EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

BACHELOR

Optimization of ticketing system for TIOBE Software B.V.

Swami, Dhwani

Award date:
2023

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d391180d-b3ca-4cf4-99fa-707811021c04

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Department of Mathematics and Computer Science
Stochastics Operations Research Group

TIOBE

(the software guality company)

Optimization of ticketing
system for TIOBE
Software B.V.

Bachelor Final Project

Dhwani Swami

Supervisors:
TU /e - Marko Boon, Jacques Resing
TIOBE Software B.V. - Paul Jansen, Laurens Jansen

Final Report

Monday 3™ April, 2023

Abstract

This study inspects the implementation of queueing theory to improve the ticketing system for
TIOBE B.V. This study aims to reduce the waiting times, and queue lengths and improve the
system efficiency. This is done by proposing a newer, modified version of their existing ticketing
system. The research first analyses the existing ticketing system, and later expands to analysing
the response of the ticketing system in various situations. Using these results, a recommendation
is made which takes into account the number of servers, queue length and waiting times.

This thesis proves how the practical applications of queueing theory can be used to solve

optimization problems in businesses such as TIOBE and how this theory can be used to improve
day-to-day business operations.

iii

Contents

Contents
1 Introduction
1.1 Problem Statement Lo
1.2 Research Questions
1.3 Significance Lo L
2 Model Description
2.1 The Process e
2.1.1 Tickets
2.1.2 Servers e
2.1.3 Process Flowchart
2.2 Theory & Methodology
2.2.1 Service Times & Arrival Times
2.3 Assumptions
2.4 Limitations
3 Simulation
3.1 Overview of the simulated system
3.1.1 Entities o
3.1.2 System Queues
3.1.3 Workflows
3.2 Events e
3.2.1 Arrival & Departure events for Queues
3.3 Simulation description
4 Results
4.1 Queueanalysis o
4.1.1 Queue Lengths
4.1.2 Queue Lengths at End-Of-Day
4.1.3 Waiting Times in Queues
4.2 Server analysiso
4.2.1 Work times of servers
4.2.2 Server tickets analysis L0
4.3 Ticketsanalysis Lo oL
4.3.1 Sojourn Time oL
4.3.2 On the basis of Priorities
5 Improving the system performance

5.1 Impact of insufficient information and tickets testing negative

5.1.1 Build up between Open state and Analysed state . .

5.1.2 Build up between Scheduled state and Verified state

W NN =

oo co Ut Ut

10

12
14

15
15
15
20
21
27
27
31

35
35
35
39
43
47
47
47
48
48
48

51
51
51
51

5.1.3 Effect on Mean Sojourn time 52

5.1.4 Effect on Priority tickets oo oL 54

5.2 Impact of adding servers L 54
5.2.1 Adding 28 engineers - Total 35 engineers 55

5.2.2 Suggested Model 59

6 Conclusions 61
References 63
Appendix 65
A Simulation Code 65
AT Classes v oo o e 65
A.2 Distributions e e e 68
A3 Future Event Set e 69
A4 Priority Queue e 69
AL Queue 70
A.6 Simulation Results 71
A.7 Main Simulation e e e e 74
A.8 Printing Aggregate results for multipleruns L 110

vi

List of Algorithms

0~ O U W N~

= = ©
W = O

Arrival Event on Open (S1) o ..o 27
Departure event from Open e 27
Arrival Event on Accepted (E[i]) . . .« o v v v v it i e 28
Departure event from Accepted (Ei]) oo o 28
Arrival event on Analysedo 28
Departure event from Analysed L oL oo 28
Arrival Event on Scheduled (E[é]) o o000 i 29
Departure event from Scheduled (Efi]) L L. 29
Arrival event on Implemented Lo L 29
Departure event from Implemented Lo oo 30
Arrival event on Verifiedo Lo 30
Departure event from Verified Lo o 30
End-Of-Day Event e 31

vii

Chapter 1

Introduction

Ticket lines can be found in hospitals, banks, retail stores, amusement parks, government agencies,
and a variety of other service systems. Ticket lines are the queues where customers arrive with their
requests or issues and wait to be served by a free server. Each customer is given a numbered ticket
upon arrival. When a server becomes available, the ticket numbers are called out in sequence, and
the holders of the tickets are served accordingly. Certain online services have also implemented
ticket queues. (Xiao, Xu, Yao & Zhang, 2022) Most queues are first-come-first-served (First In
First Out or FIFO) and are simulated by inputting the server’s average service time (for a partic-
ular distribution). In this paper, Priority Queues (Singh, Albert, Mieghem, Gurvich & Mieghem,
2022) are modelled alongside deques (docs.python, n.d.). These are used to create diversity (of
queues) that is appropriate for the problem and to support the complexity of the queueing system.

TIOBE B.V. is a software quality company and is specialized in assessing and tracking the
quality of software. They do so by applying several software metrics to it. TIOBE checks several
lines of software code for its customers each day. TiCS is their software quality framework that
allows their customers to effectively measure and monitor the software quality of their software
projects. (TIOBE, n.d.) Like any other company, TIOBE uses a ticketing system to track and
prioritise customer issues and requests. A ticketing system is an I'T service management platform.
The ticketing system provides TIOBE with a platform that helps it in connecting to all its cus-
tomers, organise their requests/issues and assign tasks internally. The platform of the ticketing
system is hosted on a separate server which thus can be accessed by anyone within the organiz-
ation. (Gohil & Vikash Kumar, n.d.) However, their ticketing system suffers from long queues,
extremely high waiting times, and tickets being in the system for several years. To solve this issue,
TIOBE proposed this project which can further aid them in making decisions on how to change
and improve their ticketing system.

For most queueing models with multiple servers, it is assumed that servers have equal cap-
abilities, and hence the choice of the server (to which the customer is assigned) doesn’t make a
difference (Garrido, 2009). However, in real life, and in the case of TIOBE, most servers' have
quite different capabilities, skills and paces of working. The challenging task of analysing a com-
bination of priority queues and deques in a multi-server system stems from the fact that jobs with
different priorities might be in service at the same time (at different servers). So the Markov
chain representation of the multi-class, multi-server queueing system appears to be necessary for
tracking the number of jobs of each class. (Harchol-Balter & Wierman, 2005)

Queueing theory is a mathematical framework that provides an in-depth understanding of
customer waiting times, server working time & idle time, and system performance. By applying
queueing theory to the ticketing system, this paper aims to determine the most efficient way to

IServers are employees and are an integral part of the software team. They actively work on tickets to resolve
the issue or request the customer has.

manage customer demand, reduce queue lengths and reduce waiting times for requests/issues.
(Adan & Resing, 2015) In doing so, it is hoped to provide valuable insights into how businesses
such as TIOBE can improve their ticketing system and provide better service to their customers
alongside improving their performance.

The significance of this study lies in its potential to provide practical solutions to such a
common business problem. By optimizing the ticketing system using queueing theory, businesses
such as TIOBE can improve customer satisfaction, reduce waiting times, reduce ticket build-up in
their system and increase their operational efficiency.

1.1 Problem Statement

Several ticketing systems have long waiting times, high abandonment rates and low server pro-
ductivity which could lead to customer dissatisfaction. This is something TIOBE wants to avoid.

A solution to this problem is to apply queueing theory to analyse and optimise their ticketing
system. This thesis aims to investigate how queueing theory can be used to optimize the ticketing
system and to develop results and suggestions for implementing these optimizations. Through
analysis of the system’s queueing characteristics such as arrival rates, service times, queue capa-
city and end-of-day queue lengths, the goal of this research is to identify the bottlenecks in the
system and further propose solutions to improve the overall system performance. The subsequent
objective of this thesis is to help TIOBE make improvements in their ticketing systems which will
lead to better customer satisfaction and increased server productivity.

1.2 Research Questions

What are the best ways for reducing waiting times (for issues and requests to be serviced), in-
creasing server productivity and improve system performance? How can queueing theory be used
to improve the operation of the ticketing system? Which state are the biggest bottlenecks in the
system?

In this paper, the analysis of several key performance indicators (KPIs) is performed. The KPIs
discussed are as follows -

1. Waiting times - The amount of time an issue or request (from a customer) waits in a queue
before it is served by a server.

2. Queue lengths - The number of issues or requests that wait (or pile up) before the server
can work on them.

3. Number of tickets resolved - The number of tickets that are solved and closed, and are
therefore incorporated into TIOBE’s software.

4. Sojourn times and Mean Sojourn times - Sojourn time is the amount of time an issue/request
spends in the system before being resolved and closed. The Mean Sojourn time is the average
of all Sojourn times (of the resolved issues/requests).

5. Work and idle time of servers - The Work time of a server is the amount of time the server
works on the request /issue before moving onto the next step in the system. The Idle time of
a server is the amount of time the server does not work or is ”idle” before a task is assigned
to them.

Specifically, this research will investigate the following sub-questions:

1. How can queueing theory be applied to the ticket system in a busy service environment?

2. What are the primary bottlenecks and inefficiencies in the system, and how do they impact
performance?

3. What are the most effective strategies for reducing waiting times, increasing server pro-
ductivity, and improving system performance, and how can these strategies be implemented
in the ticketing system?

Through answering these research questions, this thesis aims to give insights into how queueing
theory can be used to improve the ticketing system and to develop suggestions for implementing
these improvements in practice.

1.3 Significance

With the results from the simulation, potential bottlenecks, the system’s scalability and optimiz-
ing its performance can be identified. The simulation of the ticketing system also provides insights
into the system’s behaviour under various scenarios. For example, it is possible to simulate how
the system would respond to an increase in the number of servers, which can help in identifying
the potential performance increase/decrease of certain servers.

Hence, performing the simulation of the ticketing system is a valuable contribution as it provides
a thorough analysis of the system’s performance, recognising bottlenecks and helping in improv-
ing the system’s performance. Moreover, the results of the simulation can be used to improve
TIOBE’s ticketing system and help them provide a better service to its customers.

Chapter 2

Model Description

In this chapter, the model used to simulate TIOBE’s ticketing system is discussed. To imitate the
real world, a certain number of assumptions are made which are further discussed in this chapter.
Moreover, the limitations of these assumptions, the queueing model used and the important ele-
ments of TIOBE’s ticketing system are discussed in detail.

2.1 The Process
2.1.1 Tickets

Tickets in the context of ticketing systems are a method for tracking and resolving issues and
requests related to the software being developed by TIOBE (TiCS)'. A ticket is a request or is-
sue (sent to TIOBE) from customers, that should be worked on in order to resolve the customer
complaint and improve their software. The tickets are created, managed and tracked using a
ticket-tracking system called Redmine. TIOBE uses Redmine to organise, prioritise and manage
tickets.

When a customer faces a problem/issue with their software or has a request for a new feature
(in their next release), the customer informs TIOBE about it. Then, TIOBE creates a ticket for
said request/issue and is then assigned to the appropriate server. After going through all the
steps in the system, from analysing to testing & verification, the ticket is resolved & closed and
then the customer is notified about the same. On average, TIOBE receives 1600 tickets a year
and 400 per quarter. Generally, a ticket goes through 8-11 states before it exits the system or is
rejected/abandoned.

States

The State of a ticket is the position in which the ticket waits for it to be picked up by the server
for the next task/state. The name of the state signifies the task that has already been performed
(on the ticket).

The number of given states of a ticket is 8, they are as follows,

1. Open
The ticket has entered the system, has been opened and is waiting to be assigned to a server
(for the next task).

2. Accepted
The ticket has been accepted and is now waiting to be analysed. At this stage, the ticket is

Ihttps://www.tiobe.com/products/tics/

https://www.tiobe.com/products/tics/

also assigned to the server that will be performing the analysis and implementation. Once
analysed, the ticket leaves this state and moves on to the next one.

3. Analysed
Here, the ticket has been analysed and is waiting to be scheduled back to the server that
analysed it. Once the ticket is scheduled, it moves on to the next state.

4. Scheduled
In this state, the ticket is scheduled for a later time for the server to implement. Once the
ticket is implemented into TIOBE’s software, the ticket leaves the Scheduled state and moves
on to the next state.

5. Implemented
In this state, the ticket has been implemented and is waiting to be tested and verified. Once
the ticket is tested and verified, it leaves this state to move on to the next one.

6. Verified
In this state, the ticket has been verified and is waiting to be closed (i.e., leaving the system)
by the respective server.

7. Rejected
The ticket has been rejected due to certain issues? and has exited the system. This can
occur at any stage of the system.

8. Wait
In this state, TIOBE is waiting for extra info or extra action taken from entities outside
TIOBE. This could be a customer or it could be a supplier. Let’s give an example of both
to get this clear:

(a) Waiting for a supplier: Some tool is not working and can’t be fixed, only the supplier
can. Then TIOBE is waiting for an update from the supplier that the problem has
been fixed in a certain release.

(b) Waiting for the customer: If a ticket has been submitted by the customer but there is
vital information missing. Then TIOBE will ask the customer for this extra info and
wait for it.

These states can be used to provide a clear picture of the status of each ticket, and to help
manage the priorities and workload of the software team. The state of a ticket can be easily
changed, and the changes are automatically recorded for future reference.

Priorities of tickets

Ticket priorities are the levels of importance that are assigned to the ticket when it enters the
ticketing system. The priorities are assigned on the basis of how critical the issue is, the urgency
for the customer, how the issue impacts the customer’s business and how complex the issue is.
Assigning a level of priority is an important aspect as it aids the software team in targeting the
more important and critical issues first.

TIOBE mainly works with 5 different types of priorities, Blocking, Urgent. High, Normal and
Low. Their level of importance is as follows,

Low < Normal < High < Urgent < Blocking.

1. Low, Normal, High
These tickets are of almost the same priority (in the case compared to higher priorities),
High is given more priority than Normal and Normal is given more priority than Low.

2An issue is already solved; the issue is not worth solving; the issue appears to be no issue at all.

2. Urgent
The ticket with a priority Urgent jumps the queue (or goes to the top of the queue, there
aren’t any blocking tickets). Once there is an Urgent ticket in the system, it needs to be
solved within 2 weeks.

3. Blocking
Blocking is the most important priority. If a ticket with a priority of Blocking enters the
system, every server at each state will drop everything to work on that ticket until it is closed
and leaves the system.

Categories and Components

Category and component (as seen in Figure 2.1 are characteristics or elements used to identify the
tool in which the issue/request has occurred. The Category is used to classify the tickets on the
basis of the type of task being performed on it. ” Components” is used to categorize tickets based
on the specific component of the TiCS software being worked on. This field aids in providing a
more descriptive view of the work being performed and in tracking the progress of the component
of the software.

The ” Component” (of a ticket) is also used to categorize and organise information about servers
(such as their skills). This information is used to track the progress of the server and to identify
the trends and patterns in their work. There are 86 different components in the system and each
ticket falls under a particular component and each engineer is specialised in a certain number of
components (as seen in Figure 2.2).

TICSAnalyzer TICSQServer

?

o

o

TICSAnalyzer
Gcee

TICSAnalyzer

PR

Cpptest

TICSAnalyzer
Roslyn

?

v

v

GCC

C++Test

Roslyn

Component

Figure 2.1: Components and Categories

CC Integration

Code Checker

Category

2.1.2 Servers

”Servers” are the individuals responsible for working on the tickets and projects managed by
TIOBE. They include developers, project managers, product managers, software engineers and
other individuals who might be responsible for delivering the project. Servers are assigned certain
tickets and projects on the basis of their roles in the organisation, skills and their work area of the
software (the specific component(s) they work on).

There are three different types of servers, Engineers, Testers and the Process Manager.
There are 7 engineers (as seen in Figure 2.2 - E_1 to E_7) and each engineer is skilled in a certain
number of components. The engineers mainly have the job of analysing, implementing and testing
the implemented tickets. Including the engineers, there are 8 testers, who work on the implemented
tickets and test them to see if they are well implemented or not. If tested positive, the ticket goes
on to the next state, otherwise, it is returned to the scheduled queue of the engineer. The Process
Manager (denoted as S7 in this thesis) is the manager for the engineers and their job is to open,
accept, schedule and close the tickets. The Process Manager also tests & verifies tickets in case
there is a build-up of the Implemented state tickets. The queues for these servers are discussed in
depth in Section 3.1.2.

Engineer E_1 E_2 E_3 E_4 E_S E_6 E_7
C++test CPD TFS PMD GCC TICSc Coverity
VS C++ compiler (CL) Roslyn Visual Studio Code TICSCIl Clang TICScyclox Compile.py
dotTEST Resharper TFS (TFVC) C# CppCheck TICSpp flake8
I1AR IntelliJ Java Make C pylint
Jtest PMD Jenkins C++test C++ ESLint
VS C# compiler (CSC) TICSCil Eclipse dotTEST PC-Lint
ARM C# TICSSQL ARM tslint
Code Analyzer CPD Tsc
mlint Roslyn Angular
VS/MSBuild C++ e C(*E;‘(’:";p”er SCons
EWP Gradle Tsc
Caobertura Maven Python
VS/MSBuild C# Eclipse JavaScript
dotCover Visual Studio TypeScript
NetCore Visual Studio
Tools OpenCover PC-Lint
ReportGenerator Bamboo
Kell TeamCity
Matlab VS C++ compiler (CL)
coverage.py VS/MSBuild C++
Bullseye Cobertura
lcov VS/MSBuild C#
Jacoco NetCore
Istanbul OpenCover
Pycover coverage.py
LLVM Bullseye
MSBuild Icov
Coverity Jacoco
GCC Istanbul
Clang Pycover
CppCheck LLVM
Resharper MSBuild
Make

Figure 2.2: Engineers and their components

2.1.3 Process Flowchart

In this section, it is discussed how a ticket travels through the system, starting from its arrival
until it leaves the system.

Flowchart Description

Once the ticket arrives (Figure 2.3), it is opened by S;. The ticket is assigned a certain priority
based on customer request, urgency for the customer or how important it could be for the release.
If the ticket is of high priority, it is put in the start of the Accepted queue, or else after the last
ticket. Now, the ticket is assigned to one of the engineers by S; to analyse and implement. Once
the ticket is analysed and implemented, an engineer will pick it up to test it. This engineer is not
the same as the engineer who analysed and implemented the ticket. If it tests positive, it moves
on to be verified by the same engineer, else it will be sent back to scheduled (if tested negative).
Then, it is closed by S7. This process is discussed in depth in chapter 3.

Ticket Arrival

l

— Open

If the ticket doesn't have
enough information, it will

go back to open
Accepted
Analysed

If the ticket is a priority

ticket, engineer continues
working on it
If the ticket tests negative, it
- IMplemented goes to scheduled
Testing
Ticket tests positively

Figure 2.3: Process Flowchart

2.2 Theory & Methodology

A queueing network model (QN) is a collection of service centres representing the system re-
sources that provide service to a collection of customers that represent the users. (Goos et al.,
n.d.) Queueing networks are used to model and analyse several real-life systems. In this paper,
the dynamic assignment of servers to tickets is discussed. The number of tickets (or tasks) may
exceed the capacity for service and the aim is to maximize the system throughput.

In this thesis, a multi-class network similar to that of Kelly and Laws (Kelly & Laws, 1993)
is applied. Tickets of different types (i.e., different components) arrive at the network and go
through the system by one of the several possible routes® and the route of the ticket depends
on the type (in this case, component) of the ticket. The different routes that can be taken by
the ticket can be seen in Figure 2.4. The aim is to reduce the number of tickets stuck in the system.

As much as the Jackson network is the simplest to apply, the ticketing system discussed in
this thesis doesn’t follow the necessary conditions for it to follow the Jackson network. A Jack-
son network has a certain number of stations, where each station represents a queue in which
the service rate can be both station-dependent (different stations have different service rates) and
state-dependent (service rates change depending on queue lengths). The tickets travel through the
network on fixed routes. All tickets on a station belong to a single type and they have the same
service-time distribution. As a result, there is no priority in tickets and all tickets are served on a
first-come-first-served basis. (Goodman & Massey, 1984) However, in TIOBE’s ticketing system,
each ticket has a different type and on a station/system queue, multiple types of tickets can arrive.
Furthermore, most of the queues in the system are priority queues. Therefore, it is unlikely that
TIOBE’s ticketing system follows the Jackson network.

A number of important metrics, such as the average number of tickets, average waiting time in
a queue and average waiting time in the system characterise this model. These metrics are used
to analyse the performance of the ticketing system in various conditions.

3A route in the network is the ordered set of service stations (or system queues) that the ticket goes through
before it leaves the system.

10

Buisofo
Ts

PayLIaA

Buikjon
1

~—sax

canmsod
PEURENENE
ay) saoq

Bupsa)
o,

WRISAS 9} YSNoIy} joxdL], :°g oINS

(paruowaydus)
anand

S

anand

Compouos)

~———{ anend

(uoneuniojur uaYNS
aney 3usaop Jaxon aus uaym) ananb uado
ay) 01 Juas s1 19

sesAjeue (pardaooy)
a3 +—— enend
(pardasoy)

sashjeue
g3 ~—— onend

(Buishreue sasAjeue :.“.nw:ows
sa
Jaye) Beq pasAreue
U 01 Juas s1 19401
e ‘d fungeqosd yum
sasheue (pardasoy)
(pasAreuy) bm T enend
sainpayos anand o
TS J2 e Ts
faoud
ejouy|
coskeun ___ (P1I920Y)
n T enend
sostoue __ (P21de20)
z3
sosAreue (pardasoy)
T3 < enend

198uiBus annoadsas oy Aq paruswaldui si
¥ BursAreue saye ybu 4xon Auioud &

(uado)

~——— anand +— [eAlIY 1LL

"epqure] = ajes feALY

[8'1] usemaq si 1 ‘sigisaL =1 |
("3) sieauibuz = ;301 T 3
unepn =1 S
PuUsET

11

2.2.1 Service Times & Arrival Times

The distribution used for the arrival times is exponential, making it memoryless. This distribution
is one of the widely used continuous distributions and is used to model the time elapsed between
several events. The scale parameter is the inverse of the rate at which the tickets arrive over a
period of time.

Now, the distribution used for the service times is an array of gamma distributions, the tick-
ets arrive randomly and are served by the servers (in accordance with the gamma distribution).
The gamma distribution is a flexible continuous distribution which is used to model the service
time distributions at different states. This distribution is useful for simulating service times as
the services require a non-negligible variability. The gamma distribution is used to model service
times for multiple server queueing systems since the tickets are served by several parallel servers.
To use the gamma distribution to model service times, the parameters of the distribution are
estimated from historical data provided by TIOBE’s Redmine UI.

The shape and scale parameters of the gamma distribution are estimated using means and vari-
ances. (Statistical Compendium, n.d.) These estimated parameters are then used to simulate
service times in the queuing model. Given the means (E[X]) and variances (¢2) provided for each
state (from historical data), these can be expressed in terms of the scaling parameter a = k and
inverse scale parameter or rate parameter g = % where (6 is the scale parameter) as,

Q@ «a

EX]=k0=— & 0> =kt* = — 2.1

[X] 3 52 (2.1)

and now substituting the sample estimates to obtain the method of moments estimates, the es-
timated parameters are,

(E[X])

EX]

& = 2

d:

(2.2)

g

While these are estimated parameters and gamma distributions are used to best estimate the
service times, future research of the company’s historical data is necessary to more accurately
identify the probability distributions of service times at different states. Future data analysis of
the service times in different states would lead to a model that is closer to reality.

2.3 Assumptions

Assumptions are important as they affect the research approach and the results. The following
assumptions were made to simplify the system while keeping the system close to reality -

Each server has unique components.

It is assumed that no components have multiple servers (engineers), i.e., the engineers don’t have
any overlapping components. In the situation where this assumption is not made, the tickets would
pile up for certain engineers and would unnecessarily overload certain engineers. This assumption
was made to make sure that the tickets are distributed evenly. Having several engineers working
on the same components of tickets increases the complexity of the simulation, hence making it
difficult to analyse and interpret results.

Each component and priority is equally likely to be assigned to a ticket.

To make sure that the tickets are distributed evenly amongst the servers, it is assumed that each
component is equally likely to be assigned to a ticket. By making this assumption, the system’s
complexity is reduced and maintains the scope of this thesis. In addition, each priority is equally
likely to be assigned to a ticket. This helps maintain variability in the kind of tickets entering

12

the system and further helps in the evaluation of the queues and how well the priority tickets are
handled.

Rejected state not taken into account.

Rejected tickets are assumed to have no impact on the ticketing system. The purpose of the
ticketing system simulation is to optimize the service of successful tickets, and not understand the
behaviour of rejected tickets. Here, the rejected tickets are assumed to be outside the scope of the
simulation.

Wait state not taken into account.

The wait state occurs mainly due to external factors such as waiting for suppliers and customers.
Since such factors are difficult to model perfectly, it is simpler to exclude the Wait state (as this
can add complexity to the simulation).

Independent server not taken into account.

Not only does the Independent server have his queue (like the engineers), but he also has an
additional workflow similar to S; (apart from the workflow similar to the engineers). This server
works with all states and works throughout the system. Since the Independent server works in all
the state queues, each queue has different handling. It is seen that some queues require special
handling (such as priority queues), and tickets from these queues need to be routed to a separate
queue to ensure that they are processed appropriately. However, this can increase delays and
complications in the handling of these tickets. Tickets need to be prioritized differently within
each queue. To implement this server such that he has his queue and multiple other queues, it is
quite complicated to implement his workflow into the simulation (while achieving close-to-reality
results).

Holidays, meetings and weekends not taken into account.

By including hours of holidays, weekends, meetings and other activities (where servers are not
working on the tickets), the complexity of the simulation drastically increases. This makes the
simulation more difficult to interpret and analysed. This assumption also reduces the complexity
as the individual servers have different sick leaves and personal days.

Service times

The service time distributions are in form of the gamma distributions, as discussed in section
2.2.1. However, the exact values that are used as parameters are approximations discussed with
TIOBE. The mean service times and variances assumed for each state are,

1. Open state - © = 2 minutes per ticket and o = 39.37 minutes,

2. Accepted state - p = 30 hours per ticket and o = 2.635 hours,

3. Analysed state - p = 20 minutes per ticket and o = 18.811 minutes,
4. Scheduled state - g = 20 hours per ticket and o = 5.099 hours,

5. Implemented state - © = 10 hours per ticket and o = 14.164 hours,

6. Verified state - © = 10 minutes per ticket and o = 48.591 minutes.

13

2.4 Limitations

It’s important to note that the system simulation can have certain limitations that can affect the
accuracy of the predictions -

Assumptions and simplifications

Although the assumptions and simplification (in section 2.3) are necessary to make the simulation
feasible and so they might not exactly reflect the real-world system. For instance, the simulation
assumes that all servers work on unique components, but that is not the case in real life.

Complexity and scale

TIOBE deals with 1600 tickets every year (on average) and over 33,000 tickets in the past 21 years.
As a consequence, the simulation might not be able to represent all of the relevant factors and
interactions the company has with the customers, suppliers and internally due to the magnitude
of tickets entering the system every year.

Human behaviour

Simulations usually don’t accurately reflect human behaviour. For example, the simulation of
the ticketing system assumes that the servers follow a certain work pattern (i.e., workflow) when
in reality the server behaviour is unpredictable and may vary widely from person to person.
(for example, checking emails, and getting coffee and lunch breaks). Due to the complexity of
implementing such behaviours, the servers adhere to their workflow and complex human behaviour
is not taken into account.

Unforeseen events

Sometimes, real-world events can deviate from the assumptions in unexpected ways. The sim-
ulation doesn’t take these into account which might result in an inaccurate representation of
the ticketing system. For example, the simulation doesn’t take into account how the COVID-19
pandemic might have affected the work of the servers or influenced the inflow of tickets.

14

Chapter 3

Simulation

In this section, the simulation used to evaluate the performance of the ticketing system used by
TIOBE is discussed. Simulating the ticketing system enables the analysis and modelling of the
queueing model in different situations, aiding in predicting how the system would respond to
different conditions. Furthermore, it is a cost-effective way to analyse and assess the system’s
performance before the changes could be implemented in the ticketing system of the company.
Simulating the model can help identify areas of improvement in the ticketing system and how the
improvements can be implemented. Lastly, due to the complexity of the system, mathematical
analysis is difficult to implement. Hence, simulating the model helps one study such complex
models with multiple servers and multiple queues.

The simulation model was developed using the discrete event simulation technique, which models
the system’s behaviour over time and analyses its performance under different situations. The
model was built using multiple libraries in Python, and it includes different modules and scripts
to represent the system’s components (as mentioned in section 3.1.1). The simulation considers
various parameters such as ticket processing time, ticket arrival rate and the number of servers
available.

The results from the simulation provide valuable insights into the ticketing system’s perform-
ance and helped in identifying potential bottlenecks. The outcomes of the simulation are used to
improve and optimize the ticketing system which can then help the company provide better service
to its customers. The simulation results provided valuable insights into the system’s performance
and helped in identifying potential bottlenecks and areas for improvement. The findings of the
simulation were used to optimize the ticketing system and provide better service to the company’s
customers

3.1 Overview of the simulated system

3.1.1 Entities

Entities refer to objects, variables, functions, and classes. All of these entities form the fundamental
building blocks in the code, and they are used to model and simulate the ticketing system.
The classes used in the code are described below.

Ticket Class

A ticket that enters the system has the following attributes:

1. Attributes

15

(a)

(b)

()

PRIORITY
Each ticket is assigned a priority upon arrival into the system (as seen in section 2.1.1).

COMPONENT
Every ticket that enters the system has a component that needs to be worked on (as
mentioned in 2.1.1).

STATE
There are 8 states under which a ticket could go through (as mentioned in 2.1.1). These
states progressively change as the ticket goes through the system.

SERVER
There are typically 3 servers who work on the ticket (as mentioned in 2.1.2).

POSITION (OR QUEUE NUMBER)
This is the attribute which indicates the queue number to which the ticket is added.
These queues are further discussed in section 3.1.2.

ARRIVAL TIME
Arrival time refers to the time at which the ticket arrives at the particular state/queue.

SYSTEM ARRIVAL TIME
System arrival time refers to when a ticket arrives in the system and is ready to be
processed.

ENGINEER
”Engineer” refers to the engineer that has been assigned to the ticket to perform analysis
and to implement the ticket.

TESTER
The tester attribute stores the tester that is allotted to the ticket (to perform testing).

TEST PROBABILITY
This is the probability with which the ticket tests positive and has the approval to be
verified (i.e., moving on to the next stage).

PROBABILITY

This is the probability with which the ticket goes back to open if it has insufficient
information, that is, it re-enters that system after a certain time once TIOBE has
sufficient information to process the ticket.

TICKET NUMBER
This is the ”ID” or unique number assigned to each ticket for identification.

2. Functions

(a)

Shifting to new position in the system
This function changes or shifts the ticket to its new position. It changes the ”State”and
” Arrival Time” attributes to do so.

Leaving the system
”leaveSystem” function makes the ticket leave the system i.e., once it has been resolved
and implemented.

Sorting

The function ”__It__” compares the priorities of the tickets and helps sort the tickets in
a queue.

Printing

The function ”__str__” prints the ticket number.

16

Engineer

The engineer class has the following properties:

1. Attributes

(a)

(h)

COMPONENT
There are several components under which a server could work (as mentioned in 2.1.1).

WORK TIME
This attribute stores the total time the engineer has been working.

IDLE TIME
This attribute stores the total time the engineer has been idle or not working.

TICKET
This attribute is to identify the ticket the engineer is working on currently.

QUEUE

"Queue” stores the tickets (objects of the Ticket class) which are in the engineer’s
queue. The engineer’s queue comprises tickets in the Accepted state and Scheduled
state.

IDLE
In 71dle”, a Boolean value of True or False is stored. It is set to True when the engineer
is idle and False when the engineer is working.

COUNTS
The following counts are used to track the frequency of the events in the simulation,
and these are used to implement the workflow for engineers (Figure 3.2),

i. ACCEPTED

This counts the number of tickets that have been analysed and are ready to enter
the Analysed queue, i.e., the number of tickets that have been worked on from the
Accepted Queue.

ii. IMPLEMENTED
This attribute counts the number of tickets that have been worked on by the
engineer from the Implemented Queue and are ready to be tested.

iii. SCHEDULED
This count stores the number of tickets that have been implemented and are ready
to enter the implemented queue, i.e., the number of tickets that have been worked
on from the Scheduled Queue.

ENGINEER NUMBER
This is the ”ID” or unique number assigned to each engineer for identification.

2. Functions

(a)
(b)

Dequeuing a ticket
The function ”dequeue” removes a particular ticket from the engineer’s queue (” Queue”).

Setting the engineer as working
This function adds the amount of time the engineer has been idle to ”Idle Time” after
storing the time the engineer begins working.

Setting the engineer as idle

This function adds the amount of time the engineer has been working to ”Work Time”
after storing the time the engineer begins being idle.

Printing

The function ”__str__” prints the engineer number.

17

Tester

1. Attributes

(a) TICKET
This attribute is to identify the ticket that is currently working on.

(b) IDLE
In ”Idle”, a Boolean value of True or False is stored. It is set to True when the tester
is idle and False when the engineer is working.

2. Functions

(a) Setting the tester as working
This function adds the amount of time the tester has been idle to "Idle Time” after
storing the time the tester begins working.

(b) Setting the tester as idle
This function adds the amount of time the tester has been working to ”Work Time”
after storing the time the tester begins being idle.

(¢) Printing
The function ” __str__” prints the string ”tester”.

S1 Server

1. Attributes

(a) TICKET

This attribute is to identify the ticket that is currently working on.
(b) IDLE

Here, similar to Tester and Engineer class, ”Idle” is set to True when the tester is idle

and False when the engineer is working.
(¢) COUNTS

i. OPEN
This counts the number of tickets that have been opened by the server.

ii. IMPLEMENTED
Similar to the Engineer’s count, the ”Implemented” count keeps track of the number
of tickets that have been implemented or have been worked on by the server.

iii. VERIFIED
This keeps the count of the number of tickets that have been closed by the server
and have left the system.

iv. ANALYSED
This attribute keeps track of the number of tickets that have been scheduled by
the server to engineers.

2. Functions

(a) Setting the S; as working
This function adds the amount of time the S; has been idle to "Idle Time” after storing
the time the S; begins working.

(b) Setting the S as idle
This function adds the amount of time the S; has been working to ”Work Time” after
storing the time the S; begins being idle.

(c) Printing
The function ” __str__” prints the string ”.S;”.

18

Queue & Priority Queue
1. Attributes

(a) TICKETS
In this attribute, we store the list of tickets entering the particular queue.

2. Functions '

(a) Adding ticket to queue
The function ”enqueue” adds the ticket (that is passed as a parameter) to the queue.
For the priority queue, after the ticket is queued, it is automatically sorted on the basis
of priority.

(b) Adding ticket to the start of the queue
The function ”enqueue_front” adds the ticket (that is passed as a parameter) to the
front of the queue. For the priority queue, after the ticket is queued, it is automatically
sorted on the basis of priority.

(¢) Removing the first ticket
The function ”dequeue[0]” removes the first ticket from the queue.

(d) Removing a particular ticket
The function ”dequeue_ticket” removes the ticket (that is passed as a parameter) from
the queue.

Future Event Set
1. Attributes

(a) EVENTS
Events are added to and removed from this list, which has a changeable size. The order
of these events should be determined by when they occurred. This structure will often
be a ”"binary heap” kind. A priority queue, sometimes known as a heap queue, is what
it is known as in Java and Python.

2. Functions

(a) Adding an event to the queue
The function ”add” enqueues the event (that is passed as a parameter) to the ”Events”
queue. This queue is automatically sorted on the basis of the time it occurs.

(b) Returning the next event
The function "next” returns the next event from the ”Events” queue. This queue is
automatically sorted on the basis of the time it occurs.

Events

1. Attributes

(a) TYPE
" Type” stores whether the Event is of type Arrival, Departure or End-Of-Day.

(b) SERVER
Here, the server who is responsible for handling the event and ticket is stored.

(c) TICKET
”Ticket” stores the ticket that has been involved in the event. For example, it stores
the ticket whose departure event is being handled.

LFor priority queues, each time a function is performed, the queue is sorted on the basis of priority.

19

(d) TIME
This stores the time at which the event is scheduled for.

(e) CANCELLING OF TICKET
The attribute ”iscancelled” stores a boolean value which tells us whether the departure
event is cancelled or not.

2. Functions

(a) Sorting
The function ”_1t__” compares the time of the events and helps sort the events on the
basis of the time in ascending order (the event that occurs first, goes first).

(b) Cancelling event
The ”cancel” function sets the attribute ”iscancelled” to true, which in turn helps to
identify whether the event is cancelled or not.

3.1.2 System Queues

In a ticketing system, system queues are the collection and queue of tickets waiting at a particular
state/stage that are waiting to be processed by the servers. When a ticket enters the system, it
is added to a queue that further organizes the tickets based on their priority and/or arrival time.
The queues ensure that tickets are handled in a timely and efficient manner, and higher priority
tickets receive attention before lower priority ones.

Open State & Queue

The Open queue of type ”Queue” (as mentioned in Section 3.1.1 under Queue & Priority Queue)
is at the start of the ticketing system and is the queue that has all the newly submitted issues and
tickets that have been opened and are waiting to be assigned to an engineer. When a customer
submits a new issue/query, it is added to the open queue (after being opened) and is waiting to
be assigned to an engineer.

The open queue’s main purpose is to provide a preliminary classification of incoming tickets.
The tickets are prioritised based on external and internal factors which in turn helps ensure that
the most important tickets are processed first. The open queue ensures the prioritization of the
tickets which avoids the servers from getting overloaded.

Accepted and Scheduled States - Engineer’s Queue

The engineer’s queues are all of type ” Priority Queue” (as mentioned in Section 3.1.1 under Queue
& Priority Queue). This queue has all the tickets that are assigned to the engineer for analysis
(i.e., in the Accepted state) and implementation (i.e., in the Scheduled state). The tickets are
sorted within the queue on the basis of priority and urgency, in turn allowing the engineers to
focus on the most important tickets first. In addition to that, each engineer’s queue is customized
in such a way that it reflects their skills and tools (i.e., the components they work with). This
aids in tickets being added to the queue of the right server (engineer), ensuring that the tickets
are handled by the most appropriate personnel. Engineers monitor their respective queues and
track the status of tickets and update the ticket details. Personalised queues allow the engineers
to focus on the work being assigned to them without being bothered by the new tasks coming in.

Analysed State & Queue

The analysed queue of tickets (of type ”Queue” - as mentioned in Section 3.1.1 under Queue
& Priority Queue) is the queue of tickets that are waiting to be scheduled so that they can be
implemented by the engineers in their software. The queue represents the backlog of tickets that
have not yet been scheduled by S7 to the respective engineers and have been analysed.

20

Implemented State & Queue

The Implemented queue of tickets (of type ”Priority Queue” - as mentioned in Section 3.1.1 under
Queue & Priority Queue) is the queue of tickets that have been implemented into the software by
the engineers and are waiting to be tested and verified by the tester or a different engineer (than
the one who implemented the ticket). The queue represents the ”"test backlog” that is, a list of
tickets that need to be tested to ensure the quality of the software made by TIOBE. The test
backlog is organized by priority.

The test backlog plays an important role in ensuring that the quality standards are met and
provides a structured way to test tickets such that they can be tracked and monitored within the
ticketing system. Due to regular updating and reviewing of the test backlog, TIOBE ensures that
testing efforts are focused on the most critical areas and that quality issues are addressed in a
timely manner.

Verified State & Queue

The Verified queue of tickets (of type ”Priority Queue” - as mentioned in Section 3.1.1 under Queue
& Priority Queue) is the queue of tickets that have been tested and verified by the testers and are
waiting to be closed by S7 so that they can leave the system. After the testing and verification
process, the ticket is added to the Verified queue, and it is ready for closure and leaving the system.
Once the ticket is closed, the respective customer is notified.

3.1.3 Workflows

A Workflow Flowchart is a pictorial representation that shows the sequence of events and tasks in
the process. It depicts how the server navigates through tasks throughout the day.

S1 workflow

Workflow description

S7 mainly performs closure of tickets, scheduling of tickets (to respective engineers) and testing &
verification of tickets if the test backlog is more than 20 tickets. As seen from figure 3.1, S first
opens 5-6 tickets at the start of the day. Once this task has been completed, he checks whether
there are any blocking and urgent priority tickets in the Verified queue that need immediate at-
tention, if there are any blocking or urgent priority tickets, he will first work on them and close
them. Next, S7 checks if there are any tickets in the verified queue, and if there are any tickets,
S1 will close them and then move on to check for tickets in the test backlog. If there are any
tickets in the test backlog, the server S; will test 1-2 tickets. He then moves on to check if there
are any tickets in the Analysed queue that are waiting to be scheduled. If there are any tickets
to be scheduled, S; will schedule 3-4 tickets. And lastly, S7 will check if the test backlog still has
tickets, and if there are, he will test 1-2 tickets. Even after searching through the workflow, if
there are no tickets for S; to work on, Sy is set to idle and he checks for new tickets to work on
from the beginning of his workflow (when new tickets enter the system). Every time the server is
done working at a particular stage of his workflow, he continues working from where he left off.

Dependencies

The completion of certain activities in the workflow may depend on the completion of other activ-
ities. For instance, testing of tickets from the text backlog can only be done if the engineers have
implemented tickets. The same applies when S has to schedule tickets to the engineers after they
have been analysed. Moreover, S; can only close tickets if there are tickets that have been tested
and verified by the testers. This implies that the workload of the server S; heavily depends on
the work of the engineers and testers. The only task for which S; does not depend on anyone is
the opening of tickets (as the arrival of tickets is influenced by external factors and not internal
system factors).

21

Engineers workflow

Workflow description

The engineers mainly perform three tasks - analysis of tickets, implementation of tickets (into
the TiCS software) and testing & verification of tickets. Following the workflow in figure 3.2, the
engineer first checks for high-priority tickets - blocking and urgent tickets. If there are any priority
tickets in their queue, the engineer first works on them and then moves on to the next stage of
the workflow. Now, once all the priority tickets are worked on, the engineer checks for tickets
that are in the accepted state, i.e. the tickets waiting to be analysed (as seen in section 3.1.2
under ” Accepted & Scheduled state - Engineer’s Queue”). The engineer works on a maximum of
2 tickets in the accepted state (if there are any) and then checks for tickets in the test backlog. If
there are any tickets in the test backlog, the engineer picks up the one they have not worked on,
i.e. the engineer tests a ticket that another engineer implemented.

If the test backlog has a non-zero length, the engineer test 1-2 tickets and then moves on to
the next stage of their workflow - checking if there are any tickets that were scheduled for them.
The engineer checks in their queue if there are any tickets that are in the scheduled state i.e.,
there are tickets waiting to be implemented into the TiCS software (as seen in section 3.1.2 under
” Accepted & Scheduled state - Engineer’s Queue”). If there are tickets in the scheduled state in
the engineer’s queue, the engineer will implement a maximum of 2 tickets. Even after searching
through the workflow, if there are no tickets for the engineer to work on, the engineer is set to idle
and they check for new tickets to work on from the beginning of their workflow (when new tickets
enter the system). Every time the server is done working at a particular stage of its workflow,
they continue working from where it left off.

Dependencies

Like the server Si, the engineers have certain dependencies as well. The engineer, for example,
needs to wait for S7 to open, accept and assign the tickets to them so they can start working on
it and analysing it. Similarly, the engineer has to wait for S; to assign (non-priority) tickets to
them (from the analysed queue) so they can continue working on (i.e., implement) the tickets they
analysed. Also, the engineer must wait for other engineers to implement tickets before testing
them.

Tester workflow

Workflow description

The tester performs mainly one task - testing & verification of tickets. Following the workflow in
figure 3.3, the tester first checks if there are any priority tickets in the implemented queue (that is
the queue of tickets waiting to be tested and verified - as seen in section 3.1.2 under ”Implemented
state & Queue”) and if there are, the tester will first test and verify these priority tickets and then
move on to his next task. Now, the tester will check if there are any tickets in the implemented
queue and if there are, the tester will work on them and test & verify them. If there are no tickets
for the tester to work on (after all these searches), the tester will be set to idle. The tester checks
for new tickets to work on from the beginning of his workflow (when new tickets enter the system).
Every time the server is done working at a particular stage of its workflow, they continue working
from where it left off.

Dependencies

The tester heavily depends on S7 and the engineers to complete their tasks so he can start working.
S1 should be scheduling and assigning tickets on time and the engineers should finish analysing
and implementing their tickets on time. If these tasks are not performed timely, the tester has no
ticket to work on.

22

Difference in workflows

The main differences between the engineers, tester and the server S; working patterns are -

1. The engineers are the only servers who have specific skills (i.e., components). This server
can only work on a certain type of components, whereas, S; and the tester have no such
restriction.

2. The engineers have their own queue (where tickets of state Accepted and Scheduled enter)
and work on the Implemented queue, while the server S; works on multiple queues and the
tester works on just one queue. Moreover, the tester only works on the Implemented queue
(as his main tasks are testing and verifying).

3. While the server S; has a start-of-day task (opening of tickets), the engineers and tester
continue working on what they were working on the previous day.

4. While the server S; and the engineers have counts to keep track of how many tickets they
work on (in a particular state), the tester keeps working on the implemented queue without
keeping a queue (as testing and verification are his primary tasks).

23

Open 5-6 new tickets that
have come in at start of the
day

Check for new tickets

Blocking tickets > 0

YES.

NO

l

!

Work on blocking tickets

Urgent tickets > 0

YES.

Pick up where left oﬁ4|

Verified Queue >0

Work on urgent tickets

<«~—————Pick up where left oﬂQ

YES.

Close tickets

Pick up where left off

Implemented Queue >0

YES.

Analysed Queue >0

Test 1-2 tickets

«——Pick up where left off
YES.

Schedule 3-4 tickets

0 < Implemented Queue < 20

Pick up where left off

YES

NO

|

S 1is set toldle

Test 1-2 tickets

Figure 3.1: S; Workflow

24

Blocking Tickets > 0

Check for new tickets

YES

NO

Work on Blocking

tickets

l«—————Pick up where left off.

Urgent tickets > 0

YES

NO

Work on Urgent
tickets

l«——————Pick up where left off.

Accepted Queue >0

YES

Analyse maximum

2 tickets

Implemented Queue >0

YES

l«——Pick up where left off

Test 1-2 tickets

Scheduled Queue >0

l«——Pick up where left off.

YES

NO

Work on maximum

2 tickets

Engineer set to Idle

Figure 3.2: Engineer Workflow

25

Blocking Tickets > 0 YES

Test Blocking
tickets
NO
l«——————Pick up where left off
Urgent tickets > 0 YES
Test Urgent tickets
NO
l«——————Pick up where left off
Check for new tickets
Implemented Queue >0 YES
Test tickets
NO
l«————————Pick up where left off.
Set Tester to idle

Figure 3.3: Tester Workflow

26

3.2 Events

Events are the occurrences that take place in a queueing system. In queueing theory, analysing
these events and their effects on the model is an essential part. By modelling these events, several
predictions are made, especially the prediction of performance measures such as waiting times,
queue lengths, and service times. These predictions are significant in improving the operation of
the simulated ticketing system. The events that are dealt with in the ticketing system are - Arrival
events, Departure events and End-Of-Day events.

3.2.1 Arrival & Departure events for Queues

In this section, the handling of arrival and departure events from queues is discussed as pseudo-
codes and algorithms. These pseudo-codes are discussed in depth in the section 3.3.

Algorithm 1 Arrival Event on Open (S7)

1: procedure ARRIVAL

2 Create ticket with random attributes (component & priority)

3 Add ticket to Queue > Queue sorts the tickets on the basis of priorities
4: Remove ticket from Open queue

5 if S; is idle then

6 Schedule departure at ¢ + service time (b)

7 Update ticket attributes > Attributes (such as waiting time and arrival time) , assign

new state, assign time at which server stopped being idle etc.
Assign S as working on ticket

%

9: Schedule next arrival at ¢ + interarrival time (a)

Algorithm 2 Departure event from Open

1: procedure DEPARTURE FROM OPEN

2 140

3 while i < N do

4: if E[i] component is same as the ticket component then
5 Schedule Arrival at E[i] Queue at t

6 ~ goto here

1=1+1

7 here:

8: Check S7’s decision tree

9: if there is no ticket to work on then
10: Set S; to idle
11: else
12: Change ticket attributes (which server was working on)
13: Change server attributes
14: Schedule departure at time t + b
15: Remove ticket from the respective queue

27

Algorithm 3 Arrival Event on Accepted (E[i))

1: procedure ARRIVAL

2 Add ticket to Queue > Queue sorts the tickets on the basis of priorities
3 if ticket priority is blocking then

4: Cancel departure event of ticket they were working on

5: Change ticket attributes
6
7
8
9

Change server attributes
Schedule departure at time ¢ + b
Remove ticket from queue

else if E[i] is idle then

10: Schedule departure at t + b

11: Remove ticket from queue

12: Update ticket attributes

13: Assign E[i] as working on ticket

Algorithm 4 Departure event from Accepted (E[i])

1: procedure DEPARTURE FROM ACCEPTED

2 if ticket is a priority ticket (Blocking) then

3 Schedule arrival at the implemented queue at time ¢

4: else

5: With probability p schedule arrival at time ¢ in analysed bag

6 With probability 1 — p schedule arrival at time ¢ in open queue

7 Check E[i] decision tree to determine next queue/ticket

8 if there is no ticket to work on then

9: Set server attribute to idle > Server here is F[i]
10: else
11: Change ticket attributes

12: Change E[i] attributes

13: Schedule departure at time ¢t + b
14: Remove ticket from queue

Algorithm 5 Arrival event on Analysed

1: procedure ARRIVAL ON ANALYSED
2 Add ticket to Bag

3 if S; is idle then

4: Change ticket attributes

5 Change S attributes

6 Schedule departure at t + b

7 Remove ticket from queue

Algorithm 6 Departure event from Analysed

1: procedure DEPARTURE FROM ANALYSED
2 Schedule arrival at E[i] queue at time ¢
3 Check Sp’s decision tree to see which queue they’ll work on
4: if no ticket to work on then
5: Set server S attribute to idle
6 else

7 Change ticket attributes

8 Change server attributes

9 Schedule departure at time ¢ + b

10: Remove ticket from queue

28

Algorithm 7 Arrival Event on Scheduled (E[i])

1: procedure ARRIVAL ON SCHEDULED

2 Add ticket to Queue > Queue sorts the tickets on the basis of priorities

3 if E[i] is idle then

4: Schedule departure at ¢t + b

5 Remove ticket from queue

6 Update ticket attributes > Attributes (such as arrival time, work time), assign new
state, assign time at which server stopped being idle etc.

7: Assign E[i] as working on ticket

Algorithm 8 Departure event from Scheduled (E[i])

1: procedure DEPARTURE FROM SCHEDULED

2 Schedule arrival in the implemented queue at time ¢
3 Check E[i]’s decision tree

4: if no ticket to work on then

5: Assign E[i] as idle
6

7

8

9

else
Change ticket attributes
Change server attributes
Schedule departure at time ¢ + b
10: Remove ticket from queue

Algorithm 9 Arrival event on Implemented

1: procedure ARRIVAL ON IMPLEMENTED
2 Add ticket to Queue
3 10
4: while i < N do > N is the number of testers
5: if T[i] is idle AND TVi] # E[i] then
6 Change ticket attributes
7 Change server attributes
8 Schedule departure at time ¢ + b
9: Remove ticket from queue
10 L
11: if ticket priority is Blocking then
12: k<0
13: while £ < N do > N is the number of testers
14: if server T'[i] not working on a Blocking ticket & T'[i] # E[i] then
15: Cancel departure event of ticket they were working on
16: Change ticket attributes
17: Change server attributes
18: Schedule departure at time ¢ + b
19: Remove ticket from queue
20: i :bk%*c_a'_alf

29

Algorithm 10 Departure event from Implemented

1: procedure DEPARTURE FROM IMPLEMENTED

2 if (random) test with probability ¢ is negative then
3 Schedule arrival at time ¢ at E[i] scheduled queue
4 else

5: Schedule arrival at time ¢ in verified queue

6 Check tester’s decision tree

7 if no tickets to work on then

8 Assign Ti] as idle

9: else

10: Schedule departure at time t + b

11: Remove ticket from queue

12: Change ticket attributes

13: Change server attributes

Algorithm 11 Arrival event on Verified

1: procedure ARRIVAL ON VERIFIED

2 Add ticket to Queue

3 if S; is idle then

4 Change ticket attributes

5: Change server attributes

6 Schedule departure from the system at time t + b
7 Remove ticket from queue

8
9

else
if ticket has priority (blocking) then

10: if S7 is not working on priority (blocking) then
11: Cancel departure of ticket (they are working on)
12: Change ticket attributes
13: Change server attributes
14: Schedule departure from the system at time ¢ + b
15: Remove ticket from queue

Algorithm 12 Departure event from Verified

1: procedure DEPARTURE FROM IMPLEMENTED
2 Update performance measures

3 Check S7’s decision tree

4: if no ticket to work on then

5: Assign S, as idle

6 else

7 Change ticket attributes

8 Change server attributes

9: Schedule departure at time ¢ + b

10: Remove ticket from queue

30

Algorithm 13 End-Of-Day Event

1: procedure END-OF-DAY

2 Performance measures for the day are updated

3 All counters (for every server - Engineers and Sp) are set to 0
4: if 57 is idle and is not working on any ticket then

5: Remove a ticket from the Open queue

6 Change ticket attributes

7 Change server attributes

8 Schedule departure at time t + b

9

: else
10: if the ticket S; is working on is not priority then
11: Cancel departure event of the current ticket S; is working on
12: Remove a ticket from the Open queue
13: Change ticket attributes
14: Change server attributes
15: Schedule departure at time ¢ + b
16: Remove ticket from queue

17: Next End-Of-Day event is scheduled at t + 8 x 3600

3.3 Simulation description

As seen in figure 2.4, the ticket arrives at the system at the rate of A = 365_85‘,1% ~ 5 tickets
per day. Moreover, as mentioned in the section 2.2.1 this rate is used for simulating the expo-
nential distribution of the arrival of tickets. The tickets arriving are then opened by S; with a
mean service time of 2 minutes per ticket (as mentioned in section 2.3) and this is handled in
the Arrival event of the open state (in algorithm 1). Once the ticket is opened, it departs to the
appropriate engineer (in algorithm 2). The engineer is chosen by matching their component with
the ticket’s component, i.e., the engineer should have skills in the component of the ticket that
is being assigned. Once the ticket departs from the Open queue, it is added to the queue of the
appropriate engineer. The tickets are sorted based on priority to ensure that the critical tickets
(i.e., the ones with the highest priority) are serviced first. Upon arrival (in algorithm 3) into the
engineer’s (priority) queue (in the Accepted state), the ticket waits to be analysed by the engineer.
If it is a priority ticket (blocking or urgent), the current task is cancelled if the current ticket being
served is not a priority ticket, else the engineer will first finish working on the current priority
ticket before picking up the next one. Once the engineer is done analysing the ticket, a departure
event is scheduled for this ticket from the engineer’s queue at time ¢ + b, where t is the current
time and b is the service time. When the departure event is being handled, the ticket is dequeued
from the engineer’s queue, the ticket attributes are updated and the engineer is set as working.

Now, when the ticket is departing (in algorithm 4) from the engineer’s queue (Accepted state),
the arrival of the ticket is scheduled at the Analysed queue. This only happens if the ticket has
sufficient information. If the ticket has insufficient information (from the customer), the ticket is
sent back to open with probability 1 —p, else the ticket moves onto the next state (Analysed) with
probability p. Once this arrival is scheduled, the engineer checks their workflow to determine their
next task (as discussed in section 3.1.3). If there are no tickets to be worked on by the engineer,
they are set to idle. When handling the arrival event in the Analysed queue (in algorithm 5), the
ticket is first added to the queue (which is a dequeue) where the ticket waits to be scheduled by
S1. It is checked whether the server S; is idle or not, if he is, S7 schedules the ticket back to the
engineer who analysed the ticket and a departure event from the Analysed queue is set up and
the ticket is dequeued from the queue. The server S is set as working on the ticket and the ticket
attributes are updated accordingly. When the ticket is leaving the Analysed queue, its arrival is
first scheduled in the engineer’s queue, as seen in algorithm 6. Once the arrival event is scheduled,

31

the server S7 checks his workflow (discussed in section 3.1.3) to foretell his next task. If he has no
ticket to work on, he will be set to idle.

After leaving the Analysed queue, the ticket enters the engineer’s queue again. Upon the ar-
rival of the engineer’s queue (in the Scheduled state, as seen in algorithm 7), the ticket is added
back into the engineer’s queue where it waits to be implemented by the engineer. It is now checked
if the engineer is idle and if they are indeed idle, the engineer starts working on (implementing)
the ticket, setting the engineer as working. Furthermore, a departure event is scheduled from the
engineer’s queue and the ticket attributes are updated accordingly. Upon handling the departure
event from the engineer’s queue (in the Scheduled state, as seen in algorithm 8), an arrival event
is scheduled at the Implemented queue (indicating that the ticket is moving onto the next state).
The engineer then checks their workflow to foretell their next task (as discussed in section 3.1.3).
If the engineer has no tickets to work on, the engineer is set to idle. Once the ticket leaves the
engineers’ queue (Scheduled state), it then arrives at the Implemented queue where it waits to
be tested and verified by a server. Upon arrival at the Implemented (priority) queue (as seen in
algorithm 9), the ticket is added to the queue. Now, the system searches for a free server amongst
the engineers (excluding the engineer who analysed and implemented the ticket) and the main
tester. Once the system has found the free server, the server starts the testing and verification
process of the ticket and is set to working. Furthermore, a departure event from the Implemented
queue is scheduled and the ticket is removed from the queue. If no servers are free and the ticket
is a priority ticket, a server is searched for who is not working on a priority ticket and is not the
engineer who analysed and implemented the ticket. Once such a server is found, the departure of
the ticket they are currently working on is cancelled, and the server starts working on the priority
ticket and is hence set as working. Further, a departure event is scheduled for this ticket from the
Implemented queue and the ticket attributes are updated accordingly.

While leaving the Implemented queue (as seen in algorithm 10), it is first checked whether the
ticket tested positive (i.e., it can move onto the next state) or negative (i.e., it will have to be sent
back to the engineer who implemented it). If the ticket tests negative with probability ¢, then an
arrival is scheduled at the engineer’s queue (i.e., the engineer who analysed and implemented the
ticket). Else, when the ticket tests positive, an arrival is scheduled at the verified queue (indicating
that it has been successfully tested and verified). Once these arrivals are scheduled, the server
(who tested the ticket) checks their workflow; if the server is an engineer, the engineer checks their
workflow (as discussed in section 3.1.3) and if the server is the tester, he will check his workflow
(as discussed in section 3.1.3). If there are no tickets for the server to work on, the server is set to
idle. Upon departure from the Implemented queue, the ticket arrives at the Verified queue. When
handling the arrival event at the Verified (priority) queue (as demonstrated in algorithm 11), the
ticket is first added to the queue, where the ticket waits to be closed by S;. If the server S is
idle, he works on the ticket right away and therefore is set as working. Furthermore, a departure
event from the Verified queue is scheduled for the ticket, the ticket is removed from the queue and
the ticket attributes are updated. Else, if the ticket is a priority ticket and S; is not working on
a priority ticket, the departure event of the current event is cancelled for the current ticket and
S1 starts working on the priority ticket, hence setting him as working. Now, a departure event is
scheduled for the ticket from the Verified queue, the ticket is removed from the queue and the ticket
attributes are updated accordingly. While handling the departure event from the Verified queue
(in algorithm 12), the performance measures (such as sojourn time and waiting times) are updated
and the ticket leaves the system. Once the ticket has left the system, S; checks his workflow (as dis-
cussed in section 3.1.3) to determine his next task. If he has no tickets to work on, 57 is set to idle.

After every 8 hours, an End-Of-Day event is scheduled (as seen in algorithm 13). At the end
of the day (i.e., after 8 working hours), a new day starts and all the counters for the servers are
reset. The day starts with S7 opening the tickets that entered the system at the start of the day.
If the ticket S; was working on from the previous day is a priority ticket, he will continue working
on it, else the departure event of that ticket will be cancelled and S; will first work on the Open

32

queue. When Sy is working on the tickets, a departure event is scheduled (from the Open queue)
and the ticket is removed from the Open queue. Furthermore, the ticket attributes and server
attributes are updated. And lastly, the next End-Of-Day event is scheduled after 8 hours.

33

Chapter 4

Results

In this chapter, the results of the simulation study on the ticketing system for TIOBE are presen-
ted. The simulation was modelled to evaluate the system’s performance under different scenarios
and potential bottlenecks.

The simulation helped in identifying potential bottlenecks in the system. For instance, it was
found that the ticket processing time was a critical factor that affected the system’s performance.
By reducing the ticket processing time, one can significantly improve the system’s response time
and reduce the average wait time for customers.

In this chapter, the analysis of results from simulating the current system is done assuming that
the tickets always have sufficient information and always test positive. This means that the tick-
ets go through the system without interruptions due to external factors and tests performed by
the testers (mathematically, the probability of tickets being sent back to previous states due to
external factors or negative testing is zero). The simulation is logged for 5 years, over 10 times to
accumulate dependable results.

4.1 Queue analysis

4.1.1 Queue Lengths

The analysis of the ticketing system revealed significant differences in the queue lengths for tickets
in different states. Specifically, it is established that tickets in the Accepted state had consistently
longer queue lengths compared to tickets to the other states. To collect data on the queue lengths,
the simulation logs over a period of 5 years (and 10 times). A Python script is used to extract the
queue lengths for each state and plotted the data using a histogram chart. The analysis revealed
that the average queue length for different states can be seen in Table 4.1.

Mean Queue | Standard deviation Rate of increase 95% Confidence

State of Queue

length of queue length Interval
(per day)

Open 0.343 2.066 0.0 [0.216, 0.471]
Accepted 1950.601 1108.863 2.119 [1931.393, 1969.81]
Analysed 0.0148 0.174 0.0 [0.0032, 0.0264]
Scheduled 216.466 125.543 0.239 [203.044, 229.887]

Implemented 0.0152 0.130 0.0 [0.0128, 0.0175]
Verified 0.0521 0.45 0.0 [0.0323, 0.0719]

Table 4.1: Queue lengths in states

35

It is believed that the long queue lengths for ” Accepted” tickets may be due to a backlog of un-
resolved issues, which could be serviced by improving the prioritization and assignment of tickets
to the engineers. On the other hand, it is necessary to increase the number of engineers in order
to handle the higher volume of ” Accepted” tickets. Moreover, it is observed that the verified and
analysed queues tend to have the highest probability to have a queue length of 0 (with a probability
close to 1, as seen in figures 4.6 and 4.3), followed by the Implemented queue (P(Q = 0) ~ 0.99,
as seen in figure 4.5), Open queue (P(Q = 0) = 0.95, as seen in figure 4.1), Scheduled queue
(P(Q = 0) ~ 0.0015, as seen in figure 4.4) and Accepted queue (P(Q = 0) ~ 0.000245, as seen in
figure 4.2). Additionally, the probability of queue lengths for all states decreases to 0 as the queue
lengths increase, however, for Accepted and Scheduled states that are not true. It is also indicated
that the rate of increased tickets in the Accepted state and Scheduled state is positive, suggest-
ing that as the number of days (the system is being run) increases, the queue length increases.
Furthermore, the rate of increase for the Accepted state is much higher compared to the rate of
increase for the Scheduled state, signifying that tickets pile up much faster at the Accepted state
as compared to the Scheduled state. In addition to that, it is observed that the Accepted and
Scheduled states have the widest confidence intervals. This indicates that the build-up in these
two states is higher and more unstable.

In conclusion, this analysis suggests that the ticketing system could benefit from improvements

to reduce the queue lengths for ” Accepted” tickets. By dealing with this issue, the system could
improve its overall efficiency and provide a better user experience for customers.

Queue Lengths (Open Queue)

104

0.8 1

06 4

04 1

02

P (Q = k) (Probability of Queue length being k)

DU = — T T T T T

Figure 4.1: Queue Length at Open

36

k) (Probability of Queue length being k)

PO =

k) (Probability of Queue length being k)

P(Q =

Queue Lengths (Accepted Queue)

0.00175 A

0.00150 4

0.00125 4

0.00100 4

0.00075

0.00050 4

0.00025 4

0.00000 -

o 200 400 600 800

Figure 4.2: Queue Length at Accepted

Queue Lengths {Analysed Queue)

1000

104

0.8 -

06 1

04 1

02

00 -

Figure 4.3: Queue Length at Analysed

37

P (Q = k] (Probability of Queue length being k)

P (Q = k) (Probability of Queus length being k)

Queue Lengths (Scheduled Queue)

0010 A

0008 -

0006 1

0004 A

0.002

0000 -

0 100 200 300 400

Figure 4.4: Queue Length at Scheduled

Queue Lengths (Implemented Queue)

500

110

0E

06 1

04 A

Figure 4.5: Queue Length at Implemented

38

Queue Lengths (Verified Queue)

110 1

0 4

06 1

04

02 1

P iQ = k) (Probability of Queue length being k)

I]U = T T T T T

Figure 4.6: Queue Length at Verified

4.1.2 Queue Lengths at End-Of-Day

The analysis of the number of tickets in the queues at the end of the day revealed that at the
end of the day, the queue lengths in different states varied significantly. It is observed that the
Accepted state has the highest queue length, followed by the Scheduled state.

Number of Tickets per day - Open queue

Tickets
(1]

T T T T T T
0 250 500 750 1000 12500 1500 1750
Day

Figure 4.7: Queue Length at Open (End-Of-Day)

It is observed that the queue lengths at the end of the day, the queue length in the Accepted
state (Figure 4.8) and the Scheduled state (Figure 4.10) keep on increasing and never stabilise.
This leads one to believe that the system is unstable due to unresolved tickets piling up in these
two states. And so, these states are the potential bottlenecks of the ticketing system. On the
other hand, the queue lengths in the Open (Figure 4.7), Analysed (Figure 4.9), Verified (Figure
4.12), and Implemented (Figure 4.11) states are stable and do not exceed a certain value. It is
believed that this is due to the fact that the service times in these states are much lower than

39

Tickets

Tickets

Number of Tickets per day - Accepted queue

4000

3500 1

3000 4

2500

2000 1

1500 1

1000 1

500 4

T
250

500

750

1000
Day

T
1250

T
1500

T
1750

Figure 4.8: Queue Length at Accepted (End-Of-Day)

Number of Tickets per day - Analysed queue

14

12

10 1

0.8 1

0.6 1

04 1

0.2 1

00 A

T
250

500

750

1000
Day

T
1250

T
1500

T
1750

Figure 4.9: Queue Length at Analysed (End-Of-Day)

40

Tickets

Tickets

Number of Tickets per day - Scheduled queue

400 1

300 1

200 4

100 4

T T T T T
0 250 500 =00 1000 1250 15000 1750
Day

Figure 4.10: Queue Length at Scheduled (End-Of-Day)

Number of Tickets per day - Implemented queue
0.30

0.25 1

0.20 1

0.15 4

0.10 1

0.05 1

0.00 1

T T T T
0 250 500 =00 1000 1250 1500 1750
Day

Figure 4.11: Queue Length at Implemented (End-Of-Day)

41

Number of Tickets per day - Verified queue

124

10 A

0.5 1

0.6 1

Tickets

04 1

0.2 1

00 A

T T T T T
0 250 500 750 1000 1250 1500 1750
Day

Figure 4.12: Queue Length at Verified (End-Of-Day)

the service times in the Accepted and Scheduled states. It can also be deduced that due to the
bottlenecks at the Accepted and Scheduled states, not all tickets reach the Analysed, Implemented
and Verified states implying that the arrival rate in these states is quite low. Even though the
mean service time in the Implemented queue is 10 hours, the queue is stable due to the number
of servers actively working on the queue (7 Engineers and 1 tester).

Since the Accepted and Scheduled states are a part of the engineer’s queue, the End-Of-Day
queue lengths for the engineers’ queues are depicted below.

Engineer Queues

1600 1 —— Engg 1 "
1400 |
1200 1
1000 1

800 1

Tickets

600 1

400 1
200 1

T T T T T
o 250 500 750 1000 1250 1500 1750
Days

Figure 4.13: Queue Length for Engineers (End-Of-Day)

It is noticed that queues for engineers 1 and 7 are the longest and for engineer 3 it is the shortest.
Moreover, the rate of increase of queues for engineers 1 and 7 is much higher as compared to other
engineers (as seen in Table 4.2). This imbalance is a consequence of having engineers who are not
skilled in all components. Since engineers 1 and 7 are skilled in most components and engineer 3
is skilled in the least (as seen in figure 2.2), this creates an extra workload for engineers 1 and 7

42

while engineer 3 has the least amount of work. To avoid such an imbalance, TIOBE should train
their engineers (such as engineers 2,3,5) in more components or hire engineers who are skilled in
the components engineer 1 and 7 work with.

Engineer | Rate of Increase of their Queues (tickets per day)
Engineer 1 0.777
Engineer 2 0.231
Engineer 3 0.0029
Engineer 4 0.113
Engineer 5 0.232
Engineer 6 0.119
Engineer 7 0.885

Table 4.2: Rate of increase of engineers’ queues

4.1.3 Waiting Times in Queues

The investigation of the ticketing system revealed that the waiting times for tickets in different
states varied significantly. It is found that tickets in the Accepted state had the highest waiting
times than tickets in the other states.

The analysis revealed the average waiting time for different states, which are logged in Table
4.3. This suggests that the system is taking quite a lot of time for the accepted tickets to be
serviced due to its servers being extremely busy, corresponding to results for the queue lengths
in the Accepted state (as discussed in section 4.1.1). Furthermore, the confidence interval of the
Accepted and Scheduled states is much higher, as compared to other states. This indicates the
previously established instability of queues in these states.

State Mean Waiting time Mean Waiting time 95% Confidence Interval
(in seconds) (in hours) (in hours)
Open 8269.401 2.29 [2.083, 2.511]
306.67
Accepted 1104002.33 (approx. 38 working days) [270.536, 342.799]
0.573
Analysed 2062.768 (or 34.4 minutes) [0.368, 0.777]
155.32
Scheduled 559155.36 (approx 19.4 working days) [122.915, 187.726]
9.67
Implemented 34795.165 (approx. 1.2 working days) [9.465, 9.866]
; 0.607
Verified 2185.005 (approx. 36.4 minutes) [0.439, 0.775]

Table 4.3: Waiting times in states

It is observed that the waiting time in the Accepted state (figure 4.15) is very likely to be

between 0 to 1100 hours (approximately), followed by the waiting time in the Scheduled state
(figure 4.17) which is more likely to be between 0 to 200 hours, waiting time in the Implemented
state (figure 4.18) which is most likely to be between 0 to 50 hours, waiting time in Open state
(figure 4.14) that is more probable to be between 0 to 10 hours, waiting time in Analysed state
(figure 4.16) that is probable to be between 0 to 1.5 hours and lastly, waiting time in Verified state
(figure 4.19) which is most likely to be between 0 to 1.3 hours.

Once again, such a vast difference in waiting times occurs due to insufficient servers and high

43

service times. To address this issue, it is recommended to explore options to balance the workload
better, such as cross-training or hiring more engineers.

Waiting times {Open Queue)

05 A
0.4 4
0.3
0.2
01 A
DU T T T 1 T
o 5 10 15 20
Hours
Figure 4.14: Waiting times over every point in time
Waiting times [Accepted Queue)
0.0035 A
00030 4
0.0025 1
0.0020 4
0.0015 4
00010 4
0.0005 4 [k
DU{IDD T T T T T T T
0 2000 4000 GO0 8000 10000 12000
Hours

Figure 4.15: Waiting times over every point in time

44

Waiting times (Analysed Queue)

200 1

175

150 4

125

100 4

075 1

050 4

025 4

0.00 T S T T

=
(=]
ke
L
=y
Ln
(=]
-
[=x}

Hours

Figure 4.16: Waiting times over every point in time

Waiting times (Scheduled Queue)

0014 A

0012 A

0010 4

0.008 1

0006 1

0004 1

01002 1

0000 T T T T T —
0 200 400 G000 800 1000

Hours

Figure 4.17: Waiting times over every point in time

45

Waiting times (Implemented Queue)

012 1

010 A

0.08 1

006 1

0.04 1

002 1

0.00

1 1
] 25 50 75 100 125 150 175
Hours

Figure 4.18: Waiting times over every point in time

Waiting times (Verified Queue)

20 1

15 1

10 A

05

0.0 L

T T T
0o 25 50 75 o0 125 150 175 200
Hours

Figure 4.19: Waiting times over every point in time

46

4.2 Server analysis

4.2.1 Work times of servers

The investigation of the ticketing system revealed that the working times (the total time servers
spend on working on tickets) and idle times (the total time servers spend on being idle/having
no tickets to work on) of different servers varied considerably. It is found that some servers had
consistently longer working times than others, which affects the performance and efficiency of the

system.

The analysis revealed that the mean working time and idle time for servers are -

Server Work time in hours Idle times in hours
(& %age of time they work) | (& %age of time they work)
S1 1262.005 (8.57%) 13457.99 (91.43%)
Engineer 1 14577.791 (99.848%) 3.468 (0.044%)
Engineer 2 14554.461 (99.69%) 15.391 (0.17%)
Engineer 3 13335.787 (91.341%) 1171.152 (3.201%)
Engineer 4 14544.331 (99.62%) 17.004 (0.188%)
Engineer 5 14573.756 (99.82%) 16.811 (0.115%)
Engineer 6 14523.209 (99.47%) 30.519 (0.237%)
Engineer 7 14577.523 (99.846%) 4.942 (0.034%)
Tester 8586.976 (58.815%) 5992.021 (41.041%)

Table 4.4: Working and idle times of servers

From table 4.4, it is observed that engineers 1 and 7 are the servers that work the most, the
servers that work the least are S7 and the tester, and the engineer that works the least is engineers
3.

To solve the issue of uneven workload, it is recommended to conduct a more detailed analysis
of engineers 1 and 7 to identify the root cause of the longer working times. According to the scope
of the information available, this is mainly a consequence of these servers having more components
as compared to other servers. The detailed analysis could involve monitoring their performance
metrics, reviewing server configurations, or running stress tests to simulate high levels of traffic.
Consequently, it is necessary to redistribute tickets to other servers in order to balance the workload
more effectively, i.e., more servers (engineers) need to be skilled in additional components.

4.2.2 Server tickets analysis

The analysis revealed the number of ticket servers worked on in 5 years, as represented in Table
4.5.

The difference in the number of tickets worked on by the servers is due to differences in workload
distribution or ticket routing. It is the case that server S; is handling a higher volume of tickets
due to his role - opening all tickets, scheduling all tickets, implementing some tickets (when the
queue length is high) and closing all tickets. This means that S; has worked on every ticket
(opening and closing). Similarly, for the tester, since his task is mainly testing and verification,
the number of tickets he tests and verifies is quite high. It is also observed that the number of
tickets worked on by engineers 1 and 7 is higher than the rest of the engineers. This could be
a result of a pile-up of tickets in their specific queues, resulting in engineers 1 and 7 working on
more tickets as compared to other engineers. Consequently, there may be issues with the ticket
routing algorithm that are causing an imbalance in the workload distribution.

47

Server Number of tickets
S1 8482.2
Engineer 1 480.0
Engineer 2 458.9
Engineer 3 469.2
Engineer 4 473.4
Engineer 5 465.4
Engineer 6 470.4
Engineer 7 481.8
Tester 868.3

Table 4.5: Average number of tickets worked on (in 5 years)

4.3 Tickets analysis

4.3.1 Sojourn Time

The mean sojourn time for a ticket in the system is the amount of time the ticket is expected to
spend in the system before it leaves the system (after being closed). (Melamed, 1982)

The mean sojourn time in the simulated system is 244.086 hours with the 95% confidence
interval of [197.409, 290.764]. In addition to that, the average number of tickets closed in a day
(number of tickets leaving the system in a day) is 0.987 ~ 1 ticket. From figure 4.20 it is observed
that a ticket typically spends up to 500 hours in the system. A high sojourn time indicates high
waiting times in the queues. If the ticket passes through the queues uninterrupted and without
any waiting, it should take about 60.5 hours. However, the mean sojourn time is approximately
4.55 times the uninterrupted time (of 60.5 hours). This indicates that the tickets spend most of
their time waiting to be served which leads to inefficiency of the system, increased workload of

servers and build-ups in queues.

Sojourn times (in hours)

0010 A

0.008

0.006 1

0.004 4

0002 4

0.000 T T

o 500 1000 1500 2000

Figure 4.20: Sojourn times

4.3.2 On the basis of Priorities

Through the simulation, it is also seen how much time is spent by each priority ticket through the

2500

3000

system. It is observed that the priority tickets have the following sojourn times -

48

Priority | Mean Sojourn time (in hours) | Number of tickets resolved
Blocking 245.14 1630.9 ~ 1631
Urgent 125.46 65.9 ~ 66
High 375.85 12.2
Normal 398.56 10.6
Low 501.88 11.4

Table 4.6: Mean Sojourn times of tickets (grouped by priority)

It is observed that the mean sojourn time for the highest priority ticket, Blocking, is quite
high. This is a consequence of the build-up of priority tickets for each server, as in the case where
there is more than one blocking ticket in a queue, the blocking tickets are served on a first come
first serve basis. This leads to increased waiting time for the blocking tickets, and hence a higher
sojourn time as well.

However, it is observed that the sojourn times for urgent tickets are lower, as compared to
blocking tickets. But, it is also discovered that the number of tickets resolved in these priorities is
quite low (as compared to blocking tickets). This indicates that most of the urgent tickets build
up in the system and are seldom closed. Similarly, for tickets with priority high, normal and low,
not only is the mean sojourn times higher but also the number of tickets resolved is quite low,
suggesting that there is an enormous build of high, normal and low priority tickets as well. It can
be concluded that a ticket leaving a system has a very high probability of having a priority of
blocking. This imbalance is potentially a result of the inefficient distribution of workload amongst
the engineers.

49

Chapter 5

Improving the system
performance

In this chapter, it is further discussed the implications of the simulation study on the ticketing
system for TIOBE and its potential impact on the company’s business operations.

5.1 Impact of insufficient information and tickets testing
negative

As discussed previously, it is possible that the ticket is sent back to Open (from analysed) due
to insufficient information from the customer and can be sent back to the engineer (as a result of
testing negative). Now, the probability of the ticket being sent back in both cases is set to 0.1 and
the simulation is logged for 5 years (the code is run 10 times and the results below are averaged
over 10 runs).

5.1.1 Build up between Open state and Analysed state

As observed in table 5.1, the waiting time for tickets increases by at least 2 times for all states.
However, in the Accepted state, it is seen that the queue length decreases by a factor of 0.9 even
though the waiting time increases by a factor of 1.5 due to engineers getting busier at every state
they work on and due to tickets being sent back to the Open state, not all tickets make it past the
Open state into the Accepted state. The waiting time in the states Open and Analysed increase as
the server S gets busier implementing and closing tickets at the Implemented state and Verified
state (respectively). This is also reflected in the increase in the work time of the server S; by a
factor of 8.6 (as seen in table 5.2). In addition to that, there is a significant pile up at the Open
and Analysed states, where the number of tickets in the Open state increased by a factor of 1644.4
and in the Analysed state increased by a factor of 750.7. Furthermore, the waiting time in Open,
Accepted and Analysed states increased by a factor of 372.3, 1.5 and 17.1 times respectively. This
leads to an increase in the work time of the engineers and S7 as well, as seen in table 5.2 and
the average work time of the engineers and S; has increased even with a small probability of the
ticket having insufficient information. Consequently, with a small probability of having insufficient
information, the build-up increases for all the engineers and the server S7, leading to an increased
build-up in the Open and Analysed states, in addition to an increase in waiting times in Open,
Accepted and Analysed states.

5.1.2 Build up between Scheduled state and Verified state

Since not many tickets reach the Analysed state, not all tickets are scheduled for the engineers to
implement. This results in a decrease in the number of tickets in the Scheduled state by a factor

o1

of 0.53 even though the waiting time increases by a factor of 1.6 (as seen in table 5.1). Moreover,
the number of tickets in the Implemented and Verified states increase by a factor of 1300 and
13.05 times (respectively) in addition to an increase in waiting time by a factor of 9.6 and 14.7
times (respectively). This heavy pile-up is the result of all the servers getting busier at almost
every stage of their workflow. For instance, as the engineers get busier analysing the tickets (due
to pile up at the accepted queue), they’ll get to test and verify the tickets later which in turn
increases their waiting time in the Implemented state finally, when they get to their Scheduled
(state) tickets, the waiting time for the tickets in the Scheduled state has increased drastically.
Similarly, for the server S7, as he gets busier opening the tickets, the waiting time for the tickets in
Analysed state and Verified state increases. In addition to that, due to the increase in the number
of tickets in the Implemented state, S7 now has to actively work on this queue as well, resulting
in an increased queue length in the Verified state (alongside the increase in wait time for tickets
in that state). Furthermore, the work time for the tester increases by 1.6 times, which indicates
that due to tickets testing negative (and insufficient information), the tester is overworked.

Consequently, due to insufficient information and tickets testing negative, the work times in-
crease for all servers (as seen in Figure 5.2) and waiting times increase in all states as well, leading
the system to become more unstable and imbalanced.

State Mean Queue length (in nr. of tickets) | Mean Waiting time (in hours)
Open 564.035 852.54
P Increase by 1644.4 times Increase by 372.3 times
1782.05 458.713 (approx. 57.3 working days)
Accepted Decrease by 0.9 times Increase by 1.5 times
Analvsed 11.11 9.78
alyse Increase by 750.7 times Increase by 17.1 times
113.904 244.87 (approx. 30.6 working days)
Scheduled Decrease by 0.53 times Increase by 1.6 times
19.76 92.99 (approx. 11.6 working days)
Tmplemented Increase by 1300 times Increase by 9.6 times
. 0.68 8.9
Verified Increase by 13.05 times Increase by 14.7 times

Table 5.1: Queue lengths in states when tickets have insufficient information and test negative
with a probability of 0.1

5.1.3 Effect on Mean Sojourn time

It is observed that the mean sojourn time for the tickets in this situation increases to 1301.25
hours, which is an increase by a factor of 5.33 (as compared to the sojourn time in 4.3.1). This
indicates that the tickets are spending much more time waiting in the queues as compared to the
situation where the probability of having insufficient information and testing negative was zero. As
mentioned previously (in 4.3.1), a ticket could go through the system uninterrupted and without
waiting within 60.5 hours. This means that the ticket spends 21.5 times more time in the system
than it ideally should, which results in extreme build-up in the system.

Furthermore, from figure 5.1 it is seen that in this situation a ticket could spend up to 4000
hours in the system, as compared to tickets in the previous situation, where the ticket could
spend only up to 500 hours (as seen in figure 4.20). This is an 8-fold increase and indicates that
insufficient information and tickets testing negative can take a heavy toll on the efficiency of the
ticketing system.

92

Server | Work time in hours (& %age of time they work)
g 11936.035 (81.09%)
! Increase by 8.6
Engineer 1 14579.919 (99.862%)
Increase by 1.0001 times or 2.6 hours
Engineer 2 14589.063 (99.925%)
Increase by 1.0012 times or 35 hours
Engineer 3 13645.996 (93.466%)
Increase by 1.023 times
Engineer 4 14566.135 (99.77%)
Increase by 1.001 times or 21.8 hours
Engineer 5 14573.809 (99.82%)
Increase by 4 minutes
Engineer 6 14589.255 (99.93%)
Increase by 11.7 hours
Engineer 7 14597.22 (99.95%)
Increase by 1.001 times or 19.69 hours
13633.04 (93.37%)
Tester Increase by 1.6 times

Table 5.2: Working and idle times of servers when tickets have insufficient information and test
negative with a probability of 0.1

Sojourn times (in hours)

000200

0.00175

0.00150

000125

0.00100

000075

000050

000025

000000 T T T T T T
o 2000 4000 G000 8000 10000

Figure 5.1: Sojourn when tickets have insufficient information and test negative with a probability
of 0.1

33

5.1.4 Effect on Priority tickets

Priority | Mean Sojourn time (in hours) | Number of tickets resolved
Blocking 1316.48 1104.4
Increase by 5.4 times Decrease by 0.67 times
Urgent 110.21 9.3
Decrease by 0.88 times Decrease by 0.14 times
. 472.59 3.7
High) .) o
Increase by 1.3 times Decrease by 0.3 times
Normal 521.69 2.0
Increase by 1.3 times Decrease by 0.19 times
Low T78.7 0.89 ~ 1
Increase by 1.6 times Decrease by 0.078 times

Table 5.3: Mean Sojourn times of tickets (grouped by priority) when tickets have insufficient
information and test negative with a probability of 0.1

As observed in table 5.3, the number of tickets resolved or closed (for each priority) decreases
and the mean sojourn time spent in the system increases. However, for Urgent priority tickets,
the mean sojourn time decreases. This is a result of lesser tickets being resolved - the number
of tickets with priority Urgent being resolved decreased by a factor of 0.14 (from 66 tickets to
9 tickets). This occurs due to an increase in the number of Blocking tickets (which is a higher
priority as compared to urgent) leading to the reduction of Urgent priority tickets leaving the
system (and hence building up in the system).

Tickets with priority Blocking have higher sojourn time in this situation as these tickets are
more likely to be resolved first, resulting in their sojourn time being registered (and in the build-
up of Urgent, High, Normal and Low priority tickets as they are not resolved). Furthermore, the
number of Blocking tickets being resolved decreases by a factor of 0.67 due to these tickets being
sent back (due to insufficient information - back to Open state; or due to testing negative - back to
Scheduled state/Engineer’s queue). Therefore, this circumstance not only causes a build of tickets
in states but also a build of crucial Blocking tickets in different states. This could lead to customer
dissatisfaction and great delays in resolving issues and requests. Hence, it can be concluded that
in this situation, the system is highly unstable.

It can be concluded that it is necessary to make sure that the tickets have sufficient informa-
tion and are implemented properly to ensure that there is no increase in the build-up of tickets in
the system and to avoid overworking the servers.

5.2 Impact of adding servers

By adding more engineers, the customers can be served promptly, leading to increase customer
satisfaction. By reduction in ticket processing time, TIOBE can significantly optimise the system’s
response time, which could further improve customer satisfaction and increase revenue.

After testing and adding a number of servers, it is observed that the number of engineers needed
to make the system stable is 35, i.e., to make the system stable, 28 engineers needed to be added
to it. The components assigned to these engineers are distributed randomly, and each engineer is
skilled in only 2 components. In reality, it would be better to have engineers who are skilled in
essentially all the components (to ensure fair distribution of workload). The findings are discussed
in the following section (the code is run 10 times and the results below are averaged over 10 runs).

o4

5.2.1 Adding 28 engineers - Total 35 engineers
Effect on Queues

It is observed that the build-up at the Accepted and Scheduled states decreases drastically (as seen
in table 5.4). However, the Analysed state (on which S; works) has a slight increase in waiting
times. This is a consequence of more tickets needing to be assigned in the Open state (as seen
in figure 5.2) due to an increase in engineers, more tickets needing to be closed at the Verified
state (as more tickets reach the Verified state due to increase in engineers), as seen in figure 5.4.
Lastly, there is a decrease in waiting times and queue lengths in all states. This indicates that
the workload of each server (engineers and tester) except S; has decreased significantly, leading
to reduced waiting times and queue lengths.

State Mean Queue length (in nr. of tickets) | Mean Waiting time (in hours)
Open 0.058 1.82
P Decrease by 0.17 times Decrease by 0.8 times
14.91 55.46 (approx. 7 working days)
Accepted Decrease by 0.0076 times Decrease by 0.18 times
0.48 (approx. 28.8 minutes)
0.067
Analysed . Decrease by 0.84
Increase by 4.5 times . -
times or 5.6 minutes
91.95 151.2 (approx. 19 working days)
Scheduled) : Decrease by 0.97 times
Decrease by 0.42 times o
’ or approx. 4.12 hours
Implemented 0-0015 947
P Decrease by 0.098 times Decrease by 12 minutes
. 0.046 0.22 (approx. 13.2 minutes)
Verified Decrease by 0.88 times Decrease by 0.36 times

Table 5.4: Queue lengths in states when there are 35 engineers in the system

Furthermore, it is observed that the increase in the number of engineers leads to the stabil-
isation of the Accepted queue (figure 5.3) and Scheduled queue (figure 5.5), that is, stabilisation
of the Engineer’s queue (as seen in figure 5.8). It can be seen that the queues don’t exceed a
certain number of queue lengths, for instance, the number of tickets in the Accepted state doesn’t
exceed 30 tickets, the number of tickets in the Scheduled state doesn’t exceed 70 tickets, and so,
the number of tickets in the Engineers’ queues don’t exceed a certain number tickets.

%)

Number of Tickets on the particular Day - Open queue
6_

Tickets
(1]

T T T
0 250 500 750 1000 1250
Day

. | ||
T
1500 1750

Figure 5.2: Open queue when there are 35 engineers in the system

Number of Tickets on the particular Day - Accepted queue
30 .

25

20

T T T T T
o 250 500 =0 1000 1250 15000 1750
Day

Figure 5.3: Accepted queue when there are 35 engineers in the system

56

Number of Tickets on the particular Day - Analysed queue
B_

Tickets
=

T T T T
o 250 500 750 1000 1250 15000 1750
Day

Figure 5.4: Analysed queue when there are 35 engineers in the system

Number of Tickets on the particular Day - Scheduled queue
m <

B0 4

50

A0

Tickets

30

20 4

10 4

T T T T T T T T
o 250 500 750 1000 1250 1500 1750
Day

Figure 5.5: Scheduled queue when there are 35 engineers in the system

Number of Tickets on the particular Day - Implemented queue
10 A

0.8 A

0.6

Tickets

0.4

0.2 4

0.0 4

T T T T T
o 250 500 750 1000 1250 1500 1750
Day

Figure 5.6: Implemented queue when there are 35 engineers in the system

57

Number of Tickets on the particular Day - Verified queue
5_

Tickets

T T T
0 250 500 730 1000 1250
Day

D_ +
T
1500

T
1750

Figure 5.7: Verified queue when there are 35 engineers in the system

Engineer Queues

17.5

15.0 1

125 A

1000 4

Tickets

7.5 1

5.0 1

25 1

00 A

T T T T
o 250 500 750 1000 1250 1500 1750
Days

Figure 5.8: Engineers’ queues when there are 35 engineers in the system

58

Effect on Priority tickets

Priority | Mean Sojourn time (in hours) | Number of tickets resolved
Blocking 44.04 o 1693.2 .
Decrease by 0.18 times Increase by 1.04 times
Urgent 101.17 1256
Decrease by 0.81 times Increase by 19 times
High 207.60 1244
Decrease by 0.55 times Increase by 102 times
Normal 215.3 1175.6
Decrease by 0.54 times Increase by 111 times
Low 291.9 1204.3 7
Decrease by 0.6 times Increase by 105.6 times

Table 5.5: Mean Sojourn times of tickets (grouped by priority) when there are 35 engineers in the
system

As seen in table 5.5, the number of tickets of all priority that are resolved are more or less
balanced (as compared to the original system, in table 4.6). Here, the number of tickets resolved
in all priorities increases. Furthermore, the mean sojourn time for tickets (in every priority) de-
creases while the resolved tickets increase.

It is indicated that the increase in the number of engineers, therefore, leads to resolving more
tickets in all priorities, which could increase customer satisfaction, improve TIOBE’s service quality
and distribute the workload amongst servers evenly.

Effect on Sojourn time

The mean sojourn time for tickets when the number of engineers is increased is 167.77 hours
and the mean number of tickets resolved in a day 3.81 tickets, as compared to the mean sojourn
time and the mean number of tickets resolved in a day discussed in section 4.3.1.

It is observed that the mean sojourn time through the system decreases by 76.32 hours and
the number of tickets being resolved in a day increases by a factor of 3.87 ~ 4. This indicates that
the increase in the number of engineers improves the system performance by (approximately) 4
fold.

5.2.2 Suggested Model

Through the analysis done by adding more servers, it is observed that increasing the number of
engineers (by adding 28 engineers to the team) leads to the stabilisation of the overall system
and improves the system’s performance. Even though there is a slight increase in the workload
of the server S, the trade-off is worth investing in. Furthermore, the engineers should be trained
in other components and skills, which could help distribute the workload fairly, even on the days
when the engineers take leaves or are on a holiday.

99

Chapter 6

Conclusions

After a thorough analysis of the existing ticketing system, it can be concluded that the main
bottlenecks in TIOBE’s ticketing system are the engineer’s queues. These queues have the highest
waiting times and queue lengths, leading the system to instability. In addition to that, it is con-
cluded that insufficient information from customers and tickets testing negative can lead to an
increase in the size of these bottlenecks, which further increases the workload on the engineers.

Through the analysis of the existing system and the system conditioned to different situations,
the thesis proposes a new ticketing system by increasing the number of engineers and cross-training
engineers in each other’s components. This model takes into account the factors such as service
times, arrival rates and the number of servers to calculate the mean waiting times and queue
lengths of tickets. The simulation is logged over 5 years to compare the performance of the ex-
isting system and the proposed model (as discussed in section 5.2). The results concluded that
the system with 35 engineers (as discussed in section 5.2) significantly reduced the mean waiting
times, queue lengths, and mean sojourn times and increased the number of tickets resolved daily.
This would lead to higher customer satisfaction and system efficiency. Furthermore, by reminding
the customers to provide sufficient information and implementing the tickets well, the ticketing
system can avoid increased queue lengths in several queues and states.

However, in the real world, hiring 28 more engineers could heavily affect the company’s revenue.
To balance this, it is suggested to cross-train (to ensure that all engineers are adept in most
components) and hire a few engineers that are proficient in most components. This could not only
help TIOBE improve their customer satisfaction but also aid them in taking on more projects
from bigger companies. It can be concluded that the practical applications of queueing theory
can help improve and optimize the ticketing system for businesses like TIOBE. Moreover, as a
future study, such a system can be implemented as a pilot in the company and the impact of the
suggested system on the company’s day-to-day operation and their comprehensive performance.

61

References

Adan, I. & Resing, J. (2015). Queueing Systems (Tech. Rep.). 2

Boon, M., Van Der Boor, M., Van Leeuwaarden, J., Mathijsen, B., Van Der Pol, J. & Resing, J.
(n.d.). Stochastic Simulation using Python (Tech. Rep.). 65

docs.python. (n.d.). Retrieved from https://docs.python.org/3/library/collections.html
7?highlight=collections#collections.deque 1

Garrido, J. M. (2009). Models of Multi-Server Systems. In Object oriented simulation (pp.
281-295). Springer US. doi: 10.1007/978-1-4419-0516-1{_}22 1

Gohil, F. & Vikash Kumar, M. (n.d.). Ticketing System the Creative Commons Attribution License
(CC BY 4.0) (Tech. Rep.). Retrieved from http://creativecommons.org/licenses/by/
4.0 1

Goodman, J. B. & Massey, W. A. (1984, 12). The non-ergodic Jackson network. Journal of
Applied Probability, 21(4), 860-869. doi: 10.2307/3213702 10

Goos, G., Hartmanis, J., Van, J., Board, L. E., Hutchison, D., Kanade, T., ... Weikum, G. (n.d.).
LNCS 4486 - Formal Methods for Performance Fvaluation (Tech. Rep.). 10

Harchol-Balter, M. & Wierman, A. (2005). Multi-Server Queueing Systems with Multiple Priority
Classes. Queueing Systems, 51, 331-360. 1

Kelly, F. P. & Laws, C. N. (1993). Dynamic routing in open queueing networks: Brownian models,
cut constraints and resource pooling (Vol. 13; Tech. Rep.). 10

Melamed, B. (1982). Sojourn Times in Queueing Networks (Vol. 7; Tech. Rep. No. 2). 48

Singh, S., Albert, J., Mieghem, V., Gurvich, I. & Mieghem, J. A. V. (2022). Feature-Based Priority
Queuing Learning by Doing versus Learning by Viewing: An Empirical Study of Data Analyst
Productivity on a Collaborative Platform at eBay View project Digital operations View project
Feature-Based Priority Queuing (Tech. Rep.). Retrieved from https://www.researchgate
.net/publication/345959314 1

Statistical Compendium (Tech. Rep.). (n.d.). 12

TIOBE. (n.d.). Retrieved from https://www.tiobe.com/ 1

Xiao, L., Xu, S. H., Yao, D. D. & Zhang, H. (2022, 8). Optimal staffing for ticket queues. Queueing
Systems. Retrieved from https://link.springer.com/10.1007/s11134-022-09854-8
doi: 10.1007/s11134-022-09854-8 1

63

https://docs.python.org/3/library/collections.html?highlight=collections#collections.deque
https://docs.python.org/3/library/collections.html?highlight=collections#collections.deque
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://www.researchgate.net/publication/345959314
https://www.researchgate.net/publication/345959314
https://www.tiobe.com/
https://link.springer.com/10.1007/s11134-022-09854-8

Appendix A

Simulation Code

This chapter covers the text searchable code for this thesis. The main reference used for the Source

code is the Stochastic Simulation lecture notes (Boon et al., n.d.).

A.1 Classes

-x- coding: utf-8 -x-

Created on Tue 0Oct 15 15:04:11 2022

Qauthor: 20181301

import heapq
from priorityQueue import PriorityQueue
import numpy as np

class Ticket:

number = 0

def __init__(self, priority, server, arrivalTime, component):

self .priority = priority
self .queue = None

self .pos = 0

self.server = server
self.arrivalTime = arrivalTime
self.systemArrivalTime = arrivalTime
self .component = component

self .depEvent = None

self .engineer = None

self .probability = np.random.uniform(0,1) #random number between 0 & 1

self .state = 0

self.testProb = np.random.uniform(0,1) #random number between 0 & 1

self.tester = None
self .number = Ticket.number
Ticket.number = Ticket.number + 1

def newPos(self, location, time):
self.state = location
self .arrivalTime = time

def leaveSystem(self, time):
self .state = -1
self.arrivalTime = -1

65

self.pos = -1

def __1lt__ (self, other):

return self.priority < other.priority

def __str__(self):
return "Ticket number: " + str(self.number) + " in state: " +
state) + " and priority: " + str(self.priority) + " and tester: "

tester) + " " + str(self.depEvent)

class Engineer (object):

number = 0

def __init__(self,
self.pos = 0
self.component =
self.idleTime =
self .workTime =
self.idle = True
self.queue = PriorityQueue ()
location check etc

self.startWorkingTime = 0

self.startIdleTime = 0 #time when engg stops working

self.countAccept = 0

self.countImplt = 0

self.countSch = 0

self.ticket = None

self.acceptTickets = []

self.schTickets = []

self.impltTickets = []

self .nrTickets = []

self .nr0fTickets = 0

self .workTimeFraction = self.workTime/(365*%5%8%3600)

self.idleTimeFraction = self.idleTime/(365*5%8*3600)

self .number = Engineer.number

Engineer .number = Engineer.number + 1

component) :
component
0
0
#new class PriorityQueue -

#time when engg starts working

def dequeue(self):

return heapq.heappop(self.queue)
def setWorking(self, time):
self.idleTime = self.idleTime + time -
self.startWorkingTime =
self .nrTickets.append(self.ticket.number)
self .nr0fTickets = self.nr0fTickets + 1

self.startIdleTime
time

if self.ticket.state == 1:
self.acceptTickets.append(self.ticket.number)
elif self.ticket.state == 3:
self.schTickets.append(self.ticket.number)
elif self.ticket.state == 4:
self.impltTickets.append(self.ticket.number)
def setlIdle(self, time):
self .workTime = self.workTime + time -
self.startIdleTime = time

self.startWorkingTime

def __str__(self):

return "Engineer: " + str(self.number + 1)

class Tester (object): #

def __init__(self):

self.idleTime = O

66

enqueue ,

str(self.
+ str(self.

dequeue ,

106 self .workTime = 0

107 self.idle = True

108 self.startWorkingTime = 0

109 self .startIdleTime = O

110 self.ticket = None

111 self.nrTickets = []

112 self .nr0fTickets = 0

113 self.workTimeFraction self.workTime/ (365*5*x8*x3600)
114 self.idleTimeFraction = self.idleTime/(365*5*x8%x3600)

116 def setWorking(self, time):

117 self.idleTime = self.idleTime + time - self.startIdleTime
118 self.startWorkingTime = time

119 self .nrTickets.append(self.ticket.number)

120 self .nr0fTickets = self.nr0fTickets + 1

122 def setlIdle(self, time):
123 self .workTime = self.workTime + time - self.startWorkingTime

124 self.startIdleTime = time

126 def __str__(self):

127 return str("tester")

130 class S(object): #for S1

132 def __init__(self):
133 self.pos = 0

134 self.idleTime = 0

135 self.workTime = 0

136 self.idle = True

137 self.startWorkingTime = 0 #time when starts working
138 self.startIdleTime = 0 #time when stops working

139 self.workTimeFraction = self.workTime/(365%5%8%3600)
140 self.idleTimeFraction = self.idleTime/(365*5*x8%3600)
141 self .openCounter = 0

142 self .impltCounter = 0

143 self.analyseCounter 0
144 self .verfCounter = 0
145 self .nrTickets = []

146 self .nr0fTickets = 0
147 self.ticket = None

149 def setWorking(self, time):

150 self.idleTime = self.idleTime + time - self.startIdleTime
151 self .startWorkingTime = time

152 self .nrTickets.append(self.ticket.number)

153 self .nr0fTickets = self.nr0fTickets + 1

156 def setlIdle(self, time):
157 self .workTime = self.workTime + time - self.startWorkingTime
158 self.startIdleTime = time

160 def __str__(self):

161 return str("si")
162
163
164| class Event (object):
165

166 ARRIVAL = O

167 DEPARTURE 1
168 ABANDONMENTS = -1 #ticket rejected/wait
169 EOD = 2 #end of day

172 def __init__(self, typ, server, ticket, time):

67

self.type = typ #type of event

self .server = server

self.ticket = ticket

self.time = time

self.state = None

self.iscancelled = False #for cancelling event; when handelling event
, first check if it is cancelled or not

def __1lt__ (self, other):
return self.time < other.time

def __str__(self):

s = (’Arrival’, ’Departure’, ’Abandonments’, ’EOD’)
return s[self . type] + " of ticket " + str(self . ticket.number)+ ’ at
t = 7 + str (self . time / (8%x3600)) + ’ with server = ’ + str(self.server)
+ ’ and tester = ’ + str(self.ticket.tester)

def cancel(self):
self.iscancelled = True

A.2 Distributions

-x- coding: utf-8 -x*-

Created on Wed Nov 23 21:19:28 2022

Qauthor: 20181301

from scipy import stats

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

class Distribution
n = 10000 # standard random numbers to generate

def __init__(self, dist):
self .dist = dist
self.resample ()

def __str__(self):
return str(self.dist)

def resample(self):
self.randomNumbers = self.dist.rvs(self.n)
self.idx = O

def rvs(self, n=1):

if self.idx >= self.n - n

while n > self.n

self.n *x= 10

self .resample ()
if n == 1 :

rs = self.randomNumbers[self.idx]
else

rs = self.randomNumbers[self.idx:(self.idx+n)]
self.idx += n
return rs

def mean(self):

68

def
def
52 def
;3 def
def
def
def
67 def

70 def

return self.dist

std(self):
return self.dist.

var (self):
return self.dist

cdf (self, x):
return self.dist

pdf (self, x):
return self.dist.

sf(self, x):
return self.dist.

ppf (self, x):
return self.dist.

moment (self, n):
return self.dist

median(self):
return self.dist.

interval (self,
return self.dist.

.mean ()

std ()

.var ()

.cdf (x)

pdf (x)

sf (x)

ppf (x)

.moment (n)

median ()

alpha):

interval (alpha)

A.3

Future Event Set

1| #

— -

5/ @author
nnn

2 def

def

def

def

coding:

utf -8

—% -

20181301

s| import heapq

class FES:

(self):
[]

__init__
self .events

add (self,

next (self):

Created on Fri Nov 14 00:26:08 2022

event) :
heapq.heappush(self.events,

return heapq.heappop(self.events)

__str__(self):
r (1

for i in self.events:
r.append (str(i))

return str(r)

event)

A.4 Priority Queue

L # —*-

of muw

coding:

utf -8 -*-

69

Created on Wed Nov 16 11:21:19 2022

Q@author: 20181301

from collections import deque

from heapq import heappop, heappush, heapify

import heapq

class PriorityQueue:
def __init__(self):
self.tickets = []
self.state = None

def enqueue(self, ticket):
heappush(self.tickets, ticket)
heapq.heapify(self.tickets)

def dequeue_0(self):
return heappop(self.tickets)

def dequeue_ticket(self, ticket):
self.tickets.remove (ticket)
heapq.heapify(self.tickets)

def firstTicket (self):
if len(self.tickets) == O0:
return None
else:
return self.tickets [0]

def enqueue_front (self, ticket):
return self.appendleft (ticket)

def __str__(self):
s = str(" ")
for i in self.tickets:

s = s + str(i.number) + str(", ")

return str("Tickets in Queue:

") + s

A.5 Queue

-*x- coding: utf-8 -*-

Created on Mon Nov 14 00:31:07 2022

Qauthor: 20181301

from collections import deque
import collections

class Queue:
def __init__(self):
self.tickets = deque ()
self.state = None

def enqueue(self, ticket):
self.tickets.append(ticket)

def dequeue_0(self):
return self.tickets.popleft ()

70

39
10
11

42

13

def dequeue_ticket (self, ticket):
self.tickets.remove (ticket)
def firstTicket (self):
if len(self.tickets) == O0:
return None
else:
return self.tickets [0]
def enqueue_front (self, ticket):
return self.appendleft(ticket)
def __str__(self):

s = str(" ")
for i in self.tickets:

s = s + str(i.number) + str(", ")
return str("Tickets in Queue: ") + s

A.6 Simulation Results

—x- —% =

Created on Fri Nov 18 00:47:47 2022

coding: utf-8

Qauthor: 20181301

from collections
from numpy ma
import matplotlib
import pandas as pd
import seaborn as sns
import numpy as np

import deque
core import zeros
pyplot as plt

class SimResults

MAX_QL = 10000 # maximum queue length that will be recorded
def __init__ (self):
self sumQL = O
self sumQL2 = 0
self 0ldTime = 0
self queuelengthHistogram = zeros (self MAX_QL + 1)
self sumW = 0
self sumW2 = 0
self nW = 0
self . waitingTimes = deque ()
self .waitingTimes_hrs = deque ()
def registerQueuelength (self , time , ql):
self sumQL = self sumQL + gl * (time - self 0ldTime)
self sumQL2 = self sumQL2 + gl * gl * (time - self . oldTime)
self queuelengthHistogram [min (ql , self MAX_QL)] = self
queuelengthHistogram [min (ql , self MAX_QL)] + (time - self 01ldTime)
self 0ldTime = time
def registerWaitingTime (self , W):

w =W

self .waitingTimes.append (w)

self .waitingTimes_hrs.append (w/3600)
self .nW = self.nW + 1

self.sumW = self.sumW + w

71

45 self.sumW2 = self.sumW2 + wxw

16

A7 def getMeanQueuelLength (self):

48 return self.sumQL/self.oldTime

19

50 def getVarianceQueueLength (self):

51 return self . sumQL2 / self . o0ldTime - self . getMeanQueueLength () *%*2
53 def getMeanWaitingTime (self):

54 return self . sumW / self . nW

56 def getVarianceWaitingTime (self):

57 return self . sumW2 / self . nW - self . getMeanWaitingTime () **2
58

59 def getQueuelengthHistogram (self)

60 return [x/ self . o0ldTime for x in self . queuelengthHistogram]

61
62 def getWaitingTimes (self):

63 return self . waitingTimes_hrs
64
65 def __str__ (self):

66 s = ’ Mean queue length : ’+ str ((self . getMeanQueueLength ())) + ’\n

bl

67 s += ’ Variance queue length : ’+ str ((self . getVarianceQueueLength ()))
+ 7\11 b

68 s += ’ Mean waiting time (in seconds) : ’+ str (float((self
getMeanWaitingTime ()))) + ’\mn ’

69 s += ’ Mean waiting time (in hours) : ’+ str (float((self
getMeanWaitingTime ()))/3600) + ’\n °

70 s += ’ Variance waiting time (in hrs~2) : ’+ str (float((self

getVarianceWaitingTime ()))/3600%%2) + ’\n ’
return s

3 def histQueuelength (self ,queueNr, maxq =50):

75 if queueNr == O:

76 ql = self . getQueuelengthHistogram ()

77 maxx = maxq + 1

78 plt.figure(figsize=(12, 6))

79 plt . figure ()

80 plt . bar (range (0 , maxx), ql [0: maxx])

81 plt.title ("Queue Lengths (Open Queue)", fontsize = 14)

82 plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,
fontsize = 10)

83 plt . xlabel (’k ’, fontsize = 12)

84 plt . show ()

85

86 print ("\nSum of probability open queue lengths - ", sum(self.

getQueuelengthHistogram()))

88 elif queueNr == 1:
89 ql = self . getQueuelLengthHistogram ()
90 maxx = maxq + 1

91 plt.figure(figsize=(12, 6))

92 plt . figure ()

93 plt . bar (range (0 , maxx), ql [0: maxx])

94 plt.title("Queue Lengths (Accepted Queue)", fontsize = 14)

95 plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,
fontsize = 10)

96 plt . xlabel (’k ’, fontsize = 12)

97 plt . show ()

98
99 print ("\nSum of probability accepted queue lengths - ", sum(self.
getQueuelengthHistogram()))

100

101 elif queueNr == 2:
102 ql = self . getQueueLengthHistogram ()
103 maxx = maxq + 1

72

plt.figure(figsize=(12, 6))

plt . figure ()

plt . bar (range (0 , maxx), ql [0: maxx])

plt.title("Queue Lengths (Analysed Queue)", fontsize = 14)

plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,
fontsize = 10)

plt . xlabel (’k ’, fontsize = 12)

plt . show ()

print ("Sum of probability analysed queue lengths - ", sum(self.
getQueuelengthHistogram()))

elif queueNr == 3:
gl = self . getQueuelengthHistogram ()
maxx = maxq + 1

plt.figure(figsize=(12, 6))

plt . figure ()

plt . bar (range (0 , maxx), ql [0: maxx 1)

plt.title("Queue Lengths (Scheduled Queue)", fontsize = 14)

plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,
fontsize = 10)

plt . xlabel (’k ’, fontsize = 12)

plt . show ()

print ("\nSum of probability scheduled queue lengths - ", sum(self.
getQueuelengthHistogram()))

elif queueNr == 4:
ql = self . getQueuelLengthHistogram ()
maxx = maxq + 1

plt.figure(figsize=(12, 6))

plt . figure ()

plt . bar (range (0 , maxx), ql [0: maxx])

plt.title("Queue Lengths (Implemented Queue)", fontsize = 14)

plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,
fontsize = 10)

plt . xlabel (’k ’, fontsize = 12)

plt . show ()

print ("\nSum of probability implemented queue lengths - ", sum(self.

getQueuelengthHistogram()))

elif queueNr == 5:
ql = self . getQueuelLengthHistogram ()
maxx = maxq + 1

plt.figure(figsize=(12, 6))

plt . figure ()

plt . bar (range (0 , maxx), ql [0: maxx])

plt.title("Queue Lengths (Verified Queue)", fontsize = 14)

plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,
fontsize = 10)

plt . xlabel (’k ’, fontsize = 12)

plt . show ()

print ("\nSum of probability verified queue lengths - ", sum(self.
getQueuelengthHistogram()))

def histWaitingTimes (self ,queueNr, nrBins =100):

if queueNr == 0:
sns.distplot (self.getWaitingTimes (), kde=True)
plt.title("Waiting times (Open Queue)")
plt.xlabel ("Hours")
plt . show Q)

elif queuelNr == 1

sns.distplot (self.getWaitingTimes (), kde=True)

73

plt.title("Waiting times (Accepted Queue)")
plt.xlabel ("Hours")
plt . show ()

elif queueNr == 2:
sns.distplot (self.getWaitingTimes (), kde=True)
plt.title("Waiting times (Analysed Queue)")
plt.xlabel ("Hours")
plt . show ()

elif queueNr == 3:
sns.distplot (self.getWaitingTimes (), kde=True)
plt.title("Waiting times (Scheduled Queue)")
plt.xlabel ("Hours")
plt . show ()

elif queueNr == 4:
sns.distplot (self.getWaitingTimes (), kde=True)
plt.title("Waiting times (Implemented Queue)")
plt.xlabel ("Hours")
plt . show ()

elif queueNr == 5:
sns.distplot (self.getWaitingTimes (), kde=True)
plt.title("Waiting times (Verified Queue)")
plt.xlabel ("Hours")
plt . show ()

class NetworkSimResults:

def __init__ (self , nrO0OfQueues , nr0fTickets):
self .nS = 0
self . sojournTimes = []
self . sojournTimes_hrs = []
self . nrOfAbandonments = 0
self . queueResults = [None] * nrOfQueues
for i in range (nr0fQueues):
self . queueResults [i] = SimResults ()

def registerWaitingTime (self , queueNr , w):
self . queueResults [queueNr]. registerWaitingTime (w)

def registerSojournTime (self , s):
self.sojournTimes.append(s)
self .sojournTimes_hrs.append(s/3600)

def registerAbandonment (self , queueNr):
self . nrOfAbandonments += 1
self . queueResults [queueNr]. registerAbandonment ()

def histSojournTimes (self , nrBins =100):
sns.distplot (self.sojournTimes_hrs, kde=True)
plt.title("Sojourn times (in hours)")
plt . show ()

A.7 Main Simulation

-x- coding: utf-8 -x*-
nnun

Created on Wed Nov 16 09:37:36 2022

@author: 20181301

74

States -> 0 (Open), 1 (Accepted),

Verifying)

Libraries

2 (Analysed), 3 (Scheduled), 4 (Implemented), 5

from classes import Event, Ticket, S, Engineer, Tester

import pandas as pd
import numpy as np

from numpy.random import default_rng

import time
import math
import random

from scipy import stats, integrate
from distribution import Distribution

from FES import FES

from simResults import SimResults, NetworkSimResults

from Queue import Queue
from collections import deque

from priorityQueue import PriorityQueue

from statistics import mean

import matplotlib . pyplot as plt

import seaborn as sns
import random
import csv

def sample_from_bernoulli(p):

return 1 if random.random() < p else O

Definitions and Declarations
sl = S() #server 1 (Marvin)
tester = Tester () #tester (Joep)

p = sample_from_bernoulli (1)

probability of ticket being sent to analysed

instead of being sent back to open
test_p =1 # probability of ticket testing positive

dfl1 = pd.read_excel(r’C:\Users\20181301\Desktop\APPLIED MATH\YEAR-3\BFP\Simulation\

Components.xlsx’)
components = dfil["Component"]

(

df2 = pd.read_excel(r’C:\Users\20181301\Desktop\APPLIED MATH\YEAR-3\BFP\Simulation\

Tools & Servers.xlsx’)

Engineers

engg = []

engg . append (Engineer (df2["E1"]))
engg .append (Engineer (df2["E2"]))
engg .append (Engineer (df2["E3"]))
engg .append (Engineer (df2["E4"]))
engg .append (Engineer (df2["E5"]))
engg.append (Engineer (df2["E6"]))
engg .append (Engineer (df2["E7"]))

priorities = [0, 1, 2, 3, 4]

nrQueues = 5 #0 = Open, 1

= Analysed, 2 = Implemented, 3 = Verified

nrServers = 2 + len(engg) # 2 (tester and sl1) and number of engineers

Variables for storing results

priority_0 = []
priority_1 = []

(6]

priority_2 = []

priority_3 = []

priority_4 = []

count_priority_0 = []

count_priority_1 = []

count_priority_2 = []

count_priority_3 = []

count_priority_4 = []

headers = list(components.values)

headers.remove ("Component")

sojournTimes_Components = pd.DataFrame (columns=headers)

headers = list(components.values)

headers.remove ("Component")

totalTimes_Components = pd.DataFrame(columns=headers)

headers = [sl1l, tester, enggl[0], enggl1], enggl2], enggl3], enggl4], enggl5],
[611

sojournTimes_Servers = pd.DataFrame (columns=headers)

sojournTimes_Servers_idle = pd.DataFrame(columns=headers)

sojournTimes_Priorities = pd.DataFrame (columns=priorities)

totalTimes_priorities = pd.DataFrame (columns=priorities)

TotalTicketsNr = []

OpenTickets = []
AcceptedTickets = []
AnalysedTickets = []
ScheduledTickets = []
ImplementedTickets = []
VerifiedTickets = []

engg_1 = []

engg_2 = []

engg_3 = []

engg_4 = []

engg_5 = []

engg_6 = []

engg_ 7 = []

sl_tickets = []

tester_tickets = []

header = ["Tickets"]

nrDays_vs_Tickets = pd.DataFrame(columns = header)
def storeSojournTimes_priorities(ticket, t): # Stores how much time each

priority ticket spends in the system & ticket nr.

priority = ticket.priority

if priority == O0:
count_priority_0.append(ticket.number)
priority_0O.append(t)

elif priority == 1:
count_priority_1.append(ticket.number)
priority_1.append (t)

elif priority == 2:
count_priority_2.append(ticket.number)
priority_2.append(t)

elif priority == 3:
count_priority_3.append(ticket.number)
priority_3.append(t)

elif priority == 4:
count_priority_4.append(ticket.number)
priority_4.append (t)

76

engg

def

def

def

def

def

def

def

assignFreeTester (ticket): # Assign idle server
free_testers = [server for server in engg if server.idle == True and server !=
ticket.engineer]
if free_testers:

return random.choice(free_testers)
else:

return None

assignTester (ticket): # Assigning tester to a priority ticket
servers = [server for server in engg if server != ticket.engineer and server.
ticket.priority != 0]

if servers:

return random.choice(servers)
else:

return None

remove_state_ticket (engineer)

if engineer.ticket.state == 1:
engineer.acceptTickets.remove (engineer.ticket.number)

elif engineer.ticket.state == 3:
engineer.schTickets.remove (engineer.ticket.number)

elif engineer.ticket.state == 4:
engineer.impltTickets.remove (engineer.ticket.number)

add_state_ticket (engineer, ticket):
if ticket.state == 1:
engineer.acceptTickets.append(ticket.number)
elif ticket.state == 3:
engineer.schTickets.append(ticket.number)
elif ticket.state == 4:
ck

engineer.impltTickets.append(ticket.number)

assignPos (t): # Assigning position (used in Engineer’
s workflow)

states - 0 (Open), 1 (Accepted), 2 (Analysed), 3 (Scheduled), 4 (Implemented)
, 5 (Verifying)

positions - O for open, 1 for analysed, 2 for implemented, 3 for verified, 4
for engineer
if t.state == 0:

return O
elif t.state == 1 or t.state == 3:

return 4
elif t.state == 2:

return 1
elif t.state == 4:

return 2
elif t.state == b5:

return 3
countAccepted(server): # Counting number of tickets in
accepted state
count = 0
for i in server.queue.tickets:

if i.state == 1:

count = count + 1

return count
queueAccepted (server): # Returns 1list of tickets in accepted
state
q. = [1I
for i in server.queue.tickets:

if i.state == 1:

q_.append (i)
return q_

7

197

def

def

def

def

def

def

queueImplt (queue ,server): # Returns list of tickets in
implemented state that arent worked on by the server
q_ = [1I
for i in queue.tickets:
if i.tester ==
q_.append (i)
return q_

server:

countSch(server) : # Counts number of tickets in scheduled
state
count = 0
for i in server.queue.tickets:
if i.state == 3:
count = count + 1
return count

queueSch(server): # Returns list of tickets in scheduled
state
q_ = [1I
for i in server.queue.tickets:
if i.state == 3:

q_.append (i)
return q_

searchPriorityBlocking(q): # Searches for blocking tickets in the
queue
for ticket in q.tickets:
if ticket.priority == 0:
q.dequeue_ticket (ticket)
return ticket
return None

searchPriorityUrgent (q): # Searches for urgent tickets in the queue
for ticket in q.tickets:
if ticket.priority == 1:
q.dequeue_ticket (ticket)
return ticket
return None

CreateTicket (t): # Creates tickets
return Ticket(random.choice(priorities), sl, t, random.choice(components))

class Simulation

def __init__ (self , arrDist , servDist , nrServers):
self .arrDist = arrDist
self.servDist = servDist
self .nrServers = nrServers

def simulate (self , T):
nr0fTickets = 8492

nrStates = 6

fes = FESQ)

res = NetworkSimResults (nrStates , nrOfTickets)

gs = [None] * nrQueues #make them a property for sl and testerl
qs [0] = Queue () #deque for open

qs [1] = Queue) #deque for analysed

gs [2] = PriorityQueue() #heapq with priority for implemented

qs [3] = PriorityQueue () #heapq with priority for verified

#4 <- engineer

qs [0] .state =
gs [1].state =
gs [2] . state =
gqs [3].state =

[S e}

78

#engineer service times

t = 0 # current time

a0 = self.arrDist.rvs() # Create arrival of first ticket

t0 = CreateTicket (t) #ticket creation

firstEvent = Event (Event.ARRIVAL, s1, t0, a0) #remove S_1 and put queue
number O = open queue

fes.add(firstEvent)

fes.add (Event (Event .EOD, s1, tO, 8*3600)) # first end-of-day event

day

=0

tickets

whil

time

queue

e t
e =
t =
c =
que

tot
tot

for

res

res.

res

res.
res.
res.

if

_in_system_day = []

< T
fes.next ()
e.time
e.ticket
ueNr = c.pos

_sch_queue = 0
_accepted_queue = 0

i in engg:
tot_sch_queue = tot_sch_queue + countSch(i)
tot_accepted_queue = tot_accepted_queue + countAccepted (i)

.queueResults [0] . registerQueuelength(t, len (qs[0].tickets))
queueResults [1] . registerQueuelength(t, tot_accepted_queue)
.queueResults [2] . registerQueuelength(t, len (gqs[1].tickets))
queueResults [3] . registerQueuelength(t, tot_sch_queue)

queueResults [4] .registerQueuelength(t, len (qgqs[2].tickets))
queueResults [5].registerQueuelength(t, len (qs[3].tickets))

e.type == Event.ARRIVAL

#ALGORITHM 1 (ARRIVAL AT OPEN)
if queueNr == O0:

gs [0] . enqueue (c)

if sl1.idle == True:
b0 = self.servDist [0].rvs ()
dep = Event (Event.DEPARTURE, sl, c, t+b0)
fes.add (dep)
c.depEvent = dep #ticket knows its departure and service

gs [0] . dequeue_ticket (c)
print (e)
sl.idle = False
sl.ticket = ¢

0

c.state =
c.pos =0
sl.openCounter = sl.openCounter + 1
sl.setWorking(t)
al = self.arrDist.rvs()

cl = CreateTicket (t)
fes.add (Event (Event .ARRIVAL , s1 , cl, t+al))

#ALGORITHM 3 (ARRIVAL AT ACCEPTED)
elif queueNr == 4 and c.state == 1: #arrival at engineer’s

i = c.engineer.number
engg[i].queue.enqueue (c)

79

343

serv = enggl[il]

if serv.idle == True:
bl = self.servDist[1].rvs()
dep = Event (Event.DEPARTURE, serv, c, t+bl)
fes.add (dep)

serv.ticket = c

c.depEvent = dep #ticket knows its departure and service
time

serv.idle = False

c.state = 1

c.pos = 4

c.engineer = serv

serv.queue.dequeue_ticket (c)
serv.setWorking (t)
serv.countAccept = serv.countAccept + 1

elif c.priority == 0 and c.depEvent == None: #if ticket
hasn’t been assigned (since serv is busy) & has priority
#cancelling departure event of the ticket the engineer is
working on if that ticket lower priority

c2 = serv.ticket # current ticket he’s working
on
if c2 != None:
if c2.priority != 0 and c2.depEvent != None:
the current ticket has a priority of O
c2.depEvent.iscancelled = True

c2.depEvent = None

serv.nrTickets.remove (serv.ticket.number)
remove_state_ticket (serv)
serv.nrTickets.append(c.number)
add_state_ticket (serv, c)
serv.queue.dequeue_ticket (c)

bl = self.servDist[1].rvs()

dep = Event (Event.DEPARTURE, serv, c, t+bl)
fes.add (dep)

c.depEvent = dep #ticket knows its departure and
service time

serv.idle = False

serv.ticket = c

c.state = 1

c.pos = 4

serv.countAccept = serv.countAccept + 1

#ALGORITHM 5 (ARRIVAL AT ANALYSED)
elif queueNr == 1:
gs [1] . enqueue (c)

if s1.idle == True:
b2 = self.servDist[2].rvs ()
dep = Event (Event.DEPARTURE, sl1, c, t+b2)
gs [1].dequeue_ticket (c)
fes.add (dep)

c.depEvent = dep #ticket knows its departure and service
time

sl.idle = False

sl.ticket = ¢

c.state = 2

c.pos =1

sl.setWorking(t)

sl.analyseCounter = sl.analyseCounter + 1

#ALGORITHM 7 (ARRIVAL AT SCHEDULED)
elif queueNr == 4 and c.state == 3:
serv = c.engineer

80

serv.queue.enqueue (c)

if c.engineer.idle == True:
b2 = self.servDist [3].rvs ()
serv.queue.dequeue_ticket (c)
dep = Event (Event.DEPARTURE, serv, c, t+b2)
fes.add (dep)

c.depEvent = dep #ticket knows its departure and service
time

serv.idle = False
c.state = 3
c.pos = 4
serv.ticket = c
c.engineer.setWorking (t)
serv.countSch = serv.countSch + 1

#ALOGRITHM 9 (ARRIVAL AT IMPLEMENTED)

elif queueNr == 2:

gs [2] . enqueue (c)
if tester.idle == True:
b2 = self.servDist[4].rvs()
dep = Event (Event.DEPARTURE, tester, c, t+b2)
fes.add (dep)
c.depEvent = dep #ticket knows its departure and service
time

gs [2] . dequeue_ticket (c)
tester.idle = False
c.state = 4
tester.ticket = ¢
c.tester = tester
c.pos = 2

tester.setWorking (t)

else:
serv = assignFreeTester (c)
if serv != None:
b2 = self.servDist [4].rvs()
dep = Event (Event.DEPARTURE, serv, c, t+b2)
gs [2] . dequeue_ticket (c)
fes.add (dep)
c.depEvent = dep #ticket knows its departure and
service time
serv.idle = False
c.state = 4
serv.ticket = c
c.tester = serv
c.pos = 2
serv.setWorking (t)
serv.countImplt = serv.countImplt + 1
if c.priority == 0 and c.tester == None: # if priority

is 0 and no tester is assigned (since none are idle)

if tester.ticket != None and tester.ticket.priority != 0
c2 = tester.ticket #current ticket he’s working on
if c2.depEvent != None:
c2.depEvent.iscancelled = True

c2.depEvent = None

tester.nrTickets.remove (tester.ticket.number)
tester.nrTickets.append(c.number)

b2 = self.servDist [4].rvs()

81

492
193
494
195
196
197
198
499

500

dep = Event (Event.DEPARTURE, tester, c, t+b2)

fes.add (dep)

c.depEvent = dep #ticket knows its departure and
service time

gs [2] . dequeue_ticket (c)

tester.idle = False
tester.ticket = c
c.state = 4
c.tester = tester
c.pos = 2
else:

i = assignTester (c)

if i != None:
c2 = i.ticket #current ticket he’s working on
if c¢c2 != None and c2.priority != 0O and c2.depEvent

!= None:
c2.depEvent.iscancelled = True

c2.depEvent = None

i.nrTickets.remove (i.ticket.number)
i.nrTickets.append(c.number)
remove_state_ticket (i)
add_state_ticket (i, c)

b2 = self.servDist[4].rvs()

dep = Event (Event.DEPARTURE, i, c, t+b2)
gs [2] . dequeue_ticket (c)

fes.add (dep)

c.depEvent = dep #ticket knows its departure
and service time

i.idle = False

i.ticket = c

c.state = 4

c.tester = i

c.pos = 2

i.countImplt = i.countImplt + 1

#ALGORITHM 11 (ARRIVAL AT VERIFIED)
elif queueNr == 3:
gs [3] . enqueue (c)

if sl1.idle == True:
b3 = self.servDist [5].rvs ()
dep = Event (Event.DEPARTURE, sl, c, t+b3)
qs [3].dequeue_ticket (c)
fes.add (dep)
c.depEvent = dep #ticket knows its departure and service
time
sl.idle = False
sl.ticket = ¢
c.state = 5
c.pos = 3
sl.setWorking(t)

else:
print(e)
if len(qs[3].tickets) > 0:

if c.priority == O0:
c2 = sl.ticket
if c2 != None:
if c2.priority != 0 and c2.depEvent!= None:
c2.depEvent.iscancelled = True

c2.depEvent = None
sl.nrTickets.remove(sl.ticket.number)
sl.nrTickets.append(c.number)

b2 = self.servDist [5].rvs()

82

departure and service time

elif e.type == Even
if e.iscancelle
c.depEvent

#ALGORITHM
if queuelNr

for i i
for

schedule arrival time

sojournTimes_Components.index),

Once
sl.setl
sl.idle

S1 WO

if sl.o
c2
b0
dep
c2.

service time

fes
s1.
s1.
c2.
c2.
c2
s1
s1.

else:
cl
c3

if

departure and service time

dep = Event (Event.DEPARTURE, sl, c,
qs [3] . dequeue_ticket (c)

fes.add (dep)
c.depEvent = dep

t+b2)

#ticket knows its

sl.idle = False
sl.ticket = ¢

c.state = 5
c.pos = 3

t .DEPARTURE
d == False:
= None

2 (DEPARTURE FROM OPEN)

= 0:
n engg:
comp in i.component:
if comp == c.component:

c.engineer = i

fes.add (Event (Event .ARRIVAL, i, c, t)) #
res.registerWaitingTime (0, t - c.arrivalTime)
sojournTimes_Components.loc[len(

c.component] = (t-c.arrivalTime) /3600
c.newPos (1, t)
c.pos = 4

break

server stops working, set to idle
dle (t)

= True

RKFLOW

penCounter <= 5 and len(qs[0].tickets) > 0:

= gqs [0].dequeue_0 ()

= self.servDist [0].rvs ()

= Event (Event.DEPARTURE, si1, c2, t+b0)

depEvent = dep #ticket knows its departure and

.add (dep)
idle = False
ticket = c2
server = sl
state = 0

.pos =0
.openCounter += 1

setWorking (t)

searchPriorityBlocking (qs [3])
searchPriorityUrgent (gs [31)

cl != None:

if s1.idle == True:
b3 = self.servDist [5].rvs()
dep = Event (Event.DEPARTURE, s1, ci,
fes.add (dep)
cl.depEvent = dep

t+b3)
#ticket knows its
sl.idle = False

sl.ticket = cl1

cl.state = 5 #goes into verified state
cl.pos = 3

83

7
588
589
590
591
592
593

594

595
596
597
598
599

600

s1l.setWorking(t)

else:
if sl.ticket.priority != 0 and sl.ticket.
depEvent != None:
sl.ticket.depEvent.iscancelled = True
sl.ticket.depEvent = None
sl.nrTickets.remove(sl.ticket.number)
sl.nrTickets.append(cl.number)
b3 = self.servDist [5].rvs ()
dep = Event (Event.DEPARTURE, sl1l, cl, t+b3)
fes.add (dep)
cl.depEvent = dep #ticket knows its
departure and service time
sl.idle = False
sl.ticket = ci
cl.state = 5 #goes into verified state
cl.pos = 3
elif c3 != None:
if sl.idle == True:

b3 = self.servDist [5].rvs()

dep = Event (Event.DEPARTURE, sl1, c3, t+b3)

fes.add (dep)

c3.depEvent = dep #ticket knows its
departure and service time

sl.idle = False

c3.state = 5 #goes into verified state

c3.pos = 3

sl.ticket = c3

sl.setWorking (t)

else:
if sl.ticket.priority != 0 and sl.ticket.
priority != 1 and serv.ticket.depEvent != None:
sl.ticket.depEvent.iscancelled = True
sl.ticket.depEvent = None
sl.nrTickets.remove(sl.ticket.number)
sl.nrTickets.append(c3.number)
b3 = self.servDist [5].rvs ()
dep = Event (Event.DEPARTURE, sl1, c3, t+b3)
fes.add (dep)
c3.depEvent = dep #ticket knows its
departure and service time
sl.idle = False
c3.state = 5 #goes into verified state
c3.pos = 3
sl.ticket = c3
else:
if sl.idle == True:

if len(qs[3].tickets) > 0:
c3 = gs[3].dequeue_0()
b3 = self.servDist [5].rvs()
dep = Event (Event.DEPARTURE, sl1, c3, t+Db3)
fes.add (dep)
c3.depEvent = dep #ticket knows its

departure and service time

sl.ticket = c3
c3.pos = 3
c3.state = 5
sl.idle = False
sl.setWorking (t)

elif len(gs[2].tickets) > O:

84

655

656

658
659
660
661

662

663
664
665
666
667

668

being served

b3)

departure and service time

state

elif

b3)

departure and service time

state

elif
tickets) < 20:

b3)

departure and service time

#ALGORITHM 4 (DEPARTURE FROM ACCEPTED
elif queueNr == 4 and c.state == 1:

fes.add (Event (Event . ARRIVAL,

if sl.impltCounter < 2:

c3 = gs[2].dequeue_0() #ticket is not
b3 = self.servDist [4].rvs ()
dep = Event (Event.DEPARTURE, s1, c3, t+

fes.add (dep)
c3.depEvent = dep #ticket knows its
sl.ticket = c3
c3.tester = sl
sl.idle = False
c3.state = 4 #goes into implemented
c3.pos = 2

sl.impltCounter += 1

sl.setWorking (t)

len(qgs[1].tickets) > O:

if sl.analyseCounter < 4:
c3 = gs[1].dequeue_00()
b3 = self.servDist [2].rvs()
dep = Event (Event.DEPARTURE, sl1, c3, t+

fes.add (dep)
c3.depEvent = dep #ticket knows its
sl.ticket = c3
c3.state = 2 #goes into analysed
c3.pos =1

sl.idle = False

sl.analyseCounter += 1
sl.setWorking (t)

len(gs[2].tickets) > 0O and len(gs[2].

#arrival at implemented
if sl.impltCounter < 2:
c3 = qgs[2].dequeue_0()
b3 = self.servDist [4].rvs ()
dep = Event (Event.DEPARTURE, s1, c3, t+

fes.add (dep)
c3.depEvent = dep #ticket knows its
sl.idle = False
sl.ticket = c3
c3.tester = si
c3.state = 4 #goes into implemented
c3.pos = 2

sl.impltCounter += 1

sl.setWorking (t)

- ENGINEER QUEUE)
#engineer ’s queue

0:
c.engineer, c, t)) #

c.engineer SHOULD NOT work on testing

state

if c.priority ==
schedule arrival at implemented.
.index), c.component] =

res.registerWaitingTime (1, t - c.arrivalTime)
sojournTimes_Components.loc[len(sojournTimes_Components
(t-c.arrivalTime) /3600

85

687 c.newPos (4, t)

688 c.pos = 2

689

690 else:

691

692 if c.probability < p: #sample p from a bernoulli
dist. - c.probability is probability of NOT being sent back due to insufficient

information
693 fes.add (Event (Event . ARRIVAL, s1, c, t)) #schedule
arrival at analysed

694 res.registerWaitingTime (1, t - c.arrivalTime)

695 sojournTimes_Components.loc[len(
sojournTimes_Components.index), c.component] = (t-c.arrivalTime) /3600

696 c.newPos (2, t)

697 c.pos =1

698

699 else:

700 fes.add (Event (Event . ARRIVAL, s1, c, t)) #schedule
arrival at open

701 res.registerWaitingTime (1, t - c.arrivalTime)

702 sojournTimes_Components.loc[len(
sojournTimes_Components.index), c.component] = (t-c.arrivalTime) /3600

703 c.newPos (0, t)

704 c.pos = 0

706 # Once server stops working, set to idle
.engineer.idle = True
708 c.engineer.setIdle(t)

~
3
(e}

710 # Engineer’s Workflow

711 serv = c.engineer

712 c3 = searchPriorityBlocking(serv.queue)
713 c4 = searchPriorityUrgent (serv.queue)
714

715 if c3 != None:

716 if serv.idle == True:

717 s = c3.state

718 b3 = self.servDist[s].rvs()

719 dep = Event (Event.DEPARTURE, serv, c3, t+b3)
720 fes.add(dep)

721 c3.depEvent = dep #ticket knows its departure
and service time

722 serv.idle = False

723 serv.ticket = c3

724 c3.state = s #goes into next state

725 c3.pos = assignPos(c3)

726 serv.setWorking (t)

28 else:

729 if serv.ticket.priority != 0 and serv.ticket.
depEvent != None:

730 serv.ticket.depEvent.iscancelled = True
731 serv.ticket.depEvent = None

732 serv.nrTickets.remove (serv.ticket.number)
733 remove_state_ticket (serv)

734 add_state_ticket (serv, c3)

735 serv.nrTickets.append(c3.number)

36 s = c3.state

37 b3 = self.servDist[s].rvs()

738 dep = Event (Event.DEPARTURE, serv, c3, t+b3)
739 fes.add (dep)

740 c3.depEvent = dep #ticket knows its
departure and service time

741 serv.idle = False

742 serv.ticket = c3

743 c3.state = s #goes into next state

744 c3.pos = assignPos(c3)

86

elif c4

!= None:

if serv.idle == True:
s = c4.state
b3 = self.servDist[s].rvs()
dep = Event (Event.DEPARTURE, serv, c4, t+b3)

and service time

fes.add (dep)
c4.depEvent = dep
serv.idle = False
serv.ticket = c4
c4.state = s #goes into next state
c4.pos = assignPos(c4)
serv.setWorking (t)

else:

priority !=

departure and service time

else:

if serv.idle ==

departure and service time

t+b3)

departure and service time

1 and serv.ticket.depEvent !=

if serv.ticket.priority !=0 and serv.ticket.
None:
serv.ticket.depEvent.iscancelled =
serv.ticket.depEvent = None
serv.nrTickets.remove (serv.ticket.number)
serv.nrTickets.append(c4.number)
remove_state_ticket (serv)
add_state_ticket (serv, c4)

True

s = c4.state
b3 = self.servDist[s].rvs()
dep = Event (Event.DEPARTURE, serv, c4,

fes.add (dep)

c4.depEvent = dep #ticket knows its

serv.idle = False
serv.ticket = c4
c4.state = s

c4.pos =

#goes into next state

assignPos (c4)

True:
if countAccepted(serv) > O:
if serv.countAccept < 2:

q_ = queueAccepted(serv)
c3 = q_I[0]
serv.queue.dequeue_ticket (c3)
b3 = self.servDist[1].rvs ()
dep = Event (Event.DEPARTURE, serv, c3,

fes.add (dep)

#ticket knows its departure

t+b3)

t+b3

c3.depEvent = dep #ticket knows its
serv.idle = False

serv.ticket = c3

c3.state =1 #goes into accepted state
c3.pos = 4

serv.countAccept += 1
serv.setWorking (t)

elif len(qgs[2].tickets) > O:
if serv.countImplt < 2:
q_ = queuelImplt(qsl[2],
if len(q_) != O:
c3 = q_I[0]
gqs [2] .dequeue_ticket (c3)
b3 = self.servDist [4].rvs ()
dep = Event (Event.DEPARTURE,

serv)

serv,

fes.add (dep)

c3.depEvent = dep

87

c3,

#ticket knows its

856

858
859
860
861
862
863
864

865

serv.idle = False

serv.ticket = c3
c3.tester = serv
c3.state = 4 #goes into implemented
state
c3.pos = 2
serv.countImplt += 1
serv.setWorking (t)
elif countSch(serv) > O0:
if serv.countSch < 2:
q_ = queueSch(serv)
c3 = q_I[0]
serv.queue.dequeue_ticket (c3)
b3 = self.servDist[3].rvs()
dep = Event (Event.DEPARTURE, serv, c3, t+b3
)
fes.add (dep)
c3.depEvent = dep #ticket knows its
departure and service time
serv.idle = False
serv.ticket = c3
c3.state = 3 #goes into scheduled state
c3.pos = 4

serv.countSch += 1
serv.setWorking (t)

#ALGORITHM 6 (DEPARTURE FROM ANALYSED)
elif queueNr == 1:

serv = c.engineer
fes.add (Event (Event .ARRIVAL, serv, c, t)) #schedule
arrival at engineer’s queue.

res.registerWaitingTime (2, t - c.arrivalTime)

sojournTimes_Components.loc[len(sojournTimes_Components.
index), c.component] = (t-c.arrivalTime) /3600

c.pos = 4

c.newPos (3, t)

Once server stops working, set to idle
sl.idle = True
sl.setIdle(t)

S1 WORKFLOW
if sl1.openCounter <= 5 and len(qgs[0].tickets) > O:

c2 = gs[0].dequeue_0()

b0 self .servDist [0].rvs ()

dep = Event (Event.DEPARTURE, si1, c2, t+b0)
c2.depEvent = dep #ticket knows its departure and

service time
fes.add (dep)
sl.idle = False
sl.ticket = c2
c2.server = sl
c2.state = 0
c2.pos =0
sl.openCounter += 1
sl.setWorking (t)

else:
cl = searchPriorityBlocking(qs[3])
c3 = searchPriorityUrgent (qs[3])
if c1 != None:

88

866
867
868
869

870

883

885

886

887

889
890
891
892

893

903
904
905

906

909
910

911

departure and service time

departure and service time

if s1.idle == True:

b3

dep

= self.servDist [5].rvs ()
= Event (Event .DEPARTURE, s1, cl1, t+b3)

fes.add (dep)

elif c3 !=

departure and service time

priority != 1:

departure and service time

cl.depEvent = dep #ticket knows its

sl.idle = False

sl.ticket = ci

cl.state = 5 #goes into verified state

cl.pos = 3

sl.setWorking (t)

else:

if sl.ticket.priority != O:
sl.ticket.depEvent.iscancelled = True
sl.ticket.depEvent = None
sl.nrTickets.remove(sl.ticket.number)
sl.nrTickets.append(cl.number)
b3 = self.servDist [5].rvs ()
dep = Event (Event.DEPARTURE, sl1, cl, t+b3)
fes.add (dep)
cl.depEvent = dep #ticket knows its
sl.idle = False
sl.ticket = ci
cl.state = 5 #goes into verified state
cl.pos = 3
None:

if sl1.idle == True:
b3 = self.servDist [5].rvs()
dep = Event (Event.DEPARTURE, s1, c3, t+b3)

fes.add (dep)

else:

c3.depEvent = dep #ticket knows its

sl.idle = False

c3.state = 5 #goes into verified state

c3.pos = 3

sl.ticket = c3

sl.setWorking(t)

else:

if sl.ticket.priority != 0 and sl.ticket.
sl.ticket.depEvent.iscancelled = True
sl.ticket.depEvent = None
sl.nrTickets.remove(sl.ticket.number)
sl.nrTickets.append(c3.number)
b3 = self.servDist[5].rvs ()
dep = Event (Event.DEPARTURE, sl1, c3, t+Db3)
fes.add (dep)
c3.depEvent = dep #ticket knows its
sl.idle = False
c3.state = 5
c3.pos = 3
sl.ticket = c3
sl.setWorking(t)

if sl.idle == True:
if len(qs[3].tickets) > O0:

c3 = gs[3].dequeue_0()
b3 = self.servDist[5].rvs()

dep = Event (Event.DEPARTURE, sl1, c3, t+b3)

89

951
952
953
954
955
956
957
958

959

960

961

962

963

964
965
966
967
968

969

departure and service time

being served

b3)

departure and service time

state

b3)

departure and service time

state

tickets) < 20:

b3)

departure and service time

state

fes.add (dep)
c3.depEvent = dep #ticket knows its

sl.ticket = c3
c3.pos = 3
c3.state = 5

sl.idle = False
sl.setWorking(t)

elif len(gs[2].tickets) > O:

if sl.impltCounter < 2:
c3 = gs[2].dequeue_0() #ticket is not

b3 = self.servDist [4].rvs ()
dep = Event (Event.DEPARTURE, sl1, c3, t+

fes.add (dep)

c3.depEvent = dep #ticket knows its
sl.ticket = c3

c3.tester = si

sl.idle = False

c3.state = 4 #goes into implemented
c3.pos = 2

sl.impltCounter += 1
sl.setWorking (t)

elif len(gs[1].tickets) > O:
if sl.analyseCounter < 4:
c3 = gs[1].dequeue_0()
b3 = self.servDist [2].rvs ()

dep = Event (Event.DEPARTURE, s1, c3, t+

fes.add (dep)

c3.depEvent = dep #ticket knows its
sl.ticket = c3

c3.state = 2 #goes into analysed
c3.pos = 1

sl.idle = False
sl.analyseCounter += 1
sl.setWorking (t)

elif len(gs[2].tickets) > 0 and len(gs[2].

if sl.impltCounter < 2:
@8 gs [2] . dequeue_0 ()
b3 self.servDist [4].rvs ()
dep = Event (Event.DEPARTURE, sl1, c3, t+

fes.add (dep)
c3.depEvent = dep #ticket knows its

sl.idle = False

sl.ticket = c3

c3.tester = si

c3.state = 4 #goes into implemented
c3.pos = 2

sl.impltCounter += 1
sl.setWorking (t)

90

983
984
985
986

987

988

989

990
991
992
993
994
995
996
997
998
999
1000

1001

1005
1006

1007

1008

1009

1025

1026

1030

1031

#ALGORITHM 8 (DEPARTURE FROM SCHEDULED)
elif queueNr == 4 and c.state == 3:
fes.add (Event (Event . ARRIVAL, tester, c, t)) #schedule
arrival at implemented

res.registerWaitingTime (3, t - c.arrivalTime)

sojournTimes_Components.loc[len(sojournTimes_Components.
index), c.component] = (t-c.arrivalTime) /3600

c.newPos (4, t)

c.pos = 2

Once server stops working, set to idle
c.engineer.idle = True
c.engineer.setIdle(t)

Engineer’s decision tree

serv = c.engineer
c3 = searchPriorityBlocking(serv.queue)
c4 = searchPriorityUrgent (serv.queue)
if c3 != None:
if serv.idle == True:
s = c3.state

b3 = self.servDist[s].rvs()

dep = Event (Event.DEPARTURE, serv, c3, t+b3)

fes.add (dep)

c3.depEvent = dep #ticket knows its departure
and service time

serv.idle = False

serv.ticket = c3

c3.state = s #goes into next state

c3.pos = assignPos(c3)

serv.setWorking (t)

else:
if serv.ticket.priority != O and serv.ticket.
depEvent != None:
serv.ticket.depEvent.iscancelled = True
serv.ticket.depEvent = None

remove_state_ticket (serv)
serv.nrTickets.remove(serv.ticket.number)
serv.nrTickets.append (c3.number)
add_state_ticket (serv, c3)

s = c3.state

b3 = self.servDist[s].rvs()

dep = Event (Event.DEPARTURE, serv, c3, t+b3)
fes.add (dep)

c3.depEvent = dep #ticket knows its
departure and service time
serv.idle = False
serv.ticket = c3
c3.state = s #goes into next state
c3.pos = assignPos(c3)
elif c4 != None:
if serv.idle == True:
s = c4.state

b3 = self.servDist[s].rvs()

dep = Event (Event.DEPARTURE, serv, c4, t+b3)

fes.add (dep)

c4.depEvent = dep #ticket knows its departure
and service time

serv.idle = False

serv.ticket = c4

c4.state = s #goes into next state

c4.pos = assignPos(c4)

serv.setWorking (t)

91

1044
1045

1046

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
107
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088

1089

1090

1091
1092
1093

1094

1095
1096
1097
1098
1099
1100
1101
1102

1103

else:

if serv.ticket.priority != O and serv.ticket.
priority != 1 and serv.ticket.depEvent != None:
serv.ticket.depEvent.iscancelled = True
serv.ticket.depEvent = None

departure and service time

else:

remove_state_ticket (serv)
serv.nrTickets.remove (serv.ticket.number)
serv.nrTickets.append(c4.number)
add_state_ticket (serv, c4)

s = c4.state

b3 = self.servDist[s].rvs()

dep = Event (Event.DEPARTURE, serv, c4, t+b3)
fes.add (dep)
c4.depEvent = dep #ticket knows its
serv.idle = False

serv.ticket = c4

c4.state = s #goes into next state
c4.pos = assignPos(c4)

if serv.idle == True:

departure and service time

t+b3)

departure and service time

state

if countAccepted(serv) > O:

if serv.countAccept < 2:
q_ = queuelAccepted(serv)
c3 = q_I[0]
serv.queue.dequeue_ticket (c3)
b3 = self.servDist[1].rvs ()

dep = Event (Event.DEPARTURE, serv, c3, t+b3

fes.add (dep)

c3.depEvent = dep #ticket knows its

serv.idle = False
serv.ticket = c3
c3.state =1 #goes into accepted state

c3.pos = 4
serv.countAccept += 1
serv.setWorking (t)

elif len(gs[2].tickets) > O0:

if serv.countImplt < 2:

q_ = queuelmplt(qgs[2], serv)
if len(q_) !'= 0:
c3 = q_[0]

gqs [2] .dequeue_ticket (c3)
b3 = self.servDist [4].rvs ()
dep = Event (Event.DEPARTURE, serv, c3,

fes.add (dep)

c3.depEvent = dep #ticket knows its

serv.idle = False
serv.ticket = c3
c3.tester = serv

c3.state = 4 #goes into implemented
c3.pos = 2
serv.countImplt += 1
serv.setWorking (t)

elif countSch(serv) > 0:

if serv.countSch < 2:
q_ = queueSch(serv)
c3 = q_I[0]
serv.queue.dequeue_ticket (c3)

92

1128

1140
1141

1142
1143
1144
1145
1146
1147
1148

149

1157
1158
1159

1160

b3 = self.servDist[3].rvs()
dep = Event (Event.DEPARTURE, serv, c3, t+b3

)

fes.add (dep)

c3.depEvent = dep #ticket knows its
departure and service time

serv.idle = False

serv.ticket = c3

c3.state = 3 #goes into scheduled state

c3.pos = 4

serv.countSch += 1
serv.setWorking (t)

#ALGORITHM 10 (DEPARTURE FROM IMPLEMENTED)
elif queueNr == 2:

if c.testProb > test_p: #
testing negative
fes.add (Event (Event . ARRIVAL, c.engineer, c, t)) #

schedule arrival at engineer’s queue - scheduled for the engineer again.
res.registerWaitingTime (4, t - c.arrivalTime)
sojournTimes_Components.loc[len(sojournTimes_Components
.index), c.component] = (t-c.arrivalTime) /3600
c.newPos (3, t)
c.pos = 4
#break
else: #testing

positive

fes.add (Event (Event . ARRIVAL, s1, c, t)) #schedule
arrival at for S1 queue - goes to verified.
res.registerWaitingTime (4, t - c.arrivalTime)
sojournTimes_Components.loc[len(sojournTimes_Components
(t-c.arrivalTime) /3600
c.newPos (5, t)
c.pos = 3

.index), c.component]

Once server stops working, set to idle
c.tester.idle = True
c.tester.setIdle(t)

Workflows

if c.tester == tester:
c3 = searchPriorityBlocking(gs[2])
c4 = searchPriorityUrgent (gs[2])

TESTER WORKFLOW
if ¢3 != None:
if tester.idle == True:
b3 = self.servDist [4].rvs()
dep = Event (Event.DEPARTURE, tester, c3, t+b3)
fes.add (dep)

c3.depEvent = dep #ticket knows its
departure and service time

tester.idle = False

c3.tester = tester

tester.ticket = c3

c3.state = 4

c3.pos = 2

tester.setWorking (t)

else:
if tester.ticket.priority != O0:
tester.ticket.depEvent.iscancelled = True
tester.ticket.depEvent = None

93

1161

1162
1163

1164

1165

1166

1167
1168
1169

1170

1189
1190

1191

1197
1198
1199

1200

number)

b3)

departure and service time

elif

departure and service time

ticket.priority != 1:

number)

b3)

departure and service time

elif

and service time

elif c.t
serv

tester.nrTickets.remove (tester.ticket.

tester.nrTickets.append(c3.number)
b3 = self.servDist[4].rvs()
dep = Event (Event.DEPARTURE, tester, c3, t+

fes.add (dep)

c3.depEvent = dep #ticket knows its
tester.idle = False
c3.tester = tester

tester.ticket = c3
c3.state = 4
c3.pos = 2

c4 != None:
if tester.idle == True:
b3 = self.servDist[4].rvs()
dep = Event (Event.DEPARTURE,
fes.add (dep)
c4.depEvent =

tester, c4, t+b3)

dep #ticket knows its
tester.idle = False

tester.ticket = c4

c4.tester = tester

c4.state = 4

c4.pos = 2

tester.setWorking (t)

else:

if tester.ticket.priority != O and tester.
tester.ticket.depEvent.iscancelled = True
tester.ticket.depEvent = None

tester.nrTickets.remove (tester.ticket.

tester.nrTickets.append(c4.number)
b3 = self.servDist[4].rvs()
dep = Event (Event.DEPARTURE, tester, c4, t+
fes.add (dep)
c4.depEvent

dep #ticket knows its
tester.idle = False
c4.tester = tester
tester.ticket = c4
c4.state = 4
c4.pos = 2

len(gs[2].tickets) > O and tester.idle == True:
c3 = gs[2].dequeue_0()
b3 = self.servDist [4].rvs ()
dep = Event (Event.DEPARTURE,
fes.add (dep)

tester, c3, t+b3)

c3.depEvent = dep #ticket knows its departure
tester.ticket = c3

tester.idle = False

c3.tester = tester

c3.state = 4

c3.pos = 2

tester.setWorking (t)

ester in engg:
= c.tester

94

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
264
1265
1266
1267
1268

Engineer’s Workflow
c3 = searchPriorityBlocking(serv.queue)
c4 = searchPriorityUrgent (serv.queue)

if ¢3 !=
if s

departure and service time

else

depEvent != None:

departure and service time

elif c4
if s

departure and service time

else

priority != 1 and serv.ticket.de

None:

erv.idle == True:
s = c3.state
b3 = self.servDist[s].rvs()
dep = Event (Event.DEPARTURE,
fes.add (dep)
c3.depEvent = dep

serv, c3, t+b3)

#ticket knows its

serv.idle = False
serv.ticket = c3
c3.state = s

c3.pos = assignPos(c3)
serv.setWorking (t)

if serv.ticket.priority != 0 and serv.ticket.

serv.ticket.depEvent.iscancelled = True
serv.ticket.depEvent = None
remove_state_ticket (serv)
serv.nrTickets.remove (serv.ticket.number)
serv.nrTickets.append(c3.number)
add_state_ticket (serv, c3)

s = c3.state

b3 = self.servDist[s].rvs()
dep = Event (Event.DEPARTURE, serv, c3, t+b3
fes.add (dep)
c3.depEvent = dep #ticket knows its
serv.idle = False

serv.ticket = c3

c3.state = s

c3.pos = assignPos(c3)

!= None:

erv.idle == True:
s = c4.state

b3 = self.servDist[s].rvs()
dep = Event (Event.DEPARTURE,
fes.add (dep)
c4.depEvent = dep

serv, c4, t+b3)

#ticket knows its

serv.idle = False
serv.ticket = c4
c4.state = s

c4.pos = assignPos(c4)
serv.setWorking (t)

if serv.ticket.priority != 0O and serv.ticket.
pEvent != None:
serv.ticket.depEvent.iscancelled = True
serv.ticket.depEvent = None
remove_state_ticket (serv)
serv.nrTickets.remove (serv.ticket.number)
serv.nrTickets.append(c4.number)
add_state_ticket (serv, c4)
s = c4.state
b3 = self.servDist[s].rvs()
dep = Event (Event.DEPARTURE,

serv, c4, t+b3

fes.add (dep)

95

departure and service time

else:

if serv.idle
if countAccepted(serv) > O:

t+b3)

departure and service time

state

c3, t+b3)

its departure and service time

implemented state

t+b3)

departure and service time

state

c4.depEvent = dep

#ticket knows its

serv.idle = False
serv.ticket = c4
c4.state = s

c4.pos = assignPos(c4)

== True:

if serv.countAccept < 2:

q_ = queueAccepted(serv)

c3 = q_I[0]
serv.queue.dequeue_ticket (c3)

b3 = self.servDist [1].rvs ()

dep = Event (Event.DEPARTURE, serv, c3,

fes.add (dep)

c3.depEvent = dep #ticket knows its

serv.idle = False
serv.ticket = c3
c3.state = 1 #goes into accepted

c3.pos = 4
serv.countAccept += 1
serv.setWorking (t)

elif len(qgs[2].tickets) > O:

if serv.countImplt < 2:

q_ = queueImplt(gs[2], serv)
if len(q_) != 0:
c3 = q_[0]

gs [2] . dequeue_ticket (c3)
b3 = self.servDist [4].rvs()
dep = Event (Event.DEPARTURE, serv,

fes.add (dep)

c3.depEvent = dep #ticket knows

serv.idle = False
serv.ticket = c3
c3.tester = serv

c3.state = 4 #goes into
c3.pos = 2

serv.countImplt += 1
serv.setWorking (t)

elif countSch(serv) > O0:

if serv.countSch < 2:

96

g_ = queueSch(serv)

c3 q_[0]
serv.queue.dequeue_ticket (c3)

b3 = self.servDist [3].rvs()

dep = Event (Event.DEPARTURE, serv, c3,

fes.add (dep)
c3.depEvent = dep #ticket knows its
serv.idle = False

serv.ticket = c3
c3.state = 3 #goes into scheduled
c3.pos = 4

serv.countSch += 1

1393
1394
1395

1396

1397

serv.setWorking (t)

elif c.tester == s1i:

S1 Workflow

if sl1.openCounter <= 5 and len(qs[0].tickets) > O:

c2 = gqs[0].dequeue_0()

b0 = self.servDist [0].rvs()
dep = Event (Event.DEPARTURE, sl1, c2, t+b0)
c2.depEvent = dep

and service time

#ticket knows its departure

fes.add (dep)

si1.
si.
c2.
c2.
c2.
sl.
.openCounter += 1

s1
else:

cl
@3

if

departure and service time

b3)

departure and service time

idle = False
ticket = c2
server = sl
state = 0

pos = 0
setWorking (t)

searchPriorityBlocking (qs [3])
searchPriorityUrgent (qs [3])

cl != None:

if sl1l.idle == True:
b3 = self.servDist [5].rvs()
dep = Event (Event.DEPARTURE, sl1, cl, t+b3)
fes.add (dep)
cl.depEvent = dep #ticket knows its
sl.idle = False
sl.ticket = cl
cl.state = 5
cl.pos = 3
sl.setWorking(t)

else:
if sl.ticket.priority != O:

sl.ticket.depEvent.iscancelled = True
sl.ticket.depEvent = None
sl.nrTickets.remove(sl.ticket.number)
sl.nrTickets.append(cl.number)
b3 = self.servDist [5].rvs()
dep = Event (Event.DEPARTURE, si1, cl, t+

fes.add (dep)
cl.depEvent = dep #ticket knows its
sl.idle = False

sl.ticket = cil

cl.state = 5

cl.pos = 3

elif c3 != None:

departure and service time

if sl.idle == True:
b3 = self.servDist[5].rvs()
dep = Event (Event.DEPARTURE, sl1, c3, t+b3)
fes.add (dep)
c3.depEvent = dep #ticket knows its

sl.idle = False

97

1398
1399
1400
1401
1402
1403

1404

1405
1406
1407
1408
1409

1410

1411
1412

1413

1414

1415

1436

1438

1439

c3.state = 5
c3.pos = 3
sl.ticket = c3

sl.setWorking(t)

else:
if sl.ticket.priority != 0 and sl1.ticket.
priority != 1 and serv.ticket.depEvent != None:
sl.ticket.depEvent.iscancelled = True
sl.ticket.depEvent = None
sl.nrTickets.remove(sl.ticket.number)
sl.nrTickets.append(c3.number)
b3 = self.servDist [56].rvs ()
dep = Event (Event.DEPARTURE, s1, c3, t+
b3)
fes.add (dep)
c3.depEvent = dep #ticket knows its
departure and service time
sl.idle = False
c3.state = 5
c3.pos = 3
sl.ticket = c3
else:
if sl1.idle == True:

if len(qs[3].tickets) > O0:

c3 = gs[3].dequeue_0()

b3 = self.servDist [6].rvs ()

dep = Event (Event.DEPARTURE, sl1l, c3, t+
b3)

fes.add(dep)

c3.depEvent = dep #ticket knows its
departure and service time

sl.ticket = c3

c3.pos = 3

c3.state = 5

sl.idle = False

sl.setWorking (t)

elif len(gs[2].tickets) > O0:
if sl.impltCounter < 2:
c3 = gs[2].dequeue_0() #ticket is
not being served
b3 = self.servDist [4].rvs()
dep = Event (Event.DEPARTURE, s1, c3
, t+b3)
fes.add (dep)
c3.depEvent = dep #ticket knows
its departure and service time
sl.ticket = c3

c3.tester = sl

sl.idle = False

c3.state = 4 #goes into
implemented state

c3.pos = 2

sl.impltCounter += 1
sl.setWorking (t)

elif len(gs[1].tickets) > O:

if sl.analyseCounter < 4:
c3 = gs[1].dequeue_0()
b3 = self.servDist[2].rvs()
dep = Event (Event.DEPARTURE, sl1, c3
, t+b3)

98

1459
1460
1461
1462
1463

1464

1465
1466
1467

1468

1469

1470

1490

1491
1492
1493
1494
1495
1496
1497
1498

1499

1509
1510
1511

1512

fes.add (dep)

c3.depEvent = dep

its departure and service time
sl.ticket = c3
c3.state = 2
state
c3.pos =1
sl.idle = False

sl.analyseCounter +=

sl.setWorking(t)

elif len(qgs[2].tickets) > 0

tickets) < 20:

if sl.impltCounter < 2:

#ticket knows

#goes into analysed

1

and len(gs[2].

c3 = gs[2].dequeue_00)
b3 = self.servDist [4].rvs ()
dep = Event (Event.DEPARTURE, sl1, c3

, t+b3)
fes.add (dep)

c3.depEvent = dep

its departure and service time
sl.idle = False
sl.ticket = c3
c3.tester = sl
c3.state = 4
implemented state
c3.pos = 2

sl.impltCounter +=

s1l.setWorking(t)

#ALGORITHM 12 (DEPARTURE FROM VERIFIED)
elif queueNr == 3:
print ("ALGORITHM 12")

#ticket knows

#goes into

res.registerWaitingTime (5, t - c.arrivalTime)

c.leaveSystem(t)

res.registerSojournTime(t - c.systemArrivalTime)
storeSojournTimes_priorities(c, (t-c.systemArrivalTime))

Different results

sojournTimes_Components.loc[len(sojournTimes_Components.

index), c.component] = (t-c.arrivalTime)

totalTimes_Components.loc[len(totalTimes_Components.index),

c.component] = (t-c.systemArrivalTime)

TotalTicketsNr.append (c.number)
tickets_in_system_day.append(c.number)

Once server stops working, set to idle

sl.idle = True
sl.setIdle(t)

S1 WORKFLOW

if sl1.openCounter <= 5 and len(qs[0].tickets) > O:

c2 gqs [0] . dequeue_0 ()
b0 self.servDist [0].rvs ()
dep = Event (Event.DEPARTURE, si1, c2,

t+b0)

c2.depEvent = dep #ticket knows its departure and

service time
fes.add(dep)
sl.idle = False
sl.ticket = c2
c2.server = sl
c2.state = 0

99

1560
1561
1562
1563

1564

1565
1566
1567
1568
1569
1570
1571

1572

c2.pos = 0
sl.openCounter += 1
sl.setWorking(t)

else:

cl = searchPriorityBlocking(qs[3])
c3 searchPriorityUrgent (gs [3])

if c¢c1 != None:

if sl.idle == True:
b3 = self.servDist [5].rvs ()
dep = Event (Event.DEPARTURE, sl1, cl, t+b3)
fes.add (dep)
cl.depEvent = dep #ticket knows its
departure and service time
sl.idle = False
sl.ticket = ci
cl.state = 5
cl.pos = 3
sl.setWorking (t)

else:
if sl.ticket.priority != O:
sl.ticket.depEvent.iscancelled = True
sl.ticket.depEvent = None
sl.nrTickets.remove(sl.ticket.number)
sl.nrTickets.append(cl.number)
b3 = self.servDist [5].rvs()
dep = Event (Event.DEPARTURE, sl1, cl, t+b3)
fes.add (dep)
cl.depEvent = dep #ticket knows its
departure and service time
sl.idle = False
sl.ticket = cil
cl.state = 5
cl.pos = 3
elif c3 != None:
if sl1.idle == True:

b3 = self.servDist [5].rvs ()

dep = Event (Event.DEPARTURE, sl1, c3, t+b3)

fes.add (dep)

c3.depEvent = dep #ticket knows its
departure and service time

sl.idle = False

c3.state = 5

c3.pos = 3

sl.ticket = c3

s1l.setWorking(t)

else:
if sl.ticket.priority != 0 and sl.ticket.

priority != 1:

sl.ticket.depEvent.iscancelled = True

sl.ticket.depEvent = None

sl.nrTickets.remove(sl.ticket.number)

sl.nrTickets.append(c3.number)

b3 = self.servDist [5].rvs()

dep = Event (Event.DEPARTURE, sl1, c3, t+b3)

fes.add(dep)

c3.depEvent = dep #ticket knows its
departure and service time

sl.idle = False

c3.state = 5

100

1575 c3.pos = 3

1576 sl.ticket = c3

1577

1578

1579 else:

1580 if sl.idle == True:

1581

1582 if len(qs[3].tickets) > O:

1583 c3 = gs[3].dequeue_0()

1584 b3 = self.servDist [5].rvs ()

1585 dep = Event (Event.DEPARTURE, sl1, c3, t+b3)

1586 fes.add (dep)

1587 c3.depEvent = dep #ticket knows its
departure and service time

1588 sl.ticket = c3

1589 c3.pos = 3

1590 c3.state = 5

1591 sl.idle = False

1592 sl.setWorking(t)

1593

1594

1595 elif len(gs[2].tickets) > O:

1596 if sl.impltCounter < 2:

1597 c3 = gs[2].dequeue_0() #ticket is not
being served

1598 b3 = self.servDist [4].rvs ()

1599 dep = Event (Event.DEPARTURE, sl1l, c3, t+
b3)

1600 fes.add(dep)

1601 c3.depEvent = dep #ticket knows its
departure and service time

1602 sl.ticket = c3

1603 c3.tester = si

1604 sl.idle = False

1605 c3.state = 4 #goes into implemented
state

1606 c3.pos = 2

1607 sl.impltCounter += 1

1608 sl.setWorking (t)

1609

1610 elif len(gs[1].tickets) > O:

1611 if sl.analyseCounter < 4:

1612 c3 = gs[1].dequeue_0()

1613 b3 = self.servDist [2].rvs()

1614 dep = Event (Event.DEPARTURE, sl1l, c3, t+
b3)

1615 fes.add(dep)

1616 c3.depEvent = dep #ticket knows its
departure and service time

1617 sl.ticket = c3

1618 c3.state = 2 #goes into analysed
state

1619 c3.pos =1

1620 sl.idle = False

1621 sl.analyseCounter += 1

1622 sl.setWorking (t)

1623
1624
1625 elif len(qgs[2].tickets) > 0 and len(gs[2].
tickets) < 20:

1626 if sl.impltCounter < 2:

1627 c3 = gs[2].dequeue_0()

1628 b3 = self.servDist [4].rvs ()

1629 dep = Event (Event.DEPARTURE, sl1, c3, t+
b3)

1630 fes.add (dep)

101

1631 c3.depEvent = dep #ticket knows its
departure and service time

1632 sl.idle = False

1633 sl.ticket = c3

1634 c3.tester = sl

1635 c3.state = 4 #goes into implemented
state

1636 c3.pos = 2

1637 sl.impltCounter += 1

1638 sl.setWorking (t)

1639

1640

1641 elif e.type == Event.EOD:

1642

1643 # Resetting all counters for the day

1644 sl.openCounter = 0

1645 sl.impltCounter = 0

1646 sl.analyseCounter = 0

1647

1648 for i in engg:

1649 serv = i

1650 serv.countAccept = 0

1651 serv.countImplt = 0

1652 serv.countSch = 0

1653

1654 # Storing results for the day

1655

1656 OpenTickets.append(len(qs [0].tickets))

1657 AcceptedTickets.append(countAccepted(engg[0]) + countAccepted(engg

[1]) + countAccepted(engg[2]) + countAccepted(engg[3]) + countAccepted(enggl4])
+ countAccepted(enggl[5]) + countAccepted(enggl[6]))

1658 AnalysedTickets.append(len(qgs[1].tickets))

1659 ScheduledTickets.append(countSch(engg[0]) + countSch(enggl1]) +

countSch(engg[2]) + countSch(enggl[3]) + countSch(enggl[4]) + countSch(enggl[5]) +
countSch(engg[6]))

1660 ImplementedTickets.append(len(gs[2].tickets))

1661 VerifiedTickets.append(len(qs[3].tickets))

1662

1663 engg_1.append(len(engg[0].queue.tickets))

1664 engg_2.append(len(engg[1].queue.tickets))
1665 engg_3.append(len(engg[2].queue.tickets))
1666 engg_4 .append(len(engg[3].queue.tickets))
1667 engg_5.append(len(engg[4].queue.tickets))
1668 engg_6.append (len(engg [5].queue.tickets))

1669 engg_7 .append(len(engg[6].queue.tickets))

1670 sl_tickets.append(len(qgs[0].tickets) + len(gs[1].tickets) + len(gs
[3].tickets))

1671 tester_tickets.append(len(qgs[2].tickets))

1672
1673 # Opening of tickets at the start of the day
1674
1675 if sl.ticket == None:

1676 if len(qgs[0].tickets) > O:
1677 c2 = gs[0].dequeue_0Q)

1678 b0 = self.servDist [0].rvs ()

1679 dep = Event (Event.DEPARTURE, sl1, c2, t+b0)

1680 c2.depEvent = dep #ticket knows its departure and
service time

1681 fes.add (dep)

1682 sl.idle = False

1683 sl.ticket = c2

1684 c2.server = sl

1685 c2.state = 0

1686 c2.pos = 0

1687 sl.openCounter += 1

1688 sl.setWorking(t)

1689

102

1690
1691

1692

1693
1694
1695
1696
1697
1698
1699
1700

1701

1702
1703
1704
1705
1706
1707
1708
1709

1710

1725

else:
c2 = sl.ticket
if ¢c2 != None and c2.state != 0 and c2.depEvent != None and c2.
priority != 0:
if len(qs[0].tickets) > 0:
c2.depEvent.iscancelled = True
c2.depEvent = None
sl.nrTickets.remove(sl.ticket.number)
sl.nrTickets.append(c.number)
c = gs[0].dequeue_0()
b2 = self.servDist [0].rvs ()
dep = Event (Event.DEPARTURE, s1, c, t+b2)
c.depEvent = dep #ticket knows its departure and
service time
fes.add (dep)
sl.idle = False
sl.ticket = ¢
c.state = 0
c.pos =0
sl.openCounter += 1

fes.add (Event (Event .EOD, s1, c, t+8%*3600))

nrDays_vs_Tickets.loc[day, "Tickets"] = len(set(
tickets_in_system_day))

day = day + 1

tickets_in_system_day = []

return res
#arrival distribution seconds in per ticket
servDist = [] # manually create them # service times

arrDist = Distribution(stats.expon(scale = ((365%5*3600%8)/8492))) #arrival time

servDist.append (Distribution(stats.gamma(scale 1/((2%60) /55680000) , a = ((2%60))

*%2/(5580000)))) # open

servDist.append(Distribution(stats.gamma(scale = 1/((30%3600/90000000)), a =
((30%3600) **2/90000000)))) # accepted

servDist.append(Distribution(stats.gamma(scale = 1/((20%60)/(900000)), a = (20%60)
*x2/(900000)))) # analysed

servDist .append (Distribution(stats.gamma(scale = 1/((20%3600) /337000000), a =
(20%3600) **x2/(337000000)))) # scheduled

servDist.append (Distribution(stats.gamma(scale = 1/((10%*3600) /2600000000), a =
(10%3600) **x2/(2600000000)))) # implemented
servDist.append(Distribution(stats.gamma(scale = 1/((10%60)/8500000), a = (10%*60)

*x%2/(8500000)))) # verified
years = 5 # number of years for which the simulation needs to run
run = 10 # index of the current run
r = 365*years # in days
sim = Simulation(arrDist , servDist , 8)
res = sim.simulate (r*8*3600) # input in hours
bins = 100

HEHHHHH A AR AR R R R R RS R HHHH##### FOR RESULTS ######H#H###HHHHHAAAAAAAAHHHHHHHHS
Printing results
for i in range(6):
if i == 0:
print ("##### RESULTS FOR OPEN QUEUE #####")

print (res.queueResults[i])
res.queueResults[i].histQueuelength (i, 10)

103

S B I

1780
1781
1782
1783

1784

1785

1786

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

res.queueResults[i].histWaitingTimes (i,100)

elif i == 1:
print ("##### RESULTS FOR ACCEPTED QUEUE #####")
print (res.queueResults[i])
res.queueResults[i].histQueuelength(i,1000)
res.queueResults[i] . histWaitingTimes (i,50)

elif i == 2:
print ("##### RESULTS FOR ANALYSED QUEUE #####")
print (res.queueResults[i])
res.queueResults[i].histQueuelength(i,10)
res.queueResults[i].histWaitingTimes (i,50)

elif i == 3:
print ("##### RESULTS FOR SCHEDULED QUEUE #####")
print (res.queueResults[i])
res.queueResults[i].histQueuelength(i,500)
res.queueResults[i].histWaitingTimes (i,100)

elif i == 4:
print ("##### RESULTS FOR IMPLEMENTED QUEUE #####")
print (res.queueResults [i])
res.queueResults[i].histQueuelLength (i, 10)
res.queueResults[i].histWaitingTimes (i,100)

elif i == b:
print ("##### RESULTS FOR VERIFIED QUEUE #####")
print (res.queueResults[i])
res.queueResults[i].histQueueLength(i,10)
res.queueResults[i].histWaitingTimes (i,0.5)

print ("Mean Sojourn time: (in hours) ", mean(res.sojournTimes)/3600)
res.histSojournTimes (50)

print ("\nS1 Working time: (in hours) ", sl1.workTime/3600, " (", sl.workTime
100/(3600%8*years*365), "%)", " and Idle time: (in hours) ", sl.idleTime/3600,
" (", s1.idleTime*100/(3600*8*xyears*365), "%)", " and number of tickets worked
on - ", len(set(sl.nrTickets)))

sojournTimes_Servers.loc[len(sojournTimes_Servers.index), s1] = sl.workTime/3600

sojournTimes_Servers_idle.loc[len(sojournTimes_Servers_idle.index), sl1] = si.
idleTime /3600

for i in engg:

print ("\n", i, " Working time: (in hours) ", i.workTime/3600, " (", i.workTime
100/(3600%8*years*365), "%)", " and Idle time: (in hours) ", i.idleTime/3600,
" (", i.idleTime*100/(3600*8*years*365), "%)", " and number of tickets worked
on - ", len(set(i.nrTickets)))
print ("Number of tickets worked on distribution - \nAccepted state tickets: ",
len(set(i.acceptTickets)), " Schedule state tickets: ", len(set(i.schTickets)),
" Implemented state tickets: ", len(set(i.impltTickets)))

sojournTimes_Servers.loc[len(sojournTimes_Servers.index), i] = i.workTime /3600
sojournTimes_Servers_idle.loc[len(sojournTimes_Servers_idle.index), i] = 1i.
idleTime /3600

print ("\nTester Working time: (in hours) ", tester.workTime/3600, " (", tester.

workTime*100/(3600*8*xyears*365), "J)", " and Idle time: (in hours) ", tester.
idleTime /3600, " (", tester.idleTime*100/(3600*8*xyears*365), "%)", " and number

of tickets worked on - ", len(set(tester.nrTickets)))
sojournTimes_Servers.loc[len(sojournTimes_Servers.index), tester] = tester.workTime
/3600

sojournTimes_Servers_idle.loc[len(sojournTimes_Servers_idle.index), tester] =
tester.idleTime /3600

def max_work(servers):

104

1800 workTimes = []

1801 for i in servers:

1802 workTimes .append (i.workTime)

1803

1804 for i in servers:

1805 if max(workTimes) == i.workTime:

1806 return i

1807

1208| server = max_work([sl,tester]+engg)

1800 print ("\nServer who works the most - ", server)

1511| def max_idle(servers):

1812 idleTimes = []

1813 for i in servers:

1814 idleTimes .append(i.idleTime)

1815

1816 for i in servers:

1817 if max(idleTimes) == i.idleTime:

1818 return i

1819

1820| server = max_idle([sl, tester] + engg)

1821| print ("\nServer who is the most idle - ", server)
1822

1523 Comp_Sojourn = sojournTimes_Components.mean(axis=0)

1524 plt . figure (figsize=(12, 6))

1825| Comp_Sojourn.plot (kind=’bar’)

1826| plt.xlabel (’Components’, fontsize = 12)

1827| plt.ylabel (’Time Spent (in hours)’, fontsize = 12)

1828 plt.title(’Time Spent (Component-wise)’, fontsize = 14)
1820| # show the plot

1830 plt . show ()

1832| serverss = sojournTimes_Servers.mean(axis=0)

1333 plt . figure (figsize=(12, 6))

1834 serverss.plot (kind=’bar’)

1835| plt.xlabel (’Servers’, fontsize = 12)

1836| plt.ylabel (*Work time (in hours)’, fontsize = 12)

1837| plt.title (’Work time for each Server’, fontsize = 14)
1838| # show the plot

1830| plt.show ()

1840
1841| Comp_Total = totalTimes_Components.mean(axis=0)
1542 plt . figure (figsize=(12, 6))

1843| Comp_Total.plot (kind=’bar’)

1844| plt.xlabel (’Components’, fontsize = 12)

1845| plt.ylabel (*Time Spent (in hours)’, fontsize = 12)

1846| plt.title (’Total Time in the System (Component-wise)’, fontsize = 14)

1847

1848

1s40| nrDays_vs_Tickets.plot(y = "Tickets", kind=’line’, figsize = (30,10), fontsize =
16)

1850| plt.title ("Number of Tickets per day fontsize = 16)
1851| plt.xlabel ("Day", fontsize = 16)
1852 plt.ylabel ("Tickets", fontsize = 16)

1853 plt . show ()

1855| plt .plot (OpenTickets)

1856 plt.title ("Number of Tickets per day - Open queue", fontsize = 14)

1857 plt.xlabel ("Day", fontsize = 12)

1858 plt.ylabel ("Tickets", fontsize = 12)

1850 plt . show ()

1860/ dyl = np.gradient (OpenTickets)

1861| print ("Rate of increase of tickets in Open state (per day):", mean(dyl))
1862
1863| plt.plot (AcceptedTickets)

1864 plt.title ("Number of Tickets per day - Accepted queue", fontsize = 14)
1865| plt.xlabel ("Day", fontsize = 12)

105

1866| plt.ylabel ("Tickets", fontsize = 12)

1567| plt . show ()

1868| dy2 = np.gradient (AcceptedTickets)

1s60| print ("Rate of increase in Accepted state (per day):", mean(dy2))

1| plt.plot (AnalysedTickets)

2| plt.title ("Number of Tickets per day - Analysed queue", fontsize = 14)
plt.xlabel("Day", fontsize = 12)

plt.ylabel ("Tickets", fontsize = 12)

75| plt . show ()

1876| dy3 = np.gradient (AnalysedTickets)

1877| print ("Rate of increase in Analysed state (per day):", mean(dy3))

1870 plt .plot (ScheduledTickets)

1880| plt.title ("Number of Tickets per day - Scheduled queue", fontsize = 14)
1g81| plt.xlabel ("Day", fontsize = 12)

1882| plt.ylabel ("Tickets", fontsize = 12)

1583| plt . show ()

1884 dy4 = np.gradient (ScheduledTickets)

1s85| print ("Rate of increase in Scheduled state (per day):", mean(dy4))

1887| plt.plot (ImplementedTickets)

18s8| plt.title ("Number of Tickets per day - Implemented queue", fontsize = 14)
1880 plt.xlabel ("Day", fontsize = 12)

1800| plt.ylabel ("Tickets", fontsize = 12)

1801 plt.show ()

18902/ dy5 = np.gradient (ImplementedTickets)

1803| print ("Rate of increase in Implemented state (per day):", mean(dy5))

1894
1805| plt .plot (VerifiedTickets)

1806| plt.title ("Number of Tickets per day - Verified queue", fontsize = 14)
1807| plt.xlabel ("Day", fontsize = 12)

1808| plt.ylabel ("Tickets", fontsize = 12)

1800| plt . show ()

19000 dy6 = np.gradient (VerifiedTickets)

1001| print ("Rate of increase in Verified state (per day):", mean(dy6))

1902
1003 fig, ax = plt.subplots()

1004| ax.plot (engg_1, label=’Engg 1°)
1005| ax.plot (engg_2, label=’Engg 2’)
1006| ax.plot (engg_3, label=’Engg 3’)
1007| ax.plot (engg_4, label=’Engg 4’)
100s| ax.plot (engg_5, label=’Engg 57)
1000| ax.plot (engg_6, label=’Engg 6’)
1910/ ax.plot (engg_7, label=’Engg 7°)
1911| ax.set_xlabel (’Days’)

1912| ax.set_title (’Engineer Queues’)
1013| ax.set_ylabel (’Tickets’)

1914 ax . legend ()

1915| plt . show ()

1916
1917| dy_enggl = np.gradient (engg_1)

1o18| print ("\n\nRate of increase Engg 1:", mean(dy_enggl))
1010/ dy_engg2 = np.gradient (engg_2)

1920| print ("Rate of increase Engg 2:", mean(dy_engg2))

1921 dy_engg3 = np.gradient (engg_3)

1922| print ("Rate of increase Engg 3:", mean(dy_engg3))

1923| dy_engg4 = np.gradient (engg_4)

1924| print ("Rate of increase Engg 4:", mean(dy_engg4))

1925| dy_enggb = np.gradient (engg_5)

1926| print ("Rate of increase Engg 5:", mean(dy_enggh))

1027| dy_engg6 = np.gradient (engg_6)

1928 print ("Rate of increase Engg 6:", mean(dy_engg6))

1920| dy_engg7 = np.gradient (engg_7)

1930| print ("Rate of increase Engg 7:", mean(dy_engg7))

1931

106

1932

1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948

1949

1950
1951

1952

1953

1954

1955
1956
1957
1958

1959

1960
1961

1962

1963
1964

1965

1966
1967

1968

1969
1970

1971

1972
1973
1974
1975
1976
1977
1978
1979
1980
1981

1982
1983
1984

1985

1986

1987

print ("\nMean number of tickets that go through the system in a day: ", mean(
nrDays_vs_Tickets["Tickets"]))

data = {
’engg 1’: mean(dy_enggl),
’engg 2’: mean(dy_engg2),
’engg 3’: mean(dy_engg3),
’engg 4’: mean(dy_engg4),
’engg 5°: mean(dy_enggh),
’engg 6’: mean(dy_engg6),
’engg 7°: mean(dy_engg7),
’open’: mean(dyl),
>accepted’: mean(dy2),
>analysed’: mean(dy3),
>scheduled’: mean(dy4),
’implemented’: mean(dy5),
’>verified’: mean(dy6),
’mean nr. of tickets through the system’: mean(nrDays_vs_Tickets["Tickets"

iD)

}

df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/
prob 1/rate of increase.xlsx’)

df = df.append(data, ignore_index=True)

df .to_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
rate of increase.xlsx’, index=False)

print ("\nMean time spent by each priority in the system - ")

if len(priority_0) > O0:
print (" Blocking ’0’ : ", mean(priority_0)/3600, " for ", len(set(
count_priority_0)), " tickets")

if len(priority_1) > O:
print (" Urgent ’1’ : ", mean(priority_1)/3600, " for ", len(set(
count_priority_1)), " tickets")

if len(priority_2) > O0:
print (" High ’2° : ", mean(priority_2)/3600, " for ", len(set(count_priority_2)
), " tickets")

if len(priority_3) > O0:
print (" Normal ’3’ : ", mean(priority_3)/3600, " for ", len(set(
count_priority_3)), " tickets")

if len(priority_4) > O:
print (" Low ’4’ : ", mean(priority_4)/3600, " for ", len(set(count_priority_4))
, " tickets")

data = {
’blocking - time’: mean(priority_0) /3600,
’blocking - nr. Of tickets’: len(set(count_priority_0)),
’urgent - time’: mean(priority_1)/3600,
’urgent - nr. O0f tickets’: len(set(count_priority_1)),
’high - time’: mean(priority_2)/3600,
’high - nr. O0f tickets’: len(set(count_priority_2)),
’normal - time’: mean(priority_3)/3600,
’normal - nr. Of tickets’: len(set(count_priority_3)),
’low - time’: mean(priority_4) /3600,
>low - nr. Of tickets’: len(set(count_priority_4)),

}
df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/

prob 1/priority - time and tickets.xlsx’)
df = df.append(data, ignore_index=True)

107

1985| df . to_excel (’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
priority - time and tickets.xlsx’, index=False)

1989

1990la = 1

1901| print ("\nService times:")

1902 for i in servDist:

1993 print (" Queue ", a, ": ", np.mean(i.rvs(365*years)))

1994 a = a+1l

1995

1996| # Storing data

1997

1008 data = {

1999 0: res.queueResults [0].getMeanWaitingTime (),

2000 1: res.queueResults[1].getMeanWaitingTime (),

2001 2: res.queueResults [2].getMeanWaitingTime (),

2002 3: res.queueResults [3].getMeanWaitingTime (),

2003 4: res.queueResults [4].getMeanWaitingTime (),

2004 5: res.queueResults[5].getMeanWaitingTime ()

2005 }

2006
2007| df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/
prob 1/waiting times.xlsx’)

200¢| df = df.append(data, ignore_index=True)

2000| df . to_excel (’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
waiting times.xlsx’, index=False)

2010

2011| data = {

2012 0: res.queueResults [0].getMeanQueuelLength(),

2013 "0 - std dev": res.queueResults[0].getVarianceQueueLength() =*x (1/2),
2014 1: res.queueResults[1].getMeanQueueLength (),

2015 "1 - std dev": res.queueResults[1].getVarianceQueueLength() x**x (1/2),
2016 2: res.queueResults [2].getMeanQueueLlength(),

2017 "2 - std dev": res.queueResults[2].getVarianceQueueLength() ** (1/2),
2018 3: res.queueResults [3].getMeanQueuelength (),

2019 "3 - std dev": res.queueResults[3].getVarianceQueueLength() x** (1/2),
2020 4: res.queueResults [4].getMeanQueuelength(),

2021 "4 - std dev": res.queueResults[4].getVarianceQueuelLength() *x* (1/2),
2022 5: res.queueResults [5].getMeanQueuelength (),

2023 "5 - std dev": res.queueResults[5].getVarianceQueueLength() x**x (1/2)
024 }

CEEY)
I

2026 df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/
prob 1/queue lengths.xlsx’)

27| df = df.append(data, ignore_index=True)

28| df . to_excel (’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
queue lengths.xlsx’, index=False)

2030| data = {

2031 ’mean sojourn time’: mean(res.sojournTimes) /3600,
2032 ’s1’: sl1l.workTime /3600,

2033 ’s1 - tickets solved’: len(set(sl.nrTickets)),

2034 1: engg[0].workTime/3600,

2035 >1 - tickets solved’: len(set(enggl[O0].nrTickets)),
2036 2: enggl[1]l.workTime /3600,

2037 ’2 - tickets solved’: len(set(enggll].nrTickets)),
2038 3: enggl2].workTime /3600,

2039 >3 - tickets solved’: len(set(enggl[2].nrTickets)),

2040 4: enggl[3].workTime /3600,

2041 ’4 - tickets solved’: len(set(enggl[3].nrTickets)),
2042 5: enggl[4].workTime /3600,

2043 ’6 - tickets solved’: len(set(enggl4].nrTickets)),
2044 6: engg[5].workTime /3600,

2045 ’6 - tickets solved’: len(set(enggl[5].nrTickets)),
2046 7: enggl[6].workTime /3600,

2047 >7 - tickets solved’: len(set(enggl6].nrTickets)),
2048 ’tester’: tester.workTime/3600,

2049 ’tester - tickets solved’: len(set(tester.nrTickets))

108

2050 }

2052| df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/
prob 1/sojourn times servers and mean.xlsx’)

2053| df = df.append(data, ignore_index=True)

2054| df . to_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
sojourn times servers and mean.xlsx’, index=False)

2056 data = {

7 ’s1’: sl.idleTime/3600,

engg [0].idleTime /3600,
engg[1].idleTime /3600,
engg[2].1idleTime /3600,

engg [3].idleTime /3600,
engg[4].idleTime /3600,

engg [6].idleTime /3600,

: enggl[6].idleTime /3600,
tester’: tester.idleTime/3600,

5
58
59
2060
2061
2062
2063
064

065

N O WwN R

2
2066
2067
2068| df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/
prob 1/idle times.xlsx’)

2060| df = df.append(data, ignore_index=True)

2070 df . to_excel (’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
idle times.xlsx’, index=False)

data = {
1: OpenTickets
}

MO N NN
oA W N e

I 333 33

df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/
prob 1/eod queue lengths open.xlsx’)

df = df.append(data, ignore_index=True)

s/ df . to_excel (’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/

eod queue lengths open.xlsx’, index=False)

N

NI
~

VoW

)
[

data = {
2081 1: AcceptedTickets
2082 }
2083
2084| df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/

prob 1/eod queue length accepted.xlsx’)

2085| df = df.append(data, ignore_index=True)

2086| df . to_excel (’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
eod queue length accepted.xlsx’, index=False)

20ss| data = {
2089 1: AnalysedTickets
2090 }

2002| df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/
prob 1/eod queue lengths analysed.xlsx’)

2003| df = df.append(data, ignore_index=True)

2004| df . to_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
eod queue lengths analysed.xlsx’, index=False)

2006| data = {
2097 1: ScheduledTickets
2098 ¥

2100 df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/
prob 1/eod queue lengths scheduled.xlsx’)

2101| df = df.append(data, ignore_index=True)

2102| df . to_excel (’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
eod queue lengths scheduled.xlsx’, index=False)

2104| data = {

109

2105 1: ImplementedTickets
106 }

2108| df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/
prob 1/eod queue lengths implemented.xlsx’)

2100| df = df .append(data, ignore_index=True)

2110| df . to_excel (’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
eod queue lengths implemented.xlsx’, index=False)

2111
2112 data = {

2113 1: VerifiedTickets
2114 }

2116/ df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/
prob 1/eod queue lengths verified.xlsx’)

2117| df = df.append(data, ignore_index=True)

2118| df . to_excel (’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
eod queue lengths verified.xlsx’, index=False)

2120 data = {

engg_1,
engg_2,
engg_3,
engg_4,
engg_5,
engg_6,
engg_7

YN O WN

2130| df = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/
prob 1/eod queue length engineers.xlsx’)

2131| df = df.append(data, ignore_index=True)

2132| df . to_excel (’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/Simulation/prob 1/
eod queue length engineers.xlsx’, index=False)

A.8 Printing Aggregate results for multiple runs

1|# -*- coding: utf-8 -*-

Created on Wed Mar 01 19:17:25 2023

5| @Qauthor: 20181301

o| import csv

10| import pandas as pd

11| import numpy as np

12| from scipy.stats import t

13| import math

14| import matplotlib . pyplot as plt
15| import seaborn as sns

16| import ast

15| def calc_CI(m):

19 n = len(m)

20 X = np.mean(m)

21 s np.std(m, ddof=1)

22 confidence_level = 0.95

23 dof = n - 1

24 t_value t.ppf ((1 + confidence_level) / 2, dof)
25 error = t_value * (s / np.sqrt(n))
26 1_bound = X - error

27 u_bound = X + error

28 return (1l_bound, u_bound)

110

29

66

67

69

N o~ O

® 0w 0 N N N NN NN NN
= O © W N o oA W

© oo
a A W R

0

)| print ("\nMean Sojourn Time:

print ("#####4#4##4% WAITING TIMES ######4#44#4##4")

waitingTimes_states = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/

BFP/Simulation/prob 1/waiting times.xlsx’)
for i in range (0,6):

if i == 0:

print ("###### Open State #######")
elif i == 1:

print ("###### Accepted State #H######")
elif i == 2:

print ("###### Analysed State #######")
elif i == 3:

print ("###### Scheduled State #######")
elif i == 4:

print ("###### Implemented State #H######")
elif i == b:

print ("###### Verified State #######")
print ("\n",waitingTimes_states[i].describe ())

print ("\nConfidence interval: ", calc_CI(waitingTimes_states[il), "\n")

print ("########4#4%# QUEUE LENGTHS ########4#4#4##")

queuelengths_states = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/

BFP/Simulation/prob 1/queue lengths.xlsx’)
for i in range(0,6):
if i == 0:
print ("###### Open State #######")
print ("\n",queuelengths_states[i].describe ())

print ("\nFor standard dev.:",queuelengths_states["0 - std dev"]l.describe())

print ("\nConfidence interval: ", calc_CI(queuelengths_states[i]), "\n")
elif i == 1:

print ("###### Accepted State #######")

print ("\n",queuelengths_states[i].describe ())

print ("\nFor standard dev.:",queuelengths_states["1 - std dev"].describe())
print ("\nConfidence interval: ", calc_CI(queuelengths_states[i]), "\n")
elif i == 2:

print ("###### Analysed State #######")
print ("\n",queuelengths_states[i].describe ())

print ("\nFor standard dev.:",queuelengths_states["2 - std dev"].describe())

print ("\nConfidence interval: ", calc_CI(queueLengths_states[i]), "\n")
elif i == 3:

print ("###### Scheduled State #######")

print ("\n",queuelengths_states[i].describe ())

print ("\nFor standard dev.:",queuelengths_states["3 - std dev"].describe())

"

print ("\nConfidence interval: ", calc_CI(queuelengths_states[i]), "\n")
elif i == 4:

print ("###### Implemented State #####H##")

print ("\n",queuelengths_states[i].describe ())

print ("\nFor standard dev.:",queuelengths_states["4 - std dev"].describe())
print ("\nConfidence interval: ", calc_CI(queuelengths_states[i]), "\n")
elif i == b:

print ("###### Verified State #H######")
print ("\n",queuelengths_states[i].describe ())

print ("\nFor standard dev.:",queuelengths_states["5 - std dev"].describe())

print ("\nConfidence interval: ", calc_CI(queuelengths_states[i]), "\n")

print ("#######4##4## SOJOURN TIMES, WORK TIMES & IDLE TIMES #########4####4")

work_sojourn_times = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/

BFP/Simulation/prob 1/sojourn times servers and mean.xlsx’)

idle_sojourn_times = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/

BFP/Simulation/prob 1/idle times.xlsx’)
total_time = 5*365%8

, np.mean(work_sojourn_times["mean sojourn time"]),
and CI: ", calc_CI(work_sojourn_times["mean sojourn time"]))

111

91

98

104

107

110

;| print ("Tester idle time:

7| print ("Engg

print ("\nS1 work time: ", np.mean(work_sojourn_times["s1"]), " (", np.mean(
work_sojourn_times["s1"])*100/total_time, "%) for tickets: ", np.mean(
work_sojourn_times["sl - tickets solved"]))

print ("S1 idle time: ", np.mean(idle_sojourn_times["s1"]), "(", np.mean(
idle_sojourn_times["s1"])*100/total_time, "%)")

print ("\nEngg 1 work time: ", np.mean(work_sojourn_times[1]), " (", np.mean(
work_sojourn_times [1]) *100/total_time, "J) for tickets: ", np.mean(
work_sojourn_times["1 - tickets solved"]))

print ("Engg 1 idle time: ", np.mean(idle_sojourn_times[1]), "(", np.mean(

idle_sojourn_times [1]) *100/total_time, "%)")

print ("\nEngg 2 work time: ", np.mean(work_sojourn_times([2]), "(", np.mean(
work_sojourn_times [2]) *100/total_time, "%) for tickets: ", np.mean(
work_sojourn_times["2 - tickets solved"]))

print ("Engg 2 idle time: ", np.mean(idle_sojourn_times[2]), "(", np.mean(

idle_sojourn_times [2]) *100/total_time, "%)")

print ("\nEngg 3 work time: ", np.mean(work_sojourn_times[3]), "(", np.mean(
work_sojourn_times [3]) *100/total_time, "%) for tickets: ", np.mean(
work_sojourn_times["3 - tickets solved"]))

print ("Engg 3 idle time: ", np.mean(idle_sojourn_times[3]), "(", np.mean(

idle_sojourn_times [3]) *100/total_time, "%)")

print ("\nEngg 4 work time: ", np.mean(work_sojourn_times[4]), "(", np.mean(
work_sojourn_times [4]) *100/total_time, "J) for tickets: ", np.mean(
work_sojourn_times["4 - tickets solved"]))

print ("Engg 4 idle time: ", np.mean(idle_sojourn_times[4]), "(", np.mean(

idle_sojourn_times [4]) *100/total_time, "%)")

print ("\nEngg 5 work time: ", np.mean(work_sojourn_times[5]), "(", np.mean(
work_sojourn_times [5]) *100/total_time, "J) for tickets: ", np.mean(
work_sojourn_times["5 - tickets solved"]))

print ("Engg 5 idle time: ", np.mean(idle_sojourn_times[5]), " (", np.mean(

idle_sojourn_times [6]) *100/total_time, "%)")

print ("\nEngg 6 work time: ", np.mean(work_sojourn_times[6]), "(", np.mean(
work_sojourn_times [6]) *100/total_time, "J) for tickets: ", np.mean(
work_sojourn_times["6 - tickets solved"]))

print ("Engg 6 idle time: ", np.mean(idle_sojourn_times([6]), "(", np.mean(

idle_sojourn_times [6]) *100/total_time, "%)")

print ("\nEngg 7 work time: ", np.mean(work_sojourn_times([7]), "(", np.mean(
work_sojourn_times [7]) *100/total_time, "J) for tickets: ", np.mean(
work_sojourn_times["7 - tickets solved"]))

print ("Engg 7 idletime: ", np.mean(idle_sojourn_times[7]), "(", np.mean(

idle_sojourn_times [7]) *100/total_time, "%)")

print ("\nTester work time: ", np.mean(work_sojourn_times["tester"]), "(", np.mean(
work_sojourn_times["tester"])*100/total_time, "%) for tickets: ", np.mean(
work_sojourn_times["tester - tickets solved"]))

", np.mean(idle_sojourn_times["tester"]), "(", np.mean(

idle_sojourn_times["tester"])*100/total_time, "%)")

print ("\n########44##4# RATE OF INCREASE OF QUEUES ##########4##4##")
rates_of_increase = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/
BFP/Simulation/prob 1/rate of increase.xlsx’)

print ("\nOpen state: ", np.mean(rates_of_increase["open"]))
print ("Accepted state: ", np.mean(rates_of_increase["accepted"]))
print ("Analysed state: ", np.mean(rates_of_increase["analysed"]))

3| print ("Scheduled state: ", np.mean(rates_of_increase["scheduled"]))
print ("Implemented state: ", np.mean(rates_of_increase["implemented"]))
print ("Verified state: ", np.mean(rates_of_increase["verified"]))

| print ("Engg 1: ", np.mean(rates_of_increase["engg 1"]))

2: ", np.mean(rates_of_increase["engg 2"]))
print ("Engg 3: ", np.mean(rates_of_increase["engg 3"]))
print ("Engg 4: ", np.mean(rates_of_increase["engg 4"]))

112

130
131
132

133

134
135

136

139

140

161

162

163

164

165

166

167

168
169
170
171
172
173
174
175
176
177
178
179
180
181

182

print ("Engg 5: ", np.mean(rates_of_increase["engg 5"]))

print ("Engg 6: ", np.mean(rates_of_increasel["engg 6"]))

print ("Engg 7: ", np.mean(rates_of_increase["engg 7"]))

print ("Average number of tickets going through the system (per day):
rates_of_increase["mean nr. of tickets through the system"]))

", np.mean(

print ("\n############ PRIORITY TICKETS ###############")
priority = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/

Simulation/prob 1/priority - time and tickets.xlsx’)
7| print ("\nBlocking: average time spent in system ", np.mean(priority["blocking -

time"]), " for ", np.mean(priority["blocking - nr. 0f tickets"]))

print ("Urgent: average time spent in system : ", np.mean(priority["urgent - time"])
, " for ", np.mean(priority["urgent - nr. O0f tickets"]))

print ("High: average time spent in system : ", np.mean(priority["high - time"]), "
for ", np.mean(priority["high - nr. Of tickets"]))

print ("Normal: average time spent in system : ", np.mean(priority["normal - time"])
, " for ", np.mean(priority["normal - nr. Of tickets"]))

print ("Low: average time spent in system : ", np.mean(priority["low - time"]), "

for ", np.mean(priority["low - nr. O0f tickets"]))

Plotting EOD queues

def return_avg_eod_queue (df):
result = []
for i in range (df.shape[0]):
for j in range(df.shape[1]):
cell_list = df.ilocl[i, j]
cell = ast.literal_eval(cell_list)
if result == []:
result = [0]l*len(cell)
for i in range(len(cell)):
result [i] = result[i] + celll[i]
n = len(df)
result = [r/n for r in result]
return result

OpenTickets = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/
Simulation/prob 1/eod queue lengths open.xlsx’)

AcceptedTickets = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/
Simulation/prob 1/eod queue length accepted.xlsx’)

AnalysedTickets = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/
Simulation/prob 1/eod queue lengths analysed.xlsx’)

ScheduledTickets = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP
/Simulation/prob 1/eod queue lengths scheduled.xlsx’)

ImplementedTickets = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/
BFP/Simulation/prob 1/eod queue lengths implemented.xlsx’)

VerifiedTickets = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/
Simulation/prob 1/eod queue lengths verified.xlsx’)

engineers = pd.read_excel(’C:/Users/20181301/Desktop/APPLIED MATH/YEAR-3/BFP/
Simulation/prob 1/eod queue length engineers.xlsx’)
engg_1 = pd.DataFrame (engineers[1])
engg_2 = pd.DataFrame (engineers[2])
engg_3 = pd.DataFrame (engineers [3])
engg_4 = pd.DataFrame (engineers[4])
engg_5 = pd.DataFrame (engineers[5])
engg_6 = pd.DataFrame (engineers[6])
engg_7 = pd.DataFrame (engineers[7])

plt.plot(return_avg_eod_queue (OpenTickets))

plt.title("Number of Tickets per day - Open queue", fontsize = 14)
plt.xlabel("Day", fontsize = 12)

plt.ylabel ("Tickets", fontsize = 12)

plt.show ()

plt.plot(return_avg_eod_queue (AcceptedTickets))

113

plt.title ("Number of Tickets per day - Accepted queue", fontsize = 14)
plt.xlabel("Day", fontsize = 12)

plt.ylabel ("Tickets", fontsize = 12)

plt.show ()

plt.plot(return_avg_eod_queue (AnalysedTickets))

plt.title ("Number of Tickets per day - Analysed queue", fontsize = 14)
)| plt.xlabel ("Day", fontsize = 12)

plt.ylabel ("Tickets", fontsize = 12)

plt.show ()

plt.plot(return_avg_eod_queue (ScheduledTickets))

plt.title("Number of Tickets per day - Scheduled queue", fontsize = 14)
plt.xlabel("Day", fontsize = 12)

plt.ylabel ("Tickets", fontsize = 12)

plt.show ()

plt.plot (return_avg_eod_queue (ImplementedTickets))
plt.title ("Number of Tickets per day - Implemented queue", fontsize = 14)

2| plt.xlabel ("Day", fontsize = 12)

plt.ylabel ("Tickets", fontsize = 12)
plt.show ()

plt.plot(return_avg_eod_queue(VerifiedTickets))

plt.title ("Number of Tickets per day - Verified queue", fontsize = 14)
plt.xlabel("Day", fontsize = 12)

plt.ylabel ("Tickets", fontsize = 12)

plt.show ()

fig, ax = plt.subplots()
ax.plot(return_avg_eod_queue(engg_1), label=’Engg 1°)
ax.plot(return_avg_eod_queue (engg_2), label=’Engg 2’)
ax.plot(return_avg_eod_queue (engg_3), label=’Engg 3’)
ax.plot(return_avg_eod_queue (engg_4), label=’Engg 4’)
ax.plot(return_avg_eod_queue (engg_5), label=’Engg 5°)
ax.plot(return_avg_eod_queue (engg_6), label=’Engg 6’)
ax.plot(return_avg_eod_queue (engg_7), label=’Engg 7°)
ax.set_xlabel (’Days’)

ax.set_title(’Engineer Queues’)

ax.set_ylabel (’Tickets’)

ax.legend ()

plt.show ()

114

	Contents
	Introduction
	Problem Statement
	Research Questions
	Significance

	Model Description
	The Process
	Tickets
	Servers
	Process Flowchart

	Theory & Methodology
	Service Times & Arrival Times

	Assumptions
	Limitations

	Simulation
	Overview of the simulated system
	Entities
	System Queues
	Workflows

	Events
	Arrival & Departure events for Queues

	Simulation description

	Results
	Queue analysis
	Queue Lengths
	Queue Lengths at End-Of-Day
	Waiting Times in Queues

	Server analysis
	Work times of servers
	Server tickets analysis

	Tickets analysis
	Sojourn Time
	On the basis of Priorities

	Improving the system performance
	Impact of insufficient information and tickets testing negative
	Build up between Open state and Analysed state
	Build up between Scheduled state and Verified state
	Effect on Mean Sojourn time
	Effect on Priority tickets

	Impact of adding servers
	Adding 28 engineers - Total 35 engineers
	Suggested Model

	Conclusions
	References
	Appendix
	Simulation Code
	Classes
	Distributions
	Future Event Set
	Priority Queue
	Queue
	Simulation Results
	Main Simulation
	Printing Aggregate results for multiple runs

