
 Eindhoven University of Technology

BACHELOR

Optimization of ticketing system for TIOBE Software B.V.

Swami, Dhwani

Award date:
2023

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d391180d-b3ca-4cf4-99fa-707811021c04

Optimization of ticketing
system for TIOBE

Software B.V.

Bachelor Final Project

Dhwani Swami

Department of Mathematics and Computer Science
Stochastics Operations Research Group

Supervisors:
TU/e - Marko Boon, Jacques Resing

TIOBE Software B.V. - Paul Jansen, Laurens Jansen

Final Report

Monday 3rd April, 2023

Abstract

This study inspects the implementation of queueing theory to improve the ticketing system for
TIOBE B.V. This study aims to reduce the waiting times, and queue lengths and improve the
system efficiency. This is done by proposing a newer, modified version of their existing ticketing
system. The research first analyses the existing ticketing system, and later expands to analysing
the response of the ticketing system in various situations. Using these results, a recommendation
is made which takes into account the number of servers, queue length and waiting times.

This thesis proves how the practical applications of queueing theory can be used to solve
optimization problems in businesses such as TIOBE and how this theory can be used to improve
day-to-day business operations.

iii

Contents

Contents v

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 2
1.3 Significance . 3

2 Model Description 5
2.1 The Process . 5

2.1.1 Tickets . 5
2.1.2 Servers . 8
2.1.3 Process Flowchart . 8

2.2 Theory & Methodology . 10
2.2.1 Service Times & Arrival Times . 12

2.3 Assumptions . 12
2.4 Limitations . 14

3 Simulation 15
3.1 Overview of the simulated system . 15

3.1.1 Entities . 15
3.1.2 System Queues . 20
3.1.3 Workflows . 21

3.2 Events . 27
3.2.1 Arrival & Departure events for Queues . 27

3.3 Simulation description . 31

4 Results 35
4.1 Queue analysis . 35

4.1.1 Queue Lengths . 35
4.1.2 Queue Lengths at End-Of-Day . 39
4.1.3 Waiting Times in Queues . 43

4.2 Server analysis . 47
4.2.1 Work times of servers . 47
4.2.2 Server tickets analysis . 47

4.3 Tickets analysis . 48
4.3.1 Sojourn Time . 48
4.3.2 On the basis of Priorities . 48

5 Improving the system performance 51
5.1 Impact of insufficient information and tickets testing negative 51

5.1.1 Build up between Open state and Analysed state 51
5.1.2 Build up between Scheduled state and Verified state 51

v

5.1.3 Effect on Mean Sojourn time . 52
5.1.4 Effect on Priority tickets . 54

5.2 Impact of adding servers . 54
5.2.1 Adding 28 engineers - Total 35 engineers . 55
5.2.2 Suggested Model . 59

6 Conclusions 61

References 63

Appendix 65

A Simulation Code 65
A.1 Classes . 65
A.2 Distributions . 68
A.3 Future Event Set . 69
A.4 Priority Queue . 69
A.5 Queue . 70
A.6 Simulation Results . 71
A.7 Main Simulation . 74
A.8 Printing Aggregate results for multiple runs . 110

vi

List of Algorithms

1 Arrival Event on Open (S1) . 27
2 Departure event from Open . 27
3 Arrival Event on Accepted (E[i]) . 28
4 Departure event from Accepted (E[i]) . 28
5 Arrival event on Analysed . 28
6 Departure event from Analysed . 28
7 Arrival Event on Scheduled (E[i]) . 29
8 Departure event from Scheduled (E[i]) . 29
9 Arrival event on Implemented . 29
10 Departure event from Implemented . 30
11 Arrival event on Verified . 30
12 Departure event from Verified . 30
13 End-Of-Day Event . 31

vii

Chapter 1

Introduction

Ticket lines can be found in hospitals, banks, retail stores, amusement parks, government agencies,
and a variety of other service systems. Ticket lines are the queues where customers arrive with their
requests or issues and wait to be served by a free server. Each customer is given a numbered ticket
upon arrival. When a server becomes available, the ticket numbers are called out in sequence, and
the holders of the tickets are served accordingly. Certain online services have also implemented
ticket queues. (Xiao, Xu, Yao & Zhang, 2022) Most queues are first-come-first-served (First In
First Out or FIFO) and are simulated by inputting the server’s average service time (for a partic-
ular distribution). In this paper, Priority Queues (Singh, Albert, Mieghem, Gurvich & Mieghem,
2022) are modelled alongside deques (docs.python, n.d.). These are used to create diversity (of
queues) that is appropriate for the problem and to support the complexity of the queueing system.

TIOBE B.V. is a software quality company and is specialized in assessing and tracking the
quality of software. They do so by applying several software metrics to it. TIOBE checks several
lines of software code for its customers each day. TiCS is their software quality framework that
allows their customers to effectively measure and monitor the software quality of their software
projects. (TIOBE , n.d.) Like any other company, TIOBE uses a ticketing system to track and
prioritise customer issues and requests. A ticketing system is an IT service management platform.
The ticketing system provides TIOBE with a platform that helps it in connecting to all its cus-
tomers, organise their requests/issues and assign tasks internally. The platform of the ticketing
system is hosted on a separate server which thus can be accessed by anyone within the organiz-
ation. (Gohil & Vikash Kumar, n.d.) However, their ticketing system suffers from long queues,
extremely high waiting times, and tickets being in the system for several years. To solve this issue,
TIOBE proposed this project which can further aid them in making decisions on how to change
and improve their ticketing system.

For most queueing models with multiple servers, it is assumed that servers have equal cap-
abilities, and hence the choice of the server (to which the customer is assigned) doesn’t make a
difference (Garrido, 2009). However, in real life, and in the case of TIOBE, most servers1 have
quite different capabilities, skills and paces of working. The challenging task of analysing a com-
bination of priority queues and deques in a multi-server system stems from the fact that jobs with
different priorities might be in service at the same time (at different servers). So the Markov
chain representation of the multi-class, multi-server queueing system appears to be necessary for
tracking the number of jobs of each class. (Harchol-Balter & Wierman, 2005)

Queueing theory is a mathematical framework that provides an in-depth understanding of
customer waiting times, server working time & idle time, and system performance. By applying
queueing theory to the ticketing system, this paper aims to determine the most efficient way to

1Servers are employees and are an integral part of the software team. They actively work on tickets to resolve
the issue or request the customer has.

1

manage customer demand, reduce queue lengths and reduce waiting times for requests/issues.
(Adan & Resing, 2015) In doing so, it is hoped to provide valuable insights into how businesses
such as TIOBE can improve their ticketing system and provide better service to their customers
alongside improving their performance.

The significance of this study lies in its potential to provide practical solutions to such a
common business problem. By optimizing the ticketing system using queueing theory, businesses
such as TIOBE can improve customer satisfaction, reduce waiting times, reduce ticket build-up in
their system and increase their operational efficiency.

1.1 Problem Statement

Several ticketing systems have long waiting times, high abandonment rates and low server pro-
ductivity which could lead to customer dissatisfaction. This is something TIOBE wants to avoid.

A solution to this problem is to apply queueing theory to analyse and optimise their ticketing
system. This thesis aims to investigate how queueing theory can be used to optimize the ticketing
system and to develop results and suggestions for implementing these optimizations. Through
analysis of the system’s queueing characteristics such as arrival rates, service times, queue capa-
city and end-of-day queue lengths, the goal of this research is to identify the bottlenecks in the
system and further propose solutions to improve the overall system performance. The subsequent
objective of this thesis is to help TIOBE make improvements in their ticketing systems which will
lead to better customer satisfaction and increased server productivity.

1.2 Research Questions

What are the best ways for reducing waiting times (for issues and requests to be serviced), in-
creasing server productivity and improve system performance? How can queueing theory be used
to improve the operation of the ticketing system? Which state are the biggest bottlenecks in the
system?

In this paper, the analysis of several key performance indicators (KPIs) is performed. The KPIs
discussed are as follows -

1. Waiting times - The amount of time an issue or request (from a customer) waits in a queue
before it is served by a server.

2. Queue lengths - The number of issues or requests that wait (or pile up) before the server
can work on them.

3. Number of tickets resolved - The number of tickets that are solved and closed, and are
therefore incorporated into TIOBE’s software.

4. Sojourn times and Mean Sojourn times - Sojourn time is the amount of time an issue/request
spends in the system before being resolved and closed. The Mean Sojourn time is the average
of all Sojourn times (of the resolved issues/requests).

5. Work and idle time of servers - The Work time of a server is the amount of time the server
works on the request/issue before moving onto the next step in the system. The Idle time of
a server is the amount of time the server does not work or is ”idle” before a task is assigned
to them.

Specifically, this research will investigate the following sub-questions:

1. How can queueing theory be applied to the ticket system in a busy service environment?

2

2. What are the primary bottlenecks and inefficiencies in the system, and how do they impact
performance?

3. What are the most effective strategies for reducing waiting times, increasing server pro-
ductivity, and improving system performance, and how can these strategies be implemented
in the ticketing system?

Through answering these research questions, this thesis aims to give insights into how queueing
theory can be used to improve the ticketing system and to develop suggestions for implementing
these improvements in practice.

1.3 Significance

With the results from the simulation, potential bottlenecks, the system’s scalability and optimiz-
ing its performance can be identified. The simulation of the ticketing system also provides insights
into the system’s behaviour under various scenarios. For example, it is possible to simulate how
the system would respond to an increase in the number of servers, which can help in identifying
the potential performance increase/decrease of certain servers.

Hence, performing the simulation of the ticketing system is a valuable contribution as it provides
a thorough analysis of the system’s performance, recognising bottlenecks and helping in improv-
ing the system’s performance. Moreover, the results of the simulation can be used to improve
TIOBE’s ticketing system and help them provide a better service to its customers.

3

Chapter 2

Model Description

In this chapter, the model used to simulate TIOBE’s ticketing system is discussed. To imitate the
real world, a certain number of assumptions are made which are further discussed in this chapter.
Moreover, the limitations of these assumptions, the queueing model used and the important ele-
ments of TIOBE’s ticketing system are discussed in detail.

2.1 The Process

2.1.1 Tickets

Tickets in the context of ticketing systems are a method for tracking and resolving issues and
requests related to the software being developed by TIOBE (TiCS)1. A ticket is a request or is-
sue (sent to TIOBE) from customers, that should be worked on in order to resolve the customer
complaint and improve their software. The tickets are created, managed and tracked using a
ticket-tracking system called Redmine. TIOBE uses Redmine to organise, prioritise and manage
tickets.

When a customer faces a problem/issue with their software or has a request for a new feature
(in their next release), the customer informs TIOBE about it. Then, TIOBE creates a ticket for
said request/issue and is then assigned to the appropriate server. After going through all the
steps in the system, from analysing to testing & verification, the ticket is resolved & closed and
then the customer is notified about the same. On average, TIOBE receives 1600 tickets a year
and 400 per quarter. Generally, a ticket goes through 8-11 states before it exits the system or is
rejected/abandoned.

States

The State of a ticket is the position in which the ticket waits for it to be picked up by the server
for the next task/state. The name of the state signifies the task that has already been performed
(on the ticket).

The number of given states of a ticket is 8, they are as follows,

1. Open
The ticket has entered the system, has been opened and is waiting to be assigned to a server
(for the next task).

2. Accepted
The ticket has been accepted and is now waiting to be analysed. At this stage, the ticket is

1https://www.tiobe.com/products/tics/

5

https://www.tiobe.com/products/tics/

also assigned to the server that will be performing the analysis and implementation. Once
analysed, the ticket leaves this state and moves on to the next one.

3. Analysed
Here, the ticket has been analysed and is waiting to be scheduled back to the server that
analysed it. Once the ticket is scheduled, it moves on to the next state.

4. Scheduled
In this state, the ticket is scheduled for a later time for the server to implement. Once the
ticket is implemented into TIOBE’s software, the ticket leaves the Scheduled state and moves
on to the next state.

5. Implemented
In this state, the ticket has been implemented and is waiting to be tested and verified. Once
the ticket is tested and verified, it leaves this state to move on to the next one.

6. Verified
In this state, the ticket has been verified and is waiting to be closed (i.e., leaving the system)
by the respective server.

7. Rejected
The ticket has been rejected due to certain issues2 and has exited the system. This can
occur at any stage of the system.

8. Wait
In this state, TIOBE is waiting for extra info or extra action taken from entities outside
TIOBE. This could be a customer or it could be a supplier. Let’s give an example of both
to get this clear:

(a) Waiting for a supplier: Some tool is not working and can’t be fixed, only the supplier
can. Then TIOBE is waiting for an update from the supplier that the problem has
been fixed in a certain release.

(b) Waiting for the customer: If a ticket has been submitted by the customer but there is
vital information missing. Then TIOBE will ask the customer for this extra info and
wait for it.

These states can be used to provide a clear picture of the status of each ticket, and to help
manage the priorities and workload of the software team. The state of a ticket can be easily
changed, and the changes are automatically recorded for future reference.

Priorities of tickets

Ticket priorities are the levels of importance that are assigned to the ticket when it enters the
ticketing system. The priorities are assigned on the basis of how critical the issue is, the urgency
for the customer, how the issue impacts the customer’s business and how complex the issue is.
Assigning a level of priority is an important aspect as it aids the software team in targeting the
more important and critical issues first.

TIOBE mainly works with 5 different types of priorities, Blocking, Urgent. High, Normal and
Low. Their level of importance is as follows,

Low < Normal < High < Urgent < Blocking.

1. Low, Normal, High
These tickets are of almost the same priority (in the case compared to higher priorities),
High is given more priority than Normal and Normal is given more priority than Low.

2An issue is already solved; the issue is not worth solving; the issue appears to be no issue at all.

6

2. Urgent
The ticket with a priority Urgent jumps the queue (or goes to the top of the queue, there
aren’t any blocking tickets). Once there is an Urgent ticket in the system, it needs to be
solved within 2 weeks.

3. Blocking
Blocking is the most important priority. If a ticket with a priority of Blocking enters the
system, every server at each state will drop everything to work on that ticket until it is closed
and leaves the system.

Categories and Components

Category and component (as seen in Figure 2.1 are characteristics or elements used to identify the
tool in which the issue/request has occurred. The Category is used to classify the tickets on the
basis of the type of task being performed on it. ”Components” is used to categorize tickets based
on the specific component of the TiCS software being worked on. This field aids in providing a
more descriptive view of the work being performed and in tracking the progress of the component
of the software.

The ”Component” (of a ticket) is also used to categorize and organise information about servers
(such as their skills). This information is used to track the progress of the server and to identify
the trends and patterns in their work. There are 86 different components in the system and each
ticket falls under a particular component and each engineer is specialised in a certain number of
components (as seen in Figure 2.2).

Figure 2.1: Components and Categories

7

2.1.2 Servers

”Servers” are the individuals responsible for working on the tickets and projects managed by
TIOBE. They include developers, project managers, product managers, software engineers and
other individuals who might be responsible for delivering the project. Servers are assigned certain
tickets and projects on the basis of their roles in the organisation, skills and their work area of the
software (the specific component(s) they work on).

There are three different types of servers, Engineers, Testers and the Process Manager.
There are 7 engineers (as seen in Figure 2.2 - E 1 to E 7) and each engineer is skilled in a certain
number of components. The engineers mainly have the job of analysing, implementing and testing
the implemented tickets. Including the engineers, there are 8 testers, who work on the implemented
tickets and test them to see if they are well implemented or not. If tested positive, the ticket goes
on to the next state, otherwise, it is returned to the scheduled queue of the engineer. The Process
Manager (denoted as S1 in this thesis) is the manager for the engineers and their job is to open,
accept, schedule and close the tickets. The Process Manager also tests & verifies tickets in case
there is a build-up of the Implemented state tickets. The queues for these servers are discussed in
depth in Section 3.1.2.

Figure 2.2: Engineers and their components

2.1.3 Process Flowchart

In this section, it is discussed how a ticket travels through the system, starting from its arrival
until it leaves the system.

8

Flowchart Description

Once the ticket arrives (Figure 2.3), it is opened by S1. The ticket is assigned a certain priority
based on customer request, urgency for the customer or how important it could be for the release.
If the ticket is of high priority, it is put in the start of the Accepted queue, or else after the last
ticket. Now, the ticket is assigned to one of the engineers by S1 to analyse and implement. Once
the ticket is analysed and implemented, an engineer will pick it up to test it. This engineer is not
the same as the engineer who analysed and implemented the ticket. If it tests positive, it moves
on to be verified by the same engineer, else it will be sent back to scheduled (if tested negative).
Then, it is closed by S1. This process is discussed in depth in chapter 3.

Figure 2.3: Process Flowchart

9

2.2 Theory & Methodology

A queueing network model (QN) is a collection of service centres representing the system re-
sources that provide service to a collection of customers that represent the users. (Goos et al.,
n.d.) Queueing networks are used to model and analyse several real-life systems. In this paper,
the dynamic assignment of servers to tickets is discussed. The number of tickets (or tasks) may
exceed the capacity for service and the aim is to maximize the system throughput.

In this thesis, a multi-class network similar to that of Kelly and Laws (Kelly & Laws, 1993)
is applied. Tickets of different types (i.e., different components) arrive at the network and go
through the system by one of the several possible routes3 and the route of the ticket depends
on the type (in this case, component) of the ticket. The different routes that can be taken by
the ticket can be seen in Figure 2.4. The aim is to reduce the number of tickets stuck in the system.

As much as the Jackson network is the simplest to apply, the ticketing system discussed in
this thesis doesn’t follow the necessary conditions for it to follow the Jackson network. A Jack-
son network has a certain number of stations, where each station represents a queue in which
the service rate can be both station-dependent (different stations have different service rates) and
state-dependent (service rates change depending on queue lengths). The tickets travel through the
network on fixed routes. All tickets on a station belong to a single type and they have the same
service-time distribution. As a result, there is no priority in tickets and all tickets are served on a
first-come-first-served basis. (Goodman & Massey, 1984) However, in TIOBE’s ticketing system,
each ticket has a different type and on a station/system queue, multiple types of tickets can arrive.
Furthermore, most of the queues in the system are priority queues. Therefore, it is unlikely that
TIOBE’s ticketing system follows the Jackson network.

A number of important metrics, such as the average number of tickets, average waiting time in
a queue and average waiting time in the system characterise this model. These metrics are used
to analyse the performance of the ticketing system in various conditions.

3A route in the network is the ordered set of service stations (or system queues) that the ticket goes through
before it leaves the system.

10

F
ig
u
re

2
.4
:
T
ic
ke
t
th
ro
u
g
h
th
e
sy
st
em

11

2.2.1 Service Times & Arrival Times

The distribution used for the arrival times is exponential, making it memoryless. This distribution
is one of the widely used continuous distributions and is used to model the time elapsed between
several events. The scale parameter is the inverse of the rate at which the tickets arrive over a
period of time.

Now, the distribution used for the service times is an array of gamma distributions, the tick-
ets arrive randomly and are served by the servers (in accordance with the gamma distribution).
The gamma distribution is a flexible continuous distribution which is used to model the service
time distributions at different states. This distribution is useful for simulating service times as
the services require a non-negligible variability. The gamma distribution is used to model service
times for multiple server queueing systems since the tickets are served by several parallel servers.
To use the gamma distribution to model service times, the parameters of the distribution are
estimated from historical data provided by TIOBE’s Redmine UI.

The shape and scale parameters of the gamma distribution are estimated using means and vari-
ances. (Statistical Compendium, n.d.) These estimated parameters are then used to simulate
service times in the queuing model. Given the means (E[X]) and variances (σ2) provided for each
state (from historical data), these can be expressed in terms of the scaling parameter α = k and
inverse scale parameter or rate parameter β = 1

θ where (θ is the scale parameter) as,

E[X] = kθ =
α

β
& σ2 = kθ2 =

α

β2
(2.1)

and now substituting the sample estimates to obtain the method of moments estimates, the es-
timated parameters are,

α̂ =
(E[X])2

σ2
& β̂ =

E[X]

σ2
. (2.2)

While these are estimated parameters and gamma distributions are used to best estimate the
service times, future research of the company’s historical data is necessary to more accurately
identify the probability distributions of service times at different states. Future data analysis of
the service times in different states would lead to a model that is closer to reality.

2.3 Assumptions

Assumptions are important as they affect the research approach and the results. The following
assumptions were made to simplify the system while keeping the system close to reality -

Each server has unique components.

It is assumed that no components have multiple servers (engineers), i.e., the engineers don’t have
any overlapping components. In the situation where this assumption is not made, the tickets would
pile up for certain engineers and would unnecessarily overload certain engineers. This assumption
was made to make sure that the tickets are distributed evenly. Having several engineers working
on the same components of tickets increases the complexity of the simulation, hence making it
difficult to analyse and interpret results.

Each component and priority is equally likely to be assigned to a ticket.

To make sure that the tickets are distributed evenly amongst the servers, it is assumed that each
component is equally likely to be assigned to a ticket. By making this assumption, the system’s
complexity is reduced and maintains the scope of this thesis. In addition, each priority is equally
likely to be assigned to a ticket. This helps maintain variability in the kind of tickets entering

12

the system and further helps in the evaluation of the queues and how well the priority tickets are
handled.

Rejected state not taken into account.

Rejected tickets are assumed to have no impact on the ticketing system. The purpose of the
ticketing system simulation is to optimize the service of successful tickets, and not understand the
behaviour of rejected tickets. Here, the rejected tickets are assumed to be outside the scope of the
simulation.

Wait state not taken into account.

The wait state occurs mainly due to external factors such as waiting for suppliers and customers.
Since such factors are difficult to model perfectly, it is simpler to exclude the Wait state (as this
can add complexity to the simulation).

Independent server not taken into account.

Not only does the Independent server have his queue (like the engineers), but he also has an
additional workflow similar to S1 (apart from the workflow similar to the engineers). This server
works with all states and works throughout the system. Since the Independent server works in all
the state queues, each queue has different handling. It is seen that some queues require special
handling (such as priority queues), and tickets from these queues need to be routed to a separate
queue to ensure that they are processed appropriately. However, this can increase delays and
complications in the handling of these tickets. Tickets need to be prioritized differently within
each queue. To implement this server such that he has his queue and multiple other queues, it is
quite complicated to implement his workflow into the simulation (while achieving close-to-reality
results).

Holidays, meetings and weekends not taken into account.

By including hours of holidays, weekends, meetings and other activities (where servers are not
working on the tickets), the complexity of the simulation drastically increases. This makes the
simulation more difficult to interpret and analysed. This assumption also reduces the complexity
as the individual servers have different sick leaves and personal days.

Service times

The service time distributions are in form of the gamma distributions, as discussed in section
2.2.1. However, the exact values that are used as parameters are approximations discussed with
TIOBE. The mean service times and variances assumed for each state are,

1. Open state - µ = 2 minutes per ticket and σ = 39.37 minutes,

2. Accepted state - µ = 30 hours per ticket and σ = 2.635 hours,

3. Analysed state - µ = 20 minutes per ticket and σ = 18.811 minutes,

4. Scheduled state - µ = 20 hours per ticket and σ = 5.099 hours,

5. Implemented state - µ = 10 hours per ticket and σ = 14.164 hours,

6. Verified state - µ = 10 minutes per ticket and σ = 48.591 minutes.

13

2.4 Limitations

It’s important to note that the system simulation can have certain limitations that can affect the
accuracy of the predictions -

Assumptions and simplifications

Although the assumptions and simplification (in section 2.3) are necessary to make the simulation
feasible and so they might not exactly reflect the real-world system. For instance, the simulation
assumes that all servers work on unique components, but that is not the case in real life.

Complexity and scale

TIOBE deals with 1600 tickets every year (on average) and over 33,000 tickets in the past 21 years.
As a consequence, the simulation might not be able to represent all of the relevant factors and
interactions the company has with the customers, suppliers and internally due to the magnitude
of tickets entering the system every year.

Human behaviour

Simulations usually don’t accurately reflect human behaviour. For example, the simulation of
the ticketing system assumes that the servers follow a certain work pattern (i.e., workflow) when
in reality the server behaviour is unpredictable and may vary widely from person to person.
(for example, checking emails, and getting coffee and lunch breaks). Due to the complexity of
implementing such behaviours, the servers adhere to their workflow and complex human behaviour
is not taken into account.

Unforeseen events

Sometimes, real-world events can deviate from the assumptions in unexpected ways. The sim-
ulation doesn’t take these into account which might result in an inaccurate representation of
the ticketing system. For example, the simulation doesn’t take into account how the COVID-19
pandemic might have affected the work of the servers or influenced the inflow of tickets.

14

Chapter 3

Simulation

In this section, the simulation used to evaluate the performance of the ticketing system used by
TIOBE is discussed. Simulating the ticketing system enables the analysis and modelling of the
queueing model in different situations, aiding in predicting how the system would respond to
different conditions. Furthermore, it is a cost-effective way to analyse and assess the system’s
performance before the changes could be implemented in the ticketing system of the company.
Simulating the model can help identify areas of improvement in the ticketing system and how the
improvements can be implemented. Lastly, due to the complexity of the system, mathematical
analysis is difficult to implement. Hence, simulating the model helps one study such complex
models with multiple servers and multiple queues.

The simulation model was developed using the discrete event simulation technique, which models
the system’s behaviour over time and analyses its performance under different situations. The
model was built using multiple libraries in Python, and it includes different modules and scripts
to represent the system’s components (as mentioned in section 3.1.1). The simulation considers
various parameters such as ticket processing time, ticket arrival rate and the number of servers
available.

The results from the simulation provide valuable insights into the ticketing system’s perform-
ance and helped in identifying potential bottlenecks. The outcomes of the simulation are used to
improve and optimize the ticketing system which can then help the company provide better service
to its customers. The simulation results provided valuable insights into the system’s performance
and helped in identifying potential bottlenecks and areas for improvement. The findings of the
simulation were used to optimize the ticketing system and provide better service to the company’s
customers

3.1 Overview of the simulated system

3.1.1 Entities

Entities refer to objects, variables, functions, and classes. All of these entities form the fundamental
building blocks in the code, and they are used to model and simulate the ticketing system.
The classes used in the code are described below.

Ticket Class

A ticket that enters the system has the following attributes:

1. Attributes

15

(a) PRIORITY
Each ticket is assigned a priority upon arrival into the system (as seen in section 2.1.1).

(b) COMPONENT
Every ticket that enters the system has a component that needs to be worked on (as
mentioned in 2.1.1).

(c) STATE
There are 8 states under which a ticket could go through (as mentioned in 2.1.1). These
states progressively change as the ticket goes through the system.

(d) SERVER
There are typically 3 servers who work on the ticket (as mentioned in 2.1.2).

(e) POSITION (OR QUEUE NUMBER)
This is the attribute which indicates the queue number to which the ticket is added.
These queues are further discussed in section 3.1.2.

(f) ARRIVAL TIME
Arrival time refers to the time at which the ticket arrives at the particular state/queue.

(g) SYSTEM ARRIVAL TIME
System arrival time refers to when a ticket arrives in the system and is ready to be
processed.

(h) ENGINEER
”Engineer” refers to the engineer that has been assigned to the ticket to perform analysis
and to implement the ticket.

(i) TESTER
The tester attribute stores the tester that is allotted to the ticket (to perform testing).

(j) TEST PROBABILITY
This is the probability with which the ticket tests positive and has the approval to be
verified (i.e., moving on to the next stage).

(k) PROBABILITY
This is the probability with which the ticket goes back to open if it has insufficient
information, that is, it re-enters that system after a certain time once TIOBE has
sufficient information to process the ticket.

(l) TICKET NUMBER
This is the ”ID” or unique number assigned to each ticket for identification.

2. Functions

(a) Shifting to new position in the system
This function changes or shifts the ticket to its new position. It changes the ”State”and
”Arrival Time” attributes to do so.

(b) Leaving the system
”leaveSystem” function makes the ticket leave the system i.e., once it has been resolved
and implemented.

(c) Sorting
The function ” lt ” compares the priorities of the tickets and helps sort the tickets in
a queue.

(d) Printing
The function ” str ” prints the ticket number.

16

Engineer

The engineer class has the following properties:

1. Attributes

(a) COMPONENT
There are several components under which a server could work (as mentioned in 2.1.1).

(b) WORK TIME
This attribute stores the total time the engineer has been working.

(c) IDLE TIME
This attribute stores the total time the engineer has been idle or not working.

(d) TICKET
This attribute is to identify the ticket the engineer is working on currently.

(e) QUEUE
”Queue” stores the tickets (objects of the Ticket class) which are in the engineer’s
queue. The engineer’s queue comprises tickets in the Accepted state and Scheduled
state.

(f) IDLE
In ”Idle”, a Boolean value of True or False is stored. It is set to True when the engineer
is idle and False when the engineer is working.

(g) COUNTS
The following counts are used to track the frequency of the events in the simulation,
and these are used to implement the workflow for engineers (Figure 3.2),

i. ACCEPTED
This counts the number of tickets that have been analysed and are ready to enter
the Analysed queue, i.e., the number of tickets that have been worked on from the
Accepted Queue.

ii. IMPLEMENTED
This attribute counts the number of tickets that have been worked on by the
engineer from the Implemented Queue and are ready to be tested.

iii. SCHEDULED
This count stores the number of tickets that have been implemented and are ready
to enter the implemented queue, i.e., the number of tickets that have been worked
on from the Scheduled Queue.

(h) ENGINEER NUMBER
This is the ”ID” or unique number assigned to each engineer for identification.

2. Functions

(a) Dequeuing a ticket
The function ”dequeue” removes a particular ticket from the engineer’s queue (”Queue”).

(b) Setting the engineer as working
This function adds the amount of time the engineer has been idle to ”Idle Time” after
storing the time the engineer begins working.

(c) Setting the engineer as idle
This function adds the amount of time the engineer has been working to ”Work Time”
after storing the time the engineer begins being idle.

(d) Printing
The function ” str ” prints the engineer number.

17

Tester

1. Attributes

(a) TICKET
This attribute is to identify the ticket that is currently working on.

(b) IDLE
In ”Idle”, a Boolean value of True or False is stored. It is set to True when the tester
is idle and False when the engineer is working.

2. Functions

(a) Setting the tester as working
This function adds the amount of time the tester has been idle to ”Idle Time” after
storing the time the tester begins working.

(b) Setting the tester as idle
This function adds the amount of time the tester has been working to ”Work Time”
after storing the time the tester begins being idle.

(c) Printing
The function ” str ” prints the string ”tester”.

S1 Server

1. Attributes

(a) TICKET
This attribute is to identify the ticket that is currently working on.

(b) IDLE
Here, similar to Tester and Engineer class, ”Idle” is set to True when the tester is idle
and False when the engineer is working.

(c) COUNTS

i. OPEN
This counts the number of tickets that have been opened by the server.

ii. IMPLEMENTED
Similar to the Engineer’s count, the ”Implemented” count keeps track of the number
of tickets that have been implemented or have been worked on by the server.

iii. VERIFIED
This keeps the count of the number of tickets that have been closed by the server
and have left the system.

iv. ANALYSED
This attribute keeps track of the number of tickets that have been scheduled by
the server to engineers.

2. Functions

(a) Setting the S1 as working
This function adds the amount of time the S1 has been idle to ”Idle Time” after storing
the time the S1 begins working.

(b) Setting the S1 as idle
This function adds the amount of time the S1 has been working to ”Work Time” after
storing the time the S1 begins being idle.

(c) Printing
The function ” str ” prints the string ”S1”.

18

Queue & Priority Queue

1. Attributes

(a) TICKETS
In this attribute, we store the list of tickets entering the particular queue.

2. Functions 1

(a) Adding ticket to queue
The function ”enqueue” adds the ticket (that is passed as a parameter) to the queue.
For the priority queue, after the ticket is queued, it is automatically sorted on the basis
of priority.

(b) Adding ticket to the start of the queue
The function ”enqueue front” adds the ticket (that is passed as a parameter) to the
front of the queue. For the priority queue, after the ticket is queued, it is automatically
sorted on the basis of priority.

(c) Removing the first ticket
The function ”dequeue[0]” removes the first ticket from the queue.

(d) Removing a particular ticket
The function ”dequeue ticket” removes the ticket (that is passed as a parameter) from
the queue.

Future Event Set

1. Attributes

(a) EVENTS
Events are added to and removed from this list, which has a changeable size. The order
of these events should be determined by when they occurred. This structure will often
be a ”binary heap” kind. A priority queue, sometimes known as a heap queue, is what
it is known as in Java and Python.

2. Functions

(a) Adding an event to the queue
The function ”add” enqueues the event (that is passed as a parameter) to the ”Events”
queue. This queue is automatically sorted on the basis of the time it occurs.

(b) Returning the next event
The function ”next” returns the next event from the ”Events” queue. This queue is
automatically sorted on the basis of the time it occurs.

Events

1. Attributes

(a) TYPE
”Type” stores whether the Event is of type Arrival, Departure or End-Of-Day.

(b) SERVER
Here, the server who is responsible for handling the event and ticket is stored.

(c) TICKET
”Ticket” stores the ticket that has been involved in the event. For example, it stores
the ticket whose departure event is being handled.

1For priority queues, each time a function is performed, the queue is sorted on the basis of priority.

19

(d) TIME
This stores the time at which the event is scheduled for.

(e) CANCELLING OF TICKET
The attribute ”iscancelled” stores a boolean value which tells us whether the departure
event is cancelled or not.

2. Functions

(a) Sorting
The function ” lt ” compares the time of the events and helps sort the events on the
basis of the time in ascending order (the event that occurs first, goes first).

(b) Cancelling event
The ”cancel” function sets the attribute ”iscancelled” to true, which in turn helps to
identify whether the event is cancelled or not.

3.1.2 System Queues

In a ticketing system, system queues are the collection and queue of tickets waiting at a particular
state/stage that are waiting to be processed by the servers. When a ticket enters the system, it
is added to a queue that further organizes the tickets based on their priority and/or arrival time.
The queues ensure that tickets are handled in a timely and efficient manner, and higher priority
tickets receive attention before lower priority ones.

Open State & Queue

The Open queue of type ”Queue” (as mentioned in Section 3.1.1 under Queue & Priority Queue)
is at the start of the ticketing system and is the queue that has all the newly submitted issues and
tickets that have been opened and are waiting to be assigned to an engineer. When a customer
submits a new issue/query, it is added to the open queue (after being opened) and is waiting to
be assigned to an engineer.

The open queue’s main purpose is to provide a preliminary classification of incoming tickets.
The tickets are prioritised based on external and internal factors which in turn helps ensure that
the most important tickets are processed first. The open queue ensures the prioritization of the
tickets which avoids the servers from getting overloaded.

Accepted and Scheduled States - Engineer’s Queue

The engineer’s queues are all of type ”Priority Queue” (as mentioned in Section 3.1.1 under Queue
& Priority Queue). This queue has all the tickets that are assigned to the engineer for analysis
(i.e., in the Accepted state) and implementation (i.e., in the Scheduled state). The tickets are
sorted within the queue on the basis of priority and urgency, in turn allowing the engineers to
focus on the most important tickets first. In addition to that, each engineer’s queue is customized
in such a way that it reflects their skills and tools (i.e., the components they work with). This
aids in tickets being added to the queue of the right server (engineer), ensuring that the tickets
are handled by the most appropriate personnel. Engineers monitor their respective queues and
track the status of tickets and update the ticket details. Personalised queues allow the engineers
to focus on the work being assigned to them without being bothered by the new tasks coming in.

Analysed State & Queue

The analysed queue of tickets (of type ”Queue” - as mentioned in Section 3.1.1 under Queue
& Priority Queue) is the queue of tickets that are waiting to be scheduled so that they can be
implemented by the engineers in their software. The queue represents the backlog of tickets that
have not yet been scheduled by S1 to the respective engineers and have been analysed.

20

Implemented State & Queue

The Implemented queue of tickets (of type ”Priority Queue” - as mentioned in Section 3.1.1 under
Queue & Priority Queue) is the queue of tickets that have been implemented into the software by
the engineers and are waiting to be tested and verified by the tester or a different engineer (than
the one who implemented the ticket). The queue represents the ”test backlog” that is, a list of
tickets that need to be tested to ensure the quality of the software made by TIOBE. The test
backlog is organized by priority.

The test backlog plays an important role in ensuring that the quality standards are met and
provides a structured way to test tickets such that they can be tracked and monitored within the
ticketing system. Due to regular updating and reviewing of the test backlog, TIOBE ensures that
testing efforts are focused on the most critical areas and that quality issues are addressed in a
timely manner.

Verified State & Queue

The Verified queue of tickets (of type ”Priority Queue” - as mentioned in Section 3.1.1 under Queue
& Priority Queue) is the queue of tickets that have been tested and verified by the testers and are
waiting to be closed by S1 so that they can leave the system. After the testing and verification
process, the ticket is added to the Verified queue, and it is ready for closure and leaving the system.
Once the ticket is closed, the respective customer is notified.

3.1.3 Workflows

A Workflow Flowchart is a pictorial representation that shows the sequence of events and tasks in
the process. It depicts how the server navigates through tasks throughout the day.

S1 workflow

Workflow description
S1 mainly performs closure of tickets, scheduling of tickets (to respective engineers) and testing &
verification of tickets if the test backlog is more than 20 tickets. As seen from figure 3.1, S1 first
opens 5-6 tickets at the start of the day. Once this task has been completed, he checks whether
there are any blocking and urgent priority tickets in the Verified queue that need immediate at-
tention, if there are any blocking or urgent priority tickets, he will first work on them and close
them. Next, S1 checks if there are any tickets in the verified queue, and if there are any tickets,
S1 will close them and then move on to check for tickets in the test backlog. If there are any
tickets in the test backlog, the server S1 will test 1-2 tickets. He then moves on to check if there
are any tickets in the Analysed queue that are waiting to be scheduled. If there are any tickets
to be scheduled, S1 will schedule 3-4 tickets. And lastly, S1 will check if the test backlog still has
tickets, and if there are, he will test 1-2 tickets. Even after searching through the workflow, if
there are no tickets for S1 to work on, S1 is set to idle and he checks for new tickets to work on
from the beginning of his workflow (when new tickets enter the system). Every time the server is
done working at a particular stage of his workflow, he continues working from where he left off.

Dependencies
The completion of certain activities in the workflow may depend on the completion of other activ-
ities. For instance, testing of tickets from the text backlog can only be done if the engineers have
implemented tickets. The same applies when S1 has to schedule tickets to the engineers after they
have been analysed. Moreover, S1 can only close tickets if there are tickets that have been tested
and verified by the testers. This implies that the workload of the server S1 heavily depends on
the work of the engineers and testers. The only task for which S1 does not depend on anyone is
the opening of tickets (as the arrival of tickets is influenced by external factors and not internal
system factors).

21

Engineers workflow

Workflow description
The engineers mainly perform three tasks - analysis of tickets, implementation of tickets (into
the TiCS software) and testing & verification of tickets. Following the workflow in figure 3.2, the
engineer first checks for high-priority tickets - blocking and urgent tickets. If there are any priority
tickets in their queue, the engineer first works on them and then moves on to the next stage of
the workflow. Now, once all the priority tickets are worked on, the engineer checks for tickets
that are in the accepted state, i.e. the tickets waiting to be analysed (as seen in section 3.1.2
under ”Accepted & Scheduled state - Engineer’s Queue”). The engineer works on a maximum of
2 tickets in the accepted state (if there are any) and then checks for tickets in the test backlog. If
there are any tickets in the test backlog, the engineer picks up the one they have not worked on,
i.e. the engineer tests a ticket that another engineer implemented.

If the test backlog has a non-zero length, the engineer test 1-2 tickets and then moves on to
the next stage of their workflow - checking if there are any tickets that were scheduled for them.
The engineer checks in their queue if there are any tickets that are in the scheduled state i.e.,
there are tickets waiting to be implemented into the TiCS software (as seen in section 3.1.2 under
”Accepted & Scheduled state - Engineer’s Queue”). If there are tickets in the scheduled state in
the engineer’s queue, the engineer will implement a maximum of 2 tickets. Even after searching
through the workflow, if there are no tickets for the engineer to work on, the engineer is set to idle
and they check for new tickets to work on from the beginning of their workflow (when new tickets
enter the system). Every time the server is done working at a particular stage of its workflow,
they continue working from where it left off.

Dependencies
Like the server S1, the engineers have certain dependencies as well. The engineer, for example,
needs to wait for S1 to open, accept and assign the tickets to them so they can start working on
it and analysing it. Similarly, the engineer has to wait for S1 to assign (non-priority) tickets to
them (from the analysed queue) so they can continue working on (i.e., implement) the tickets they
analysed. Also, the engineer must wait for other engineers to implement tickets before testing
them.

Tester workflow

Workflow description
The tester performs mainly one task - testing & verification of tickets. Following the workflow in
figure 3.3, the tester first checks if there are any priority tickets in the implemented queue (that is
the queue of tickets waiting to be tested and verified - as seen in section 3.1.2 under ”Implemented
state & Queue”) and if there are, the tester will first test and verify these priority tickets and then
move on to his next task. Now, the tester will check if there are any tickets in the implemented
queue and if there are, the tester will work on them and test & verify them. If there are no tickets
for the tester to work on (after all these searches), the tester will be set to idle. The tester checks
for new tickets to work on from the beginning of his workflow (when new tickets enter the system).
Every time the server is done working at a particular stage of its workflow, they continue working
from where it left off.

Dependencies
The tester heavily depends on S1 and the engineers to complete their tasks so he can start working.
S1 should be scheduling and assigning tickets on time and the engineers should finish analysing
and implementing their tickets on time. If these tasks are not performed timely, the tester has no
ticket to work on.

22

Difference in workflows

The main differences between the engineers, tester and the server S1 working patterns are -

1. The engineers are the only servers who have specific skills (i.e., components). This server
can only work on a certain type of components, whereas, S1 and the tester have no such
restriction.

2. The engineers have their own queue (where tickets of state Accepted and Scheduled enter)
and work on the Implemented queue, while the server S1 works on multiple queues and the
tester works on just one queue. Moreover, the tester only works on the Implemented queue
(as his main tasks are testing and verifying).

3. While the server S1 has a start-of-day task (opening of tickets), the engineers and tester
continue working on what they were working on the previous day.

4. While the server S1 and the engineers have counts to keep track of how many tickets they
work on (in a particular state), the tester keeps working on the implemented queue without
keeping a queue (as testing and verification are his primary tasks).

23

Figure 3.1: S1 Workflow

24

Figure 3.2: Engineer Workflow

25

Figure 3.3: Tester Workflow

26

3.2 Events

Events are the occurrences that take place in a queueing system. In queueing theory, analysing
these events and their effects on the model is an essential part. By modelling these events, several
predictions are made, especially the prediction of performance measures such as waiting times,
queue lengths, and service times. These predictions are significant in improving the operation of
the simulated ticketing system. The events that are dealt with in the ticketing system are - Arrival
events, Departure events and End-Of-Day events.

3.2.1 Arrival & Departure events for Queues

In this section, the handling of arrival and departure events from queues is discussed as pseudo-
codes and algorithms. These pseudo-codes are discussed in depth in the section 3.3.

Algorithm 1 Arrival Event on Open (S1)

1: procedure arrival
2: Create ticket with random attributes (component & priority)
3: Add ticket to Queue ▷ Queue sorts the tickets on the basis of priorities
4: Remove ticket from Open queue
5: if S1 is idle then
6: Schedule departure at t + service time (b)
7: Update ticket attributes ▷ Attributes (such as waiting time and arrival time) , assign

new state, assign time at which server stopped being idle etc.
8: Assign S1 as working on ticket

9: Schedule next arrival at t + interarrival time (a)

Algorithm 2 Departure event from Open

1: procedure departure from open
2: i← 0
3: while i < N do
4: if E[i] component is same as the ticket component then
5: Schedule Arrival at E[i] Queue at t
6: goto here

i = i+ 1

7: here:
8: Check S1’s decision tree
9: if there is no ticket to work on then

10: Set S1 to idle
11: else
12: Change ticket attributes (which server was working on)
13: Change server attributes
14: Schedule departure at time t+ b
15: Remove ticket from the respective queue

27

Algorithm 3 Arrival Event on Accepted (E[i])

1: procedure arrival
2: Add ticket to Queue ▷ Queue sorts the tickets on the basis of priorities
3: if ticket priority is blocking then
4: Cancel departure event of ticket they were working on
5: Change ticket attributes
6: Change server attributes
7: Schedule departure at time t+ b
8: Remove ticket from queue
9: else if E[i] is idle then

10: Schedule departure at t+ b
11: Remove ticket from queue
12: Update ticket attributes
13: Assign E[i] as working on ticket

Algorithm 4 Departure event from Accepted (E[i])

1: procedure departure from accepted
2: if ticket is a priority ticket (Blocking) then
3: Schedule arrival at the implemented queue at time t
4: else
5: With probability p schedule arrival at time t in analysed bag
6: With probability 1− p schedule arrival at time t in open queue

7: Check E[i] decision tree to determine next queue/ticket
8: if there is no ticket to work on then
9: Set server attribute to idle ▷ Server here is E[i]

10: else
11: Change ticket attributes
12: Change E[i] attributes
13: Schedule departure at time t+ b
14: Remove ticket from queue

Algorithm 5 Arrival event on Analysed

1: procedure Arrival on analysed
2: Add ticket to Bag
3: if S1 is idle then
4: Change ticket attributes
5: Change S1 attributes
6: Schedule departure at t+ b
7: Remove ticket from queue

Algorithm 6 Departure event from Analysed

1: procedure Departure from analysed
2: Schedule arrival at E[i] queue at time t
3: Check S1’s decision tree to see which queue they’ll work on
4: if no ticket to work on then
5: Set server S1 attribute to idle
6: else
7: Change ticket attributes
8: Change server attributes
9: Schedule departure at time t+ b

10: Remove ticket from queue

28

Algorithm 7 Arrival Event on Scheduled (E[i])

1: procedure arrival on scheduled
2: Add ticket to Queue ▷ Queue sorts the tickets on the basis of priorities
3: if E[i] is idle then
4: Schedule departure at t+ b
5: Remove ticket from queue
6: Update ticket attributes ▷ Attributes (such as arrival time, work time), assign new

state, assign time at which server stopped being idle etc.
7: Assign E[i] as working on ticket

Algorithm 8 Departure event from Scheduled (E[i])

1: procedure departure from scheduled
2: Schedule arrival in the implemented queue at time t
3: Check E[i]’s decision tree
4: if no ticket to work on then
5: Assign E[i] as idle
6: else
7: Change ticket attributes
8: Change server attributes
9: Schedule departure at time t+ b

10: Remove ticket from queue

Algorithm 9 Arrival event on Implemented

1: procedure Arrival on Implemented
2: Add ticket to Queue
3: i← 0
4: while i < N do ▷ N is the number of testers
5: if T [i] is idle AND T [i] ̸= E[i] then
6: Change ticket attributes
7: Change server attributes
8: Schedule departure at time t+ b
9: Remove ticket from queue

10: break
i = i+ 1

11: if ticket priority is Blocking then
12: k ← 0
13: while k < N do ▷ N is the number of testers
14: if server T [i] not working on a Blocking ticket & T [i] ̸= E[i] then
15: Cancel departure event of ticket they were working on
16: Change ticket attributes
17: Change server attributes
18: Schedule departure at time t+ b
19: Remove ticket from queue
20: break

k = k + 1

29

Algorithm 10 Departure event from Implemented

1: procedure Departure from Implemented
2: if (random) test with probability q is negative then
3: Schedule arrival at time t at E[i] scheduled queue
4: else
5: Schedule arrival at time t in verified queue

6: Check tester’s decision tree
7: if no tickets to work on then
8: Assign T [i] as idle
9: else

10: Schedule departure at time t+ b
11: Remove ticket from queue
12: Change ticket attributes
13: Change server attributes

Algorithm 11 Arrival event on Verified

1: procedure Arrival on Verified
2: Add ticket to Queue
3: if S1 is idle then
4: Change ticket attributes
5: Change server attributes
6: Schedule departure from the system at time t+ b
7: Remove ticket from queue
8: else
9: if ticket has priority (blocking) then

10: if S1 is not working on priority (blocking) then
11: Cancel departure of ticket (they are working on)
12: Change ticket attributes
13: Change server attributes
14: Schedule departure from the system at time t+ b
15: Remove ticket from queue

Algorithm 12 Departure event from Verified

1: procedure Departure from Implemented
2: Update performance measures
3: Check S1’s decision tree
4: if no ticket to work on then
5: Assign S1 as idle
6: else
7: Change ticket attributes
8: Change server attributes
9: Schedule departure at time t+ b

10: Remove ticket from queue

30

Algorithm 13 End-Of-Day Event

1: procedure End-Of-Day
2: Performance measures for the day are updated
3: All counters (for every server - Engineers and S1) are set to 0
4: if S1 is idle and is not working on any ticket then
5: Remove a ticket from the Open queue
6: Change ticket attributes
7: Change server attributes
8: Schedule departure at time t+ b
9: else

10: if the ticket S1 is working on is not priority then
11: Cancel departure event of the current ticket S1 is working on
12: Remove a ticket from the Open queue
13: Change ticket attributes
14: Change server attributes
15: Schedule departure at time t+ b
16: Remove ticket from queue

17: Next End-Of-Day event is scheduled at t+ 8 ∗ 3600

3.3 Simulation description

As seen in figure 2.4, the ticket arrives at the system at the rate of λ = 8492
365·5·3600·8 ≃ 5 tickets

per day. Moreover, as mentioned in the section 2.2.1 this rate is used for simulating the expo-
nential distribution of the arrival of tickets. The tickets arriving are then opened by S1 with a
mean service time of 2 minutes per ticket (as mentioned in section 2.3) and this is handled in
the Arrival event of the open state (in algorithm 1). Once the ticket is opened, it departs to the
appropriate engineer (in algorithm 2). The engineer is chosen by matching their component with
the ticket’s component, i.e., the engineer should have skills in the component of the ticket that
is being assigned. Once the ticket departs from the Open queue, it is added to the queue of the
appropriate engineer. The tickets are sorted based on priority to ensure that the critical tickets
(i.e., the ones with the highest priority) are serviced first. Upon arrival (in algorithm 3) into the
engineer’s (priority) queue (in the Accepted state), the ticket waits to be analysed by the engineer.
If it is a priority ticket (blocking or urgent), the current task is cancelled if the current ticket being
served is not a priority ticket, else the engineer will first finish working on the current priority
ticket before picking up the next one. Once the engineer is done analysing the ticket, a departure
event is scheduled for this ticket from the engineer’s queue at time t + b, where t is the current
time and b is the service time. When the departure event is being handled, the ticket is dequeued
from the engineer’s queue, the ticket attributes are updated and the engineer is set as working.

Now, when the ticket is departing (in algorithm 4) from the engineer’s queue (Accepted state),
the arrival of the ticket is scheduled at the Analysed queue. This only happens if the ticket has
sufficient information. If the ticket has insufficient information (from the customer), the ticket is
sent back to open with probability 1−p, else the ticket moves onto the next state (Analysed) with
probability p. Once this arrival is scheduled, the engineer checks their workflow to determine their
next task (as discussed in section 3.1.3). If there are no tickets to be worked on by the engineer,
they are set to idle. When handling the arrival event in the Analysed queue (in algorithm 5), the
ticket is first added to the queue (which is a dequeue) where the ticket waits to be scheduled by
S1. It is checked whether the server S1 is idle or not, if he is, S1 schedules the ticket back to the
engineer who analysed the ticket and a departure event from the Analysed queue is set up and
the ticket is dequeued from the queue. The server S1 is set as working on the ticket and the ticket
attributes are updated accordingly. When the ticket is leaving the Analysed queue, its arrival is
first scheduled in the engineer’s queue, as seen in algorithm 6. Once the arrival event is scheduled,

31

the server S1 checks his workflow (discussed in section 3.1.3) to foretell his next task. If he has no
ticket to work on, he will be set to idle.

After leaving the Analysed queue, the ticket enters the engineer’s queue again. Upon the ar-
rival of the engineer’s queue (in the Scheduled state, as seen in algorithm 7), the ticket is added
back into the engineer’s queue where it waits to be implemented by the engineer. It is now checked
if the engineer is idle and if they are indeed idle, the engineer starts working on (implementing)
the ticket, setting the engineer as working. Furthermore, a departure event is scheduled from the
engineer’s queue and the ticket attributes are updated accordingly. Upon handling the departure
event from the engineer’s queue (in the Scheduled state, as seen in algorithm 8), an arrival event
is scheduled at the Implemented queue (indicating that the ticket is moving onto the next state).
The engineer then checks their workflow to foretell their next task (as discussed in section 3.1.3).
If the engineer has no tickets to work on, the engineer is set to idle. Once the ticket leaves the
engineers’ queue (Scheduled state), it then arrives at the Implemented queue where it waits to
be tested and verified by a server. Upon arrival at the Implemented (priority) queue (as seen in
algorithm 9), the ticket is added to the queue. Now, the system searches for a free server amongst
the engineers (excluding the engineer who analysed and implemented the ticket) and the main
tester. Once the system has found the free server, the server starts the testing and verification
process of the ticket and is set to working. Furthermore, a departure event from the Implemented
queue is scheduled and the ticket is removed from the queue. If no servers are free and the ticket
is a priority ticket, a server is searched for who is not working on a priority ticket and is not the
engineer who analysed and implemented the ticket. Once such a server is found, the departure of
the ticket they are currently working on is cancelled, and the server starts working on the priority
ticket and is hence set as working. Further, a departure event is scheduled for this ticket from the
Implemented queue and the ticket attributes are updated accordingly.

While leaving the Implemented queue (as seen in algorithm 10), it is first checked whether the
ticket tested positive (i.e., it can move onto the next state) or negative (i.e., it will have to be sent
back to the engineer who implemented it). If the ticket tests negative with probability q, then an
arrival is scheduled at the engineer’s queue (i.e., the engineer who analysed and implemented the
ticket). Else, when the ticket tests positive, an arrival is scheduled at the verified queue (indicating
that it has been successfully tested and verified). Once these arrivals are scheduled, the server
(who tested the ticket) checks their workflow; if the server is an engineer, the engineer checks their
workflow (as discussed in section 3.1.3) and if the server is the tester, he will check his workflow
(as discussed in section 3.1.3). If there are no tickets for the server to work on, the server is set to
idle. Upon departure from the Implemented queue, the ticket arrives at the Verified queue. When
handling the arrival event at the Verified (priority) queue (as demonstrated in algorithm 11), the
ticket is first added to the queue, where the ticket waits to be closed by S1. If the server S1 is
idle, he works on the ticket right away and therefore is set as working. Furthermore, a departure
event from the Verified queue is scheduled for the ticket, the ticket is removed from the queue and
the ticket attributes are updated. Else, if the ticket is a priority ticket and S1 is not working on
a priority ticket, the departure event of the current event is cancelled for the current ticket and
S1 starts working on the priority ticket, hence setting him as working. Now, a departure event is
scheduled for the ticket from the Verified queue, the ticket is removed from the queue and the ticket
attributes are updated accordingly. While handling the departure event from the Verified queue
(in algorithm 12), the performance measures (such as sojourn time and waiting times) are updated
and the ticket leaves the system. Once the ticket has left the system, S1 checks his workflow (as dis-
cussed in section 3.1.3) to determine his next task. If he has no tickets to work on, S1 is set to idle.

After every 8 hours, an End-Of-Day event is scheduled (as seen in algorithm 13). At the end
of the day (i.e., after 8 working hours), a new day starts and all the counters for the servers are
reset. The day starts with S1 opening the tickets that entered the system at the start of the day.
If the ticket S1 was working on from the previous day is a priority ticket, he will continue working
on it, else the departure event of that ticket will be cancelled and S1 will first work on the Open

32

queue. When S1 is working on the tickets, a departure event is scheduled (from the Open queue)
and the ticket is removed from the Open queue. Furthermore, the ticket attributes and server
attributes are updated. And lastly, the next End-Of-Day event is scheduled after 8 hours.

33

Chapter 4

Results

In this chapter, the results of the simulation study on the ticketing system for TIOBE are presen-
ted. The simulation was modelled to evaluate the system’s performance under different scenarios
and potential bottlenecks.

The simulation helped in identifying potential bottlenecks in the system. For instance, it was
found that the ticket processing time was a critical factor that affected the system’s performance.
By reducing the ticket processing time, one can significantly improve the system’s response time
and reduce the average wait time for customers.

In this chapter, the analysis of results from simulating the current system is done assuming that
the tickets always have sufficient information and always test positive. This means that the tick-
ets go through the system without interruptions due to external factors and tests performed by
the testers (mathematically, the probability of tickets being sent back to previous states due to
external factors or negative testing is zero). The simulation is logged for 5 years, over 10 times to
accumulate dependable results.

4.1 Queue analysis

4.1.1 Queue Lengths

The analysis of the ticketing system revealed significant differences in the queue lengths for tickets
in different states. Specifically, it is established that tickets in the Accepted state had consistently
longer queue lengths compared to tickets to the other states. To collect data on the queue lengths,
the simulation logs over a period of 5 years (and 10 times). A Python script is used to extract the
queue lengths for each state and plotted the data using a histogram chart. The analysis revealed
that the average queue length for different states can be seen in Table 4.1.

State
length

Mean Queue
of queue length

Standard deviation

(per day)
of Queue

Rate of increase

Interval
95% Confidence

Open 0.343 2.066 0.0 [0.216, 0.471]
Accepted 1950.601 1108.863 2.119 [1931.393, 1969.81]
Analysed 0.0148 0.174 0.0 [0.0032, 0.0264]
Scheduled 216.466 125.543 0.239 [203.044, 229.887]

Implemented 0.0152 0.130 0.0 [0.0128, 0.0175]
Verified 0.0521 0.45 0.0 [0.0323, 0.0719]

Table 4.1: Queue lengths in states

35

It is believed that the long queue lengths for ”Accepted” tickets may be due to a backlog of un-
resolved issues, which could be serviced by improving the prioritization and assignment of tickets
to the engineers. On the other hand, it is necessary to increase the number of engineers in order
to handle the higher volume of ”Accepted” tickets. Moreover, it is observed that the verified and
analysed queues tend to have the highest probability to have a queue length of 0 (with a probability
close to 1, as seen in figures 4.6 and 4.3), followed by the Implemented queue (P(Q = 0) ≃ 0.99,
as seen in figure 4.5), Open queue (P(Q = 0) = 0.95, as seen in figure 4.1), Scheduled queue
(P(Q = 0) ≃ 0.0015, as seen in figure 4.4) and Accepted queue (P(Q = 0) ≃ 0.000245, as seen in
figure 4.2). Additionally, the probability of queue lengths for all states decreases to 0 as the queue
lengths increase, however, for Accepted and Scheduled states that are not true. It is also indicated
that the rate of increased tickets in the Accepted state and Scheduled state is positive, suggest-
ing that as the number of days (the system is being run) increases, the queue length increases.
Furthermore, the rate of increase for the Accepted state is much higher compared to the rate of
increase for the Scheduled state, signifying that tickets pile up much faster at the Accepted state
as compared to the Scheduled state. In addition to that, it is observed that the Accepted and
Scheduled states have the widest confidence intervals. This indicates that the build-up in these
two states is higher and more unstable.

In conclusion, this analysis suggests that the ticketing system could benefit from improvements
to reduce the queue lengths for ”Accepted” tickets. By dealing with this issue, the system could
improve its overall efficiency and provide a better user experience for customers.

Figure 4.1: Queue Length at Open

36

Figure 4.2: Queue Length at Accepted

Figure 4.3: Queue Length at Analysed

37

Figure 4.4: Queue Length at Scheduled

Figure 4.5: Queue Length at Implemented

38

Figure 4.6: Queue Length at Verified

4.1.2 Queue Lengths at End-Of-Day

The analysis of the number of tickets in the queues at the end of the day revealed that at the
end of the day, the queue lengths in different states varied significantly. It is observed that the
Accepted state has the highest queue length, followed by the Scheduled state.

Figure 4.7: Queue Length at Open (End-Of-Day)

It is observed that the queue lengths at the end of the day, the queue length in the Accepted
state (Figure 4.8) and the Scheduled state (Figure 4.10) keep on increasing and never stabilise.
This leads one to believe that the system is unstable due to unresolved tickets piling up in these
two states. And so, these states are the potential bottlenecks of the ticketing system. On the
other hand, the queue lengths in the Open (Figure 4.7), Analysed (Figure 4.9), Verified (Figure
4.12), and Implemented (Figure 4.11) states are stable and do not exceed a certain value. It is
believed that this is due to the fact that the service times in these states are much lower than

39

Figure 4.8: Queue Length at Accepted (End-Of-Day)

Figure 4.9: Queue Length at Analysed (End-Of-Day)

40

Figure 4.10: Queue Length at Scheduled (End-Of-Day)

Figure 4.11: Queue Length at Implemented (End-Of-Day)

41

Figure 4.12: Queue Length at Verified (End-Of-Day)

the service times in the Accepted and Scheduled states. It can also be deduced that due to the
bottlenecks at the Accepted and Scheduled states, not all tickets reach the Analysed, Implemented
and Verified states implying that the arrival rate in these states is quite low. Even though the
mean service time in the Implemented queue is 10 hours, the queue is stable due to the number
of servers actively working on the queue (7 Engineers and 1 tester).

Since the Accepted and Scheduled states are a part of the engineer’s queue, the End-Of-Day
queue lengths for the engineers’ queues are depicted below.

Figure 4.13: Queue Length for Engineers (End-Of-Day)

It is noticed that queues for engineers 1 and 7 are the longest and for engineer 3 it is the shortest.
Moreover, the rate of increase of queues for engineers 1 and 7 is much higher as compared to other
engineers (as seen in Table 4.2). This imbalance is a consequence of having engineers who are not
skilled in all components. Since engineers 1 and 7 are skilled in most components and engineer 3
is skilled in the least (as seen in figure 2.2), this creates an extra workload for engineers 1 and 7

42

while engineer 3 has the least amount of work. To avoid such an imbalance, TIOBE should train
their engineers (such as engineers 2,3,5) in more components or hire engineers who are skilled in
the components engineer 1 and 7 work with.

Engineer Rate of Increase of their Queues (tickets per day)
Engineer 1 0.777
Engineer 2 0.231
Engineer 3 0.0029
Engineer 4 0.113
Engineer 5 0.232
Engineer 6 0.119
Engineer 7 0.885

Table 4.2: Rate of increase of engineers’ queues

4.1.3 Waiting Times in Queues

The investigation of the ticketing system revealed that the waiting times for tickets in different
states varied significantly. It is found that tickets in the Accepted state had the highest waiting
times than tickets in the other states.

The analysis revealed the average waiting time for different states, which are logged in Table
4.3. This suggests that the system is taking quite a lot of time for the accepted tickets to be
serviced due to its servers being extremely busy, corresponding to results for the queue lengths
in the Accepted state (as discussed in section 4.1.1). Furthermore, the confidence interval of the
Accepted and Scheduled states is much higher, as compared to other states. This indicates the
previously established instability of queues in these states.

State
(in seconds)

Mean Waiting time
(in hours)

Mean Waiting time
(in hours)

95% Confidence Interval

Open 8269.401 2.29 [2.083, 2.511]

Accepted 1104002.33
(approx. 38 working days)

306.67
[270.536, 342.799]

Analysed 2062.768
(or 34.4 minutes)

0.573
[0.368, 0.777]

Scheduled 559155.36
(approx 19.4 working days)

155.32
[122.915, 187.726]

Implemented 34795.165
(approx. 1.2 working days)

9.67
[9.465, 9.866]

Verified 2185.005
(approx. 36.4 minutes)

0.607
[0.439, 0.775]

Table 4.3: Waiting times in states

It is observed that the waiting time in the Accepted state (figure 4.15) is very likely to be
between 0 to 1100 hours (approximately), followed by the waiting time in the Scheduled state
(figure 4.17) which is more likely to be between 0 to 200 hours, waiting time in the Implemented
state (figure 4.18) which is most likely to be between 0 to 50 hours, waiting time in Open state
(figure 4.14) that is more probable to be between 0 to 10 hours, waiting time in Analysed state
(figure 4.16) that is probable to be between 0 to 1.5 hours and lastly, waiting time in Verified state
(figure 4.19) which is most likely to be between 0 to 1.3 hours.

Once again, such a vast difference in waiting times occurs due to insufficient servers and high

43

service times. To address this issue, it is recommended to explore options to balance the workload
better, such as cross-training or hiring more engineers.

Figure 4.14: Waiting times over every point in time

Figure 4.15: Waiting times over every point in time

44

Figure 4.16: Waiting times over every point in time

Figure 4.17: Waiting times over every point in time

45

Figure 4.18: Waiting times over every point in time

Figure 4.19: Waiting times over every point in time

46

4.2 Server analysis

4.2.1 Work times of servers

The investigation of the ticketing system revealed that the working times (the total time servers
spend on working on tickets) and idle times (the total time servers spend on being idle/having
no tickets to work on) of different servers varied considerably. It is found that some servers had
consistently longer working times than others, which affects the performance and efficiency of the
system.

The analysis revealed that the mean working time and idle time for servers are -

Server
(& %age of time they work)

Work time in hours
(& %age of time they work)

Idle times in hours

S1 1262.005 (8.57%) 13457.99 (91.43%)
Engineer 1 14577.791 (99.848%) 3.468 (0.044%)
Engineer 2 14554.461 (99.69%) 15.391 (0.17%)
Engineer 3 13335.787 (91.341%) 1171.152 (8.201%)
Engineer 4 14544.331 (99.62%) 17.004 (0.188%)
Engineer 5 14573.756 (99.82%) 16.811 (0.115%)
Engineer 6 14523.209 (99.47%) 30.519 (0.237%)
Engineer 7 14577.523 (99.846%) 4.942 (0.034%)
Tester 8586.976 (58.815%) 5992.021 (41.041%)

Table 4.4: Working and idle times of servers

From table 4.4, it is observed that engineers 1 and 7 are the servers that work the most, the
servers that work the least are S1 and the tester, and the engineer that works the least is engineers
3.

To solve the issue of uneven workload, it is recommended to conduct a more detailed analysis
of engineers 1 and 7 to identify the root cause of the longer working times. According to the scope
of the information available, this is mainly a consequence of these servers having more components
as compared to other servers. The detailed analysis could involve monitoring their performance
metrics, reviewing server configurations, or running stress tests to simulate high levels of traffic.
Consequently, it is necessary to redistribute tickets to other servers in order to balance the workload
more effectively, i.e., more servers (engineers) need to be skilled in additional components.

4.2.2 Server tickets analysis

The analysis revealed the number of ticket servers worked on in 5 years, as represented in Table
4.5.

The difference in the number of tickets worked on by the servers is due to differences in workload
distribution or ticket routing. It is the case that server S1 is handling a higher volume of tickets
due to his role - opening all tickets, scheduling all tickets, implementing some tickets (when the
queue length is high) and closing all tickets. This means that S1 has worked on every ticket
(opening and closing). Similarly, for the tester, since his task is mainly testing and verification,
the number of tickets he tests and verifies is quite high. It is also observed that the number of
tickets worked on by engineers 1 and 7 is higher than the rest of the engineers. This could be
a result of a pile-up of tickets in their specific queues, resulting in engineers 1 and 7 working on
more tickets as compared to other engineers. Consequently, there may be issues with the ticket
routing algorithm that are causing an imbalance in the workload distribution.

47

Server Number of tickets
S1 8482.2

Engineer 1 480.0
Engineer 2 458.9
Engineer 3 469.2
Engineer 4 473.4
Engineer 5 465.4
Engineer 6 470.4
Engineer 7 481.8
Tester 868.3

Table 4.5: Average number of tickets worked on (in 5 years)

4.3 Tickets analysis

4.3.1 Sojourn Time

The mean sojourn time for a ticket in the system is the amount of time the ticket is expected to
spend in the system before it leaves the system (after being closed). (Melamed, 1982)

The mean sojourn time in the simulated system is 244.086 hours with the 95% confidence
interval of [197.409, 290.764]. In addition to that, the average number of tickets closed in a day
(number of tickets leaving the system in a day) is 0.987 ≃ 1 ticket. From figure 4.20 it is observed
that a ticket typically spends up to 500 hours in the system. A high sojourn time indicates high
waiting times in the queues. If the ticket passes through the queues uninterrupted and without
any waiting, it should take about 60.5 hours. However, the mean sojourn time is approximately
4.55 times the uninterrupted time (of 60.5 hours). This indicates that the tickets spend most of
their time waiting to be served which leads to inefficiency of the system, increased workload of
servers and build-ups in queues.

Figure 4.20: Sojourn times

4.3.2 On the basis of Priorities

Through the simulation, it is also seen how much time is spent by each priority ticket through the
system. It is observed that the priority tickets have the following sojourn times -

48

Priority Mean Sojourn time (in hours) Number of tickets resolved
Blocking 245.14 1630.9 ≃ 1631
Urgent 125.46 65.9 ≃ 66
High 375.85 12.2

Normal 398.56 10.6
Low 501.88 11.4

Table 4.6: Mean Sojourn times of tickets (grouped by priority)

It is observed that the mean sojourn time for the highest priority ticket, Blocking, is quite
high. This is a consequence of the build-up of priority tickets for each server, as in the case where
there is more than one blocking ticket in a queue, the blocking tickets are served on a first come
first serve basis. This leads to increased waiting time for the blocking tickets, and hence a higher
sojourn time as well.

However, it is observed that the sojourn times for urgent tickets are lower, as compared to
blocking tickets. But, it is also discovered that the number of tickets resolved in these priorities is
quite low (as compared to blocking tickets). This indicates that most of the urgent tickets build
up in the system and are seldom closed. Similarly, for tickets with priority high, normal and low,
not only is the mean sojourn times higher but also the number of tickets resolved is quite low,
suggesting that there is an enormous build of high, normal and low priority tickets as well. It can
be concluded that a ticket leaving a system has a very high probability of having a priority of
blocking. This imbalance is potentially a result of the inefficient distribution of workload amongst
the engineers.

49

Chapter 5

Improving the system
performance

In this chapter, it is further discussed the implications of the simulation study on the ticketing
system for TIOBE and its potential impact on the company’s business operations.

5.1 Impact of insufficient information and tickets testing
negative

As discussed previously, it is possible that the ticket is sent back to Open (from analysed) due
to insufficient information from the customer and can be sent back to the engineer (as a result of
testing negative). Now, the probability of the ticket being sent back in both cases is set to 0.1 and
the simulation is logged for 5 years (the code is run 10 times and the results below are averaged
over 10 runs).

5.1.1 Build up between Open state and Analysed state

As observed in table 5.1, the waiting time for tickets increases by at least 2 times for all states.
However, in the Accepted state, it is seen that the queue length decreases by a factor of 0.9 even
though the waiting time increases by a factor of 1.5 due to engineers getting busier at every state
they work on and due to tickets being sent back to the Open state, not all tickets make it past the
Open state into the Accepted state. The waiting time in the states Open and Analysed increase as
the server S1 gets busier implementing and closing tickets at the Implemented state and Verified
state (respectively). This is also reflected in the increase in the work time of the server S1 by a
factor of 8.6 (as seen in table 5.2). In addition to that, there is a significant pile up at the Open
and Analysed states, where the number of tickets in the Open state increased by a factor of 1644.4
and in the Analysed state increased by a factor of 750.7. Furthermore, the waiting time in Open,
Accepted and Analysed states increased by a factor of 372.3, 1.5 and 17.1 times respectively. This
leads to an increase in the work time of the engineers and S1 as well, as seen in table 5.2 and
the average work time of the engineers and S1 has increased even with a small probability of the
ticket having insufficient information. Consequently, with a small probability of having insufficient
information, the build-up increases for all the engineers and the server S1, leading to an increased
build-up in the Open and Analysed states, in addition to an increase in waiting times in Open,
Accepted and Analysed states.

5.1.2 Build up between Scheduled state and Verified state

Since not many tickets reach the Analysed state, not all tickets are scheduled for the engineers to
implement. This results in a decrease in the number of tickets in the Scheduled state by a factor

51

of 0.53 even though the waiting time increases by a factor of 1.6 (as seen in table 5.1). Moreover,
the number of tickets in the Implemented and Verified states increase by a factor of 1300 and
13.05 times (respectively) in addition to an increase in waiting time by a factor of 9.6 and 14.7
times (respectively). This heavy pile-up is the result of all the servers getting busier at almost
every stage of their workflow. For instance, as the engineers get busier analysing the tickets (due
to pile up at the accepted queue), they’ll get to test and verify the tickets later which in turn
increases their waiting time in the Implemented state finally, when they get to their Scheduled
(state) tickets, the waiting time for the tickets in the Scheduled state has increased drastically.
Similarly, for the server S1, as he gets busier opening the tickets, the waiting time for the tickets in
Analysed state and Verified state increases. In addition to that, due to the increase in the number
of tickets in the Implemented state, S1 now has to actively work on this queue as well, resulting
in an increased queue length in the Verified state (alongside the increase in wait time for tickets
in that state). Furthermore, the work time for the tester increases by 1.6 times, which indicates
that due to tickets testing negative (and insufficient information), the tester is overworked.

Consequently, due to insufficient information and tickets testing negative, the work times in-
crease for all servers (as seen in Figure 5.2) and waiting times increase in all states as well, leading
the system to become more unstable and imbalanced.

State Mean Queue length (in nr. of tickets) Mean Waiting time (in hours)

Open
Increase by 1644.4 times

564.035
Increase by 372.3 times

852.54

Accepted
Decrease by 0.9 times

1782.05
Increase by 1.5 times

458.713 (approx. 57.3 working days)

Analysed
Increase by 750.7 times

11.11
Increase by 17.1 times

9.78

Scheduled
Decrease by 0.53 times

113.904
Increase by 1.6 times

244.87 (approx. 30.6 working days)

Implemented
Increase by 1300 times

19.76
Increase by 9.6 times

92.99 (approx. 11.6 working days)

Verified
Increase by 13.05 times

0.68
Increase by 14.7 times

8.9

Table 5.1: Queue lengths in states when tickets have insufficient information and test negative
with a probability of 0.1

5.1.3 Effect on Mean Sojourn time

It is observed that the mean sojourn time for the tickets in this situation increases to 1301.25
hours, which is an increase by a factor of 5.33 (as compared to the sojourn time in 4.3.1). This
indicates that the tickets are spending much more time waiting in the queues as compared to the
situation where the probability of having insufficient information and testing negative was zero. As
mentioned previously (in 4.3.1), a ticket could go through the system uninterrupted and without
waiting within 60.5 hours. This means that the ticket spends 21.5 times more time in the system
than it ideally should, which results in extreme build-up in the system.

Furthermore, from figure 5.1 it is seen that in this situation a ticket could spend up to 4000
hours in the system, as compared to tickets in the previous situation, where the ticket could
spend only up to 500 hours (as seen in figure 4.20). This is an 8-fold increase and indicates that
insufficient information and tickets testing negative can take a heavy toll on the efficiency of the
ticketing system.

52

Server Work time in hours (& %age of time they work)

S1 Increase by 8.6
11936.035 (81.09%)

Engineer 1
Increase by 1.0001 times or 2.6 hours

14579.919 (99.862%)

Engineer 2
Increase by 1.0012 times or 35 hours

14589.063 (99.925%)

Engineer 3
Increase by 1.023 times
13645.996 (93.466%)

Engineer 4
Increase by 1.001 times or 21.8 hours

14566.135 (99.77%)

Engineer 5
Increase by 4 minutes
14573.809 (99.82%)

Engineer 6
Increase by 11.7 hours
14589.255 (99.93%)

Engineer 7
Increase by 1.001 times or 19.69 hours

14597.22 (99.95%)

Tester
Increase by 1.6 times
13633.04 (93.37%)

Table 5.2: Working and idle times of servers when tickets have insufficient information and test
negative with a probability of 0.1

Figure 5.1: Sojourn when tickets have insufficient information and test negative with a probability
of 0.1

53

5.1.4 Effect on Priority tickets

Priority Mean Sojourn time (in hours) Number of tickets resolved

Blocking
Increase by 5.4 times

1316.48
Decrease by 0.67 times

1104.4

Urgent
Decrease by 0.88 times

110.21
Decrease by 0.14 times

9.3

High
Increase by 1.3 times

472.59
Decrease by 0.3 times

3.7

Normal
Increase by 1.3 times

521.69
Decrease by 0.19 times

2.0

Low
Increase by 1.6 times

778.7
Decrease by 0.078 times

0.89 ≃ 1

Table 5.3: Mean Sojourn times of tickets (grouped by priority) when tickets have insufficient
information and test negative with a probability of 0.1

As observed in table 5.3, the number of tickets resolved or closed (for each priority) decreases
and the mean sojourn time spent in the system increases. However, for Urgent priority tickets,
the mean sojourn time decreases. This is a result of lesser tickets being resolved - the number
of tickets with priority Urgent being resolved decreased by a factor of 0.14 (from 66 tickets to
9 tickets). This occurs due to an increase in the number of Blocking tickets (which is a higher
priority as compared to urgent) leading to the reduction of Urgent priority tickets leaving the
system (and hence building up in the system).

Tickets with priority Blocking have higher sojourn time in this situation as these tickets are
more likely to be resolved first, resulting in their sojourn time being registered (and in the build-
up of Urgent, High, Normal and Low priority tickets as they are not resolved). Furthermore, the
number of Blocking tickets being resolved decreases by a factor of 0.67 due to these tickets being
sent back (due to insufficient information - back to Open state; or due to testing negative - back to
Scheduled state/Engineer’s queue). Therefore, this circumstance not only causes a build of tickets
in states but also a build of crucial Blocking tickets in different states. This could lead to customer
dissatisfaction and great delays in resolving issues and requests. Hence, it can be concluded that
in this situation, the system is highly unstable.

It can be concluded that it is necessary to make sure that the tickets have sufficient informa-
tion and are implemented properly to ensure that there is no increase in the build-up of tickets in
the system and to avoid overworking the servers.

5.2 Impact of adding servers

By adding more engineers, the customers can be served promptly, leading to increase customer
satisfaction. By reduction in ticket processing time, TIOBE can significantly optimise the system’s
response time, which could further improve customer satisfaction and increase revenue.
After testing and adding a number of servers, it is observed that the number of engineers needed
to make the system stable is 35, i.e., to make the system stable, 28 engineers needed to be added
to it. The components assigned to these engineers are distributed randomly, and each engineer is
skilled in only 2 components. In reality, it would be better to have engineers who are skilled in
essentially all the components (to ensure fair distribution of workload). The findings are discussed
in the following section (the code is run 10 times and the results below are averaged over 10 runs).

54

5.2.1 Adding 28 engineers - Total 35 engineers

Effect on Queues

It is observed that the build-up at the Accepted and Scheduled states decreases drastically (as seen
in table 5.4). However, the Analysed state (on which S1 works) has a slight increase in waiting
times. This is a consequence of more tickets needing to be assigned in the Open state (as seen
in figure 5.2) due to an increase in engineers, more tickets needing to be closed at the Verified
state (as more tickets reach the Verified state due to increase in engineers), as seen in figure 5.4.
Lastly, there is a decrease in waiting times and queue lengths in all states. This indicates that
the workload of each server (engineers and tester) except S1 has decreased significantly, leading
to reduced waiting times and queue lengths.

State Mean Queue length (in nr. of tickets) Mean Waiting time (in hours)

Open
Decrease by 0.17 times

0.058
Decrease by 0.8 times

1.82

Accepted
Decrease by 0.0076 times

14.91
Decrease by 0.18 times

55.46 (approx. 7 working days)

Analysed
Increase by 4.5 times

0.067

times or 5.6 minutes
Decrease by 0.84

0.48 (approx. 28.8 minutes)

Scheduled
Decrease by 0.42 times

91.25

or approx. 4.12 hours
Decrease by 0.97 times

151.2 (approx. 19 working days)

Implemented
Decrease by 0.098 times

0.0015
Decrease by 12 minutes

9.47

Verified
Decrease by 0.88 times

0.046
Decrease by 0.36 times

0.22 (approx. 13.2 minutes)

Table 5.4: Queue lengths in states when there are 35 engineers in the system

Furthermore, it is observed that the increase in the number of engineers leads to the stabil-
isation of the Accepted queue (figure 5.3) and Scheduled queue (figure 5.5), that is, stabilisation
of the Engineer’s queue (as seen in figure 5.8). It can be seen that the queues don’t exceed a
certain number of queue lengths, for instance, the number of tickets in the Accepted state doesn’t
exceed 30 tickets, the number of tickets in the Scheduled state doesn’t exceed 70 tickets, and so,
the number of tickets in the Engineers’ queues don’t exceed a certain number tickets.

55

Figure 5.2: Open queue when there are 35 engineers in the system

Figure 5.3: Accepted queue when there are 35 engineers in the system

56

Figure 5.4: Analysed queue when there are 35 engineers in the system

Figure 5.5: Scheduled queue when there are 35 engineers in the system

Figure 5.6: Implemented queue when there are 35 engineers in the system

57

Figure 5.7: Verified queue when there are 35 engineers in the system

Figure 5.8: Engineers’ queues when there are 35 engineers in the system

58

Effect on Priority tickets

Priority Mean Sojourn time (in hours) Number of tickets resolved

Blocking
Decrease by 0.18 times

44.04
Increase by 1.04 times

1693.2

Urgent
Decrease by 0.81 times

101.17
Increase by 19 times

1256

High
Decrease by 0.55 times

207.60
Increase by 102 times

1244

Normal
Decrease by 0.54 times

215.3
Increase by 111 times

1175.6

Low
Decrease by 0.6 times

291.9
Increase by 105.6 times

1204.3

Table 5.5: Mean Sojourn times of tickets (grouped by priority) when there are 35 engineers in the
system

As seen in table 5.5, the number of tickets of all priority that are resolved are more or less
balanced (as compared to the original system, in table 4.6). Here, the number of tickets resolved
in all priorities increases. Furthermore, the mean sojourn time for tickets (in every priority) de-
creases while the resolved tickets increase.

It is indicated that the increase in the number of engineers, therefore, leads to resolving more
tickets in all priorities, which could increase customer satisfaction, improve TIOBE’s service quality
and distribute the workload amongst servers evenly.

Effect on Sojourn time

The mean sojourn time for tickets when the number of engineers is increased is 167.77 hours
and the mean number of tickets resolved in a day 3.81 tickets, as compared to the mean sojourn
time and the mean number of tickets resolved in a day discussed in section 4.3.1.

It is observed that the mean sojourn time through the system decreases by 76.32 hours and
the number of tickets being resolved in a day increases by a factor of 3.87 ≃ 4. This indicates that
the increase in the number of engineers improves the system performance by (approximately) 4
fold.

5.2.2 Suggested Model

Through the analysis done by adding more servers, it is observed that increasing the number of
engineers (by adding 28 engineers to the team) leads to the stabilisation of the overall system
and improves the system’s performance. Even though there is a slight increase in the workload
of the server S1, the trade-off is worth investing in. Furthermore, the engineers should be trained
in other components and skills, which could help distribute the workload fairly, even on the days
when the engineers take leaves or are on a holiday.

59

Chapter 6

Conclusions

After a thorough analysis of the existing ticketing system, it can be concluded that the main
bottlenecks in TIOBE’s ticketing system are the engineer’s queues. These queues have the highest
waiting times and queue lengths, leading the system to instability. In addition to that, it is con-
cluded that insufficient information from customers and tickets testing negative can lead to an
increase in the size of these bottlenecks, which further increases the workload on the engineers.

Through the analysis of the existing system and the system conditioned to different situations,
the thesis proposes a new ticketing system by increasing the number of engineers and cross-training
engineers in each other’s components. This model takes into account the factors such as service
times, arrival rates and the number of servers to calculate the mean waiting times and queue
lengths of tickets. The simulation is logged over 5 years to compare the performance of the ex-
isting system and the proposed model (as discussed in section 5.2). The results concluded that
the system with 35 engineers (as discussed in section 5.2) significantly reduced the mean waiting
times, queue lengths, and mean sojourn times and increased the number of tickets resolved daily.
This would lead to higher customer satisfaction and system efficiency. Furthermore, by reminding
the customers to provide sufficient information and implementing the tickets well, the ticketing
system can avoid increased queue lengths in several queues and states.

However, in the real world, hiring 28 more engineers could heavily affect the company’s revenue.
To balance this, it is suggested to cross-train (to ensure that all engineers are adept in most
components) and hire a few engineers that are proficient in most components. This could not only
help TIOBE improve their customer satisfaction but also aid them in taking on more projects
from bigger companies. It can be concluded that the practical applications of queueing theory
can help improve and optimize the ticketing system for businesses like TIOBE. Moreover, as a
future study, such a system can be implemented as a pilot in the company and the impact of the
suggested system on the company’s day-to-day operation and their comprehensive performance.

61

References

Adan, I. & Resing, J. (2015). Queueing Systems (Tech. Rep.). 2
Boon, M., Van Der Boor, M., Van Leeuwaarden, J., Mathijsen, B., Van Der Pol, J. & Resing, J.

(n.d.). Stochastic Simulation using Python (Tech. Rep.). 65
docs.python. (n.d.). Retrieved from https://docs.python.org/3/library/collections.html

?highlight=collections#collections.deque 1
Garrido, J. M. (2009). Models of Multi-Server Systems. In Object oriented simulation (pp.

281–295). Springer US. doi: 10.1007/978-1-4419-0516-1{\ }22 1
Gohil, F. & Vikash Kumar, M. (n.d.). Ticketing System the Creative Commons Attribution License

(CC BY 4.0) (Tech. Rep.). Retrieved from http://creativecommons.org/licenses/by/

4.0 1
Goodman, J. B. & Massey, W. A. (1984, 12). The non-ergodic Jackson network. Journal of

Applied Probability , 21 (4), 860–869. doi: 10.2307/3213702 10
Goos, G., Hartmanis, J., Van, J., Board, L. E., Hutchison, D., Kanade, T., . . . Weikum, G. (n.d.).

LNCS 4486 - Formal Methods for Performance Evaluation (Tech. Rep.). 10
Harchol-Balter, M. & Wierman, A. (2005). Multi-Server Queueing Systems with Multiple Priority

Classes. Queueing Systems, 51 , 331–360. 1
Kelly, F. P. & Laws, C. N. (1993). Dynamic routing in open queueing networks: Brownian models,

cut constraints and resource pooling (Vol. 13; Tech. Rep.). 10
Melamed, B. (1982). Sojourn Times in Queueing Networks (Vol. 7; Tech. Rep. No. 2). 48
Singh, S., Albert, J., Mieghem, V., Gurvich, I. & Mieghem, J. A. V. (2022). Feature-Based Priority

Queuing Learning by Doing versus Learning by Viewing: An Empirical Study of Data Analyst
Productivity on a Collaborative Platform at eBay View project Digital operations View project
Feature-Based Priority Queuing (Tech. Rep.). Retrieved from https://www.researchgate

.net/publication/345959314 1
Statistical Compendium (Tech. Rep.). (n.d.). 12
TIOBE. (n.d.). Retrieved from https://www.tiobe.com/ 1
Xiao, L., Xu, S. H., Yao, D. D. & Zhang, H. (2022, 8). Optimal staffing for ticket queues. Queueing

Systems. Retrieved from https://link.springer.com/10.1007/s11134-022-09854-8

doi: 10.1007/s11134-022-09854-8 1

63

https://docs.python.org/3/library/collections.html?highlight=collections#collections.deque
https://docs.python.org/3/library/collections.html?highlight=collections#collections.deque
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://www.researchgate.net/publication/345959314
https://www.researchgate.net/publication/345959314
https://www.tiobe.com/
https://link.springer.com/10.1007/s11134-022-09854-8

Appendix A

Simulation Code

This chapter covers the text searchable code for this thesis. The main reference used for the Source
code is the Stochastic Simulation lecture notes (Boon et al., n.d.).

A.1 Classes

1 # -*- coding: utf -8 -*-

2 """

3 Created on Tue Oct 15 15:04:11 2022

4

5 @author: 20181301

6 """

7

8 import heapq

9 from priorityQueue import PriorityQueue

10 import numpy as np

11

12

13 class Ticket:

14

15 number = 0

16

17 def __init__(self , priority , server , arrivalTime , component):

18 self.priority = priority

19 self.queue = None

20 self.pos = 0

21 self.server = server

22 self.arrivalTime = arrivalTime

23 self.systemArrivalTime = arrivalTime

24 self.component = component

25 self.depEvent = None

26 self.engineer = None

27 self.probability = np.random.uniform (0,1) #random number between 0 & 1

28 self.state = 0

29 self.testProb = np.random.uniform (0,1) #random number between 0 & 1

30 self.tester = None

31 self.number = Ticket.number

32 Ticket.number = Ticket.number + 1

33

34

35 def newPos(self , location , time):

36 self.state = location

37 self.arrivalTime = time

38

39 def leaveSystem(self , time):

40 self.state = -1

41 self.arrivalTime = -1

65

42 self.pos = -1

43

44 def __lt__ (self , other):

45 return self.priority < other.priority

46

47 def __str__(self):

48 return "Ticket number: " + str(self.number) + " in state: " + str(self.

state) + " and priority: " + str(self.priority) + " and tester: " + str(self.

tester) + " " + str(self.depEvent)

49

50

51 class Engineer(object):

52

53 number = 0

54

55 def __init__(self , component):

56 self.pos = 0

57 self.component = component

58 self.idleTime = 0

59 self.workTime = 0

60 self.idle = True

61 self.queue = PriorityQueue () #new class PriorityQueue - enqueue , dequeue ,

location check etc

62 self.startWorkingTime = 0 #time when engg starts working

63 self.startIdleTime = 0 #time when engg stops working

64 self.countAccept = 0

65 self.countImplt = 0

66 self.countSch = 0

67 self.ticket = None

68 self.acceptTickets = []

69 self.schTickets = []

70 self.impltTickets = []

71 self.nrTickets = []

72 self.nrOfTickets = 0

73 self.workTimeFraction = self.workTime /(365*5*8*3600)

74 self.idleTimeFraction = self.idleTime /(365*5*8*3600)

75 self.number = Engineer.number

76 Engineer.number = Engineer.number + 1

77

78 def dequeue(self):

79 return heapq.heappop(self.queue)

80

81 def setWorking(self , time):

82 self.idleTime = self.idleTime + time - self.startIdleTime

83 self.startWorkingTime = time

84 self.nrTickets.append(self.ticket.number)

85 self.nrOfTickets = self.nrOfTickets + 1

86

87 if self.ticket.state == 1:

88 self.acceptTickets.append(self.ticket.number)

89 elif self.ticket.state == 3:

90 self.schTickets.append(self.ticket.number)

91 elif self.ticket.state == 4:

92 self.impltTickets.append(self.ticket.number)

93

94 def setIdle(self , time):

95 self.workTime = self.workTime + time - self.startWorkingTime

96 self.startIdleTime = time

97

98 def __str__(self):

99 return "Engineer: " + str(self.number + 1)

100

101

102 class Tester(object): #

103

104 def __init__(self):

105 self.idleTime = 0

66

106 self.workTime = 0

107 self.idle = True

108 self.startWorkingTime = 0

109 self.startIdleTime = 0

110 self.ticket = None

111 self.nrTickets = []

112 self.nrOfTickets = 0

113 self.workTimeFraction = self.workTime /(365*5*8*3600)

114 self.idleTimeFraction = self.idleTime /(365*5*8*3600)

115

116 def setWorking(self , time):

117 self.idleTime = self.idleTime + time - self.startIdleTime

118 self.startWorkingTime = time

119 self.nrTickets.append(self.ticket.number)

120 self.nrOfTickets = self.nrOfTickets + 1

121

122 def setIdle(self , time):

123 self.workTime = self.workTime + time - self.startWorkingTime

124 self.startIdleTime = time

125

126 def __str__(self):

127 return str("tester")

128

129

130 class S(object): #for S1

131

132 def __init__(self):

133 self.pos = 0

134 self.idleTime = 0

135 self.workTime = 0

136 self.idle = True

137 self.startWorkingTime = 0 #time when starts working

138 self.startIdleTime = 0 #time when stops working

139 self.workTimeFraction = self.workTime /(365*5*8*3600)

140 self.idleTimeFraction = self.idleTime /(365*5*8*3600)

141 self.openCounter = 0

142 self.impltCounter = 0

143 self.analyseCounter = 0

144 self.verfCounter = 0

145 self.nrTickets = []

146 self.nrOfTickets = 0

147 self.ticket = None

148

149 def setWorking(self , time):

150 self.idleTime = self.idleTime + time - self.startIdleTime

151 self.startWorkingTime = time

152 self.nrTickets.append(self.ticket.number)

153 self.nrOfTickets = self.nrOfTickets + 1

154

155

156 def setIdle(self , time):

157 self.workTime = self.workTime + time - self.startWorkingTime

158 self.startIdleTime = time

159

160 def __str__(self):

161 return str("s1")

162

163

164 class Event(object):

165

166 ARRIVAL = 0

167 DEPARTURE = 1

168 ABANDONMENTS = -1 #ticket rejected/wait

169 EOD = 2 #end of day

170

171

172 def __init__(self , typ , server , ticket , time):

67

173 self.type = typ #type of event

174 self.server = server

175 self.ticket = ticket

176 self.time = time

177 self.state = None

178 self.iscancelled = False #for cancelling event; when handelling event

, first check if it is cancelled or not

179

180 def __lt__ (self , other):

181 return self.time < other.time

182

183 def __str__(self):

184 s = (’Arrival ’, ’Departure ’, ’Abandonments ’, ’EOD’)

185 return s[self . type] + " of ticket " + str(self . ticket.number)+ ’ at

t = ’ + str (self . time / (8*3600)) + ’ with server = ’ + str(self.server)

+ ’ and tester = ’ + str(self.ticket.tester)

186

187 def cancel(self):

188 self.iscancelled = True

A.2 Distributions

1 # -*- coding: utf -8 -*-

2 """

3 Created on Wed Nov 23 21:19:28 2022

4

5 @author: 20181301

6 """

7

8

9 from scipy import stats

10 import pandas as pd

11 import numpy as np

12 import matplotlib.pyplot as plt

13

14

15 class Distribution :

16

17 n = 10000 # standard random numbers to generate

18

19 def __init__(self , dist):

20 self.dist = dist

21 self.resample ()

22

23 def __str__(self):

24 return str(self.dist)

25

26 def resample(self):

27 self.randomNumbers = self.dist.rvs(self.n)

28 self.idx = 0

29

30 def rvs(self , n=1):

31

32 if self.idx >= self.n - n :

33 while n > self.n :

34 self.n *= 10

35 self.resample ()

36 if n == 1 :

37 rs = self.randomNumbers[self.idx]

38 else :

39 rs = self.randomNumbers[self.idx:(self.idx+n)]

40 self.idx += n

41 return rs

42

43 def mean(self):

68

44 return self.dist.mean()

45

46 def std(self):

47 return self.dist.std()

48

49 def var(self):

50 return self.dist.var()

51

52 def cdf(self , x):

53 return self.dist.cdf(x)

54

55 def pdf(self , x):

56 return self.dist.pdf(x)

57

58 def sf(self , x):

59 return self.dist.sf(x)

60

61 def ppf(self , x):

62 return self.dist.ppf(x)

63

64 def moment(self , n):

65 return self.dist.moment(n)

66

67 def median(self):

68 return self.dist.median ()

69

70 def interval(self , alpha):

71 return self.dist.interval(alpha)

A.3 Future Event Set

1 # -*- coding: utf -8 -*-

2 """

3 Created on Fri Nov 14 00:26:08 2022

4

5 @author: 20181301

6 """

7

8 import heapq

9

10 class FES:

11

12 def __init__ (self):

13 self.events = []

14

15 def add (self , event):

16 heapq.heappush(self.events , event)

17

18 def next (self):

19 return heapq.heappop(self.events)

20

21 def __str__(self):

22 r = []

23 for i in self.events:

24 r.append(str(i))

25 return str(r)

A.4 Priority Queue

1 # -*- coding: utf -8 -*-

2 """

69

3 Created on Wed Nov 16 11:21:19 2022

4

5 @author: 20181301

6 """

7

8

9 from collections import deque

10 from heapq import heappop , heappush , heapify

11 import heapq

12

13 class PriorityQueue:

14 def __init__(self):

15 self.tickets = []

16 self.state = None

17

18 def enqueue(self , ticket):

19 heappush(self.tickets , ticket)

20 heapq.heapify(self.tickets)

21

22 def dequeue_0(self):

23 return heappop(self.tickets)

24

25 def dequeue_ticket(self , ticket):

26 self.tickets.remove(ticket)

27 heapq.heapify(self.tickets)

28

29 def firstTicket(self):

30 if len(self.tickets) == 0:

31 return None

32 else:

33 return self.tickets [0]

34

35 def enqueue_front(self , ticket):

36 return self.appendleft(ticket)

37

38 def __str__(self):

39 s = str(" ")

40 for i in self.tickets:

41 s = s + str(i.number) + str(", ")

42 return str("Tickets in Queue: ") + s

A.5 Queue

1 # -*- coding: utf -8 -*-

2 """

3 Created on Mon Nov 14 00:31:07 2022

4

5 @author: 20181301

6 """

7

8 from collections import deque

9 import collections

10

11

12 class Queue:

13 def __init__(self):

14 self.tickets = deque ()

15 self.state = None

16

17 def enqueue(self , ticket):

18 self.tickets.append(ticket)

19

20 def dequeue_0(self):

21 return self.tickets.popleft ()

22

70

23 def dequeue_ticket(self , ticket):

24 self.tickets.remove(ticket)

25

26 def firstTicket(self):

27 if len(self.tickets) == 0:

28 return None

29 else:

30 return self.tickets [0]

31

32 def enqueue_front(self , ticket):

33 return self.appendleft(ticket)

34

35 def __str__(self):

36 s = str(" ")

37 for i in self.tickets:

38 s = s + str(i.number) + str(", ")

39 return str("Tickets in Queue: ") + s

A.6 Simulation Results

1 # -*- coding: utf -8 -*-

2 """

3 Created on Fri Nov 18 00:47:47 2022

4

5 @author: 20181301

6 """

7

8 from collections import deque

9 from numpy . ma . core import zeros

10 import matplotlib . pyplot as plt

11 import pandas as pd

12 import seaborn as sns

13 import numpy as np

14

15

16

17 class SimResults :

18

19 MAX_QL = 10000 # maximum queue length that will be recorded

20

21 def __init__ (self):

22 self . sumQL = 0

23 self . sumQL2 = 0

24 self . oldTime = 0

25 self . queueLengthHistogram = zeros (self . MAX_QL + 1)

26 self . sumW = 0

27 self . sumW2 = 0

28 self . nW = 0

29 self . waitingTimes = deque ()

30 self.waitingTimes_hrs = deque ()

31

32

33 def registerQueueLength (self , time , ql):

34 self . sumQL = self . sumQL + ql * (time - self . oldTime)

35 self . sumQL2 = self . sumQL2 + ql * ql * (time - self . oldTime)

36 self . queueLengthHistogram [min (ql , self . MAX_QL)] = self .

queueLengthHistogram [min (ql , self . MAX_QL)] + (time - self . oldTime)

37 self . oldTime = time

38

39 def registerWaitingTime (self , W):

40 w = W

41 self.waitingTimes.append(w)

42 self.waitingTimes_hrs.append(w/3600)

43 self.nW = self.nW + 1

44 self.sumW = self.sumW + w

71

45 self.sumW2 = self.sumW2 + w*w

46

47 def getMeanQueueLength (self):

48 return self.sumQL/self.oldTime

49

50 def getVarianceQueueLength (self):

51 return self . sumQL2 / self . oldTime - self . getMeanQueueLength ()**2

52

53 def getMeanWaitingTime (self):

54 return self . sumW / self . nW

55

56 def getVarianceWaitingTime (self):

57 return self . sumW2 / self . nW - self . getMeanWaitingTime ()**2

58

59 def getQueueLengthHistogram (self) :

60 return [x/ self . oldTime for x in self . queueLengthHistogram]

61

62 def getWaitingTimes (self):

63 return self . waitingTimes_hrs

64

65 def __str__ (self):

66 s = ’ Mean queue length : ’+ str ((self . getMeanQueueLength ())) + ’\n ’

67 s += ’ Variance queue length : ’+ str ((self . getVarianceQueueLength ()))

+ ’\n ’

68 s += ’ Mean waiting time (in seconds) : ’+ str (float((self .

getMeanWaitingTime ()))) + ’\n ’

69 s += ’ Mean waiting time (in hours) : ’+ str (float((self .

getMeanWaitingTime ()))/3600) + ’\n ’

70 s += ’ Variance waiting time (in hrs^2) : ’+ str (float ((self .

getVarianceWaitingTime ()))/3600**2) + ’\n ’

71 return s

72

73 def histQueueLength (self ,queueNr , maxq =50):

74

75 if queueNr == 0:

76 ql = self . getQueueLengthHistogram ()

77 maxx = maxq + 1

78 plt.figure(figsize =(12, 6))

79 plt . figure ()

80 plt . bar (range (0 , maxx), ql [0: maxx])

81 plt.title("Queue Lengths (Open Queue)", fontsize = 14)

82 plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,

fontsize = 10)

83 plt . xlabel (’k ’, fontsize = 12)

84 plt . show ()

85

86 print("\nSum of probability open queue lengths - ", sum(self.

getQueueLengthHistogram ()))

87

88 elif queueNr == 1:

89 ql = self . getQueueLengthHistogram ()

90 maxx = maxq + 1

91 plt.figure(figsize =(12, 6))

92 plt . figure ()

93 plt . bar (range (0 , maxx), ql [0: maxx])

94 plt.title("Queue Lengths (Accepted Queue)", fontsize = 14)

95 plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,

fontsize = 10)

96 plt . xlabel (’k ’, fontsize = 12)

97 plt . show ()

98

99 print("\nSum of probability accepted queue lengths - ", sum(self.

getQueueLengthHistogram ()))

100

101 elif queueNr == 2:

102 ql = self . getQueueLengthHistogram ()

103 maxx = maxq + 1

72

104 plt.figure(figsize =(12, 6))

105 plt . figure ()

106 plt . bar (range (0 , maxx), ql [0: maxx])

107 plt.title("Queue Lengths (Analysed Queue)", fontsize = 14)

108 plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,

fontsize = 10)

109 plt . xlabel (’k ’, fontsize = 12)

110 plt . show ()

111

112 print("Sum of probability analysed queue lengths - ", sum(self.

getQueueLengthHistogram ()))

113

114 elif queueNr == 3:

115 ql = self . getQueueLengthHistogram ()

116 maxx = maxq + 1

117 plt.figure(figsize =(12, 6))

118 plt . figure ()

119 plt . bar (range (0 , maxx), ql [0: maxx])

120 plt.title("Queue Lengths (Scheduled Queue)", fontsize = 14)

121 plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,

fontsize = 10)

122 plt . xlabel (’k ’, fontsize = 12)

123 plt . show ()

124

125 print("\nSum of probability scheduled queue lengths - ", sum(self.

getQueueLengthHistogram ()))

126

127 elif queueNr == 4:

128 ql = self . getQueueLengthHistogram ()

129 maxx = maxq + 1

130 plt.figure(figsize =(12, 6))

131 plt . figure ()

132 plt . bar (range (0 , maxx), ql [0: maxx])

133 plt.title("Queue Lengths (Implemented Queue)", fontsize = 14)

134 plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,

fontsize = 10)

135 plt . xlabel (’k ’, fontsize = 12)

136 plt . show ()

137

138 print("\nSum of probability implemented queue lengths - ", sum(self.

getQueueLengthHistogram ()))

139

140 elif queueNr == 5:

141 ql = self . getQueueLengthHistogram ()

142 maxx = maxq + 1

143 plt.figure(figsize =(12, 6))

144 plt . figure ()

145 plt . bar (range (0 , maxx), ql [0: maxx])

146 plt.title("Queue Lengths (Verified Queue)", fontsize = 14)

147 plt . ylabel (’P (Q = k) (Probability of Queue length being k)’,

fontsize = 10)

148 plt . xlabel (’k ’, fontsize = 12)

149 plt . show ()

150

151 print("\nSum of probability verified queue lengths - ", sum(self.

getQueueLengthHistogram ()))

152

153 def histWaitingTimes (self ,queueNr , nrBins =100):

154

155 if queueNr == 0:

156 sns.distplot(self.getWaitingTimes (), kde=True)

157 plt.title("Waiting times (Open Queue)")

158 plt.xlabel("Hours")

159 plt . show ()

160

161 elif queueNr == 1:

162 sns.distplot(self.getWaitingTimes (), kde=True)

73

163 plt.title("Waiting times (Accepted Queue)")

164 plt.xlabel("Hours")

165 plt . show ()

166

167 elif queueNr == 2:

168 sns.distplot(self.getWaitingTimes (), kde=True)

169 plt.title("Waiting times (Analysed Queue)")

170 plt.xlabel("Hours")

171 plt . show ()

172

173 elif queueNr == 3:

174 sns.distplot(self.getWaitingTimes (), kde=True)

175 plt.title("Waiting times (Scheduled Queue)")

176 plt.xlabel("Hours")

177 plt . show ()

178

179 elif queueNr == 4:

180 sns.distplot(self.getWaitingTimes (), kde=True)

181 plt.title("Waiting times (Implemented Queue)")

182 plt.xlabel("Hours")

183 plt . show ()

184

185 elif queueNr == 5:

186 sns.distplot(self.getWaitingTimes (), kde=True)

187 plt.title("Waiting times (Verified Queue)")

188 plt.xlabel("Hours")

189 plt . show ()

190

191 class NetworkSimResults:

192

193 def __init__ (self , nrOfQueues , nrOfTickets):

194 self .nS = 0

195 self . sojournTimes = []

196 self . sojournTimes_hrs = []

197 self . nrOfAbandonments = 0

198 self . queueResults = [None] * nrOfQueues

199 for i in range (nrOfQueues):

200 self . queueResults [i] = SimResults ()

201

202 def registerWaitingTime (self , queueNr , w):

203 self . queueResults [queueNr]. registerWaitingTime (w)

204

205 def registerSojournTime (self , s):

206 self.sojournTimes.append(s)

207 self.sojournTimes_hrs.append(s/3600)

208

209 def registerAbandonment (self , queueNr):

210 self . nrOfAbandonments += 1

211 self . queueResults [queueNr]. registerAbandonment ()

212

213 def histSojournTimes (self , nrBins =100):

214 sns.distplot(self.sojournTimes_hrs , kde=True)

215 plt.title("Sojourn times (in hours)")

216 plt . show ()

A.7 Main Simulation

1 # -*- coding: utf -8 -*-

2 """

3 Created on Wed Nov 16 09:37:36 2022

4

5 @author: 20181301

6 """

7

8 """

74

9

10 States -> 0 (Open), 1 (Accepted), 2 (Analysed), 3 (Scheduled), 4 (Implemented), 5 (

Verifying)

11

12 """

13

14 # Libraries

15

16 from classes import Event , Ticket , S, Engineer , Tester

17 import pandas as pd

18 import numpy as np

19 from numpy.random import default_rng

20 import time

21 import math

22 import random

23 from scipy import stats , integrate

24 from distribution import Distribution

25 from FES import FES

26 from simResults import SimResults , NetworkSimResults

27 from Queue import Queue

28 from collections import deque

29 from priorityQueue import PriorityQueue

30 from statistics import mean

31 import matplotlib . pyplot as plt

32 import seaborn as sns

33 import random

34 import csv

35

36 def sample_from_bernoulli(p):

37 return 1 if random.random () < p else 0

38

39 # Definitions and Declarations

40

41 s1 = S() #server 1 (Marvin)

42

43 tester = Tester () #tester (Joep)

44

45 p = sample_from_bernoulli (1) # probability of ticket being sent to analysed

instead of being sent back to open

46 test_p = 1 # probability of ticket testing positive

47

48 df1 = pd.read_excel(r’C:\ Users \20181301\ Desktop\APPLIED MATH\YEAR -3\ BFP\Simulation\

Components.xlsx ’)

49 components = df1["Component"]

50

51 df2 = pd.read_excel(r’C:\ Users \20181301\ Desktop\APPLIED MATH\YEAR -3\ BFP\Simulation\

Tools & Servers.xlsx ’)

52 # Engineers

53 engg = []

54 engg.append(Engineer(df2["E1"]))

55 engg.append(Engineer(df2["E2"]))

56 engg.append(Engineer(df2["E3"]))

57 engg.append(Engineer(df2["E4"]))

58 engg.append(Engineer(df2["E5"]))

59 engg.append(Engineer(df2["E6"]))

60 engg.append(Engineer(df2["E7"]))

61

62 priorities = [0, 1, 2, 3, 4]

63

64

65 nrQueues = 5 #0 = Open , 1 = Analysed , 2 = Implemented , 3 = Verified

66 nrServers = 2 + len(engg) # 2 (tester and s1) and number of engineers

67

68 # Variables for storing results

69

70 priority_0 = []

71 priority_1 = []

75

72 priority_2 = []

73 priority_3 = []

74 priority_4 = []

75

76 count_priority_0 = []

77 count_priority_1 = []

78 count_priority_2 = []

79 count_priority_3 = []

80 count_priority_4 = []

81

82 headers = list(components.values)

83 headers.remove("Component")

84 sojournTimes_Components = pd.DataFrame(columns=headers)

85

86 headers = list(components.values)

87 headers.remove("Component")

88 totalTimes_Components = pd.DataFrame(columns=headers)

89

90 headers = [s1 , tester , engg[0], engg[1], engg[2], engg[3], engg[4], engg[5], engg

[6]]

91 sojournTimes_Servers = pd.DataFrame(columns=headers)

92 sojournTimes_Servers_idle = pd.DataFrame(columns=headers)

93

94 sojournTimes_Priorities = pd.DataFrame(columns=priorities)

95

96 totalTimes_priorities = pd.DataFrame(columns=priorities)

97

98 TotalTicketsNr = []

99

100 OpenTickets = []

101 AcceptedTickets = []

102 AnalysedTickets = []

103 ScheduledTickets = []

104 ImplementedTickets = []

105 VerifiedTickets = []

106

107 engg_1 = []

108 engg_2 = []

109 engg_3 = []

110 engg_4 = []

111 engg_5 = []

112 engg_6 = []

113 engg_7 = []

114 s1_tickets = []

115 tester_tickets = []

116

117 header = ["Tickets"]

118 nrDays_vs_Tickets = pd.DataFrame(columns = header)

119

120 def storeSojournTimes_priorities(ticket , t): # Stores how much time each

priority ticket spends in the system & ticket nr.

121 priority = ticket.priority

122 if priority == 0:

123 count_priority_0.append(ticket.number)

124 priority_0.append(t)

125 elif priority == 1:

126 count_priority_1.append(ticket.number)

127 priority_1.append(t)

128 elif priority == 2:

129 count_priority_2.append(ticket.number)

130 priority_2.append(t)

131 elif priority == 3:

132 count_priority_3.append(ticket.number)

133 priority_3.append(t)

134 elif priority == 4:

135 count_priority_4.append(ticket.number)

136 priority_4.append(t)

76

137

138 def assignFreeTester(ticket): # Assign idle server

139 free_testers = [server for server in engg if server.idle == True and server !=

ticket.engineer]

140 if free_testers:

141 return random.choice(free_testers)

142 else:

143 return None

144

145 def assignTester(ticket): # Assigning tester to a priority ticket

146 servers = [server for server in engg if server != ticket.engineer and server.

ticket.priority != 0]

147 if servers:

148 return random.choice(servers)

149 else:

150 return None

151

152 def remove_state_ticket(engineer):

153 if engineer.ticket.state == 1:

154 engineer.acceptTickets.remove(engineer.ticket.number)

155 elif engineer.ticket.state == 3:

156 engineer.schTickets.remove(engineer.ticket.number)

157 elif engineer.ticket.state == 4:

158 engineer.impltTickets.remove(engineer.ticket.number)

159

160 def add_state_ticket(engineer , ticket):

161 if ticket.state == 1:

162 engineer.acceptTickets.append(ticket.number)

163 elif ticket.state == 3:

164 engineer.schTickets.append(ticket.number)

165 elif ticket.state == 4:

166 engineer.impltTickets.append(ticket.number)

167

168

169 def assignPos(t): # Assigning position (used in Engineer ’

s workflow)

170 # states - 0 (Open), 1 (Accepted), 2 (Analysed), 3 (Scheduled), 4 (Implemented)

, 5 (Verifying)

171 # positions - 0 for open , 1 for analysed , 2 for implemented , 3 for verified , 4

for engineer

172 if t.state == 0:

173 return 0

174 elif t.state == 1 or t.state == 3:

175 return 4

176 elif t.state == 2:

177 return 1

178 elif t.state == 4:

179 return 2

180 elif t.state == 5:

181 return 3

182

183 def countAccepted(server): # Counting number of tickets in

accepted state

184 count = 0

185 for i in server.queue.tickets:

186 if i.state == 1:

187 count = count + 1

188 return count

189

190 def queueAccepted(server): # Returns list of tickets in accepted

state

191 q_ = []

192 for i in server.queue.tickets:

193 if i.state == 1:

194 q_.append(i)

195 return q_

196

77

197 def queueImplt(queue ,server): # Returns list of tickets in

implemented state that arent worked on by the server

198 q_ = []

199 for i in queue.tickets:

200 if i.tester == server:

201 q_.append(i)

202 return q_

203

204 def countSch(server): # Counts number of tickets in scheduled

state

205 count = 0

206 for i in server.queue.tickets:

207 if i.state == 3:

208 count = count + 1

209 return count

210

211 def queueSch(server): # Returns list of tickets in scheduled

state

212 q_ = []

213 for i in server.queue.tickets:

214 if i.state == 3:

215 q_.append(i)

216 return q_

217

218 def searchPriorityBlocking(q): # Searches for blocking tickets in the

queue

219 for ticket in q.tickets:

220 if ticket.priority == 0:

221 q.dequeue_ticket(ticket)

222 return ticket

223 return None

224

225 def searchPriorityUrgent(q): # Searches for urgent tickets in the queue

226 for ticket in q.tickets:

227 if ticket.priority == 1:

228 q.dequeue_ticket(ticket)

229 return ticket

230 return None

231

232 def CreateTicket(t): # Creates tickets

233 return Ticket(random.choice(priorities), s1, t, random.choice(components))

234

235

236 class Simulation :

237

238 def __init__ (self , arrDist , servDist , nrServers):

239 self.arrDist = arrDist

240 self.servDist = servDist

241 self.nrServers = nrServers

242

243 def simulate (self , T):

244 nrOfTickets = 8492

245 nrStates = 6

246 fes = FES()

247 res = NetworkSimResults (nrStates , nrOfTickets)

248

249 qs = [None] * nrQueues #make them a property for s1 and tester1

250 qs[0] = Queue() #deque for open

251 qs[1] = Queue() #deque for analysed

252 qs[2] = PriorityQueue () #heapq with priority for implemented

253 qs[3] = PriorityQueue () #heapq with priority for verified

254 #4 <- engineer

255

256 qs[0]. state = 0

257 qs[1]. state = 2

258 qs[2]. state = 4

259 qs[3]. state = 5

78

260

261 #engineer service times

262

263

264 t = 0 # current time

265 a0 = self.arrDist.rvs() # Create arrival of first ticket

266 t0 = CreateTicket(t) #ticket creation

267 firstEvent = Event(Event.ARRIVAL , s1, t0, a0) #remove S_1 and put queue

number 0 = open queue

268 fes.add(firstEvent)

269

270 fes.add(Event(Event.EOD , s1, t0 , 8*3600)) # first end -of-day event

271 day = 0

272 tickets_in_system_day = []

273

274 while t < T :

275 e = fes.next()

276 t = e.time

277 c = e.ticket

278 queueNr = c.pos

279

280 tot_sch_queue = 0

281 tot_accepted_queue = 0

282

283 for i in engg:

284 tot_sch_queue = tot_sch_queue + countSch(i)

285 tot_accepted_queue = tot_accepted_queue + countAccepted(i)

286

287 res.queueResults [0]. registerQueueLength(t, len (qs[0]. tickets))

288 res.queueResults [1]. registerQueueLength(t, tot_accepted_queue)

289 res.queueResults [2]. registerQueueLength(t, len (qs[1]. tickets))

290 res.queueResults [3]. registerQueueLength(t, tot_sch_queue)

291 res.queueResults [4]. registerQueueLength(t, len (qs[2]. tickets))

292 res.queueResults [5]. registerQueueLength(t, len (qs[3]. tickets))

293

294

295 if e.type == Event.ARRIVAL :

296

297

298 #ALGORITHM 1 (ARRIVAL AT OPEN)

299 if queueNr == 0:

300

301 qs[0]. enqueue(c)

302

303 if s1.idle == True:

304 b0 = self.servDist [0]. rvs()

305 dep = Event(Event.DEPARTURE , s1, c, t+b0)

306 fes.add(dep)

307 c.depEvent = dep #ticket knows its departure and service

time

308 qs[0]. dequeue_ticket(c)

309 # print(e)

310 s1.idle = False

311 s1.ticket = c

312 c.state = 0

313 c.pos = 0

314 s1.openCounter = s1.openCounter + 1

315 s1.setWorking(t)

316 a1 = self.arrDist.rvs()

317 c1 = CreateTicket(t)

318 fes.add(Event(Event.ARRIVAL , s1 , c1 , t+a1))

319

320 #ALGORITHM 3 (ARRIVAL AT ACCEPTED)

321 elif queueNr == 4 and c.state == 1: #arrival at engineer ’s

queue

322 i = c.engineer.number

323 engg[i].queue.enqueue(c)

79

324 serv = engg[i]

325

326

327 if serv.idle == True:

328 b1 = self.servDist [1]. rvs()

329 dep = Event(Event.DEPARTURE , serv , c, t+b1)

330 fes.add(dep)

331 serv.ticket = c

332 c.depEvent = dep #ticket knows its departure and service

time

333 serv.idle = False

334 c.state = 1

335 c.pos = 4

336 c.engineer = serv

337 serv.queue.dequeue_ticket(c)

338 serv.setWorking(t)

339 serv.countAccept = serv.countAccept + 1

340

341 elif c.priority == 0 and c.depEvent == None: #if ticket

hasn ’t been assigned (since serv is busy) & has priority

342 #cancelling departure event of the ticket the engineer is

working on if that ticket lower priority

343 c2 = serv.ticket # current ticket he’s working

on

344 if c2 != None:

345 if c2.priority != 0 and c2.depEvent != None:

the current ticket has a priority of 0

346 c2.depEvent.iscancelled = True

347 c2.depEvent = None

348 serv.nrTickets.remove(serv.ticket.number)

349 remove_state_ticket(serv)

350 serv.nrTickets.append(c.number)

351 add_state_ticket(serv , c)

352 serv.queue.dequeue_ticket(c)

353 b1 = self.servDist [1]. rvs()

354 dep = Event(Event.DEPARTURE , serv , c, t+b1)

355 fes.add(dep)

356 c.depEvent = dep #ticket knows its departure and

service time

357 serv.idle = False

358 serv.ticket = c

359 c.state = 1

360 c.pos = 4

361 serv.countAccept = serv.countAccept + 1

362

363 #ALGORITHM 5 (ARRIVAL AT ANALYSED)

364 elif queueNr == 1:

365 qs[1]. enqueue(c)

366

367

368 if s1.idle == True:

369 b2 = self.servDist [2]. rvs()

370 dep = Event(Event.DEPARTURE , s1, c, t+b2)

371 qs[1]. dequeue_ticket(c)

372 fes.add(dep)

373 c.depEvent = dep #ticket knows its departure and service

time

374 s1.idle = False

375 s1.ticket = c

376 c.state = 2

377 c.pos = 1

378 s1.setWorking(t)

379 s1.analyseCounter = s1.analyseCounter + 1

380

381 #ALGORITHM 7 (ARRIVAL AT SCHEDULED)

382 elif queueNr == 4 and c.state == 3:

383 serv = c.engineer

80

384 serv.queue.enqueue(c)

385

386

387 if c.engineer.idle == True:

388 b2 = self.servDist [3]. rvs()

389 serv.queue.dequeue_ticket(c)

390 dep = Event(Event.DEPARTURE , serv , c, t+b2)

391 fes.add(dep)

392 c.depEvent = dep #ticket knows its departure and service

time

393 serv.idle = False

394 c.state = 3

395 c.pos = 4

396 serv.ticket = c

397 c.engineer.setWorking(t)

398 serv.countSch = serv.countSch + 1

399

400

401 #ALOGRITHM 9 (ARRIVAL AT IMPLEMENTED)

402 elif queueNr == 2:

403

404 qs[2]. enqueue(c)

405

406

407 if tester.idle == True:

408 b2 = self.servDist [4]. rvs()

409 dep = Event(Event.DEPARTURE , tester , c, t+b2)

410 fes.add(dep)

411 c.depEvent = dep #ticket knows its departure and service

time

412 qs[2]. dequeue_ticket(c)

413 tester.idle = False

414 c.state = 4

415 tester.ticket = c

416 c.tester = tester

417 c.pos = 2

418 tester.setWorking(t)

419

420 else:

421

422 serv = assignFreeTester(c)

423 if serv != None:

424 b2 = self.servDist [4]. rvs()

425 dep = Event(Event.DEPARTURE , serv , c, t+b2)

426 qs[2]. dequeue_ticket(c)

427 fes.add(dep)

428 c.depEvent = dep #ticket knows its departure and

service time

429 serv.idle = False

430 c.state = 4

431 serv.ticket = c

432 c.tester = serv

433 c.pos = 2

434 serv.setWorking(t)

435 serv.countImplt = serv.countImplt + 1

436

437 if c.priority == 0 and c.tester == None: # if priority

is 0 and no tester is assigned (since none are idle)

438

439 if tester.ticket != None and tester.ticket.priority != 0 :

440 c2 = tester.ticket #current ticket he’s working on

441 if c2.depEvent != None:

442 c2.depEvent.iscancelled = True

443 c2.depEvent = None

444 tester.nrTickets.remove(tester.ticket.number)

445 tester.nrTickets.append(c.number)

446 b2 = self.servDist [4]. rvs()

81

447 dep = Event(Event.DEPARTURE , tester , c, t+b2)

448 fes.add(dep)

449 c.depEvent = dep #ticket knows its departure and

service time

450 qs[2]. dequeue_ticket(c)

451 tester.idle = False

452 tester.ticket = c

453 c.state = 4

454 c.tester = tester

455 c.pos = 2

456

457 else:

458 i = assignTester(c)

459 if i != None:

460 c2 = i.ticket #current ticket he’s working on

461 if c2 != None and c2.priority != 0 and c2.depEvent

!= None:

462 c2.depEvent.iscancelled = True

463 c2.depEvent = None

464 i.nrTickets.remove(i.ticket.number)

465 i.nrTickets.append(c.number)

466 remove_state_ticket(i)

467 add_state_ticket(i, c)

468 b2 = self.servDist [4]. rvs()

469 dep = Event(Event.DEPARTURE , i, c, t+b2)

470 qs[2]. dequeue_ticket(c)

471 fes.add(dep)

472 c.depEvent = dep #ticket knows its departure

and service time

473 i.idle = False

474 i.ticket = c

475 c.state = 4

476 c.tester = i

477 c.pos = 2

478 i.countImplt = i.countImplt + 1

479

480

481 #ALGORITHM 11 (ARRIVAL AT VERIFIED)

482 elif queueNr == 3:

483 qs[3]. enqueue(c)

484

485

486 if s1.idle == True:

487 b3 = self.servDist [5]. rvs()

488 dep = Event(Event.DEPARTURE , s1, c, t+b3)

489 qs[3]. dequeue_ticket(c)

490 fes.add(dep)

491 c.depEvent = dep #ticket knows its departure and service

time

492 s1.idle = False

493 s1.ticket = c

494 c.state = 5

495 c.pos = 3

496 s1.setWorking(t)

497

498 else:

499 # print(e)

500 if len(qs[3]. tickets) > 0:

501 if c.priority == 0:

502 c2 = s1.ticket

503 if c2 != None:

504 if c2.priority != 0 and c2.depEvent != None:

505 c2.depEvent.iscancelled = True

506 c2.depEvent = None

507 s1.nrTickets.remove(s1.ticket.number)

508 s1.nrTickets.append(c.number)

509 b2 = self.servDist [5]. rvs()

82

510 dep = Event(Event.DEPARTURE , s1, c, t+b2)

511 qs[3]. dequeue_ticket(c)

512 fes.add(dep)

513 c.depEvent = dep #ticket knows its

departure and service time

514 s1.idle = False

515 s1.ticket = c

516 c.state = 5

517 c.pos = 3

518

519

520 elif e.type == Event.DEPARTURE :

521 if e.iscancelled == False:

522 c.depEvent = None

523

524 #ALGORITHM 2 (DEPARTURE FROM OPEN)

525 if queueNr == 0:

526

527 for i in engg:

528 for comp in i.component:

529 if comp == c.component:

530 c.engineer = i

531 fes.add(Event(Event.ARRIVAL , i, c, t)) #

schedule arrival time

532 res.registerWaitingTime (0, t - c.arrivalTime)

533 sojournTimes_Components.loc[len(

sojournTimes_Components.index), c.component] = (t-c.arrivalTime)/3600

534 c.newPos(1, t)

535 c.pos = 4

536 break

537

538 # Once server stops working , set to idle

539 s1.setIdle(t)

540 s1.idle = True

541

542 # S1 WORKFLOW

543 if s1.openCounter <= 5 and len(qs[0]. tickets) > 0:

544 c2 = qs[0]. dequeue_0 ()

545 b0 = self.servDist [0]. rvs()

546 dep = Event(Event.DEPARTURE , s1, c2, t+b0)

547 c2.depEvent = dep #ticket knows its departure and

service time

548 fes.add(dep)

549 s1.idle = False

550 s1.ticket = c2

551 c2.server = s1

552 c2.state = 0

553 c2.pos = 0

554 s1.openCounter += 1

555 s1.setWorking(t)

556

557 else:

558 c1 = searchPriorityBlocking(qs[3])

559 c3 = searchPriorityUrgent(qs[3])

560

561 if c1 != None:

562

563 if s1.idle == True:

564 b3 = self.servDist [5]. rvs()

565 dep = Event(Event.DEPARTURE , s1, c1, t+b3)

566 fes.add(dep)

567 c1.depEvent = dep #ticket knows its

departure and service time

568 s1.idle = False

569 s1.ticket = c1

570 c1.state = 5 #goes into verified state

571 c1.pos = 3

83

572 s1.setWorking(t)

573

574 else:

575 if s1.ticket.priority != 0 and s1.ticket.

depEvent != None:

576 s1.ticket.depEvent.iscancelled = True

577 s1.ticket.depEvent = None

578 s1.nrTickets.remove(s1.ticket.number)

579 s1.nrTickets.append(c1.number)

580 b3 = self.servDist [5]. rvs()

581 dep = Event(Event.DEPARTURE , s1, c1, t+b3)

582 fes.add(dep)

583 c1.depEvent = dep #ticket knows its

departure and service time

584 s1.idle = False

585 s1.ticket = c1

586 c1.state = 5 #goes into verified state

587 c1.pos = 3

588

589 elif c3 != None:

590 if s1.idle == True:

591 b3 = self.servDist [5]. rvs()

592 dep = Event(Event.DEPARTURE , s1, c3, t+b3)

593 fes.add(dep)

594 c3.depEvent = dep #ticket knows its

departure and service time

595 s1.idle = False

596 c3.state = 5 #goes into verified state

597 c3.pos = 3

598 s1.ticket = c3

599 s1.setWorking(t)

600

601 else:

602 if s1.ticket.priority != 0 and s1.ticket.

priority != 1 and serv.ticket.depEvent != None:

603 s1.ticket.depEvent.iscancelled = True

604 s1.ticket.depEvent = None

605 s1.nrTickets.remove(s1.ticket.number)

606 s1.nrTickets.append(c3.number)

607 b3 = self.servDist [5]. rvs()

608 dep = Event(Event.DEPARTURE , s1, c3, t+b3)

609 fes.add(dep)

610 c3.depEvent = dep #ticket knows its

departure and service time

611 s1.idle = False

612 c3.state = 5 #goes into verified state

613 c3.pos = 3

614 s1.ticket = c3

615

616 else:

617 if s1.idle == True:

618

619 if len(qs[3]. tickets) > 0:

620 c3 = qs[3]. dequeue_0 ()

621 b3 = self.servDist [5]. rvs()

622 dep = Event(Event.DEPARTURE , s1, c3, t+b3)

623 fes.add(dep)

624 c3.depEvent = dep #ticket knows its

departure and service time

625 s1.ticket = c3

626 c3.pos = 3

627 c3.state = 5

628 s1.idle = False

629 s1.setWorking(t)

630

631 elif len(qs[2]. tickets) > 0:

632

84

633 if s1.impltCounter < 2:

634 c3 = qs[2]. dequeue_0 () #ticket is not

being served

635 b3 = self.servDist [4]. rvs()

636 dep = Event(Event.DEPARTURE , s1, c3, t+

b3)

637 fes.add(dep)

638 c3.depEvent = dep #ticket knows its

departure and service time

639 s1.ticket = c3

640 c3.tester = s1

641 s1.idle = False

642 c3.state = 4 #goes into implemented

state

643 c3.pos = 2

644 s1.impltCounter += 1

645 s1.setWorking(t)

646

647 elif len(qs[1]. tickets) > 0:

648

649 if s1.analyseCounter < 4:

650 c3 = qs[1]. dequeue_0 ()

651 b3 = self.servDist [2]. rvs()

652 dep = Event(Event.DEPARTURE , s1, c3, t+

b3)

653 fes.add(dep)

654 c3.depEvent = dep #ticket knows its

departure and service time

655 s1.ticket = c3

656 c3.state = 2 #goes into analysed

state

657 c3.pos = 1

658 s1.idle = False

659 s1.analyseCounter += 1

660 s1.setWorking(t)

661

662 elif len(qs[2]. tickets) > 0 and len(qs[2].

tickets) < 20:

663

664 #arrival at implemented

665 if s1.impltCounter < 2:

666 c3 = qs[2]. dequeue_0 ()

667 b3 = self.servDist [4]. rvs()

668 dep = Event(Event.DEPARTURE , s1, c3, t+

b3)

669 fes.add(dep)

670 c3.depEvent = dep #ticket knows its

departure and service time

671 s1.idle = False

672 s1.ticket = c3

673 c3.tester = s1

674 c3.state = 4 #goes into implemented

state

675 c3.pos = 2

676 s1.impltCounter += 1

677 s1.setWorking(t)

678

679

680 #ALGORITHM 4 (DEPARTURE FROM ACCEPTED - ENGINEER QUEUE)

681 elif queueNr == 4 and c.state == 1: #engineer ’s queue

682

683 if c.priority == 0:

684 fes.add(Event(Event.ARRIVAL , c.engineer , c, t)) #

schedule arrival at implemented. c.engineer SHOULD NOT work on testing

685 res.registerWaitingTime (1, t - c.arrivalTime)

686 sojournTimes_Components.loc[len(sojournTimes_Components

.index), c.component] = (t-c.arrivalTime)/3600

85

687 c.newPos(4, t)

688 c.pos = 2

689

690 else:

691

692 if c.probability < p: #sample p from a bernoulli

dist. - c.probability is probability of NOT being sent back due to insufficient

information

693 fes.add(Event(Event.ARRIVAL , s1, c, t)) #schedule

arrival at analysed

694 res.registerWaitingTime (1, t - c.arrivalTime)

695 sojournTimes_Components.loc[len(

sojournTimes_Components.index), c.component] = (t-c.arrivalTime)/3600

696 c.newPos(2, t)

697 c.pos = 1

698

699 else:

700 fes.add(Event(Event.ARRIVAL , s1, c, t)) #schedule

arrival at open

701 res.registerWaitingTime (1, t - c.arrivalTime)

702 sojournTimes_Components.loc[len(

sojournTimes_Components.index), c.component] = (t-c.arrivalTime)/3600

703 c.newPos(0, t)

704 c.pos = 0

705

706 # Once server stops working , set to idle

707 c.engineer.idle = True

708 c.engineer.setIdle(t)

709

710 # Engineer ’s Workflow

711 serv = c.engineer

712 c3 = searchPriorityBlocking(serv.queue)

713 c4 = searchPriorityUrgent(serv.queue)

714

715 if c3 != None:

716 if serv.idle == True:

717 s = c3.state

718 b3 = self.servDist[s].rvs()

719 dep = Event(Event.DEPARTURE , serv , c3 , t+b3)

720 fes.add(dep)

721 c3.depEvent = dep #ticket knows its departure

and service time

722 serv.idle = False

723 serv.ticket = c3

724 c3.state = s #goes into next state

725 c3.pos = assignPos(c3)

726 serv.setWorking(t)

727

728 else:

729 if serv.ticket.priority != 0 and serv.ticket.

depEvent != None:

730 serv.ticket.depEvent.iscancelled = True

731 serv.ticket.depEvent = None

732 serv.nrTickets.remove(serv.ticket.number)

733 remove_state_ticket(serv)

734 add_state_ticket(serv , c3)

735 serv.nrTickets.append(c3.number)

736 s = c3.state

737 b3 = self.servDist[s].rvs()

738 dep = Event(Event.DEPARTURE , serv , c3 , t+b3)

739 fes.add(dep)

740 c3.depEvent = dep #ticket knows its

departure and service time

741 serv.idle = False

742 serv.ticket = c3

743 c3.state = s #goes into next state

744 c3.pos = assignPos(c3)

86

745

746 elif c4 != None:

747 if serv.idle == True:

748 s = c4.state

749 b3 = self.servDist[s].rvs()

750 dep = Event(Event.DEPARTURE , serv , c4 , t+b3)

751 fes.add(dep)

752 c4.depEvent = dep #ticket knows its departure

and service time

753 serv.idle = False

754 serv.ticket = c4

755 c4.state = s #goes into next state

756 c4.pos = assignPos(c4)

757 serv.setWorking(t)

758

759 else:

760 if serv.ticket.priority !=0 and serv.ticket.

priority != 1 and serv.ticket.depEvent != None:

761 serv.ticket.depEvent.iscancelled = True

762 serv.ticket.depEvent = None

763 serv.nrTickets.remove(serv.ticket.number)

764 serv.nrTickets.append(c4.number)

765 remove_state_ticket(serv)

766 add_state_ticket(serv , c4)

767 s = c4.state

768 b3 = self.servDist[s].rvs()

769 dep = Event(Event.DEPARTURE , serv , c4 , t+b3)

770 fes.add(dep)

771 c4.depEvent = dep #ticket knows its

departure and service time

772 serv.idle = False

773 serv.ticket = c4

774 c4.state = s #goes into next state

775 c4.pos = assignPos(c4)

776

777 else:

778 if serv.idle == True:

779 if countAccepted(serv) > 0:

780 if serv.countAccept < 2:

781 q_ = queueAccepted(serv)

782 c3 = q_[0]

783 serv.queue.dequeue_ticket(c3)

784 b3 = self.servDist [1]. rvs()

785 dep = Event(Event.DEPARTURE , serv , c3 , t+b3

)

786 fes.add(dep)

787 c3.depEvent = dep #ticket knows its

departure and service time

788 serv.idle = False

789 serv.ticket = c3

790 c3.state = 1 #goes into accepted state

791 c3.pos = 4

792 serv.countAccept += 1

793 serv.setWorking(t)

794

795 elif len(qs[2]. tickets) > 0:

796 if serv.countImplt < 2:

797 q_ = queueImplt(qs[2], serv)

798 if len(q_) != 0:

799 c3 = q_[0]

800 qs[2]. dequeue_ticket(c3)

801 b3 = self.servDist [4]. rvs()

802 dep = Event(Event.DEPARTURE , serv , c3 ,

t+b3)

803 fes.add(dep)

804 c3.depEvent = dep #ticket knows its

departure and service time

87

805 serv.idle = False

806 serv.ticket = c3

807 c3.tester = serv

808 c3.state = 4 #goes into implemented

state

809 c3.pos = 2

810 serv.countImplt += 1

811 serv.setWorking(t)

812

813 elif countSch(serv) > 0:

814 if serv.countSch < 2:

815 q_ = queueSch(serv)

816 c3 = q_[0]

817 serv.queue.dequeue_ticket(c3)

818 b3 = self.servDist [3]. rvs()

819 dep = Event(Event.DEPARTURE , serv , c3 , t+b3

)

820 fes.add(dep)

821 c3.depEvent = dep #ticket knows its

departure and service time

822 serv.idle = False

823 serv.ticket = c3

824 c3.state = 3 #goes into scheduled state

825 c3.pos = 4

826 serv.countSch += 1

827 serv.setWorking(t)

828

829

830 #ALGORITHM 6 (DEPARTURE FROM ANALYSED)

831 elif queueNr == 1:

832

833 serv = c.engineer

834 fes.add(Event(Event.ARRIVAL , serv , c, t)) #schedule

arrival at engineer ’s queue.

835 res.registerWaitingTime (2, t - c.arrivalTime)

836 sojournTimes_Components.loc[len(sojournTimes_Components.

index), c.component] = (t-c.arrivalTime)/3600

837 c.pos = 4

838 c.newPos(3, t)

839

840 # Once server stops working , set to idle

841 s1.idle = True

842 s1.setIdle(t)

843

844 # S1 WORKFLOW

845 if s1.openCounter <= 5 and len(qs[0]. tickets) > 0:

846

847 c2 = qs[0]. dequeue_0 ()

848 b0 = self.servDist [0]. rvs()

849 dep = Event(Event.DEPARTURE , s1, c2, t+b0)

850 c2.depEvent = dep #ticket knows its departure and

service time

851 fes.add(dep)

852 s1.idle = False

853 s1.ticket = c2

854 c2.server = s1

855 c2.state = 0

856 c2.pos = 0

857 s1.openCounter += 1

858 s1.setWorking(t)

859

860

861 else:

862 c1 = searchPriorityBlocking(qs[3])

863 c3 = searchPriorityUrgent(qs[3])

864 if c1 != None:

865

88

866 if s1.idle == True:

867 b3 = self.servDist [5]. rvs()

868 dep = Event(Event.DEPARTURE , s1, c1, t+b3)

869 fes.add(dep)

870 c1.depEvent = dep #ticket knows its

departure and service time

871 s1.idle = False

872 s1.ticket = c1

873 c1.state = 5 #goes into verified state

874 c1.pos = 3

875 s1.setWorking(t)

876

877 else:

878 if s1.ticket.priority != 0:

879 s1.ticket.depEvent.iscancelled = True

880 s1.ticket.depEvent = None

881 s1.nrTickets.remove(s1.ticket.number)

882 s1.nrTickets.append(c1.number)

883 b3 = self.servDist [5]. rvs()

884 dep = Event(Event.DEPARTURE , s1, c1, t+b3)

885 fes.add(dep)

886 c1.depEvent = dep #ticket knows its

departure and service time

887 s1.idle = False

888 s1.ticket = c1

889 c1.state = 5 #goes into verified state

890 c1.pos = 3

891

892

893 elif c3 != None:

894 if s1.idle == True:

895 b3 = self.servDist [5]. rvs()

896 dep = Event(Event.DEPARTURE , s1, c3, t+b3)

897 fes.add(dep)

898 c3.depEvent = dep #ticket knows its

departure and service time

899 s1.idle = False

900 c3.state = 5 #goes into verified state

901 c3.pos = 3

902 s1.ticket = c3

903 s1.setWorking(t)

904

905 else:

906 if s1.ticket.priority != 0 and s1.ticket.

priority != 1:

907 s1.ticket.depEvent.iscancelled = True

908 s1.ticket.depEvent = None

909 s1.nrTickets.remove(s1.ticket.number)

910 s1.nrTickets.append(c3.number)

911 b3 = self.servDist [5]. rvs()

912 dep = Event(Event.DEPARTURE , s1, c3, t+b3)

913 fes.add(dep)

914 c3.depEvent = dep #ticket knows its

departure and service time

915 s1.idle = False

916 c3.state = 5

917 c3.pos = 3

918 s1.ticket = c3

919 # s1.setWorking(t)

920

921 else:

922 if s1.idle == True:

923

924 if len(qs[3]. tickets) > 0:

925 c3 = qs[3]. dequeue_0 ()

926 b3 = self.servDist [5]. rvs()

927 dep = Event(Event.DEPARTURE , s1, c3, t+b3)

89

928 fes.add(dep)

929 c3.depEvent = dep #ticket knows its

departure and service time

930 s1.ticket = c3

931 c3.pos = 3

932 c3.state = 5

933 s1.idle = False

934 s1.setWorking(t)

935

936

937 elif len(qs[2]. tickets) > 0:

938

939 if s1.impltCounter < 2:

940 c3 = qs[2]. dequeue_0 () #ticket is not

being served

941 b3 = self.servDist [4]. rvs()

942 dep = Event(Event.DEPARTURE , s1, c3, t+

b3)

943 fes.add(dep)

944 c3.depEvent = dep #ticket knows its

departure and service time

945 s1.ticket = c3

946 c3.tester = s1

947 s1.idle = False

948 c3.state = 4 #goes into implemented

state

949 c3.pos = 2

950 s1.impltCounter += 1

951 s1.setWorking(t)

952

953

954 elif len(qs[1]. tickets) > 0:

955

956 if s1.analyseCounter < 4:

957 c3 = qs[1]. dequeue_0 ()

958 b3 = self.servDist [2]. rvs()

959 dep = Event(Event.DEPARTURE , s1, c3, t+

b3)

960 fes.add(dep)

961 c3.depEvent = dep #ticket knows its

departure and service time

962 s1.ticket = c3

963 c3.state = 2 #goes into analysed

state

964 c3.pos = 1

965 s1.idle = False

966 s1.analyseCounter += 1

967 s1.setWorking(t)

968

969 elif len(qs[2]. tickets) > 0 and len(qs[2].

tickets) < 20:

970 if s1.impltCounter < 2:

971 c3 = qs[2]. dequeue_0 ()

972 b3 = self.servDist [4]. rvs()

973 dep = Event(Event.DEPARTURE , s1, c3, t+

b3)

974 fes.add(dep)

975 c3.depEvent = dep #ticket knows its

departure and service time

976 s1.idle = False

977 s1.ticket = c3

978 c3.tester = s1

979 c3.state = 4 #goes into implemented

state

980 c3.pos = 2

981 s1.impltCounter += 1

982 s1.setWorking(t)

90

983

984

985 #ALGORITHM 8 (DEPARTURE FROM SCHEDULED)

986 elif queueNr == 4 and c.state == 3:

987 fes.add(Event(Event.ARRIVAL , tester , c, t)) #schedule

arrival at implemented

988 res.registerWaitingTime (3, t - c.arrivalTime)

989 sojournTimes_Components.loc[len(sojournTimes_Components.

index), c.component] = (t-c.arrivalTime)/3600

990 c.newPos(4, t)

991 c.pos = 2

992

993 # Once server stops working , set to idle

994 c.engineer.idle = True

995 c.engineer.setIdle(t)

996

997 # Engineer ’s decision tree

998 serv = c.engineer

999 c3 = searchPriorityBlocking(serv.queue)

1000 c4 = searchPriorityUrgent(serv.queue)

1001 if c3 != None:

1002 if serv.idle == True:

1003 s = c3.state

1004 b3 = self.servDist[s].rvs()

1005 dep = Event(Event.DEPARTURE , serv , c3 , t+b3)

1006 fes.add(dep)

1007 c3.depEvent = dep #ticket knows its departure

and service time

1008 serv.idle = False

1009 serv.ticket = c3

1010 c3.state = s #goes into next state

1011 c3.pos = assignPos(c3)

1012 serv.setWorking(t)

1013

1014 else:

1015 if serv.ticket.priority != 0 and serv.ticket.

depEvent != None:

1016 serv.ticket.depEvent.iscancelled = True

1017 serv.ticket.depEvent = None

1018 remove_state_ticket(serv)

1019 serv.nrTickets.remove(serv.ticket.number)

1020 serv.nrTickets.append(c3.number)

1021 add_state_ticket(serv , c3)

1022 s = c3.state

1023 b3 = self.servDist[s].rvs()

1024 dep = Event(Event.DEPARTURE , serv , c3 , t+b3)

1025 fes.add(dep)

1026 c3.depEvent = dep #ticket knows its

departure and service time

1027 serv.idle = False

1028 serv.ticket = c3

1029 c3.state = s #goes into next state

1030 c3.pos = assignPos(c3)

1031

1032 elif c4 != None:

1033 if serv.idle == True:

1034 s = c4.state

1035 b3 = self.servDist[s].rvs()

1036 dep = Event(Event.DEPARTURE , serv , c4 , t+b3)

1037 fes.add(dep)

1038 c4.depEvent = dep #ticket knows its departure

and service time

1039 serv.idle = False

1040 serv.ticket = c4

1041 c4.state = s #goes into next state

1042 c4.pos = assignPos(c4)

1043 serv.setWorking(t)

91

1044

1045 else:

1046 if serv.ticket.priority != 0 and serv.ticket.

priority != 1 and serv.ticket.depEvent != None:

1047 serv.ticket.depEvent.iscancelled = True

1048 serv.ticket.depEvent = None

1049 remove_state_ticket(serv)

1050 serv.nrTickets.remove(serv.ticket.number)

1051 serv.nrTickets.append(c4.number)

1052 add_state_ticket(serv , c4)

1053 s = c4.state

1054 b3 = self.servDist[s].rvs()

1055 dep = Event(Event.DEPARTURE , serv , c4 , t+b3)

1056 fes.add(dep)

1057 c4.depEvent = dep #ticket knows its

departure and service time

1058 serv.idle = False

1059 serv.ticket = c4

1060 c4.state = s #goes into next state

1061 c4.pos = assignPos(c4)

1062

1063 else:

1064 if serv.idle == True:

1065 if countAccepted(serv) > 0:

1066 if serv.countAccept < 2:

1067 q_ = queueAccepted(serv)

1068 c3 = q_[0]

1069 serv.queue.dequeue_ticket(c3)

1070 b3 = self.servDist [1]. rvs()

1071 dep = Event(Event.DEPARTURE , serv , c3 , t+b3

)

1072 fes.add(dep)

1073 c3.depEvent = dep #ticket knows its

departure and service time

1074 serv.idle = False

1075 serv.ticket = c3

1076 c3.state = 1 #goes into accepted state

1077 c3.pos = 4

1078 serv.countAccept += 1

1079 serv.setWorking(t)

1080

1081 elif len(qs[2]. tickets) > 0:

1082 if serv.countImplt < 2:

1083 q_ = queueImplt(qs[2], serv)

1084 if len(q_) != 0:

1085 c3 = q_[0]

1086 qs[2]. dequeue_ticket(c3)

1087 b3 = self.servDist [4]. rvs()

1088 dep = Event(Event.DEPARTURE , serv , c3 ,

t+b3)

1089 fes.add(dep)

1090 c3.depEvent = dep #ticket knows its

departure and service time

1091 serv.idle = False

1092 serv.ticket = c3

1093 c3.tester = serv

1094 c3.state = 4 #goes into implemented

state

1095 c3.pos = 2

1096 serv.countImplt += 1

1097 serv.setWorking(t)

1098

1099 elif countSch(serv) > 0:

1100 if serv.countSch < 2:

1101 q_ = queueSch(serv)

1102 c3 = q_[0]

1103 serv.queue.dequeue_ticket(c3)

92

1104 b3 = self.servDist [3]. rvs()

1105 dep = Event(Event.DEPARTURE , serv , c3 , t+b3

)

1106 fes.add(dep)

1107 c3.depEvent = dep #ticket knows its

departure and service time

1108 serv.idle = False

1109 serv.ticket = c3

1110 c3.state = 3 #goes into scheduled state

1111 c3.pos = 4

1112 serv.countSch += 1

1113 serv.setWorking(t)

1114

1115

1116 #ALGORITHM 10 (DEPARTURE FROM IMPLEMENTED)

1117 elif queueNr == 2:

1118

1119 if c.testProb > test_p: #

testing negative

1120 fes.add(Event(Event.ARRIVAL , c.engineer , c, t)) #

schedule arrival at engineer ’s queue - scheduled for the engineer again.

1121 res.registerWaitingTime (4, t - c.arrivalTime)

1122 sojournTimes_Components.loc[len(sojournTimes_Components

.index), c.component] = (t-c.arrivalTime)/3600

1123 c.newPos(3, t)

1124 c.pos = 4

1125 #break

1126

1127 else: #testing

positive

1128 fes.add(Event(Event.ARRIVAL , s1, c, t)) #schedule

arrival at for S1 queue - goes to verified.

1129 res.registerWaitingTime (4, t - c.arrivalTime)

1130 sojournTimes_Components.loc[len(sojournTimes_Components

.index), c.component] = (t-c.arrivalTime)/3600

1131 c.newPos(5, t)

1132 c.pos = 3

1133

1134 # Once server stops working , set to idle

1135 c.tester.idle = True

1136 c.tester.setIdle(t)

1137

1138 # Workflows

1139 if c.tester == tester:

1140 c3 = searchPriorityBlocking(qs[2])

1141 c4 = searchPriorityUrgent(qs[2])

1142

1143 # TESTER WORKFLOW

1144 if c3 != None:

1145 if tester.idle == True:

1146 b3 = self.servDist [4]. rvs()

1147 dep = Event(Event.DEPARTURE , tester , c3, t+b3)

1148 fes.add(dep)

1149 c3.depEvent = dep #ticket knows its

departure and service time

1150 tester.idle = False

1151 c3.tester = tester

1152 tester.ticket = c3

1153 c3.state = 4

1154 c3.pos = 2

1155 tester.setWorking(t)

1156

1157 else:

1158 if tester.ticket.priority != 0:

1159 tester.ticket.depEvent.iscancelled = True

1160 tester.ticket.depEvent = None

93

1161 tester.nrTickets.remove(tester.ticket.

number)

1162 tester.nrTickets.append(c3.number)

1163 b3 = self.servDist [4]. rvs()

1164 dep = Event(Event.DEPARTURE , tester , c3, t+

b3)

1165 fes.add(dep)

1166 c3.depEvent = dep #ticket knows its

departure and service time

1167 tester.idle = False

1168 c3.tester = tester

1169 tester.ticket = c3

1170 c3.state = 4

1171 c3.pos = 2

1172

1173

1174 elif c4 != None:

1175 if tester.idle == True:

1176 b3 = self.servDist [4]. rvs()

1177 dep = Event(Event.DEPARTURE , tester , c4, t+b3)

1178 fes.add(dep)

1179 c4.depEvent = dep #ticket knows its

departure and service time

1180 tester.idle = False

1181 tester.ticket = c4

1182 c4.tester = tester

1183 c4.state = 4

1184 c4.pos = 2

1185 tester.setWorking(t)

1186

1187 else:

1188 if tester.ticket.priority != 0 and tester.

ticket.priority != 1:

1189 tester.ticket.depEvent.iscancelled = True

1190 tester.ticket.depEvent = None

1191 tester.nrTickets.remove(tester.ticket.

number)

1192 tester.nrTickets.append(c4.number)

1193 b3 = self.servDist [4]. rvs()

1194 dep = Event(Event.DEPARTURE , tester , c4, t+

b3)

1195 fes.add(dep)

1196 c4.depEvent = dep #ticket knows its

departure and service time

1197 tester.idle = False

1198 c4.tester = tester

1199 tester.ticket = c4

1200 c4.state = 4

1201 c4.pos = 2

1202

1203 elif len(qs[2]. tickets) > 0 and tester.idle == True:

1204 c3 = qs[2]. dequeue_0 ()

1205 b3 = self.servDist [4]. rvs()

1206 dep = Event(Event.DEPARTURE , tester , c3, t+b3)

1207 fes.add(dep)

1208 c3.depEvent = dep #ticket knows its departure

and service time

1209 tester.ticket = c3

1210 tester.idle = False

1211 c3.tester = tester

1212 c3.state = 4

1213 c3.pos = 2

1214 tester.setWorking(t)

1215

1216

1217 elif c.tester in engg:

1218 serv = c.tester

94

1219

1220 # Engineer ’s Workflow

1221 c3 = searchPriorityBlocking(serv.queue)

1222 c4 = searchPriorityUrgent(serv.queue)

1223 if c3 != None:

1224 if serv.idle == True:

1225 s = c3.state

1226 b3 = self.servDist[s].rvs()

1227 dep = Event(Event.DEPARTURE , serv , c3 , t+b3)

1228 fes.add(dep)

1229 c3.depEvent = dep #ticket knows its

departure and service time

1230 serv.idle = False

1231 serv.ticket = c3

1232 c3.state = s

1233 c3.pos = assignPos(c3)

1234 serv.setWorking(t)

1235

1236 else:

1237 if serv.ticket.priority != 0 and serv.ticket.

depEvent != None:

1238 serv.ticket.depEvent.iscancelled = True

1239 serv.ticket.depEvent = None

1240 remove_state_ticket(serv)

1241 serv.nrTickets.remove(serv.ticket.number)

1242 serv.nrTickets.append(c3.number)

1243 add_state_ticket(serv , c3)

1244 s = c3.state

1245 b3 = self.servDist[s].rvs()

1246 dep = Event(Event.DEPARTURE , serv , c3 , t+b3

)

1247 fes.add(dep)

1248 c3.depEvent = dep #ticket knows its

departure and service time

1249 serv.idle = False

1250 serv.ticket = c3

1251 c3.state = s

1252 c3.pos = assignPos(c3)

1253

1254 elif c4 != None:

1255 if serv.idle == True:

1256 s = c4.state

1257 b3 = self.servDist[s].rvs()

1258 dep = Event(Event.DEPARTURE , serv , c4 , t+b3)

1259 fes.add(dep)

1260 c4.depEvent = dep #ticket knows its

departure and service time

1261 serv.idle = False

1262 serv.ticket = c4

1263 c4.state = s

1264 c4.pos = assignPos(c4)

1265 serv.setWorking(t)

1266

1267 else:

1268 if serv.ticket.priority != 0 and serv.ticket.

priority != 1 and serv.ticket.depEvent != None:

1269 serv.ticket.depEvent.iscancelled = True

1270 serv.ticket.depEvent = None

1271 remove_state_ticket(serv)

1272 serv.nrTickets.remove(serv.ticket.number)

1273 serv.nrTickets.append(c4.number)

1274 add_state_ticket(serv , c4)

1275 s = c4.state

1276 b3 = self.servDist[s].rvs()

1277 dep = Event(Event.DEPARTURE , serv , c4 , t+b3

)

1278 fes.add(dep)

95

1279 c4.depEvent = dep #ticket knows its

departure and service time

1280 serv.idle = False

1281 serv.ticket = c4

1282 c4.state = s

1283 c4.pos = assignPos(c4)

1284

1285

1286 else:

1287 if serv.idle == True:

1288 if countAccepted(serv) > 0:

1289 if serv.countAccept < 2:

1290 q_ = queueAccepted(serv)

1291 c3 = q_[0]

1292 serv.queue.dequeue_ticket(c3)

1293 b3 = self.servDist [1]. rvs()

1294 dep = Event(Event.DEPARTURE , serv , c3 ,

t+b3)

1295 fes.add(dep)

1296 c3.depEvent = dep #ticket knows its

departure and service time

1297 serv.idle = False

1298 serv.ticket = c3

1299 c3.state = 1 #goes into accepted

state

1300 c3.pos = 4

1301 serv.countAccept += 1

1302 serv.setWorking(t)

1303

1304 elif len(qs[2]. tickets) > 0:

1305 if serv.countImplt < 2:

1306 q_ = queueImplt(qs[2], serv)

1307 if len(q_) != 0:

1308 c3 = q_[0]

1309 qs[2]. dequeue_ticket(c3)

1310 b3 = self.servDist [4]. rvs()

1311 dep = Event(Event.DEPARTURE , serv ,

c3, t+b3)

1312 fes.add(dep)

1313 c3.depEvent = dep #ticket knows

its departure and service time

1314 serv.idle = False

1315 serv.ticket = c3

1316 c3.tester = serv

1317 c3.state = 4 #goes into

implemented state

1318 c3.pos = 2

1319 serv.countImplt += 1

1320 serv.setWorking(t)

1321

1322 elif countSch(serv) > 0:

1323 if serv.countSch < 2:

1324 q_ = queueSch(serv)

1325 c3 = q_[0]

1326 serv.queue.dequeue_ticket(c3)

1327 b3 = self.servDist [3]. rvs()

1328 dep = Event(Event.DEPARTURE , serv , c3 ,

t+b3)

1329 fes.add(dep)

1330 c3.depEvent = dep #ticket knows its

departure and service time

1331 serv.idle = False

1332 serv.ticket = c3

1333 c3.state = 3 #goes into scheduled

state

1334 c3.pos = 4

1335 serv.countSch += 1

96

1336 serv.setWorking(t)

1337

1338

1339 elif c.tester == s1:

1340

1341 # S1 Workflow

1342

1343 if s1.openCounter <= 5 and len(qs[0]. tickets) > 0:

1344 c2 = qs[0]. dequeue_0 ()

1345 b0 = self.servDist [0]. rvs()

1346 dep = Event(Event.DEPARTURE , s1, c2, t+b0)

1347 c2.depEvent = dep #ticket knows its departure

and service time

1348 fes.add(dep)

1349 s1.idle = False

1350 s1.ticket = c2

1351 c2.server = s1

1352 c2.state = 0

1353 c2.pos = 0

1354 s1.setWorking(t)

1355 s1.openCounter += 1

1356

1357 else:

1358

1359 c1 = searchPriorityBlocking(qs[3])

1360 c3 = searchPriorityUrgent(qs[3])

1361

1362 if c1 != None:

1363

1364 if s1.idle == True:

1365 b3 = self.servDist [5]. rvs()

1366 dep = Event(Event.DEPARTURE , s1, c1, t+b3)

1367 fes.add(dep)

1368 c1.depEvent = dep #ticket knows its

departure and service time

1369 s1.idle = False

1370 s1.ticket = c1

1371 c1.state = 5

1372 c1.pos = 3

1373 s1.setWorking(t)

1374

1375 else:

1376 if s1.ticket.priority != 0:

1377 s1.ticket.depEvent.iscancelled = True

1378 s1.ticket.depEvent = None

1379 s1.nrTickets.remove(s1.ticket.number)

1380 s1.nrTickets.append(c1.number)

1381 b3 = self.servDist [5]. rvs()

1382 dep = Event(Event.DEPARTURE , s1, c1, t+

b3)

1383 fes.add(dep)

1384 c1.depEvent = dep #ticket knows its

departure and service time

1385 s1.idle = False

1386 s1.ticket = c1

1387 c1.state = 5

1388 c1.pos = 3

1389

1390

1391 elif c3 != None:

1392 if s1.idle == True:

1393 b3 = self.servDist [5]. rvs()

1394 dep = Event(Event.DEPARTURE , s1, c3, t+b3)

1395 fes.add(dep)

1396 c3.depEvent = dep #ticket knows its

departure and service time

1397 s1.idle = False

97

1398 c3.state = 5

1399 c3.pos = 3

1400 s1.ticket = c3

1401 s1.setWorking(t)

1402

1403 else:

1404 if s1.ticket.priority != 0 and s1.ticket.

priority != 1 and serv.ticket.depEvent != None:

1405 s1.ticket.depEvent.iscancelled = True

1406 s1.ticket.depEvent = None

1407 s1.nrTickets.remove(s1.ticket.number)

1408 s1.nrTickets.append(c3.number)

1409 b3 = self.servDist [5]. rvs()

1410 dep = Event(Event.DEPARTURE , s1, c3, t+

b3)

1411 fes.add(dep)

1412 c3.depEvent = dep #ticket knows its

departure and service time

1413 s1.idle = False

1414 c3.state = 5

1415 c3.pos = 3

1416 s1.ticket = c3

1417

1418 else:

1419 if s1.idle == True:

1420 if len(qs[3]. tickets) > 0:

1421 c3 = qs[3]. dequeue_0 ()

1422 b3 = self.servDist [5]. rvs()

1423 dep = Event(Event.DEPARTURE , s1, c3, t+

b3)

1424 fes.add(dep)

1425 c3.depEvent = dep #ticket knows its

departure and service time

1426 s1.ticket = c3

1427 c3.pos = 3

1428 c3.state = 5

1429 s1.idle = False

1430 s1.setWorking(t)

1431

1432

1433 elif len(qs[2]. tickets) > 0:

1434 if s1.impltCounter < 2:

1435 c3 = qs[2]. dequeue_0 () #ticket is

not being served

1436 b3 = self.servDist [4]. rvs()

1437 dep = Event(Event.DEPARTURE , s1, c3

, t+b3)

1438 fes.add(dep)

1439 c3.depEvent = dep #ticket knows

its departure and service time

1440 s1.ticket = c3

1441 c3.tester = s1

1442 s1.idle = False

1443 c3.state = 4 #goes into

implemented state

1444 c3.pos = 2

1445 s1.impltCounter += 1

1446 s1.setWorking(t)

1447

1448

1449 elif len(qs[1]. tickets) > 0:

1450

1451 if s1.analyseCounter < 4:

1452 c3 = qs[1]. dequeue_0 ()

1453 b3 = self.servDist [2]. rvs()

1454 dep = Event(Event.DEPARTURE , s1, c3

, t+b3)

98

1455 fes.add(dep)

1456 c3.depEvent = dep #ticket knows

its departure and service time

1457 s1.ticket = c3

1458 c3.state = 2 #goes into analysed

state

1459 c3.pos = 1

1460 s1.idle = False

1461 s1.analyseCounter += 1

1462 s1.setWorking(t)

1463

1464 elif len(qs[2]. tickets) > 0 and len(qs[2].

tickets) < 20:

1465 if s1.impltCounter < 2:

1466 c3 = qs[2]. dequeue_0 ()

1467 b3 = self.servDist [4]. rvs()

1468 dep = Event(Event.DEPARTURE , s1, c3

, t+b3)

1469 fes.add(dep)

1470 c3.depEvent = dep #ticket knows

its departure and service time

1471 s1.idle = False

1472 s1.ticket = c3

1473 c3.tester = s1

1474 c3.state = 4 #goes into

implemented state

1475 c3.pos = 2

1476 s1.impltCounter += 1

1477 s1.setWorking(t)

1478

1479

1480 #ALGORITHM 12 (DEPARTURE FROM VERIFIED)

1481 elif queueNr == 3:

1482 # print(" ALGORITHM 12")

1483 res.registerWaitingTime (5, t - c.arrivalTime)

1484 c.leaveSystem(t)

1485 res.registerSojournTime(t - c.systemArrivalTime)

1486 storeSojournTimes_priorities(c, (t-c.systemArrivalTime))

1487

1488 # Different results

1489 sojournTimes_Components.loc[len(sojournTimes_Components.

index), c.component] = (t-c.arrivalTime)

1490 totalTimes_Components.loc[len(totalTimes_Components.index),

c.component] = (t-c.systemArrivalTime)

1491

1492 TotalTicketsNr.append(c.number)

1493 tickets_in_system_day.append(c.number)

1494

1495 # Once server stops working , set to idle

1496 s1.idle = True

1497 s1.setIdle(t)

1498

1499

1500 # S1 WORKFLOW

1501

1502 if s1.openCounter <= 5 and len(qs[0]. tickets) > 0:

1503

1504 c2 = qs[0]. dequeue_0 ()

1505 b0 = self.servDist [0]. rvs()

1506 dep = Event(Event.DEPARTURE , s1, c2, t+b0)

1507 c2.depEvent = dep #ticket knows its departure and

service time

1508 fes.add(dep)

1509 s1.idle = False

1510 s1.ticket = c2

1511 c2.server = s1

1512 c2.state = 0

99

1513 c2.pos = 0

1514 s1.openCounter += 1

1515 s1.setWorking(t)

1516

1517 else:

1518

1519 c1 = searchPriorityBlocking(qs[3])

1520 c3 = searchPriorityUrgent(qs[3])

1521

1522 if c1 != None:

1523

1524 if s1.idle == True:

1525 b3 = self.servDist [5]. rvs()

1526 dep = Event(Event.DEPARTURE , s1, c1, t+b3)

1527 fes.add(dep)

1528 c1.depEvent = dep #ticket knows its

departure and service time

1529 s1.idle = False

1530 s1.ticket = c1

1531 c1.state = 5

1532 c1.pos = 3

1533 s1.setWorking(t)

1534

1535 else:

1536 if s1.ticket.priority != 0:

1537 s1.ticket.depEvent.iscancelled = True

1538 s1.ticket.depEvent = None

1539 s1.nrTickets.remove(s1.ticket.number)

1540 s1.nrTickets.append(c1.number)

1541 b3 = self.servDist [5]. rvs()

1542 dep = Event(Event.DEPARTURE , s1, c1, t+b3)

1543 fes.add(dep)

1544 c1.depEvent = dep #ticket knows its

departure and service time

1545 s1.idle = False

1546 s1.ticket = c1

1547 c1.state = 5

1548 c1.pos = 3

1549

1550

1551 elif c3 != None:

1552 if s1.idle == True:

1553 b3 = self.servDist [5]. rvs()

1554 dep = Event(Event.DEPARTURE , s1, c3, t+b3)

1555 fes.add(dep)

1556 c3.depEvent = dep #ticket knows its

departure and service time

1557 s1.idle = False

1558 c3.state = 5

1559 c3.pos = 3

1560 s1.ticket = c3

1561 s1.setWorking(t)

1562

1563 else:

1564 if s1.ticket.priority != 0 and s1.ticket.

priority != 1:

1565 s1.ticket.depEvent.iscancelled = True

1566 s1.ticket.depEvent = None

1567 s1.nrTickets.remove(s1.ticket.number)

1568 s1.nrTickets.append(c3.number)

1569 b3 = self.servDist [5]. rvs()

1570 dep = Event(Event.DEPARTURE , s1, c3, t+b3)

1571 fes.add(dep)

1572 c3.depEvent = dep #ticket knows its

departure and service time

1573 s1.idle = False

1574 c3.state = 5

100

1575 c3.pos = 3

1576 s1.ticket = c3

1577

1578

1579 else:

1580 if s1.idle == True:

1581

1582 if len(qs[3]. tickets) > 0:

1583 c3 = qs[3]. dequeue_0 ()

1584 b3 = self.servDist [5]. rvs()

1585 dep = Event(Event.DEPARTURE , s1, c3, t+b3)

1586 fes.add(dep)

1587 c3.depEvent = dep #ticket knows its

departure and service time

1588 s1.ticket = c3

1589 c3.pos = 3

1590 c3.state = 5

1591 s1.idle = False

1592 s1.setWorking(t)

1593

1594

1595 elif len(qs[2]. tickets) > 0:

1596 if s1.impltCounter < 2:

1597 c3 = qs[2]. dequeue_0 () #ticket is not

being served

1598 b3 = self.servDist [4]. rvs()

1599 dep = Event(Event.DEPARTURE , s1, c3, t+

b3)

1600 fes.add(dep)

1601 c3.depEvent = dep #ticket knows its

departure and service time

1602 s1.ticket = c3

1603 c3.tester = s1

1604 s1.idle = False

1605 c3.state = 4 #goes into implemented

state

1606 c3.pos = 2

1607 s1.impltCounter += 1

1608 s1.setWorking(t)

1609

1610 elif len(qs[1]. tickets) > 0:

1611 if s1.analyseCounter < 4:

1612 c3 = qs[1]. dequeue_0 ()

1613 b3 = self.servDist [2]. rvs()

1614 dep = Event(Event.DEPARTURE , s1, c3, t+

b3)

1615 fes.add(dep)

1616 c3.depEvent = dep #ticket knows its

departure and service time

1617 s1.ticket = c3

1618 c3.state = 2 #goes into analysed

state

1619 c3.pos = 1

1620 s1.idle = False

1621 s1.analyseCounter += 1

1622 s1.setWorking(t)

1623

1624

1625 elif len(qs[2]. tickets) > 0 and len(qs[2].

tickets) < 20:

1626 if s1.impltCounter < 2:

1627 c3 = qs[2]. dequeue_0 ()

1628 b3 = self.servDist [4]. rvs()

1629 dep = Event(Event.DEPARTURE , s1, c3, t+

b3)

1630 fes.add(dep)

101

1631 c3.depEvent = dep #ticket knows its

departure and service time

1632 s1.idle = False

1633 s1.ticket = c3

1634 c3.tester = s1

1635 c3.state = 4 #goes into implemented

state

1636 c3.pos = 2

1637 s1.impltCounter += 1

1638 s1.setWorking(t)

1639

1640

1641 elif e.type == Event.EOD:

1642

1643 # Resetting all counters for the day

1644 s1.openCounter = 0

1645 s1.impltCounter = 0

1646 s1.analyseCounter = 0

1647

1648 for i in engg:

1649 serv = i

1650 serv.countAccept = 0

1651 serv.countImplt = 0

1652 serv.countSch = 0

1653

1654 # Storing results for the day

1655

1656 OpenTickets.append(len(qs[0]. tickets))

1657 AcceptedTickets.append(countAccepted(engg [0]) + countAccepted(engg

[1]) + countAccepted(engg [2]) + countAccepted(engg [3]) + countAccepted(engg [4])

+ countAccepted(engg [5]) + countAccepted(engg [6]))

1658 AnalysedTickets.append(len(qs[1]. tickets))

1659 ScheduledTickets.append(countSch(engg [0]) + countSch(engg [1]) +

countSch(engg [2]) + countSch(engg [3]) + countSch(engg [4]) + countSch(engg [5]) +

countSch(engg [6]))

1660 ImplementedTickets.append(len(qs[2]. tickets))

1661 VerifiedTickets.append(len(qs[3]. tickets))

1662

1663 engg_1.append(len(engg [0]. queue.tickets))

1664 engg_2.append(len(engg [1]. queue.tickets))

1665 engg_3.append(len(engg [2]. queue.tickets))

1666 engg_4.append(len(engg [3]. queue.tickets))

1667 engg_5.append(len(engg [4]. queue.tickets))

1668 engg_6.append(len(engg [5]. queue.tickets))

1669 engg_7.append(len(engg [6]. queue.tickets))

1670 s1_tickets.append(len(qs[0]. tickets) + len(qs[1]. tickets) + len(qs

[3]. tickets))

1671 tester_tickets.append(len(qs[2]. tickets))

1672

1673 # Opening of tickets at the start of the day

1674

1675 if s1.ticket == None:

1676 if len(qs[0]. tickets) > 0:

1677 c2 = qs[0]. dequeue_0 ()

1678 b0 = self.servDist [0]. rvs()

1679 dep = Event(Event.DEPARTURE , s1, c2, t+b0)

1680 c2.depEvent = dep #ticket knows its departure and

service time

1681 fes.add(dep)

1682 s1.idle = False

1683 s1.ticket = c2

1684 c2.server = s1

1685 c2.state = 0

1686 c2.pos = 0

1687 s1.openCounter += 1

1688 s1.setWorking(t)

1689

102

1690 else:

1691 c2 = s1.ticket

1692 if c2 != None and c2.state != 0 and c2.depEvent != None and c2.

priority != 0:

1693 if len(qs[0]. tickets) > 0:

1694 c2.depEvent.iscancelled = True

1695 c2.depEvent = None

1696 s1.nrTickets.remove(s1.ticket.number)

1697 s1.nrTickets.append(c.number)

1698 c = qs[0]. dequeue_0 ()

1699 b2 = self.servDist [0]. rvs()

1700 dep = Event(Event.DEPARTURE , s1, c, t+b2)

1701 c.depEvent = dep #ticket knows its departure and

service time

1702 fes.add(dep)

1703 s1.idle = False

1704 s1.ticket = c

1705 c.state = 0

1706 c.pos = 0

1707 s1.openCounter += 1

1708

1709 fes.add(Event(Event.EOD , s1 , c, t+8*3600))

1710 nrDays_vs_Tickets.loc[day , "Tickets"] = len(set(

tickets_in_system_day))

1711 day = day + 1

1712 tickets_in_system_day = []

1713

1714 return res

1715

1716

1717 #arrival distribution seconds in per ticket

1718 servDist = [] # manually create them # service times

1719

1720 arrDist = Distribution(stats.expon(scale = ((365*5*3600*8) /8492))) #arrival time

1721

1722 servDist.append(Distribution(stats.gamma(scale = 1/((2*60) /5580000) , a = ((2*60))

**2/(5580000)))) # open

1723 servDist.append(Distribution(stats.gamma(scale = 1/((30*3600/90000000)), a =

((30*3600) **2/90000000)))) # accepted

1724 servDist.append(Distribution(stats.gamma(scale = 1/((20*60) /(900000)), a = (20*60)

**2/(900000)))) # analysed

1725 servDist.append(Distribution(stats.gamma(scale = 1/((20*3600) /337000000) , a =

(20*3600) **2/(337000000)))) # scheduled

1726 servDist.append(Distribution(stats.gamma(scale = 1/((10*3600) /2600000000) , a =

(10*3600) **2/(2600000000)))) # implemented

1727 servDist.append(Distribution(stats.gamma(scale = 1/((10*60) /8500000) , a = (10*60)

**2/(8500000)))) # verified

1728

1729 years = 5 # number of years for which the simulation needs to run

1730 run = 10 # index of the current run

1731

1732 r = 365* years # in days

1733

1734 sim = Simulation(arrDist , servDist , 8)

1735 res = sim.simulate(r*8*3600) # input in hours

1736 bins = 100

1737

1738 ## ############################## FOR RESULTS ################################

1739

1740 # Printing results

1741

1742 for i in range (6):

1743

1744 if i == 0:

1745 print("##### RESULTS FOR OPEN QUEUE #####")

1746 print(res.queueResults[i])

1747 res.queueResults[i]. histQueueLength(i,10)

103

1748 res.queueResults[i]. histWaitingTimes(i,100)

1749

1750 elif i == 1:

1751 print("##### RESULTS FOR ACCEPTED QUEUE #####")

1752 print(res.queueResults[i])

1753 res.queueResults[i]. histQueueLength(i ,1000)

1754 res.queueResults[i]. histWaitingTimes(i,50)

1755

1756 elif i == 2:

1757 print("##### RESULTS FOR ANALYSED QUEUE #####")

1758 print(res.queueResults[i])

1759 res.queueResults[i]. histQueueLength(i,10)

1760 res.queueResults[i]. histWaitingTimes(i,50)

1761

1762 elif i == 3:

1763 print("##### RESULTS FOR SCHEDULED QUEUE #####")

1764 print(res.queueResults[i])

1765 res.queueResults[i]. histQueueLength(i ,500)

1766 res.queueResults[i]. histWaitingTimes(i,100)

1767

1768 elif i == 4:

1769 print("##### RESULTS FOR IMPLEMENTED QUEUE #####")

1770 print(res.queueResults[i])

1771 res.queueResults[i]. histQueueLength(i,10)

1772 res.queueResults[i]. histWaitingTimes(i,100)

1773

1774

1775 elif i == 5:

1776 print("##### RESULTS FOR VERIFIED QUEUE #####")

1777 print(res.queueResults[i])

1778 res.queueResults[i]. histQueueLength(i,10)

1779 res.queueResults[i]. histWaitingTimes(i,0.5)

1780

1781 print("Mean Sojourn time: (in hours) ", mean(res.sojournTimes)/3600)

1782 res.histSojournTimes (50)

1783

1784 print("\nS1 Working time: (in hours) ", s1.workTime /3600 , " (", s1.workTime

*100/(3600*8* years *365), "%)", " and Idle time: (in hours) ", s1.idleTime /3600,

" (", s1.idleTime *100/(3600*8* years *365), "%)", " and number of tickets worked

on - ", len(set(s1.nrTickets)))

1785 sojournTimes_Servers.loc[len(sojournTimes_Servers.index), s1] = s1.workTime /3600

1786 sojournTimes_Servers_idle.loc[len(sojournTimes_Servers_idle.index), s1] = s1.

idleTime /3600

1787

1788 for i in engg:

1789 print("\n", i, " Working time: (in hours) ", i.workTime /3600, " (", i.workTime

*100/(3600*8* years *365), "%)", " and Idle time: (in hours) ", i.idleTime /3600,

" (", i.idleTime *100/(3600*8* years *365) , "%)", " and number of tickets worked

on - ", len(set(i.nrTickets)))

1790 print("Number of tickets worked on distribution - \nAccepted state tickets: ",

len(set(i.acceptTickets)), " Schedule state tickets: ", len(set(i.schTickets)),

" Implemented state tickets: ", len(set(i.impltTickets)))

1791 sojournTimes_Servers.loc[len(sojournTimes_Servers.index), i] = i.workTime /3600

1792 sojournTimes_Servers_idle.loc[len(sojournTimes_Servers_idle.index), i] = i.

idleTime /3600

1793

1794

1795 print("\nTester Working time: (in hours) ", tester.workTime /3600 , " (", tester.

workTime *100/(3600*8* years *365), "%)", " and Idle time: (in hours) ", tester.

idleTime /3600, " (", tester.idleTime *100/(3600*8* years *365), "%)", " and number

of tickets worked on - ", len(set(tester.nrTickets)))

1796 sojournTimes_Servers.loc[len(sojournTimes_Servers.index), tester] = tester.workTime

/3600

1797 sojournTimes_Servers_idle.loc[len(sojournTimes_Servers_idle.index), tester] =

tester.idleTime /3600

1798

1799 def max_work(servers):

104

1800 workTimes = []

1801 for i in servers:

1802 workTimes.append(i.workTime)

1803

1804 for i in servers:

1805 if max(workTimes) == i.workTime:

1806 return i

1807

1808 server = max_work ([s1,tester]+engg)

1809 print("\nServer who works the most - ", server)

1810

1811 def max_idle(servers):

1812 idleTimes = []

1813 for i in servers:

1814 idleTimes.append(i.idleTime)

1815

1816 for i in servers:

1817 if max(idleTimes) == i.idleTime:

1818 return i

1819

1820 server = max_idle ([s1, tester] + engg)

1821 print("\nServer who is the most idle - ", server)

1822

1823 Comp_Sojourn = sojournTimes_Components.mean(axis =0)

1824 plt.figure(figsize =(12, 6))

1825 Comp_Sojourn.plot(kind=’bar’)

1826 plt.xlabel(’Components ’, fontsize = 12)

1827 plt.ylabel(’Time Spent (in hours)’, fontsize = 12)

1828 plt.title(’Time Spent (Component -wise)’, fontsize = 14)

1829 # show the plot

1830 plt.show()

1831

1832 serverss = sojournTimes_Servers.mean(axis =0)

1833 plt.figure(figsize =(12, 6))

1834 serverss.plot(kind=’bar’)

1835 plt.xlabel(’Servers ’, fontsize = 12)

1836 plt.ylabel(’Work time (in hours)’, fontsize = 12)

1837 plt.title(’Work time for each Server ’, fontsize = 14)

1838 # show the plot

1839 plt.show()

1840

1841 Comp_Total = totalTimes_Components.mean(axis =0)

1842 plt.figure(figsize =(12, 6))

1843 Comp_Total.plot(kind=’bar’)

1844 plt.xlabel(’Components ’, fontsize = 12)

1845 plt.ylabel(’Time Spent (in hours)’, fontsize = 12)

1846 plt.title(’Total Time in the System (Component -wise)’, fontsize = 14)

1847

1848

1849 nrDays_vs_Tickets.plot(y = "Tickets", kind=’line’, figsize = (30 ,10), fontsize =

16)

1850 plt.title("Number of Tickets per day", fontsize = 16)

1851 plt.xlabel("Day", fontsize = 16)

1852 plt.ylabel("Tickets", fontsize = 16)

1853 plt.show()

1854

1855 plt.plot(OpenTickets)

1856 plt.title("Number of Tickets per day - Open queue", fontsize = 14)

1857 plt.xlabel("Day", fontsize = 12)

1858 plt.ylabel("Tickets", fontsize = 12)

1859 plt.show()

1860 dy1 = np.gradient(OpenTickets)

1861 print("Rate of increase of tickets in Open state (per day):", mean(dy1))

1862

1863 plt.plot(AcceptedTickets)

1864 plt.title("Number of Tickets per day - Accepted queue", fontsize = 14)

1865 plt.xlabel("Day", fontsize = 12)

105

1866 plt.ylabel("Tickets", fontsize = 12)

1867 plt.show()

1868 dy2 = np.gradient(AcceptedTickets)

1869 print("Rate of increase in Accepted state (per day):", mean(dy2))

1870

1871 plt.plot(AnalysedTickets)

1872 plt.title("Number of Tickets per day - Analysed queue", fontsize = 14)

1873 plt.xlabel("Day", fontsize = 12)

1874 plt.ylabel("Tickets", fontsize = 12)

1875 plt.show()

1876 dy3 = np.gradient(AnalysedTickets)

1877 print("Rate of increase in Analysed state (per day):", mean(dy3))

1878

1879 plt.plot(ScheduledTickets)

1880 plt.title("Number of Tickets per day - Scheduled queue", fontsize = 14)

1881 plt.xlabel("Day", fontsize = 12)

1882 plt.ylabel("Tickets", fontsize = 12)

1883 plt.show()

1884 dy4 = np.gradient(ScheduledTickets)

1885 print("Rate of increase in Scheduled state (per day):", mean(dy4))

1886

1887 plt.plot(ImplementedTickets)

1888 plt.title("Number of Tickets per day - Implemented queue", fontsize = 14)

1889 plt.xlabel("Day", fontsize = 12)

1890 plt.ylabel("Tickets", fontsize = 12)

1891 plt.show()

1892 dy5 = np.gradient(ImplementedTickets)

1893 print("Rate of increase in Implemented state (per day):", mean(dy5))

1894

1895 plt.plot(VerifiedTickets)

1896 plt.title("Number of Tickets per day - Verified queue", fontsize = 14)

1897 plt.xlabel("Day", fontsize = 12)

1898 plt.ylabel("Tickets", fontsize = 12)

1899 plt.show()

1900 dy6 = np.gradient(VerifiedTickets)

1901 print("Rate of increase in Verified state (per day):", mean(dy6))

1902

1903 fig , ax = plt.subplots ()

1904 ax.plot(engg_1 , label=’Engg 1’)

1905 ax.plot(engg_2 , label=’Engg 2’)

1906 ax.plot(engg_3 , label=’Engg 3’)

1907 ax.plot(engg_4 , label=’Engg 4’)

1908 ax.plot(engg_5 , label=’Engg 5’)

1909 ax.plot(engg_6 , label=’Engg 6’)

1910 ax.plot(engg_7 , label=’Engg 7’)

1911 ax.set_xlabel(’Days’)

1912 ax.set_title(’Engineer Queues ’)

1913 ax.set_ylabel(’Tickets ’)

1914 ax.legend ()

1915 plt.show()

1916

1917 dy_engg1 = np.gradient(engg_1)

1918 print("\n\nRate of increase Engg 1:", mean(dy_engg1))

1919 dy_engg2 = np.gradient(engg_2)

1920 print("Rate of increase Engg 2:", mean(dy_engg2))

1921 dy_engg3 = np.gradient(engg_3)

1922 print("Rate of increase Engg 3:", mean(dy_engg3))

1923 dy_engg4 = np.gradient(engg_4)

1924 print("Rate of increase Engg 4:", mean(dy_engg4))

1925 dy_engg5 = np.gradient(engg_5)

1926 print("Rate of increase Engg 5:", mean(dy_engg5))

1927 dy_engg6 = np.gradient(engg_6)

1928 print("Rate of increase Engg 6:", mean(dy_engg6))

1929 dy_engg7 = np.gradient(engg_7)

1930 print("Rate of increase Engg 7:", mean(dy_engg7))

1931

106

1932 print("\nMean number of tickets that go through the system in a day: ", mean(

nrDays_vs_Tickets["Tickets"]))

1933

1934

1935 data = {

1936 ’engg 1’: mean(dy_engg1),

1937 ’engg 2’: mean(dy_engg2),

1938 ’engg 3’: mean(dy_engg3),

1939 ’engg 4’: mean(dy_engg4),

1940 ’engg 5’: mean(dy_engg5),

1941 ’engg 6’: mean(dy_engg6),

1942 ’engg 7’: mean(dy_engg7),

1943 ’open’: mean(dy1),

1944 ’accepted ’: mean(dy2),

1945 ’analysed ’: mean(dy3),

1946 ’scheduled ’: mean(dy4),

1947 ’implemented ’: mean(dy5),

1948 ’verified ’: mean(dy6),

1949 ’mean nr. of tickets through the system ’: mean(nrDays_vs_Tickets["Tickets"

])

1950 }

1951

1952 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/rate of increase.xlsx’)

1953 df = df.append(data , ignore_index=True)

1954 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

rate of increase.xlsx’, index=False)

1955

1956 print("\nMean time spent by each priority in the system - ")

1957

1958 if len(priority_0) > 0:

1959 print(" Blocking ’0’ : ", mean(priority_0)/3600 , " for ", len(set(

count_priority_0)), " tickets")

1960

1961 if len(priority_1) > 0:

1962 print(" Urgent ’1’ : ", mean(priority_1)/3600, " for ", len(set(

count_priority_1)), " tickets")

1963

1964 if len(priority_2) > 0:

1965 print(" High ’2’ : ", mean(priority_2)/3600 , " for ", len(set(count_priority_2)

), " tickets")

1966

1967 if len(priority_3) > 0:

1968 print(" Normal ’3’ : ", mean(priority_3)/3600, " for ", len(set(

count_priority_3)), " tickets")

1969

1970 if len(priority_4) > 0:

1971 print(" Low ’4’ : ", mean(priority_4)/3600 , " for ", len(set(count_priority_4))

, " tickets")

1972

1973 data = {

1974 ’blocking - time’: mean(priority_0)/3600,

1975 ’blocking - nr. Of tickets ’: len(set(count_priority_0)),

1976 ’urgent - time’: mean(priority_1)/3600 ,

1977 ’urgent - nr. Of tickets ’: len(set(count_priority_1)),

1978 ’high - time’: mean(priority_2)/3600,

1979 ’high - nr. Of tickets ’: len(set(count_priority_2)),

1980 ’normal - time’: mean(priority_3)/3600 ,

1981 ’normal - nr. Of tickets ’: len(set(count_priority_3)),

1982 ’low - time’: mean(priority_4)/3600,

1983 ’low - nr. Of tickets ’: len(set(count_priority_4)),

1984 }

1985

1986 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/ priority - time and tickets.xlsx’)

1987 df = df.append(data , ignore_index=True)

107

1988 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

priority - time and tickets.xlsx’, index=False)

1989

1990 a = 1

1991 print("\nService times:")

1992 for i in servDist:

1993 print(" Queue ", a, ": ", np.mean(i.rvs (365* years)))

1994 a = a+1

1995

1996 # Storing data

1997

1998 data = {

1999 0: res.queueResults [0]. getMeanWaitingTime (),

2000 1: res.queueResults [1]. getMeanWaitingTime (),

2001 2: res.queueResults [2]. getMeanWaitingTime (),

2002 3: res.queueResults [3]. getMeanWaitingTime (),

2003 4: res.queueResults [4]. getMeanWaitingTime (),

2004 5: res.queueResults [5]. getMeanWaitingTime ()

2005 }

2006

2007 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/ waiting times.xlsx’)

2008 df = df.append(data , ignore_index=True)

2009 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

waiting times.xlsx’, index=False)

2010

2011 data = {

2012 0: res.queueResults [0]. getMeanQueueLength (),

2013 "0 - std dev": res.queueResults [0]. getVarianceQueueLength () ** (1/2),

2014 1: res.queueResults [1]. getMeanQueueLength (),

2015 "1 - std dev": res.queueResults [1]. getVarianceQueueLength () ** (1/2),

2016 2: res.queueResults [2]. getMeanQueueLength (),

2017 "2 - std dev": res.queueResults [2]. getVarianceQueueLength () ** (1/2),

2018 3: res.queueResults [3]. getMeanQueueLength (),

2019 "3 - std dev": res.queueResults [3]. getVarianceQueueLength () ** (1/2),

2020 4: res.queueResults [4]. getMeanQueueLength (),

2021 "4 - std dev": res.queueResults [4]. getVarianceQueueLength () ** (1/2),

2022 5: res.queueResults [5]. getMeanQueueLength (),

2023 "5 - std dev": res.queueResults [5]. getVarianceQueueLength () ** (1/2)

2024 }

2025

2026 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/queue lengths.xlsx’)

2027 df = df.append(data , ignore_index=True)

2028 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

queue lengths.xlsx’, index=False)

2029

2030 data = {

2031 ’mean sojourn time’: mean(res.sojournTimes)/3600,

2032 ’s1’: s1.workTime /3600 ,

2033 ’s1 - tickets solved ’: len(set(s1.nrTickets)),

2034 1: engg [0]. workTime /3600,

2035 ’1 - tickets solved ’: len(set(engg [0]. nrTickets)),

2036 2: engg [1]. workTime /3600,

2037 ’2 - tickets solved ’: len(set(engg [1]. nrTickets)),

2038 3: engg [2]. workTime /3600,

2039 ’3 - tickets solved ’: len(set(engg [2]. nrTickets)),

2040 4: engg [3]. workTime /3600,

2041 ’4 - tickets solved ’: len(set(engg [3]. nrTickets)),

2042 5: engg [4]. workTime /3600,

2043 ’5 - tickets solved ’: len(set(engg [4]. nrTickets)),

2044 6: engg [5]. workTime /3600,

2045 ’6 - tickets solved ’: len(set(engg [5]. nrTickets)),

2046 7: engg [6]. workTime /3600,

2047 ’7 - tickets solved ’: len(set(engg [6]. nrTickets)),

2048 ’tester ’: tester.workTime /3600,

2049 ’tester - tickets solved ’: len(set(tester.nrTickets))

108

2050 }

2051

2052 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/ sojourn times servers and mean.xlsx’)

2053 df = df.append(data , ignore_index=True)

2054 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

sojourn times servers and mean.xlsx’, index=False)

2055

2056 data = {

2057 ’s1’: s1.idleTime /3600 ,

2058 1: engg [0]. idleTime /3600,

2059 2: engg [1]. idleTime /3600,

2060 3: engg [2]. idleTime /3600,

2061 4: engg [3]. idleTime /3600,

2062 5: engg [4]. idleTime /3600,

2063 6: engg [5]. idleTime /3600,

2064 7: engg [6]. idleTime /3600,

2065 ’tester ’: tester.idleTime /3600,

2066 }

2067

2068 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/idle times.xlsx’)

2069 df = df.append(data , ignore_index=True)

2070 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

idle times.xlsx’, index=False)

2071

2072 data = {

2073 1: OpenTickets

2074 }

2075

2076 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/eod queue lengths open.xlsx’)

2077 df = df.append(data , ignore_index=True)

2078 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

eod queue lengths open.xlsx’, index=False)

2079

2080 data = {

2081 1: AcceptedTickets

2082 }

2083

2084 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/eod queue length accepted.xlsx’)

2085 df = df.append(data , ignore_index=True)

2086 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

eod queue length accepted.xlsx’, index=False)

2087

2088 data = {

2089 1: AnalysedTickets

2090 }

2091

2092 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/eod queue lengths analysed.xlsx’)

2093 df = df.append(data , ignore_index=True)

2094 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

eod queue lengths analysed.xlsx’, index=False)

2095

2096 data = {

2097 1: ScheduledTickets

2098 }

2099

2100 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/eod queue lengths scheduled.xlsx’)

2101 df = df.append(data , ignore_index=True)

2102 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

eod queue lengths scheduled.xlsx’, index=False)

2103

2104 data = {

109

2105 1: ImplementedTickets

2106 }

2107

2108 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/eod queue lengths implemented.xlsx’)

2109 df = df.append(data , ignore_index=True)

2110 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

eod queue lengths implemented.xlsx’, index=False)

2111

2112 data = {

2113 1: VerifiedTickets

2114 }

2115

2116 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/eod queue lengths verified.xlsx’)

2117 df = df.append(data , ignore_index=True)

2118 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

eod queue lengths verified.xlsx’, index=False)

2119

2120 data = {

2121 1: engg_1 ,

2122 2: engg_2 ,

2123 3: engg_3 ,

2124 4: engg_4 ,

2125 5: engg_5 ,

2126 6: engg_6 ,

2127 7: engg_7

2128 }

2129

2130 df = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/Simulation/

prob 1/eod queue length engineers.xlsx’)

2131 df = df.append(data , ignore_index=True)

2132 df.to_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/Simulation/prob 1/

eod queue length engineers.xlsx’, index=False)

A.8 Printing Aggregate results for multiple runs

1 # -*- coding: utf -8 -*-

2 """

3 Created on Wed Mar 01 19:17:25 2023

4

5 @author: 20181301

6 """

7

8

9 import csv

10 import pandas as pd

11 import numpy as np

12 from scipy.stats import t

13 import math

14 import matplotlib . pyplot as plt

15 import seaborn as sns

16 import ast

17

18 def calc_CI(m):

19 n = len(m)

20 X = np.mean(m)

21 s = np.std(m, ddof =1)

22 confidence_level = 0.95

23 dof = n - 1

24 t_value = t.ppf ((1 + confidence_level) / 2, dof)

25 error = t_value * (s / np.sqrt(n))

26 l_bound = X - error

27 u_bound = X + error

28 return (l_bound , u_bound)

110

29

30

31 print("############ WAITING TIMES ###############")

32 waitingTimes_states = pd.read_excel(’C:/ Users /20181301/ Desktop/APPLIED MATH/YEAR -3/

BFP/Simulation/prob 1/ waiting times.xlsx’)

33 for i in range (0,6):

34 if i == 0:

35 print("###### Open State #######")

36 elif i == 1:

37 print("###### Accepted State #######")

38 elif i == 2:

39 print("###### Analysed State #######")

40 elif i == 3:

41 print("###### Scheduled State #######")

42 elif i == 4:

43 print("###### Implemented State #######")

44 elif i == 5:

45 print("###### Verified State #######")

46 print("\n",waitingTimes_states[i]. describe ())

47 print("\nConfidence interval: ", calc_CI(waitingTimes_states[i]), "\n")

48

49 print("############ QUEUE LENGTHS ###############")

50 queueLengths_states = pd.read_excel(’C:/ Users /20181301/ Desktop/APPLIED MATH/YEAR -3/

BFP/Simulation/prob 1/queue lengths.xlsx’)

51 for i in range (0,6):

52 if i == 0:

53 print("###### Open State #######")

54 print("\n",queueLengths_states[i]. describe ())

55 print("\nFor standard dev.:",queueLengths_states["0 - std dev"]. describe ())

56 print("\nConfidence interval: ", calc_CI(queueLengths_states[i]), "\n")

57 elif i == 1:

58 print("###### Accepted State #######")

59 print("\n",queueLengths_states[i]. describe ())

60 print("\nFor standard dev.:",queueLengths_states["1 - std dev"]. describe ())

61 print("\nConfidence interval: ", calc_CI(queueLengths_states[i]), "\n")

62 elif i == 2:

63 print("###### Analysed State #######")

64 print("\n",queueLengths_states[i]. describe ())

65 print("\nFor standard dev.:",queueLengths_states["2 - std dev"]. describe ())

66 print("\nConfidence interval: ", calc_CI(queueLengths_states[i]), "\n")

67 elif i == 3:

68 print("###### Scheduled State #######")

69 print("\n",queueLengths_states[i]. describe ())

70 print("\nFor standard dev.:",queueLengths_states["3 - std dev"]. describe ())

71 print("\nConfidence interval: ", calc_CI(queueLengths_states[i]), "\n")

72 elif i == 4:

73 print("###### Implemented State #######")

74 print("\n",queueLengths_states[i]. describe ())

75 print("\nFor standard dev.:",queueLengths_states["4 - std dev"]. describe ())

76 print("\nConfidence interval: ", calc_CI(queueLengths_states[i]), "\n")

77 elif i == 5:

78 print("###### Verified State #######")

79 print("\n",queueLengths_states[i]. describe ())

80 print("\nFor standard dev.:",queueLengths_states["5 - std dev"]. describe ())

81 print("\nConfidence interval: ", calc_CI(queueLengths_states[i]), "\n")

82

83

84 print("############ SOJOURN TIMES , WORK TIMES & IDLE TIMES ###############")

85 work_sojourn_times = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/

BFP/Simulation/prob 1/ sojourn times servers and mean.xlsx’)

86 idle_sojourn_times = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/

BFP/Simulation/prob 1/idle times.xlsx’)

87

88 total_time = 5*365*8

89

90 print("\nMean Sojourn Time: ", np.mean(work_sojourn_times["mean sojourn time"]), "

and CI: ", calc_CI(work_sojourn_times["mean sojourn time"]))

111

91 print("\nS1 work time: ", np.mean(work_sojourn_times["s1"]), "(", np.mean(

work_sojourn_times["s1"])*100/ total_time , "%) for tickets: ", np.mean(

work_sojourn_times["s1 - tickets solved"]))

92 print("S1 idle time: ", np.mean(idle_sojourn_times["s1"]), "(", np.mean(

idle_sojourn_times["s1"])*100/ total_time , "%)")

93

94 print("\nEngg 1 work time: ", np.mean(work_sojourn_times [1]), "(", np.mean(

work_sojourn_times [1]) *100/ total_time , "%) for tickets: ", np.mean(

work_sojourn_times["1 - tickets solved"]))

95 print("Engg 1 idle time: ", np.mean(idle_sojourn_times [1]), "(", np.mean(

idle_sojourn_times [1]) *100/ total_time , "%)")

96

97 print("\nEngg 2 work time: ", np.mean(work_sojourn_times [2]), "(", np.mean(

work_sojourn_times [2]) *100/ total_time , "%) for tickets: ", np.mean(

work_sojourn_times["2 - tickets solved"]))

98 print("Engg 2 idle time: ", np.mean(idle_sojourn_times [2]), "(", np.mean(

idle_sojourn_times [2]) *100/ total_time , "%)")

99

100 print("\nEngg 3 work time: ", np.mean(work_sojourn_times [3]), "(", np.mean(

work_sojourn_times [3]) *100/ total_time , "%) for tickets: ", np.mean(

work_sojourn_times["3 - tickets solved"]))

101 print("Engg 3 idle time: ", np.mean(idle_sojourn_times [3]), "(", np.mean(

idle_sojourn_times [3]) *100/ total_time , "%)")

102

103 print("\nEngg 4 work time: ", np.mean(work_sojourn_times [4]), "(", np.mean(

work_sojourn_times [4]) *100/ total_time , "%) for tickets: ", np.mean(

work_sojourn_times["4 - tickets solved"]))

104 print("Engg 4 idle time: ", np.mean(idle_sojourn_times [4]), "(", np.mean(

idle_sojourn_times [4]) *100/ total_time , "%)")

105

106 print("\nEngg 5 work time: ", np.mean(work_sojourn_times [5]), "(", np.mean(

work_sojourn_times [5]) *100/ total_time , "%) for tickets: ", np.mean(

work_sojourn_times["5 - tickets solved"]))

107 print("Engg 5 idle time: ", np.mean(idle_sojourn_times [5]), "(", np.mean(

idle_sojourn_times [5]) *100/ total_time , "%)")

108

109 print("\nEngg 6 work time: ", np.mean(work_sojourn_times [6]), "(", np.mean(

work_sojourn_times [6]) *100/ total_time , "%) for tickets: ", np.mean(

work_sojourn_times["6 - tickets solved"]))

110 print("Engg 6 idle time: ", np.mean(idle_sojourn_times [6]), "(", np.mean(

idle_sojourn_times [6]) *100/ total_time , "%)")

111

112 print("\nEngg 7 work time: ", np.mean(work_sojourn_times [7]), "(", np.mean(

work_sojourn_times [7]) *100/ total_time , "%) for tickets: ", np.mean(

work_sojourn_times["7 - tickets solved"]))

113 print("Engg 7 idletime: ", np.mean(idle_sojourn_times [7]), "(", np.mean(

idle_sojourn_times [7]) *100/ total_time , "%)")

114

115 print("\nTester work time: ", np.mean(work_sojourn_times["tester"]), "(", np.mean(

work_sojourn_times["tester"])*100/ total_time , "%) for tickets: ", np.mean(

work_sojourn_times["tester - tickets solved"]))

116 print("Tester idle time: ", np.mean(idle_sojourn_times["tester"]), "(", np.mean(

idle_sojourn_times["tester"])*100/ total_time , "%)")

117

118 print("\n############ RATE OF INCREASE OF QUEUES ###############")

119 rates_of_increase = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/

BFP/Simulation/prob 1/rate of increase.xlsx’)

120 print("\nOpen state: ", np.mean(rates_of_increase["open"]))

121 print("Accepted state: ", np.mean(rates_of_increase["accepted"]))

122 print("Analysed state: ", np.mean(rates_of_increase["analysed"]))

123 print("Scheduled state: ", np.mean(rates_of_increase["scheduled"]))

124 print("Implemented state: ", np.mean(rates_of_increase["implemented"]))

125 print("Verified state: ", np.mean(rates_of_increase["verified"]))

126 print("Engg 1: ", np.mean(rates_of_increase["engg 1"]))

127 print("Engg 2: ", np.mean(rates_of_increase["engg 2"]))

128 print("Engg 3: ", np.mean(rates_of_increase["engg 3"]))

129 print("Engg 4: ", np.mean(rates_of_increase["engg 4"]))

112

130 print("Engg 5: ", np.mean(rates_of_increase["engg 5"]))

131 print("Engg 6: ", np.mean(rates_of_increase["engg 6"]))

132 print("Engg 7: ", np.mean(rates_of_increase["engg 7"]))

133 print("Average number of tickets going through the system (per day): ", np.mean(

rates_of_increase["mean nr. of tickets through the system"]))

134

135 print("\n############ PRIORITY TICKETS ###############")

136 priority = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/

Simulation/prob 1/ priority - time and tickets.xlsx’)

137 print("\nBlocking: average time spent in system : ", np.mean(priority["blocking -

time"]), " for ", np.mean(priority["blocking - nr. Of tickets"]))

138 print("Urgent: average time spent in system : ", np.mean(priority["urgent - time"])

, " for ", np.mean(priority["urgent - nr. Of tickets"]))

139 print("High: average time spent in system : ", np.mean(priority["high - time"]), "

for ", np.mean(priority["high - nr. Of tickets"]))

140 print("Normal: average time spent in system : ", np.mean(priority["normal - time"])

, " for ", np.mean(priority["normal - nr. Of tickets"]))

141 print("Low: average time spent in system : ", np.mean(priority["low - time"]), "

for ", np.mean(priority["low - nr. Of tickets"]))

142

143

144 ### Plotting EOD queues

145

146 def return_avg_eod_queue(df):

147 result = []

148 for i in range(df.shape [0]):

149 for j in range(df.shape [1]):

150 cell_list = df.iloc[i, j]

151 cell = ast.literal_eval(cell_list)

152 if result == []:

153 result = [0]* len(cell)

154 for i in range(len(cell)):

155 result[i] = result[i] + cell[i]

156 n = len(df)

157 result = [r/n for r in result]

158 return result

159

160 OpenTickets = pd.read_excel(’C:/ Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/

Simulation/prob 1/eod queue lengths open.xlsx’)

161 AcceptedTickets = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/

Simulation/prob 1/eod queue length accepted.xlsx’)

162 AnalysedTickets = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/

Simulation/prob 1/eod queue lengths analysed.xlsx’)

163 ScheduledTickets = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP

/Simulation/prob 1/eod queue lengths scheduled.xlsx’)

164 ImplementedTickets = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/

BFP/Simulation/prob 1/eod queue lengths implemented.xlsx’)

165 VerifiedTickets = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/BFP/

Simulation/prob 1/eod queue lengths verified.xlsx’)

166

167 engineers = pd.read_excel(’C:/Users /20181301/ Desktop/APPLIED MATH/YEAR -3/ BFP/

Simulation/prob 1/eod queue length engineers.xlsx’)

168 engg_1 = pd.DataFrame(engineers [1])

169 engg_2 = pd.DataFrame(engineers [2])

170 engg_3 = pd.DataFrame(engineers [3])

171 engg_4 = pd.DataFrame(engineers [4])

172 engg_5 = pd.DataFrame(engineers [5])

173 engg_6 = pd.DataFrame(engineers [6])

174 engg_7 = pd.DataFrame(engineers [7])

175

176 plt.plot(return_avg_eod_queue(OpenTickets))

177 plt.title("Number of Tickets per day - Open queue", fontsize = 14)

178 plt.xlabel("Day", fontsize = 12)

179 plt.ylabel("Tickets", fontsize = 12)

180 plt.show()

181

182 plt.plot(return_avg_eod_queue(AcceptedTickets))

113

183 plt.title("Number of Tickets per day - Accepted queue", fontsize = 14)

184 plt.xlabel("Day", fontsize = 12)

185 plt.ylabel("Tickets", fontsize = 12)

186 plt.show()

187

188 plt.plot(return_avg_eod_queue(AnalysedTickets))

189 plt.title("Number of Tickets per day - Analysed queue", fontsize = 14)

190 plt.xlabel("Day", fontsize = 12)

191 plt.ylabel("Tickets", fontsize = 12)

192 plt.show()

193

194 plt.plot(return_avg_eod_queue(ScheduledTickets))

195 plt.title("Number of Tickets per day - Scheduled queue", fontsize = 14)

196 plt.xlabel("Day", fontsize = 12)

197 plt.ylabel("Tickets", fontsize = 12)

198 plt.show()

199

200 plt.plot(return_avg_eod_queue(ImplementedTickets))

201 plt.title("Number of Tickets per day - Implemented queue", fontsize = 14)

202 plt.xlabel("Day", fontsize = 12)

203 plt.ylabel("Tickets", fontsize = 12)

204 plt.show()

205

206 plt.plot(return_avg_eod_queue(VerifiedTickets))

207 plt.title("Number of Tickets per day - Verified queue", fontsize = 14)

208 plt.xlabel("Day", fontsize = 12)

209 plt.ylabel("Tickets", fontsize = 12)

210 plt.show()

211

212 fig , ax = plt.subplots ()

213 ax.plot(return_avg_eod_queue(engg_1), label=’Engg 1’)

214 ax.plot(return_avg_eod_queue(engg_2), label=’Engg 2’)

215 ax.plot(return_avg_eod_queue(engg_3), label=’Engg 3’)

216 ax.plot(return_avg_eod_queue(engg_4), label=’Engg 4’)

217 ax.plot(return_avg_eod_queue(engg_5), label=’Engg 5’)

218 ax.plot(return_avg_eod_queue(engg_6), label=’Engg 6’)

219 ax.plot(return_avg_eod_queue(engg_7), label=’Engg 7’)

220 ax.set_xlabel(’Days’)

221 ax.set_title(’Engineer Queues ’)

222 ax.set_ylabel(’Tickets ’)

223 ax.legend ()

224 plt.show()

114

	Contents
	Introduction
	Problem Statement
	Research Questions
	Significance

	Model Description
	The Process
	Tickets
	Servers
	Process Flowchart

	Theory & Methodology
	Service Times & Arrival Times

	Assumptions
	Limitations

	Simulation
	Overview of the simulated system
	Entities
	System Queues
	Workflows

	Events
	Arrival & Departure events for Queues

	Simulation description

	Results
	Queue analysis
	Queue Lengths
	Queue Lengths at End-Of-Day
	Waiting Times in Queues

	Server analysis
	Work times of servers
	Server tickets analysis

	Tickets analysis
	Sojourn Time
	On the basis of Priorities

	Improving the system performance
	Impact of insufficient information and tickets testing negative
	Build up between Open state and Analysed state
	Build up between Scheduled state and Verified state
	Effect on Mean Sojourn time
	Effect on Priority tickets

	Impact of adding servers
	Adding 28 engineers - Total 35 engineers
	Suggested Model

	Conclusions
	References
	Appendix
	Simulation Code
	Classes
	Distributions
	Future Event Set
	Priority Queue
	Queue
	Simulation Results
	Main Simulation
	Printing Aggregate results for multiple runs

