1)

22n−3
· 1
2

(
2n− 2

n− 1

)
· π

=
πr⊕(n− 1)

4n−1

(
2n− 2

n− 1

)
. (⋆)

We reintroduce this term at a later stage. Considering the other terms from k = 0 to n− 3, using
integration by parts the integrals cancel and simplify to the following.

r⊕(n− 1)

22n−3
·
n−3∑
k=0

(
2n− 3

k

)(∫ π

0

θ sin((n− k − 1)θ) dθ −
∫ π

0

θ sin((n− k − 2)θ) dθ

)

=
πr⊕(n− 1)

22n−3
·
n−3∑
k=0

(
2n− 3

k

)
(−1)n−k

[
1

n− k − 1
+

1

n− k − 2

]
.

We can use a telescoping argument to rearrange the terms in the sum to be grouped by the fraction
1

n−k−2 from k = 0 to k = n− 4. Rearranging and adding limit terms gives

πr⊕(n− 1)

22n−3
·

((
2n− 3

0

)
(−1)n

n− 1
−
(
2n− 3

n− 3

)
+

n−4∑
k=0

(−1)n−k

n− k − 2

[(
2n− 3

k

)
−
(
2n− 3

k + 1

)])

=
πr⊕(n− 1)

22n−3
·

(
(−1)n

n− 1
− n− 2

2n

(
2n− 2

n− 1

)
−

n−4∑
k=0

(−1)n−k

n− k − 2
· 2n− 2k − 4

2n− 2

(
2n− 2

k + 1

))

=
πr⊕(n− 1)

22n−3
·

(
(−1)n

n− 1
− n− 2

2n

(
2n− 2

n− 1

)
− (−1)n

n− 1

n−4∑
k=0

(−1)k
(
2n− 2

k + 1

))
.
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Notice how the term (−1)n

n−1 corresponds to the term for k = −1 in the summation. Hence we can
shift the index to j = k + 1 and get

πr⊕(n− 1)

22n−3
·

(
−n− 2

2n

(
2n− 2

n− 1

)
− (−1)n

n− 1

n−4∑
k=−1

(−1)k
(
2n− 2

k + 1

))

=
πr⊕(n− 1)

22n−3
·

−n− 2

2n

(
2n− 2

n− 1

)
+

(−1)n

n− 1

n−3∑
j=0

(−1)j
(
2n− 2

j

) .

The partial alternating sum of binomial coefficients can be simplified to

πr⊕(n− 1)

22n−3
·
(
−n− 2

2n

(
2n− 2

n− 1

)
+

(−1)n

n− 1
· (−1)n−3

(
2n− 3

n− 3

))
=
πr⊕(n− 1)

22n−3
·
(
−n− 2

2n

(
2n− 2

n− 1

)
− 1

n− 1
· n− 2

2n

(
2n− 2

n− 1

))
=
πr⊕(n− 1)

4n−1
·
(
−n− 2

n

(
2n− 2

n− 1

)
− n− 2

n(n− 1)

(
2n− 2

n− 1

))
.

Reintroducing the term for k = n− 2 derived separately in (⋆) eventually simplifies to

ρ =
πr⊕
4n−1

(
2n− 2

n− 1

)
.

As n→ ∞, we can use Stirling’s formula to show that ρ converges to zero at a rate of order n−1/2:

ρ =
πr⊕
4n−1

(
2n− 2

n− 1

)
∼

√
πr⊕√
n
.
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Appendix C

List of countries and territories

The column labeled CC indicates what connected component of the worldgraph the entry is part of: 1 indicates the landmass comprising
Europe, Asia, Africa, and part of Oceania; 2 indicates the Americas; entries with no value in CC are part of much smaller components.

country name
ISO-2
code

dependency CC country name
ISO-2
code

dependency CC

Andorra AD independent 1 Laos LA independent 1
United Arab

Emirates
AE independent 1 Lebanon LB independent 1

Afghanistan AF independent 1 Saint Lucia LC independent
Antigua and

Barbuda
AG independent Liechtenstein LI independent 1

Anguilla AI United Kingdom Sri Lanka LK independent 1
Albania AL independent 1 Liberia LR independent 1
Armenia AM independent 1 Lesotho LS independent 1
Angola AO independent 1 Lithuania LT independent 1

Antarctica AQ several claims Luxembourg LU independent 1
Argentina AR independent 2 Latvia LV independent 1

American Samoa AS
United States of

America
Libya LY independent 1

Austria AT independent 1 Morocco MA independent 1
Australia AU independent 1 Monaco MC independent 1
Aruba AW Netherlands Moldova MD independent 1

Aland Islands AX Finland Montenegro ME independent 1

Azerbaijan AZ independent 1
Saint Martin (French

part)
MF France

Bosnia and Herz. BA independent 1 Madagascar MG independent
Barbados BB independent Marshall Islands MH independent

Bangladesh BD independent 1 North Macedonia MK independent 1
Belgium BE independent 1 Mali ML independent 1

Burkina Faso BF independent 1 Myanmar MM independent 1
Bulgaria BG independent 1 Mongolia MN independent 1
Bahrain BH independent Macao MO China 1

Burundi BI independent 1
Northern Mariana

Islands
MP United States

Benin BJ independent 1 Martinique MQ France
Saint Barthelemy BL France Mauritania MR independent 1

Bermuda BM United Kingdom Montserrat MS United Kingdom
Brunei BN independent 1 Malta MT independent
Bolivia BO independent 2 Mauritius MU independent

Bonaire, Sint
Eustatius and Saba

BQ Netherlands Maldives MV independent

Brazil BR independent 2 Malawi MW independent 1
Bahamas BS independent Mexico MX independent 2
Bhutan BT independent 1 Malaysia MY independent 1

Bouvet Island BV Norway Mozambique MZ independent 1
Botswana BW independent 1 Namibia NA independent 1
Belarus BY independent 1 New Caledonia NC France
Belize BZ independent 2 Niger NE independent 1
Canada CA independent 2 Norfolk Island NF Australia

Cocos (Keeling)
Islands

CC Australia Nigeria NG independent 1

Dem. Rep. Congo CD independent 1 Nicaragua NI independent 2
Central African Rep. CF independent 1 Netherlands NL independent 1

Congo CG independent 1 Norway NO independent 1
Switzerland CH independent 1 Nepal NP independent 1
Côte d’Ivoire CI independent 1 Nauru NR independent
Cook Islands CK New Zealand Niue NU New Zealand

Chile CL independent 2 New Zealand NZ independent
Cameroon CM independent 1 Oman OM independent 1

China CN independent 1 Panama PA independent 2
Colombia CO independent 2 Peru PE independent 2
Costa Rica CR independent 2 French Polynesia PF France

country name
ISO-2
code

dependency CC country name
ISO-2
code

dependency CC

Table C.1: List of countries and territories.
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country name
ISO-2
code

dependency CC country name
ISO-2
code

dependency CC

Cuba CU independent Papua New Guinea PG independent 1
Cabo Verde CV independent Philippines PH independent 1

Curacao CW Netherlands Pakistan PK independent 1
Christmas Island CX Australia Poland PL independent 1

Cyprus CY independent 1
Saint Pierre and

Miquelon
PM France

Czechia CZ independent 1 Pitcairn PN United Kingdom

Germany DE independent 1 Puerto Rico PR
United States of

America
Djibouti DJ independent 1 Palestine PS Israel 1
Denmark DK independent 1 Portugal PT independent 1
Dominica DM independent Palau PW independent

Dominican Rep. DO independent Paraguay PY independent 2
Algeria DZ independent 1 Qatar QA independent 1
Ecuador EC independent 2 Reunion RE France
Estonia EE independent 1 Romania RO independent 1
Egypt EG independent 1 Serbia RS independent 1

W. Sahara EH contested 1 Russia RU independent 1
Eritrea ER independent 1 Rwanda RW independent 1
Spain ES independent 1 Saudi Arabia SA independent 1

Ethiopia ET independent 1 Solomon Is. SB independent
Finland FI independent 1 Seychelles SC independent

Fiji FJ independent Sudan SD independent 1
Falkland Is. FK United Kingdom Sweden SE independent 1
Micronesia

(Federated States of)
FM independent Singapore SG independent

Faroe Islands FO Denmark
Saint Helena,
Ascension and

Tristan da Cunha
SH United Kingdom

France FR independent 1 Slovenia SI independent 1

Gabon GA independent 1
Svalbard and Jan

Mayen
SJ Norway

United Kingdom GB independent 1 Slovakia SK independent 1
Grenada GD independent Sierra Leone SL independent 1
Georgia GE independent 1 San Marino SM independent 1

French Guiana GF France 2 Senegal SN independent 1
Guernsey GG United Kingdom Somalia SO independent 1
Ghana GH independent 1 Suriname SR independent 2

Gibraltar GI United Kingdom 1 S. Sudan SS independent 1

Greenland GL Denmark 2
Sao Tome and

Principe
ST independent

Gambia GM independent 1 El Salvador SV independent 2

Guinea GN independent 1
Sint Maarten (Dutch

part)
SX Netherlands

Guadeloupe GP France Syria SY independent 1
Eq. Guinea GQ independent 1 eSwatini SZ independent 1

Greece GR independent 1
Turks and Caicos

Islands
TC United Kingdom

South Georgia and
the South Sandwich

Islands
GS United Kingdom Chad TD independent 1

Guatemala GT independent 2
French Southern

Territories
TF France

Guam GU
United States of

America
Togo TG independent 1

Guinea-Bissau GW independent 1 Thailand TH independent 1
Guyana GY independent 2 Tajikistan TJ independent 1

Hong Kong HK China 1 Tokelau TK New Zealand
Heard Island and
McDonald Islands

HM Australia Timor-Leste TL independent 1

Honduras HN independent 2 Turkmenistan TM independent 1
Croatia HR independent 1 Tunisia TN independent 1
Haiti HT independent Tonga TO independent

Hungary HU independent 1 Turkey TR independent 1
Indonesia ID independent 1 Trinidad and Tobago TT independent
Ireland IE independent 1 Tuvalu TV independent
Israel IL independent 1 Taiwan TW China 1

Isle of Man IM United Kingdom Tanzania TZ independent 1
India IN independent 1 Ukraine UA independent 1

British Indian Ocean
Territory

IO United Kingdom Uganda UG independent 1

Iraq IQ independent 1
United States Minor

Outlying Islands
UM

United States of
America

Iran IR independent 1
United States of

America
US independent 2

Iceland IS independent Uruguay UY independent 2
Italy IT independent 1 Uzbekistan UZ independent 1
Jersey JE United Kingdom Holy See VA independent 1

Jamaica JM independent
Saint Vincent and
the Grenadines

VC independent

Jordan JO independent 1 Venezuela VE independent 2

Japan JP independent 1
Virgin Islands

(British)
VG United Kingdom

Kenya KE independent 1 Virgin Islands (U.S.) VI
United States of

America
Kyrgyzstan KG independent 1 Vietnam VN independent 1
Cambodia KH independent 1 Vanuatu VU independent
Kiribati KI independent Wallis and Futuna WF France
Comoros KM independent Samoa WS independent

Saint Kitts and
Nevis

KN independent Kosovo XK partially recognized 1

North Korea KP independent 1 Yemen YE independent 1
South Korea KR independent 1 Mayotte YT France

Kuwait KW independent 1 South Africa ZA independent 1
Cayman Islands KY United Kingdom Zambia ZM independent 1

Kazakhstan KZ independent 1 Zimbabwe ZW independent 1

country name
ISO-2
code

dependency CC country name
ISO-2
code

dependency CC
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