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Abstract

The graph coloring problem is an NP-hard problem [Garey et al., 1974]. Therefore, this prob-
lem is often solved by using an integer program. However, various symmetries that occur
when solving this integer program result in an unnecessarily long solving time. By applying
various symmetry breaking methods the solving time can be reduced. In this report var-
ious methods are explained and tested. The foundation of these methods consists of the
orbitopal fixing algorithm Kaibel et al. [2011] and the 0-neighbor-sub-symmetry [Bendotti
et al., 2020].
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Chapter 1

Introduction

Creating schedules is one of the tasks that need to be performed often within our society.
For example, each high school must make a schedule for each of their classes. These sched-
ules must satisfy certain restrictions. The class mathematics and the class physics can not
be scheduled in the same time slot if they share a student, since the student must be able
to attend both the physics and the mathematics class. Furthermore, we would like to use as
few time slots as possible. These kind of problems can be translated into the graph coloring
problem, which is a fundamental problem in graph theory.

The graph coloring problem is to determine the chromatic number of a graph. That is,
finding the minimum number of colors needed to color a graph such that two vertices con-
nected by an edge are not colored by the same color.

The high school scheduling problem can be translated into the graph coloring problem
by representing the classes as vertices. We connect two vertices with an edge if the classes
corresponding to these vertices may not be scheduled in the same time slot. The time slots
are represented by the colors. If we now find a coloring with the minimum number of colors,
we have solved our scheduling problem. Each class can be scheduled in the time slot that
corresponds to the color that is assigned to the vertex that represents the class. Note that
in this way we create a schedule with as few time slots as possible.

For small graphs the graph coloring problem can be easily solved by hand. However,
for larger graphs this becomes more complex. The graph coloring problem is known to be
NP-hard for arbitrary graphs [Garey et al., 1974]. Therefore, (binary) integer programming
is used to solve this problem. The introduction of the book by Conforti et al. [2014] gives a
clear introduction to integer programming. In short, a binary integer program tries to find
the optimal values for a set of variables in {0,1} that must suffice certain constraints, such
that a given objective function is optimal. In case of the graph coloring problem the objec-
tive is to minimize the number of colors in a graph coloring.

When the binary integer program can not be solved immediately, the problem is split up
into two cases by setting a variable to 0 (first case) or to 1 (second case). Then, for these
two problems we try to find the solution. This method is called branch and bound. After
splitting up the problem into two cases, it is still possible that we are not able to solve these
sub-problems. Hence, we split up the sub-problems again. By splitting up the problem mul-
tiple times we create a branch and bound tree, where each node of the tree represents a
(sub-)problem, where some variables might be fixed. In case of the graph coloring problem,
in each node of the branch and bound tree certain variables might be fixed, which indicate
whether a vertex is with certainty colored or not colored by a color k.

Symmetry in the graph coloring problem 1



CHAPTER 1. INTRODUCTION

Note that there are multiple ways to color a graph with the minimum number of col-
ors needed. In Figure 1.1 we see a graph for which we need at least 3 colors to color the
graph. Figure 1.1 illustrates two possible colorings with 3 colors. However, these graph col-
orings are not that different from each other. We simply switched the colors around. Green
became red, red became orange and orange became green. This is what we call a symmetry.

1

2 4

3 5 1

2 4

3 5

Figure 1.1: Symmetry of a graph coloring

When trying to determine the chromatic number of a graph using integer programming,
many of such symmetries are encountered. Note that we do not need to find all symmetries
of a graph coloring, since these symmetries will have the same number of colors. There-
fore, these symmetries do not have an influence on the minimum number of colors in the
graph coloring. However, due to these symmetries the branch and bound tree can become
unnecessary large which results in a longer solving time of the binary integer program.

Next to the symmetry that was introduced earlier, which was a symmetry of the origi-
nal problem, we can also encounter sub-symmetries in the sub-problems that we find in
the branch and bound tree which are not symmetries of the original problem. One of such
symmetries is the 0-neighbor sub-symmetry, which will be discussed later in detail [Bendotti
et al., 2020].

The goal of this project is to create algorithms that find these kinds of (sub)-symmetries
in an efficient way. After finding such (sub)-symmetries, we would like to be able to handle
these symmetries, such that the solving process of the binary integer program is more effi-
cient. This is done by cutting off nodes of the branch and bound tree that will not influence
the optimal value of the original binary integer program.

2 Symmetry in the graph coloring problem



Chapter 2

Theory & Definitions

In this chapter, necessary theory and definitions will be introduced. We will introduce the
integer program that is used to solve the graph coloring problem (Section 2.1). Next to that,
we introduce some definitions and lemmas that are useful later on (Section 2.2). Further-
more, we will discuss symmetries of a graph coloring and their impact on the efficiency of
solving the integer program (Section 2.3). We will also discuss various methods that tackle
these symmetries (Section 2.4).

2.1 Graph coloring problem as integer program
A well known problem within graph theory is the graph coloring problem. If we are given
a simple graph G = (V, E), which is a graph with no directed edges and no self loops, than
a graph coloring is an assignment of colors to vertices v ∈ V in such a way that for any two
vertices that share an edge, the assigned colors are different. The graph coloring problem is
then to find the minimum number of colors needed; this number is also called the chromatic
number. Hence, a k-coloring is a map C : V → {1, . . . , k} such that C(v) ̸= C(w) for all {v, w} ∈ E.
The graph coloring problem is known to be NP-hard for arbitrary graphs [Garey et al., 1974].

In order to find the chromatic number of a graph, the following (binary) integer program
can be used:

min
K
∑

j=1

y j (2.1)

xv j + xwj ≤ y j {v, w} ∈ E, j ∈ {1, . . . , K} (2.2)
K
∑

j=1

xv j = 1 v ∈ V (2.3)

xv j ∈ {0, 1} v ∈ V, j ∈ {1, . . . , K} (2.4)
y j ∈ {0, 1} j ∈ {1, . . . , K} (2.5)

Here K is an upper bound on the chromatic number. The binary variable xv j indicates
whether vertex v ∈ V is colored by color j ∈ {1, . . . , K} and the binary variable y j indicates
whether color j ∈ {1, . . . , K} is used in the graph coloring. Therefore, we want to minimize
∑K

j=1 y j . Moreover, Equation 2.2 ensures that no two adjacent vertices, are assigned the
same color, and that y j = 1 when color j ∈ {1, . . . , K} is used in the graph coloring. Equa-
tion 2.3 makes sure that each vertex is assigned exactly 1 color.

Symmetry in the graph coloring problem 3



CHAPTER 2. THEORY & DEFINITIONS

An easy upper bound on the chromatic number is of course the number of vertices. How-
ever, a stricter upper bound is given by ∆(G) + 1. Here ∆(G) :=maxv∈V |{w | {v, w} ∈ E}| is the
maximum degree of the graph. This is equal to the maximum number of neighbors of a ver-
tex in the graph. The proof of this statement can be found in Wilson [2015]. Furthermore,
Brooks’ theorem states that an upper bound for the chromatic number is given by ∆(G) if
∆(G)≥ 3. The proof of this can also be found in Wilson [2015]. Hence, for any graph we can
obtain an upper bound on the chromatic number which is based only on ∆(G).

2.2 Definitions
We adhere to the definitions regarding permutations as described in [Martindale and Sterk,
2022]. The most important definitions and lemmas are discussed below.

Definition 1. Let X be a finite set. A bijection f : X → X is called a permutation. The set of all
permutations of a set X is denoted by SX .

Definition 2. Letσ,τ ∈ SX . The composition ofσ and τ is denoted byσ◦τ and equalsσ(τ(x)).
Note that the composition is again a permutation on X .

Definition 3. Let σ ∈ SX . The fixed points of σ are the x ∈ X such that σ(x) = x . The set of
points fixed by σ is denoted by fix(σ). The complement of fix(σ) is denoted by supp(σ) :=
X \ fix(σ) and is called the support of σ.

Definition 4. Let σ ∈ SX have support supp(σ) = {a1, . . . , am}. We say that σ is an m-cycle if,
after reordering and relabelling if necessary, we have that σ(am) = a1 and for every 1≤ i < m
we have that σ(ai) = ai+1. Furthermore, we will denote this as σ = (a1, a2, . . . , am). A 2-cycle is
called a transposition.

Lemma 1. Consider SX .

• Every permutation is the product of disjoint cycles.

• This product is unique up to rearrangement of the factors.

As a consequence, σ ∈ X can be written as:

σ = c1 · · · cr ,

where each ci is a cycle defined as (a1,i · · · ami ,i). The 1-cycles are usually omitted from the
notation.

In order to talk about symmetric graph colorings, we will introduce the following defini-
tions. For completeness, we will also give the definition of a graph coloring here. Further-
more, we define: [n] := {1,2, . . . , n}.

Definition 5. Let G = (V, E) be a graph, and let [K] be the set of possible colors. Furthermore,
let C : V → [K] be a function such that C(v) ̸= C(w) for all {v, w} ∈ E . Then C is a graph coloring
of G, such that if C(v) = k for v ∈ V and k ∈ [K], then v is colored by k.

Definition 6. Let G = (V, E) be a graph. Let R ⊂ V . Then we define:

N(R) := {v ∈ V \ R | ∃w ∈ R such that {v, w} ∈ E},

to be the neighbour set of R.

Definition 7. Let C be a graph coloring of the graph G = (V, E). Let τ ∈ S[K] be a permutation
on the colors in [K], then τ ◦ C is a graph coloring symmetry of C .

4 Symmetry in the graph coloring problem
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Lemma 2. If C∗ is a graph coloring symmetry of C , then C∗ is again a graph coloring.

Proof. Let C∗ be a graph coloring symmetry of C . Then by definition there exists a τ ∈ SK , such
that C∗ = τ◦C . We must show that for all {v, w} ∈ E, we have that C∗(v) ̸= C∗(w). Next to that,
we must show that C∗ = τ ◦ C : V → [K].

Let {v, w} ∈ E. Suppose τ ◦ C(v) = τ ◦ C(w). Since τ is a bijection, this implies that C(v) =
C(w). However, by definition of a graph coloring: C(v) ̸= C(w). We reach a contradiction.
Hence, τ ◦ C(v) ̸= τ ◦ C(w). Thus we have shown that C∗(v) ̸= C∗(w).

We now show that C∗ = τ ◦ C : V → [K]. Note that τ: [K] → [K] and C : V → [K]. Hence,
C∗ = τ ◦ C : V → [K]. We have now shown that indeed C∗ is a graph coloring.

2.3 Symmetries
When solving the graph coloring problem many symmetries are encountered, as was men-
tioned in Chapter 1. One of such symmetries is visible in Figure 1.1. Another example is
given by the graph colorings in Figure 2.1 and Figure 2.2. Again, the color green became
red, red became orange and orange became green. In order to talk about these kind of
symmetries in a more mathematical way, we will represents these colorings by matrices.

Let x ∈ {0, 1}|V |×K such that x is within the feasible region of the integer program de-
scribed by the set of equations 2.1, 2.2, 2.3, 2.4 and 2.5. Note that for any given x ∈ {0,1}|V |×K ,
the value of y is automatically fixed by the integer program. Furthermore, any permutation
of the columns of x is again in the feasible region of the integer program, and it has the
same objective value as x . To illustrate this, we define x1, x2 ∈ {0, 1}|V |×K as follows:

x1 =











1 0 0
0 1 0
0 0 1
0 1 0
1 0 0











, x2 =











0 1 0
0 0 1
1 0 0
0 0 1
0 1 0











Note that x2 can be obtained by permuting the columns of x1. These are graph colorings
of the same graph, where the rows represent the vertices and the columns represent the
colors (red, orange and green respectively). The corresponding graph colorings are visible
in Figures 2.1 and 2.2.

1

2

4

3

5

Figure 2.1: Graph coloring corresponding
to x1

1

2

4

3

5

Figure 2.2: Graph coloring corresponding
to x2

Since these symmetries have the same objective value, we would only like to handle one
element of each symmetry class. However, the basic strategy to solve the integer program
considers solutions that are symmetries of each other. For example, a node in the branch
and bound tree could be a sub-problem where vertex 1 is fixed to be colored by red, and
vertex 2 is fixed to be colored by green, while another node could be the sub-problem where

Symmetry in the graph coloring problem 5
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vertex 1 is fixed to be colored by green, and vertex 2 is fixed to be colored by red. Note that
these sub-problems will yield the exact same solutions up to a permutation of the colors.
This makes the branch and bound tree unnecessarily large. Therefore, we would like to
handle these symmetries in such a way that the branch and bound tree is cut off at certain
nodes. Multiple methods have been developed to deal with such symmetries, which we will
discuss in the next section.

2.4 Symmetry handling
Multiple methods have been developed to deal with symmetries in solving the graph col-
oring problem. One way of handling symmetries is to add additional inequalities to the
problem, which remove feasible solutions, while ensuring that at least one optimal solution
of the original problem remains feasible. For the specific problem of graph coloring, such
inequalities have been proposed by Méndez-Díaz and Zabala [2006].

A second method was to reformulate the original integer program as described in Sec-
tion 2.1. This has been done in [Mehrotra and Trick, 1996] by using a column generation
method.

Besides problem specific techniques, also general techniques for handling symmetries
in integer programs exist. Margot [2002] studied a branch-and-cut method, that uses meth-
ods from computational group theory. He showed how to efficiently prune isomorphic sub-
problems and generate isomorphism cuts (that do not influence the value of the optimal
solution).

In the next section we will discuss the orbitopal fixing method in greater detail since this
is the method that forms the foundation of the method introduced in Chapter 4.

2.4.1 Orbitopal fixing
The orbitopal fixing method for symmetry handling is a method that relies on orbitopes, as
introduced in [Kaibel and Pfetsch, 2008]. Kaibel et al. [2011] describe a method that utilizes
these orbitopes to cut off nodes that will not be lexicographically maximal with respect to
the columns of a solution x ∈ {0,1}|V |,K of the integer program. Looking back at the example
given in Section 2.3, this would imply that x1 will be a solution that is found in the branch and
bound process, but x2 is not. This method forms the foundation of the method introduced
in Chapter 4. Therefore, we will now give a deeper understanding of the method introduced
in [Kaibel et al., 2011].

In [Kaibel and Pfetsch, 2008], orbitopes are introduced. We will state a few important
definitions and notations that are introduced in that paper. Let p, q be positive integers. For
x ∈ Rp×q and S ⊆ [p]× [q] we define:

x(S) :=
∑

(i, j)∈S

x i j

Let Mp,q := {0,1}p×q be the set of 0/1-matrices of size p × q Furthermore, if we define
rowi := {(i, 1), (i, 2), . . . , (i, q)}, where i ∈ [p], then we are able to define:

M=
p,q := {x ∈Mp,q : x(rowi) = 1 for all i}

and,
M≤p,q := {x ∈Mp,q : x(rowi)≤ 1 for all i}.

6 Symmetry in the graph coloring problem
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So,M=
p,q denotes the set of 0/1-matrices of size p × q with exactly one 1 in each row and

M≤p,q denotes the set of 0/1-matrices of size p× q with at most one 1 in each row

Furthermore we introduce the lexicographic ordering ≺ ofMp,q with respect to the or-
dering

(1,1)< (1,2)< · · ·< (1, q)< (2,1)< (2,2)< · · ·< (2, q)< · · ·< (p, q)

of matrix positions, i.e., A ≺ B with A =
�

ai j

�

, B =
�

bi j

�

∈ Mp,q if and only if akℓ < bkℓ, where
(k,ℓ) is the first position (with respect to the previous ordering) where A and B differ. S[n]
is the group of all permutations of [n] and let H be a subgroup of S[q], acting on Mp,q by
permuting columns. LetMmax

p,q (H) be the set of matrices ofMp,q that are ≺-maximal within
their orbits under the group action G. An observation that can be made is that a matrix of
Mp,q is contained inMmax

p,q if and only if its columns are in non-increasing lexicographic order
(with respect to the order ≺ defined earlier).

We can now define orbitopes.

Definition 8. 1. The full orbitope associated with the group G is

Op,q(H) := convMmax
p,q (H)

2. We associate with the group G the following restricted orbitopes:

O≤p̄,q(H) := conv
�

Mmax
p,q (H)∩M

≤
p,q

�

(packing orbitope)

O=p,q(H) := conv
�

Mmax
p,q (H)∩M

=
p,q

�

(partitioning orbitope)

Here conv(·) denotes the convex hull of a set.

Hence, a packing orbitope is the convex hull of lexicographically maximal matrices where
each matrix has at most one 1 in each row. Similarly, a partitioning orbitope is the convex
hull of lexicographically maximal matrices where each matrix has exactly one 1 in each row.

Furthermore, in [Kaibel et al., 2011], an algorithm has been introduced that fixes certain
entries of a partially known x ∈ M=

p,q ∪M
≤
p,q given that x must be ≺-maximal. This is called

the orbitopal fixing algorithm for packing or partitioning orbitopes, depending on whether
x ∈ M=

p,q or x ∈ M≤p,q. Note that for x ∈ M=
p,q ∪M

≤
p,q it is immediately implied that x i j = 0 for

all j > i. Since the columns are sorted with respect to the order ≺, and each row contains
at most one 1. To illustrate the idea of the algorithm, we give an example. Suppose we are
given a partial solution x̃ ∈ R3×3 of a binary integer program (in a node of the branch and
bound tree), given by:

x̃ =





1 0 0
∗ 0 0
∗ ∗ ∗





Here we would like that x̃ ∈ O=p,q. Note that for x̃ ∈ O=p,q ∪ O≤p,q we must always have the
blue 0 entries, for the matrix to be lexicographically maximal. If furthermore x̃ ∈ O=p,q, we are
also able to fix the blue 1 entry. Observe that we can fix a 1 in entry (2,1) since every row
must have exactly one 1. Hence:

x̃ =





1 0 0
1 0 0
∗ ∗ ∗





Symmetry in the graph coloring problem 7
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Furthermore, we must have that the second column is lexicographically greater or equal
than the third column. Note that this is not possible if the entry (3, 3) equals 1. Therefore,
we can fix it to be equal to 0. This gives us:

x̃ =





1 0 0
1 0 0
∗ ∗ 0





Observe, that by fixing these variables to either 0 or 1 we have cut off potential nodes of
the branch and bound tree.

Application to the graph coloring problem

Let (x , y), where x = (x i j) and y = (y j), be a solution to the graph coloring problem, then
x ∈M=

|V |,K . A way to not consider all symmetries, is by only considering solutions in O=p,q(H).
In this case H is a subgroup of S[K]. This way we do not consider solutions of the graph
coloring problem that are the same up to a permutation of the colors (which is the same as
a permutation of the columns of x). By applying the orbitopal fixing method for partitioning
orbitopes, one can make sure that x ∈ O=p,q(H).

8 Symmetry in the graph coloring problem



Chapter 3

Sub-symmetries

In this Chapter, an elaboration can be found on the sub-symmetry handling method of Ben-
dotti et al. [2020]. This method, together with the orbitopal fixing method by Kaibel et al.
[2011] is the foundation of the method that is proposed in Chapter 4. In order to intro-
duce the symmetry handling method of Bendotti et al. [2020], we will first illustrate what
a sub-symmetry entails. Next to that, we will introduce some definitions regarding sub-
symmetries.

In the previous chapter our focus was on handling symmetries that appear in the original
problem of the graph coloring problem. These are the symmetries that arise when permut-
ing the colors. This section will focus on symmetries that are not symmetries of the original
problem, but are symmetries of the sub-problems in the branch and bound tree. We denote
these kind of symmetries by sub-symmetries. To clarify this notion of a sub-symmetry, we
will give an example. Suppose we are given the graph coloring x̃1 ∈ R5×3, given by:

x̃1 =











1 0 0
0 1 0
∗ ∗ ∗
0 1 0
∗ ∗ ∗











The corresponding partial graph coloring can be found in Figure 3.1 Note that in this
graph we can interchange the colors red and green in the subset of vertices R= {3, 5}. This is
illustrated in Figures 3.2 and 3.3. So Figure 3.3 is a sub-symmetry of 3.2. We can interchange
the colors due to the fact that for every v ∈ N(R) = {2,4} we have that v is not colored by red
or green. This is called the 0-neighbor-sub-symmetry [Bendotti et al., 2020]. This statement
will be formalized and proven in Section 3.2 for the general case.
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Figure 3.1: Graph coloring
corresponding to x̃1
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Figure 3.2: Potential com-
pleted graph coloring of x̃1
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Figure 3.3: Potential com-
pleted graph coloring of x̃1

Symmetry in the graph coloring problem 9



CHAPTER 3. SUB-SYMMETRIES

However, if we are given the partial coloring x̃2 ∈ R5×3, given by:

x̃2 =











1 0 0
0 1 0
∗ ∗ ∗
0 0 1
∗ ∗ ∗











,

which is visualized in Figure 3.4, we can not switch the colors red and green within R =
{3,5}. In Figure 3.5 we see a valid graph coloring. However, switching the colors red and
green within R gives us the invalid coloring that is shown in Figure 3.6. Hence, permuting a
set of colors in a subset of V does not have to be a graph coloring symmetry of the original
problem.
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Figure 3.4: Graph coloring
corresponding to x̃2
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Figure 3.5: Potential com-
pleted graph coloring of x̃2
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Figure 3.6: Invalid com-
pleted graph coloring of x̃2

3.1 Definition of a sub-symmetry
A sub-symmetry of a graph coloring can be seen as a permutation of the colors on a subset
of vertices R ⊂ V . So, if we are dealing with a sub-symmetry only the color assignment of
the subset R is changed with respect to the original coloring. The remaining vertices V \ R
keep the same color assignment. Of course, the sub-symmetry must still be a valid graph
coloring. We will now introduce a formal definition of a sub-symmetry.

Definition 9. Let C be a graph coloring of the graph G = (V, E). Moreover, let R ⊂ V . Let
τ ∈ S[K] be a permutation on the colors in [K]. We define C∗ : V → K such that C∗(r) = τ◦C(r)
for all r ∈ R and C∗(v) = C(v) for all v ∈ V \ R. Moreover, C∗(v) ̸= C∗(w) for all {v, w} ∈ E. Then
C∗ is a graph coloring sub-symmetry of C .

Note that by definition, any graph coloring sub-symmetry is again a graph coloring.

The next lemma is used to show that the integer program that is used to solve the graph
coloring problem, does not need to consider all sub-symmetries of a graph coloring, but
just one.

Lemma 3. Let C∗ ∼R C denote that C∗ is a graph coloring sub-symmetry of C , where C is a graph
coloring of the graph G = (V, E) and where R ⊂ V . Then ∼R is an equivalence relation.

Proof. To show that ∼R is an equivalence relation it needs to be shown that ∼R is reflexive,
symmetric, and transitive.

We first show the property reflexive. So we must show that C ∼R C . Let C be a graph color-

ing of the graph G = (V, E) and R ⊂ V . Letτ= id ∈ S[K]. Then C∗(v) =

¨

C(v) v ∈ V \ R
τ ◦ C(v) v ∈ R

= C(v).
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Note that C∗(v) = C(v) ̸= C(w) = C∗(v) ∀{v, w} ∈ E since C is a graph coloring, and therefore
C∗ = C is a graph coloring sub-symmetry of C . Therefore, C ∼R C .

Next we show the symmetric property. So we must show that if C∗ ∼R C , then also C ∼R C∗

Let C be a graph coloring of the graph G = (V, E) and R ⊂ V . Suppose that C∗ ∼R C . This im-
plies that there exists a τ ∈ S[K] such that

C∗(v) =

¨

C(v) v ∈ V \ R
τ ◦ C(v) v ∈ R

.

Now take σ = τ−1 ∈ S[K] then

C∗∗(v) =

¨

C∗(v) v ∈ V \ R
σ ◦ C∗(v) v ∈ R

=

¨

C(v) v ∈ V \ R
τ−1 ◦τ ◦ C(v) v ∈ R

= C(v).

This implies that C ∼R C∗.

Lastly we show the transitive property. Suppose that C∗∗ ∼R C∗ and C∗ ∼R C . We now need
to show that C∗∗ ∼R C .

Since C∗∗ ∼R C∗, there exists a τ ∈ S[K] such that: C∗∗(v) =

¨

C∗(v) v ∈ V \ R
τ ◦ C∗(v) v ∈ R

Since C∗ ∼R C , there exists a σ ∈ S[K] such that: C∗(v) =

¨

C(v) v ∈ V \ R
σ ◦ C(v) v ∈ R

Note that: C∗∗(v) =

¨

C∗(v) v ∈ V \ R
τ ◦ C∗(v) v ∈ R

=

¨

C(v) v ∈ V \ R
τ ◦σ ◦ C(v) v ∈ R

Since C∗∗ ∼R C∗ implies that C∗∗(v) ̸= C∗∗(w) ∀{v, w} ∈ E, and τ ◦σ ∈ S[K], we have now
shown that C∗∗ ∼R C . This completes the proof.

Note that each equivalence class of ∼R uses the same number of colors. From the fact
that the relation is an equivalence relationship, we know that the equivalence classes parti-
tion the set of all possible graph colorings. Hence, we only need to consider one element of
each equivalence class.

3.2 0-neighbor-sub-symmetry
As already mentioned in Chapter 3, one of the symmetries that can be considered is the
0-neighbor-sub-symmetry [Bendotti et al., 2020]. Bendotti et al. [2020] considers only 0-
neighbor-sub-symmetries in which two colors are being permuted. However, this notion
can be extended to any l ≤ K . As long as R ⊂ V is chosen such that no neighbor of R is
colored by a color in [l], it is okay to permute the colors in [l] within the subset R. This is
made formal in Theorem 1.

Theorem 1. Let C be a graph coloring of the graph G = (V, E) and let l ≤ K such that L =
{c1, c2, . . . , cl} denotes a subset of [K]. Let R ⊂ V with the condition that for all v ∈ N(R) we have

that C(v) ̸∈ L. Let τ ∈ SL . Then C∗(v) =

¨

C(v) v ∈ V \ R
τ ◦ C(v) v ∈ R

is a graph coloring sub-symmetry of

C .

Proof. We assume that for all x ∈ N(R) we have C(x) ̸∈ L. We need to show that for any
{v, w} ∈ E we have that C∗(v) ̸= C∗(w). Let {v, w} ∈ E.

Case 1: v, w ∈ V \ R.
In this case we have that C∗(v) = C(v) and C∗(w) = C(w). Since C is a graph coloring we must
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have that C∗(v) = C(v) ̸= C(w) = C∗(w), which is what we needed.

Case 2: v, w ∈ R.
We know that there exists some τ ∈ SL , such that C∗(v) = τ ◦ C(v), and C∗(w) = τ ◦ C(w).
Suppose that τ ◦ C(v) = τ ◦ C(w). Since τ is a bijection, this must imply that C(v) = C(w). This
is a contradiction because C is a graph coloring. Hence, C∗(v) = τ ◦ C(v) ̸= τ ◦ C(w) = C∗(w).
This is what we needed to show.

Case 3: v ∈ R and w ∈ V \ R.
There exists a τ ∈ SL such that C∗(v) = τ ◦ C(v). Furthermore, we have that C∗(w) = C(w).
Suppose, that C(v) ̸∈ L, then C∗(v) = τ◦C(v) = C(v). Since C is a graph coloring we have that
C∗(v) = C(v) ̸= C(w) = C∗(w). If instead C(v) ∈ L, since τ ∈ SL we must have that τ ◦ C(v) ∈ L.
So C∗(v) ∈ L. Since {v, w} ∈ E, we have that w ∈ N(R). By assumption we have that C(w) ̸∈ L.
Hence, C∗(v) ̸= C(w) = C∗(w). This completes the proof.

Algorithm 1 shows how we are able to find multiple subsets R of V in which we can per-
mute the colors of the set {c1, c2, . . . , cl} within the graph coloring.

Algorithm 1 Finding 0-neighbor-sub-symmetry of a graph G

Require: G = (V, E), {c1, c2, . . . , cl}, and the partial coloring x ∈M=
|V |,K

Ensure: Subsets of V in which we can permute the colors {c1, c2, . . . , cl}
for each v ∈ V do

if xvci
= 0 for all i ∈ [l] then

Remove v from V
end if

end for
return The connected components of G

Lemma 4. Let R be equal to a connected component that is returned by Algorithm 1. For all
v ∈ N(R) we have that C(v) ̸∈ L

Proof. Let R be equal to a component that is outputted by Algorithm 1. Let v ∈ N(R). Then
we have that v is deleted by Algorithm 1. Therefore, v was not colored by any of the colors
{c1, c2, . . . , cp}. So C(v) ̸∈ L

The correctness of Algorithm 1 follows from Theorem 1 and Lemma 4.
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Chapter 4

Handling sub-symmetries

In this chapter a new method will be introduced. This method considers 0-neighbor sub-
symmetries in a dynamical way.
When solving the integer program introduced in 2.1, there arise multiple branches of the
branch and bound tree of the IP. We then look at an individual node of this tree, by con-
sidering not only global symmetries of the graph (symmetries of the original problem) by
using orbitopal fixing (as done in [Kaibel et al., 2011]), but also by considering 0-neighbor-
sub-symmetries.

First we will discuss how to handle a 0-neighbor-sub-symmetry, for a given set of colors
{c1, c2, . . . , cl}. Next it is important to determine which sets of colors are of interest for find-
ing 0-neighbor-sub-symmetries, when we find ourselves in a given node of the branch and
bound tree. So we are given a partially known x ∈M=

|V |,K .

4.1 Handling 0-neighbor-sub-symmetries

As discussed in Section 3.2, we can easily find subsets of vertices in which we can permute
the colors of the given set by using Algorithm 1. These sub-symmetries can then be handled
by using the orbitopal fixing method for packing orbitopes [Kaibel et al., 2011]. This will be
done by selecting the columns corresponding to the color set {c1, c2, . . . , cl} and the rows of
x ∈M=

|V |,K corresponding to the vertices of a component C that is outputted by Algorithm 1.
We will denote this sub-matrix by x̂ ∈M≤|C |,p.

Note that in general x̂ ∈ M≤|C |,p and not inM=
|C |,p, since the vertices (represented by the

rows of x̂) need not be colored by any of the colors (represented by the columns of x̂). Hence,
x̂ has at most one 1 per row, but not necessarily one 1 per row.

We will give an example to illustrate the method that was just introduced. Suppose we
are given the partial graph coloring x ∈M=

5,3, as shown in Figure 4.1. Then the corresponding
(partial) coloring is given in Figure 4.2.

Suppose we would now use Algorithm 1, with the color set (red,blue). Then we will be
given as output the component consisting of vertices {1,2} and the component consisting
of vertices {4, 5}. Then the sub-matrices x̂1, x̂2 ∈M≤2,2 are given in Figure 4.3.
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x =











1 0 0 0
0 1 0 0
0 0 1 0
∗ ∗ 0 ∗
∗ ∗ 0 ∗











Figure 4.1: Partial graph
coloring x ∈M=

5,3

1

2 4

3 5

Figure 4.2: Partial graph
coloring x ∈M=

5,3 illustrated
as graph

x̂1 =
�

1 0
0 1

�

x̂2 =
�

∗ ∗
∗ ∗

�

Figure 4.3: Sub-matrices x̂1
and x̂2

On these sub-matrices x̂1 and x̂2 the orbitopal fixing algorithm is applied (for packing
orbitopes). Note that x̂1 is already lexicographically maximal. Therefore, orbitopal fixing
has no effect. However, in the case of x̂2 this algorithm does have an effect. x̂2 becomes
�

∗ 0
∗ ∗

�

. Hence,

x =











1 0 0 0
0 1 0 0
0 0 1 0
∗ 0 0 ∗
∗ ∗ 0 ∗











.

Since we have that x̂2 ∈M≤2,2 and not necessarily inM=
2,2, we can not fix the entry (1,1) of

x̂2 to 1.

4.1.1 Choosing color sets
The only thing that is left to determine, is which color sets are useful to consider with respect
to the 0-neighbor-sub-symmetry. There are multiple options for these color sets. In this re-
port we will focus on all possible color sets of cardinality p, where p ∈ {2, 3,4, K−2, K−3, K−4}.
We require that 1 < p < K . The number of such color sets equals

�K
p

�

. This binomial is max-
imal for p = ⌈ 12 K⌉, and minimal for the boundary values p = 1 and p = K . By choosing
p ∈ {2, 3,4, K − 2, K − 3, K − 4} the number of possible color sets is kept relatively small. Note
that p = 1 is not a value that needs to be investigated since we can not switch colors if we
are only allowed to switch 1 color. Furthermore, we will not look into p = K , since this would
mean that we are allowed to switch all the colors. In this case Algorithm 1 will never delete
a vertex from a partial coloring x ∈ M=

|V |,K , since a row can not contain only zeros. Hence,
the only symmetries that consider all colors are symmetries of the original problem, which
have been considered already.

In order to easily refer to these types of color sets, we introduce the following methods:

• Method 1: Consider all possible color sets of cardinality 2

• Method 2: Consider all possible color sets of cardinality 3

• Method 3: Consider all possible color sets of cardinality 4

• Method 4: Consider all possible color sets of cardinality K − 2

• Method 5: Consider all possible color sets of cardinality K − 3

• Method 6: Consider all possible color sets of cardinality K − 4

Note that it is of importance that Algorithm 1 deletes at least 1 vertex, else we are not
handling a sub-symmetry, but simply a symmetry of the whole graph. This is unnecessary,
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since these symmetries are already handled by the orbitopal fixing method (of partitioning
orbitopes). Therefore we should only look at a coloring set (c1, c2, . . . , cl) if there is at least
one vertex removed by Algorithm 1.

Observe that this is equivalent to having at least one vertex v, such that xvci
= 0 for all

i ∈ [l] (see Algorithm 1). Since we are only considering lexicographically maximal solutions,
we can be sure that the first row of x has on the first entry a 1, and on all other entries a
0. Therefore, for any given color set {c1, c2, . . . , cp} that does not contain color 1 (which is the
color represented by the first column of x), Algorithm 1 will delete a vertex. So we should
consider all possible color sets that do not contain color 1

However, if the set {c1, c2, . . . , cl} does contain color 1, we must have that there exist a
vertex v, such that xv1 = 0, in order for Algorithm 1 to delete a vertex. Moreover, if such a
vertex exist, we must check whether for the remaining colors j in {c1, c2, . . . , cl}, we have that
xv j = 0. The idea of this method is described in Algorithm 2 in case we search for color sets
of cardinality 2.

This more dynamic method will be implemented for color sets of cardinality 2, and de-
noted by Method d1. We have chosen not to implement this method for other possible
cardinalities of the color set, since results will show that method 1 is the most promising
method in comparison to methods 2 to 6 (see Chapter 5).

Algorithm 2 Selecting color sets of cardinality 2 to use when searching for 0-neighbor-sub-
symmetries
Require: The partial coloring x ∈M=

|V |,K
Ensure: A set of color sets

Initialize the set C .
for each color set {i, j} that does not contain color 1 do

Add {i, j} to the set C .
end for
for each v ∈ [|V |] \ {1} do

if xv,1 equals 0 then
for each i ∈ [K] \ {1} do

if xv,i equals 0 then
Add {1, i} to the set C .

end if
end for

end if
end for
return C
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Chapter 5

Results

In this chapter, the various methods introduced in Chapter 4 will be tested on a set of bench-
mark graphs [Gra]. We have made use of the SCIP optimization suite to be able to implement
and test the methods [Bestuzheva et al., 2021]. Next to that, code provided by Hojny et al.
[2022] has been used and altered to implement the methods. K = ∆(G) + 1 was used as an
upper bound on the chromatic number. Furthermore, the maximum solving time was set to
1 hour: If the instance was not solved after 1 hour, this is denoted by > 3600 in the tables.
For a fair comparison of the data, all tests were run on the same hardware.
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Table 5.1: Results of graph instance
queen5_5. |V |= 25, |E|= 160 and K = 17.

Method Time (s)
No symmetry handling 1.85
Global symmetry handling 0.08
Method 1 0.17
Method d1 0.17
Method 2 0.60
Method 3 1.98
Method 4 0.26
Method 5 1.18
Method 6 4.02

Table 5.2: Results of graph instance
queen6_6. |V |= 36, |E|= 290 and K = 20.

Method Time (s)
No symmetry handling > 3600
Global symmetry handling 3.9
Method 1 4.68
Method d1 4.35
Method 2 11.90
Method 3 44.03
Method 4 6.28
Method 5 22.91
Method 6 81.36

Table 5.3: Results of graph instance
queen7_7. |V |= 49, |E|= 476 and K = 25.

Method Time (s)
No symmetry handling 565.36
Global symmetry handling 65.69
Method 1 18.29
Method d1 16.52
Method 2 156.09
Method 3 131.52
Method 4 92.39
Method 5 331.43
Method 6 1611.93

Table 5.4: Results of graph instance my-
ciel3. |V |= 11, |E|= 20 and K = 6.

Method Time (s)
No symmetry handling 0.37
Global symmetry handling 0.01
Method 1 0.01
Method d1 0.01
Method 2 0.01
Method 3 0.01
Method 4 0.01
Method 5 0.02
Method 6 0.02

Table 5.5: Results of graph instance my-
ciel4. |V |= 23, |E|= 71 and K = 12.

Method Time (s)
No symmetry handling 1798.06
Global symmetry handling 0.07
Method 1 0.45
Method d1 0.46
Method 2 0.56
Method 3 1.01
Method 4 0.13
Method 5 0.75
Method 6 1.13

Table 5.6: Results of graph instance my-
ciel5. |V |= 47, |E|= 236 and K = 24.

Method Time (s)
No symmetry handling > 3600
Global symmetry handling 78.42
Method 1 71.74
Method d1 68.91
Method 2 225.42
Method 3 1438.40
Method 4 130.34
Method 5 413.47
Method 6 2306.75
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Table 5.7: Results of graph instance jean.
|V |= 80, |E|= 254 and K = 37.

Method Time (s)
No symmetry handling 306.11
Global symmetry handling 8.86
Method 1 18.39
Method d1 17.63
Method 2 165.79
Method 3 1710.10
Method 4 56.34
Method 5 350.88
Method 6 > 3600

Table 5.8: Results of graph instance huck.
|V |= 74, |E|= 301 and K = 54.

Method Time (s)
No symmetry handling > 3600
Global symmetry handling 9.88
Method 1 30.72
Method d1 30.50
Method 2 549.08
Method 3 > 3600
Method 4 123.86
Method 5 3314.96
Method 6 > 3600

Table 5.9: Results of graph instance
david. |V |= 87, |E|= 406 and K = 83.

Method Time (s)
No symmetry handling > 3600
Global symmetry handling 620.77
Method 1 109.23
Method d1 111.96
Method 2 > 3600
Method 3 > 3600
Method 4 1545.93
Method 5 > 3600
Method 6 > 3600

Table 5.10: Results of graph instance
anna. |V |= 138, |E|= 493 and K = 72.

Method Time (s)
No symmetry handling > 3600
Global symmetry handling 108.08
Method 1 1241.96
Method d1 1348.76
Method 2 > 3600
Method 3 > 3600
Method 4 1363.51
Method 5 > 3600
Method 6 > 3600

Table 5.11: Results of graph instance ze-
roin.i.1. |V |= 211, |E|= 4100 and K = 112.

Method Time (s)
No symmetry handling > 3600
Global symmetry handling 758.14
Method 1 > 3600
Method d1 > 3600
Method 2 > 3600
Method 3 > 3600
Method 4 > 3600
Method 5 > 3600
Method 6 > 3600

Table 5.12: Results of graph instance
games120. |V | = 120, |E| = 638 and K =
14.

Method Time (s)
No symmetry handling 1.22
Global symmetry handling 6.81
Method 1 11.96
Method d1 11.89
Method 2 14.18
Method 3 30.11
Method 4 12.59
Method 5 19.35
Method 6 45.81
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Chapter 6

Conclusions

The results (see Chapter 5) show that depending on the graph instance different methods
can perform best. In most of the test cases we see that the global symmetry handling per-
forms best. For some other instances we see that method 1 or method d1 performs best.
Note furthermore, that the performances of the method 1 and d1 are much alike. In the ma-
jority of the cases we see that methods 2-6 perform worse than the other methods (except
for the method where we perform no symmetry handling at all). Next to that, we see one
instance (games120) where no symmetry handling performs better than any of the other
methods.
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Chapter 7

Discussion

As mentioned in the conclusion, no method performs best in all instances. Depending on
the graph, different methods perform best. This can be explained by the lack of certain
symmetries in some graphs. In a graph instances where method 1 or d1 performs best we
expect that 0-neighbor-sub-symmetries, which consider color sets of cardinality 2, occur ei-
ther early on in the branch and bound tree or often in the branch and bound tree. This
keeps the branch and bound tree smaller in comparison with the other methods. For in-
stances where the global symmetry handling method performed best we expect a lack of
0-neighbor-sub-symmetries of any kind.

Note furthermore that in most instances method 1 performs better than methods 2 to 6.
Intuitively this can be explained as follows: If we were looking at 0-neighbor-sub-symmetries
considering the color set {red, orange, green} (method 2) we are simply looking at a sub-
matrices consisting of three columns, corresponding to red, orange and green, which must
be lexicographically maximal (column 1 > column 2 > column 3). However, we could also
look at the 0-neighbor-sub-symmetry considering the color sets {red, orange} and {orange,
green} (method 1), which also implies column 1 > column 2 > column 3 for the found sub-
matrices. This seems to show that method 1 also finds all the symmetries of method 2.
A similar argument can be given for the other methods. Note however, that these sub-
matrices of the two methods do not necessarily have the same number of rows which is
why it is not necessarily true that method 1 implies the other methods.

Moreover, it is interesting that in the instance of myciel4, we see a rare occasion where
method 4 outperforms 1,2, 3,5 and 6. This could be explained due to an occurring sub-
symmetry of K − 2 colors, that is not implied by any of the other methods. Based on the
results, one expects that a 0-neighbor-sub-symmetry of K −2 colors does not occur often in
an arbitrary graph.

In further research, one could look for heuristics to determine beforehand, which method
is optimal for a given graph. It would be interesting to find a heuristic that depends on the
values for |V |, |E|, K and ∆(G), since these values are easy to obtain for any arbitrary graph.
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