EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

BACHELOR

Time-Bomb Knapsack Problems

Reus, Richard J.

Award date:
2022

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c1976278-d3d3-48b8-95e0-a232026ba0b0

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Time-Bomb Knapsack
Problems

Bachelor final project

Richard Reus

Supervisors:
prof. dr. Frits Spieksma
Andrés Lopéz Martinez, MSc

Final version

Eindhoven, July 2022

Abstract

We consider the 0-1 Time-Bomb Knapsack Problem (01-TB-KP), which is a stochastic version of
the 0-1 Knapsack Problem in which, in addition to a profit and weight, each item has an addi-
tional parameter which represents the probability of exploding. Should such an item explode the
entire contents of the knapsack is destroyed, modelling real world scenarios in logistics and cloud
computing scheduling. We study and expand upon the literature presented in ”Monaci” et al.[10].
We then consider a variant of the 01-TB-KP in which we add an additional constraint bounds the
probability that the knapsack explodes. We present an algorithm based on Lagrangian Relaxation
that yields approximations of optimal solutions for this variant and evaluate it’s performance on
a set of benchmark instances. The computational experiments show that for a relatively low pro-
portion of time-bomb items this algorithm performs reasonably well, but the accuracy deteriorates
the higher the proportion of time-bomb items get. In addition, for now the algorithm is quite slow
and can thus only be used instances with a small number of items.

ii Time-Bomb Knapsack Problems

Contents

Contents iii
1 Introduction 1
2 Preliminaries 2
3 Upper and lower bounds for the 01-TB-KPG 4
4 Bounding the explosion probability 7
4.1 Lagrangian Relaxation in general L0 L. 7
4.1.1 Subgradient method 8

4.2 Lagrangian Relaxation applied 0 L. 9

5 Computational experiments 12
5.1 Imnstance generation Lo L L 12
5.2 Results. . . . o o e e 13
5.2.1 Imterpretation of results Lo 15

6 Conclusions 16
Bibliography 19
Appendix 19
A Relevant code 19
A1 Instance generation Lo 19
A2 Themodel e 20
A3 The algorithm o 21
Time-Bomb Knapsack Problems iii

Chapter 1

Introduction

Knapsack problems have been studied for more than a century, the name stemming from trying
to pack the most valuable items without overloading the knapsack. The formal definition of a
knapsack problem is given as follows: We are given an item set IV, consisting of n items j with
profits p;, weights w; and capacity c. The objective is find a subset of N such that the total
weight does not exceed the capacity and the profit is maximized [6]. When each item can only be
included once this is known as a 0-1 Knapsack Problem. It is known that 0-1 Knapsack problems
are N'P-hard , although algorithms exists that can solve them in pseudo-polynomial time. [6]

Uncertainty is an inherent property of knapsack problems in real world situations and these
types of problems are called ”Stochastic Knapsack Problems” or ”SKP’s”. The most common
SKP’s are variants of the regular 0-1 Knapsack Problem, where some part of the input is no
longer deterministic. For example, the weights of the items could be unknown, while following a
known distribution. The true weights are only revealed once all items are selected. A possible
objective is then to maximize the expected profit given that you have to remove an item if the
capacity is exceeded, as explored in Merzifonluoglu et al. [9]

Instead of unknown weights it could also happen that the weights are deterministic, but profits
of the items are unknown, follow a known distribution and only become known once all items are
selected. This type of problem arises for example in the financial world when an investor one wants
to allocate funds among several projects. In this case a possible objective could be to maximize
the probability that the total profit exceeds a certain value as described Henig [5].

This Thesis focuses on a different variant of the 0-1 Knapsack Problem, namely the 0-1 Time-
Bomb Knapsack Problem (01-TB-KP) as discussed in the following paper [10]. In this problem
a subset of the items are so-called time-bomb items, in other words they can explode with a
given probability. If a packed item does indeed explode this would destroy the entire content
of the knapsack and thus yield no profit. This type of problem arises, for example, in the field
of transportation when some of the goods to be transported are potentially hazardous such as
lithium-ion batteries [8]. Another scenario where the 01-TB-KP arises is in the management of
data centers. In this case, allocating a server or application to a container or machines to a server
corresponds to packing items into a knapsack. If some of the servers or applications are vulnerable
there is a chance for an attacker to exploit them and take over the container.

The aim of this thesis is to study and expand upon the literature discussed in ”"Monaci” et
al. [10] and develop an algorithm to solve or approximate optimal solutions of a variant of the
01-TB-KP. In this variant an additional constraint has been added to the problem which gives a
bound on the probability that the knapsack explodes and its content is lost.

Time-Bomb Knapsack Problems 1

Chapter 2

Preliminaries

In the 0-1 Knapsack Problem we are given a knapsack with capacity ¢ € N and n € N items.
All items have a profit p; € N and a weight w; € N. The 01-TB-KP has, in addition to all the
parameters above, an additional parameter ¢; € [0, 1] which represents the probability of an item
exploding. In contrast to the original 01- Knapsack Problem it would not make much sense to
solely maximize the profit of this type of problem since each item has a probability of exploding
and whenever a selected item explodes the entire content of the knapsack is lost. Therefore, instead
of maximizing the profit the objective in the 01-TB-KP is to maximize the total expected profit.
This is of course done by multiplying the total profit of the selected items by the probability that
the knapsack will explode.

For each item j the probability that it does not explode is denoted by II; = 1 — ¢; and
T={j€{1,..,n}:II; < 1}. In addition the variables a;; = 1 — g;x; are introduced for notation
convenience. This new variable has the favourable property that if x; = 1 then o; = 1 and
otherwise if z; = 0 then a; = 0.

The 01-TB-KP can then be modelled as follows:

n

maz (Y pjz)(]]) (2.1)
j=1

j=1

s.t ijxj <c (2.2)
Jj=1
a; =1—gjz;, jed{l,..,n} (2.3)
zc{0,1} (2.4)

Here the objective function 2.1 maximizes the total expected profit, equations 2.2 and 2.4 repres-
ent the constraints of the system, namely the weight capacity constraint of the knapsack and the
0-1 constraint respectively, and equation 2.3 defines the variables «;.

In chapter 3 we will discuss a more general form of the 01-TB-KP described above. Instead
of a single capacity constraint we now introduce a system of linear constraints which could for
example represent, in addition to the weight constraint, additional constraints on the dimensions
of the selected items. We will refer to this problem as the 01-TB-LIN

2 Time-Bomb Knapsack Problems

A model for the 01-TB-LIN is given as follows:

max

s.t

(ijxj)(n ;)

JjeET

b
o = 1-— q;T;, je {1,...,’/7,}
0

Chapter 3

Upper and lower bounds for the
01-TB-KPG

”Monaci” et al, [10] introduce two upper and lower bounds for the 01-TB-KP given by 2.1 - 2.4.
The bounds are then used and tested in a branch and bound algorithm. It turned out that the
combinatorial upper and lower bound were easier to compute, but were usually outperformed by
bounds 3.7 and 3.14. In this chapter we prove that these bounds also hold if there is more than
one linear constraint. In other words this chapter aims to prove that the upper and lower bounds
can also be used in a branch and bound algorithm for model 2.5 - 2.8.

Upper bounds

From ”Monaci” et al. [10] it is known that the optimal objective value of the following deterministic
01-KP provides an upper bound for the 01-TB-KP.

max ijwjxj (3.1)
j=1

s.t ija:j <c (3.2)
j=1

ze{0,1} (3.3)

The following claim extends this result for the 01-TB-LIN:
Claim 3.1: The optimal value Z; of the following deterministic 01-KP

n

Z1 = max Zpﬂrjxj (3.4)
j=1

st Az <b (3.5)

z € {0,1} (3.6)

is an upper bound for the 01-TB-LIN

4 Time-Bomb Knapsack Problems

proof. We show that for any z the objective function (5) is always larger than the objective
function (1):

me (1D Z(pjwjl_[ai)gzpjmjaj:

JET j=1 €T
n
:ijxj(lquxj Zpy 1 —qj)z; *ZPJ Zpﬂrﬂij
j=1

Furthermore, any feasible solution z of model (1)-(4) is also a feasible solution for model (5)-
(7). The above shows that for each of these solutions, function (5) bounds (1) from above. So
for the optimal solution z* of model (5)-(7) with objective value Z7 it holds that Z7 overestimates
the optimal objective value of model (1)-(4). For if there existed a feasible solution z** for model
(1)-(4) with objective value zo > z7 then z** would be a feasible solution for model (5)-(7) with
objective value larger than zo contradicting the optimality of x*. O

Following ”Monaci” et al’s approach, we obtain a second upper bound for the extended model
by dropping the integrality requirement 2.8 from model 2.5 - 2.8 which yields the following model:

Zo = max ijzj H a;) (3.7)

JET
s.t Ag <b (3.8)
a; =1—gjz;, jed{l,..,n} (3.9)
zelo,1]" (3.10)

Clearly the set of feasible solutions of the model 2.5 - 2.8 is a subset of the set of feasible solutions
of the continuous relaxation. Thus the optimal solution of this relaxation Zzs is larger or equal
to the optimal solution of the original problem and hence Z5 is an upper bound for the original
problem.

”"Monaci” et al. also discusses a method of solving the continuous relaxation. The core of the
method relies on the fact that the objective function f(x) = (37—, pjz;)([;er ;) is a concave
function (second derivative is negative) being maximized on a convex set P = {z € [0,1]" :
Z?:1 w;x; < c}. In the more general case with more constraints the objective function does not
change and is therefore still concave. Furthermore the region that is being maximized over is now
given by P = {z € [0,1]™ : Az < b} which is convex. Therefore, the same methods to find optimal
solutions to the continuous relaxation can be used.

Lower bounds

The combinatorial upper bound discussed above has the same feasible set as the original prob-
lem. Therefore, any feasible solution to the relaxation is also feasible for the original problem. In
particular, given an optimal solution to the relaxation we can evaluate the expected profit of the
associated set of items and derive a lower bound z;.

”"Monaci et al.” introduces a second lower bound for the 01-TB-KP given by the optimal
objective value of the following binary quadratic problem.

= max Zp]xj —qua:j) (3.11)
j=1

s.t ijmj <c (3.12)
j=1
ze{0,1} (3.13)

The following claim extends this result for the 01-TB-LIN:

Claim 3.2. The optimal objective value Zy of the following binary quadratic problem

= mazx ijmj - qu:vj) (3.14)

jET
s.t Ag <b (3.15)
z € {0,1} (3.16)
is a lower bound for 2.5 - 2.8.
proof. Bound 3.14 bounds 2.5 from below since:
H Plany item j explodes] =1 — U acked item j explodes]

n

>1- Z P[packed item j explodes] =1 — Z q;T;

j=1 j=1

where the inequality follows from Boole’s inequality. Then after linearizing model 3.14 - 3.16 the
lower bound can be found relatively easily.

Chapter 4

Bounding the explosion
probability

Maximizing the total expected profit might still lead to solutions where the probability that the
knapsack explodes is relatively high, or higher than tolerable. Therefore, in this chapter we
introduce an extension to the original 01-TB-KP. We add an additional constraint to the system
that says that the total probability of exploding can not exceed a certain threshold 8 € [0, 1]. Of
course the probability that the knapsack does not explode is equal to the probability that none of
the selected items explode. A model for the 01-TB-KP with probability constraint is thus:

max PiT; 4.1
R
j=1

s.t ijwj <c (4.2)

j=1
[le;=8 (4.3)
j=1

a; =1—gjz;, je{l,...,n} (4.4)
z; € {0,1}, jed{l,..,n} (4.5)

The objective function is once again simply the total profit of the selected items, so we no longer
try to maximize the expected profit. However, constraint ?? has been added and requires the
total explosion probability of the selected items to be larger than § since the product of «; for
j € {1,...,n} is equal to the probability that none of the selected items will explode. This new
constraint is quite difficult to deal with (for example its non-linear) so we will use Lagrangian Re-
laxation to find the optimal solutions or at least high quality approximations of optimal solutions.

4.1 Lagrangian Relaxation in general

Before we apply Lagrangian relaxation on our extended model, we first give a short overview of
Lagrangian relaxation as a method to approximate a difficult optimization problem by a simpler
problem. Given an optimization problem of the form

maz, f(x) (4.6)
st gi(x) >0 (4.7)
hi(z) >0 (4.8)

z; € {0,1} (4.9)

Time-Bomb Knapsack Problems 7

)

where g(x) represent the ”easy” constraints, in most cases this means linear, and h(z) represent
the "hard” constraints (non-linear).
We move the "hard” constraints to the objective function to obtain the relaxed problem:

Zr(\) =maz, f(x)+ Ah(x) (4.10)
st g(x)>0 (4.11)
r; €{0,1} (4.12)

where \ > 0.

The optimal solution to the relaxed problem we denote by z} with corresponding optimal
objective value Z5(\). The idea is that for given A > 0 we get penalized in the objective function
if constraint 4.3 is violated, and rewarded if we satisfy the constraint. Furthermore, the relaxation
is easy to solve since all the "hard” constraints have been removed.

A useful property of the Lagrangian relaxation of a problem is that solving it provides us with
upper bounds to the original problem. Let z* be the optimal solution to the original problem then
for all A > 0:

Zr(\) = flz) + Ag(z) = 27

since z* is a solution to the original problem we have g(z) > 0 and Z* = f(2*). Given that for
each A > 0 the Lagrangian relaxation provides an upper bound a natural question is which value of
A provides the best upper bound. If we define P()\) to represent 4.10 - 4.12 then the mathematical
formulation of the above is as follows:

min)\zo P()\) (413)

and is generally referred to as the Lagrangian dual (D). Thus a Lagrangian relaxation algorithm
consists of exploring all possible values of A and seeking the one that minimizes P(\). An important
observation is that equation 4.10 is always convex no matter what the original problem is since it
the supremum of a collection of linear functions in A\. Moreover, except for the points where the
Lagrangian problem has multiple solutions it is differentiable everywhere.[3] Thus we make use of
specific optimization techniques such as the subgradient method.

4.1.1 Subgradient method

Given A% at iteration k the subgradient method gives us the means to calculate the new iterate
AEHD ag follows:

AED = maz {0, A0 — v ((T] o) - 8} (4.14)
JET
where agk) =1- qjxgk) and xg-k) are the timebomb items that correspond to the optimal solution

) of Zp(A(k)). And vy, is a properly selected step length.
A well-known formula that works in practice is given by:
 w(Zo() = Z7)
1/% - (k) 3)
||(HjeT 7 B Al

where Z* is the best known feasible solution to the original problem and ~y; € (0, 2] is usually set
to 2 and then halved when Z,(\;) stays the same for several iterations. [2]

(4.15)

4.2 Lagrangian Relaxation applied

Now we are ready to apply Lagrangian relaxation to the proposed extension. For fixed A > 0 we
consider the relaxed version of 4.1 - 4.5:

Z1,(\) = mazx ij:vj +)\(H a; —) (4.16)

j=1 j=1
s.t ijxj <c (4.17)

j=1
a; =1— gz, je{l,..,n} (4.18)
z; € {0,1}, jed{l,..,n} (4.19)
and its dual:
m)%n mwaprjxj +)\(H a; — B) (4.20)
j=1 j=1

st A>0 (4.21)

What is required at this point is an algorithm that implements the subgradient method to iter-
atively approaches the optimal value for A and thus to either the optimal solution or to an high
quality approximation and high quality bounds. Before the describing the algorithm lets define
some variables to simplify the notation:

- gy = H?Zl(l — g;x;) — B+ This is the subgradient associated to optimal solution xy, at
time-step k.

- P(Ar): Represents the model 4.16 - 4.19. So the statement solve P(\) implies solving the
model 4.16 - 4.19 with A = \j.

- Z1,(Ax): Represents the optimal value of the objective function 4.16 at time-step k.
- gap = %jbz”): The gap is defined by the best known upper bound minus the best known
lower bound divided by the best known lower bound.

Algorithm 1 provides the pseudo-code for the algorithm that implements the subgradient
method to solve the Lagrangian dual. In short, we start with an initial value for A and solve
the relaxed problem for this value. Based on the solution to the relaxed problem with this partic-
ular A we can update the best known bounds and solutions. Furthermore, using the same solution
we can find how we must update A in order to get closer to the value for A that is optimal for the
dual problem.

Algorithm 1 Subgradient method applied

Input:
N: > Maximum number of iterations
err: > Target gap between upper and lower bound
Initialisation:
Gamma = 2: > Constant in the time step 4.15
x0 = 0: > Any feasible solution
Z1b = 0: > Initial lower bound
Zub = oc: > Initial upper bound
current best sol = x0: > Tracks best known solution
current best obj val = Zlb: > Tracks best known objective value
iterr = 0: > Tracks amount of times the upper bound has not changed
gap = 1000: > Tracks the gap between the best upper and lower bound
for k <N do
if gap <err then
return gap, best current sol > Optimal gap achieved so the algorithm stops
end if

Solve P(\g): > Solve the relaxed version of the problem at iteration k
Obtain ZL(/\k)
Obtain xy,
Compute gy,

Zubg1 = min(Zuby, Z1,(A))
if g > 0 then
Zlby1 = max(Zlbg, Zr(Ag) — (Akgk))
if Zp (M) — (Akgx) > current_best_obj_val then
current_best_sol = zy,
current_best_obj_val = Zp(Ax) — (Akgr)
end if
else
Zlbp1 = Zlby
end if

if Zubg1 = Zuby then
iterr = iterr +1

end if

if Iterr = 4 then
Gamma = 0.5 - Gamma

end if
Compute Step: > According to 4.15
A = max(0, \ — step - gi)
Compute gapgt1
end for
Return gap, current best_sol

10

This algorithm with the chosen heuristic 4.15 works on most instances, even if there are multiple
constraints that need to be relaxed. However, since we are only relaxing one constraint there are
methods that are less involved. For example we can use a dichotomy approach. In this approach
the core of the algorithm stays the same, but the way we update X is different. First we define:

- A_min_ feas: The smallest \; such that the optmial solution for the relaxation is feasible,
i.e g > 0. Initially this is set to co

-A_max_ unfeas: The largest A\x such that the optimal solution for the relaxation is infeasible,
i.e g < 0. Initially this is set to 0.

Then algorithm 1 is used, but now we update Ay as follows:

- If the optimal solution for the relaxation with Ay is feasible then A_min_ feasi41 = Ag.

- If the optimal solution for the relaxation with Ay is infeasible then A _max_unfeasgi1 = Ak.

Furthermore, Ax41 is chosen as follows:

1
Apt1 = §(Aimin7feask+1 + A_mazx_unfeasgi1)

The idea is that whenever Aj provides a feasible solution then Ax > *, where * is the optimal
value to the dual problem. If Ax provides a solution that is infeasible for the original problem then
Ak < A*. [4] This way the interval in which the optimal solution to the dual problem lies keeps
shrinking so with each iteration we get closer to the optimal solution.

11

Chapter 5

Computational experiments

The algorithms described in Chapter 4 where implemented in python using the Pyomo environment
L. In both algorithms at each iteration the Lagrangian relaxation must be solved for a specific
value of A. Since the objective function contains a non-linear term we must use a non-linear
solver. For this the open-source solver ”Couenne” is used [1]. Both algorithms are iterative and
are thus sensitive to a starting point. It turned out that a combination of both algorithms worked
best: Algorithm 1 was used until we had found a value A = y such that the optimal solution
corresponding to the relaxed problem P(y) is feasible. Then this point is used as the starting
point for the dichotomy approach. Unless explicitly specified, all the experiments were executed
on a Hp Zbook studio G4 with an Intel Core i7-7700HQ processor running at 2.7GHz. Sadly the
fan system inside the computer was defect so overheating would happen very quickly which did
not have improve the performance. All relevant codes will be in the appendix

5.1 Instance generation

To see how the algorithms perform we generate instances with different characteristics. First
the weights, profits and capacity for a regular 01-Knapsack Problem are generated based on the
hard instances introduced by Pisinger [?]. From these instances we consider the following with
R = 1000:

1. Uncorrelated instances: The profits p; and w; are both randomly chosen in [1, R] so there
is no correlation between the profit and the weight of an item.

2. Strongly correlated instances: Weights w; are chosen randomly in [1, R] and the profits
p; = w;j + R/10.

Then given the proportion of time-bomb items B € [0, 1] we first determine the [nB] items
with the highest profit to be the set of time-bomb items. Next for each instance we consider two
cases to generate the explosion probabilities for each item. For these two cases we use class 1 and
3 as described in "Monaci” et al. [10]. Unless otherwise specified the threshold for the explosion
probability is always 8 = 0.9. In addition, unless otherwise specified the capacity is set to half of
the total weights of all the items. The exact way the classes define the explosion probabilities can
be seen in "Monaci”, but below the general idea of the two classes is given:

- Class 1 generates the probabilities such that each item has a relatively low probability of
exploding (¢; < 0.1), which would represent the most realistic scenarios. Additionally, the prob-
ablities are proportional to the profits so that the higher the profit the higher the probability of
an explosion.

- Class 2 generates the probabilities according to a beta distribution. This ensures that the
probabilities are relatively low, but are in this case not correlated with the profits nor the weight
of an item.

1See http://www.pyomo.org/ for more information.

12 Time-Bomb Knapsack Problems

¢l

5.2 Results

B=0.2 B=04 B =056 B =038

Class: Size: Gap: Time: | NEP: | Gap: Time: | NEP: | Gap: Time: | NEP: | Gap: Time: | NEP:

25 0.0000 | 0.2837 | 1 0.0000 | 0.4662 | 0.9430 | 0.0332 | 2.0490 | 0.9103 | 0.0194 | 7.4728 | 0.9040
Class 1 50 0.0000 | 1.6049 | 1 0.0000 | 2.0866 | 0.9033 | 0.0097 | 12.9382| 0.9068 | 0.0498 | 21.8239| 0.9124

75 0.0000 | 0.5947 | 1 0.0106 | 8.0483 | 0.9151 | 0.0095 | 36.8290| 0.9041

100 0.0000 | 2.9856 | 1 0.0274 | 11.020 | 0.9229 | 0.0094 | 50.9348| 0.9056

25 0.0000 | 1.1449 | 1 0.0075 | 2.7606 | 0.9711 | 0.0459 | 9.0039 | 0.9122 | 0.0357 | 3.5697 | 0.9107
Class 2 50 0.0000 | 1.7882 | 1 0.0029 | 3.7190 | 0.9118 | 0.0162 | 14.2448| 0.9078 | 0.0138 | 8.1688 | 0.9036

75 0.0000 | 6.7489 | 1 0.0183 | 11.8099| 0.9112 | 0.0507 | 25.0648| 0.9258

100 0.0000 | 14.7538| 1 0.0084 | 19.5473| 0.9180 | 0.0283 | 91.7629| 0.9209

Table 5.1: Strongly correlated instances
Table 2: Uncorrelated instances
B=02 B=04 B =06 B =038

Class: Size: Gap: Time: | NEP: Gap: Time: | NEP: Gap: Time: | NEP: Gap: Time: | NEP:

25 0.0313 | 1.9641 | 0.9237 | 0.0562 | 2.2062 | 0.9245 | 0.0812 | 3.8810 | 0.9198 | 0.3385 | 8.3268 | 0.9417
Class 1 50 0.0143 | 3.0317 | 0.9118 | 0.0297 | 5.4945 | 0.9187 | 0.02539| 13.9139| 0.9095 | 0.1949 | 50.5860| 0.9378

75 0.0102 | 4.5382 | 0.9111 | 0.0451 | 15.8779| 0.9351 | 0.0235 | 59.1244| 0.9081 | 0.7902 | 768.632| 0.9693

100 0.0106 | 9.0623 | 0.9166 | 0.0126 | 35.3889| 0.9142 | 0.0015 | 42.5616| 0.9008

25 0.0315 | 1.397 | 0.9240 | 0.0069 | 0.4823 | 0.9054 | 0.0471 | 1.8332 | 0.9199 | 0.0873 | 1.5015 | 0.9182
Class 2 50 0.0088 | 1.0787 | 0.9082 | 0.0518 | 2.6474 | 0.9225 | 0.0252 | 2.4930 | 0.9067 | 0.0957 | 6.3301 | 0.9191

75 0.0275 | 3.9734 | 0.9392 | 0.0033 | 5.1310 | 0.9024 | 0.0138 | 4.1470 | 0.9038 | 0.0150 | 123.013| 0.9072

100 0.0265 | 9.1156 | 0.9385 | 0.0095 | 7.6656 | 0.9096 | 0.0593 | 28.3152| 0.9171

Table 5.2: Uncorrelated instances

VI

B =02 B=04 B=06 B =038
Class: Size: Gap: Time: | NEP: Gap: Time: | NEP: Gap: Time: | NEP: Gap: Time: | NEP:
Class 1 50 0.0000 | 3.1787 | 0.9906 | 0.0171 | 7.1359 | 0.9169 | 0.0385 | 19.9435| 0.9147 | 0.0638 | 158.430| 0.9147
Class 2 50 0.0000 | 1.1295 | 0.9999 | 0.0125 | 1.7577 | 0.9327 | 0.0401 | 6.1928 | 0.9169 | 0.0456 | 9.6696 | 0.9116

Table 5.3: Strongly correlated instances averaged

B =02 B=04 B=06 B =038
Class: Size: Gap: Time: | NEP: Gap: Time: | NEP: Gap: Time: | NEP: Gap: Time: | NEP:
Class 1 50 0.0182 | 2.2387 | 0.9293 | 0.0259 | 3.4875 | 0.9162 | 0.0440 | 16.6090| 0.9202 | 0.2357 | 85.9549| 0.9259
Class 2 50 0.0273 | 2.1694 | 0.9280 | 0.0237 | 3.8163 | 0.9105 | 0.0356 | 5.9299 | 0.9138 | 0.0978 | 9.7614 | 0.9183

Table 5.4: Uncorrelated instances averaged

06
—— Correlated Case 1
05 —— Correlated Case 2 10
=== Uncorrelated Case 1 — N=50,B=02
Uncorrelated Case 2 — W=50,6=04
0.4 0.8 — N=G50,B=08
N=50,B=08
3 0.3 06
02
04
01
___________________________ 02
0.0 T T T T
0 10 15 20
Iteration
0.0 T T T T

2 2 & B 10 1 1 16
Figure 5.1: Speed of convergence for N = 100,
B=0.6 Figure 5.2: Speed of convergence for varying B

Figure 5.3: Speed of convergence

5.2.1 Interpretation of results

The algorithms were run on all the instances described above and the results can be seen in table
5.1 and table 5.2. Tt is important to note that when running the algorithm the variation was rather
large, for example for two generated instances with the same number of items the algorithm could
take a vastly different amount of iterations to arrive at the solution. Therefore the amount of time
the algorithm takes to run two instances of the same size could differ significantly. In addition
the performance of the laptop must be factored in. However, there are still some general patterns
that can be extracted from table 5.1 and 5.2. First of all there seems to be a correlation between
how low the gap was and how close the non-explosion probability was to the desired threshold
for instances where there were a significant number of time-bomb items in the item pool (i.e not
B = 0.2). This seems reasonable since in all instances the time-bomb items are the items with
the largest profit, so it seems natural that the optimal solution would have as many time-bomb
items as possible which ensures that the constraint is only just satisfied. In terms of accuracy
the algorithm seems to perform reasonably for most instances, with one notable exception. In the
case B = 0.8 for the uncorrelated instances the gaps are significantly higher than the others. This
seems to be due to the fact that the proportion of time-bomb items is quite high, since we can
also see that in general as the proportion of time-bomb items increases, the accuracy decreases.
As a matter of fact a similar story holds for the time usage: As the proportion of time-bomb items
increases, the time usage also increases.

In terms of time usage the algorithm performs quite poorly. For most instances 100 items
seemed to be the limit that if crossed the laptop would simply crash, but for some instances with
a high proportion of time-bomb items even that was unreachable.

This could be due to a couple of factors, but the most likely one is the programming language.
Pyhton is known to be significantly slower than for example C so for any future work a switch in
programming language is recommended.

In table 5.3 and table 5.4 one can see the average results for when the algorithm was run on
20 different cases of the same class and instance. The same general patterns discussed before
can be seen here: as the proportion of time-bomb items increases the time usage increases and
the accuracy slightly decreases. In addition, we again see that the accuracy for the uncorrelated
instances with B = 0.8 is significantly worse than for the other cases. Furthermore, one can now
clearly see that for both instances class 1 takes significantly longer to complete than class 2.

In figure 5.1 the speed of convergence for a single run can be seen for all instances and classes
with N = 100 and B = 0.6. As can be seen it takes less than 10 iterations for all cases to converge
to their respective optimal gaps. This was almost always the case for any N and B with the
exception of the case B = 0.8 which could sometimes take significantly longer. In figure 5.2 the
speed of convergence for strongly correlated instances with probabilities from class 1 are shown
for different values of B. This figure seems to corroborate the data from the tables that the higher
the proportion of time-bomb items the longer it takes for the algorithm to complete.

15

Chapter 6

Conclusions

In this paper we studied the 01-Timebomb-Knapsack problem, which is a stochastic version of the
0-1 Knapsack Problem in which, in addition to a profit and weight, each item has an additional
parameter which represents the probability of exploding. We studied the related literature which
introduced several upper and lower bounds for the 01-TB-KP and showed that these were also
valid and usable in a more general setting. We then consider a variant of the 01-TB-KP in which
we add an additional constraint bounds the probability that the knapsack explodes. We present
an algorithm based on Lagrangian Relaxation that yields approximations of optimal solutions for
this variant and evaluate it’s performance on a set of benchmark instances. The computational
experiments show that for a relatively low proportion of time-bomb items this algorithm performs
reasonably well, but the accuracy deteriorates the higher the proportion of time-bomb items get.
In addition, for now the algorithm is quite slow and can thus only be used instances with a small
number of items.

Future work should focus on improving the accuracy and speed of the algorithm. For example,
we could study the effect of using a different solver that solves the Lagrangian relaxation at each
iteration in the algorithm. In this report the solver open-source ”Couenne” was used, but better
and faster solvers do exist such as ”Baron” [7]. Furthermore, the computational analysis showed
that there is a correlation between the optimality of the solution and how close the non-explosion
probability was to the threshold. This implies that we might be able to split the solving process
in two smaller problems to potentially make the algorithm faster:

- First we only consider the time-bomb items and maximize the profit without exceeding the
probability constraint.

- Then we subtract the capacity used by the time-bomb items we chose from the total capacity
and consider the deterministic knapsack problem with the remaining capacity and the left over
deterministic items. Finally, in the future it would be better to implement this algorithm in a
different programming language than python in order to improve performance.

16 Time-Bomb Knapsack Problems

Bibliography

[1]
2]
3]

[4]

Pietro Belotti. couenne: a user’s manual.

Marshall L Fisher. An applications oriented guide to lagrangian relaxation.

a7

Marshall L Fisher. Ten most influential titles of "management science’s” first fifty years.
Source: Management Science, 50:1861-1871, 2004.

C Deperrois Grisoni, D Galley, G Boussac, and P Van Hentenryck. Lagrangian relaxation
can solve your optimization problem much, much faster.

Mordechai I. Henig. Risk criteria in a stochastic knapsack problem. Operations Research,
38(5):820-825, 1990.

Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer Berlin
Heidelberg, 2004.

Jan Krongvist, David E Bernal, Andreas Lundell, and Ignacio EE Grossmann. A review and
comparison of solvers for convex minlp. 2018.

Diego Lisbona and Timothy Snee. A review of hazards associated with primary lithium and
lithium-ion batteries. Process Safety and Environmental Protection, 89(6):434-442, 2011.
Special Issue: Centenary of the Health and Safety Issue.

Yasemin Merzifonluoglu, Joseph Geunes, and H. Edwin Romeijn. The static stochastic knap-
sack problem with normally distributed item sizes. Mathematical Programming, 134(2):459 —
489, 2012. Cited by: 21.

Michele Monaci, Ciara Pike-Burke, and Alberto Santini. Exact algorithms for the 0-1 time-
bomb knapsack problem. 2021.

David Pisinger. Where are the hard knapsack problems? Computers and Operations Research,
32:2271-2284, 2005.

Time-Bomb Knapsack Problems 17

Appendix A

Relevant code

A.1 Instance generation

*

#Strongly correlated instances with probabilities from class 1

B 0.8 #Proportion of items that are timebomb items.
n = 50 #mber of items.

T = math. floor (Bkn) #number of timebomb items.

R = 1000 #Range for the weights.

#Generating data: Strongly correlated instances: Weights wj are distributed in
R] and p j = wj + R/10

_j = np.random.randint (1,R,n)

_j = -np.sort(—w_j)

J

g =

el

#Defining the explostion probabilities according
#to case 1 in the paper.

tbitems = p_j[0:T—1]

detitems = p_j[T:n]

pmax = max(tbitems)

pmin = min(tbitems)

pp = max(detitems)

q_j = 0.1x((p_j—pp)/(pmax—pp))

q_j[T+1lin] =0

¢ = np.sum(w_j) /2 #Capacity (For now set to total weight/2)
L=1 #lambda

x0 = np.zeros(n)#initial solution

beta = 0.9 #Treshold for explosion probability

#Strongly correlated instances with probabilities from Class 2
B = 0.2 #Proportion of items that are timebomb items.
n = 50 #mber of items.

math. floor (Bxn) #number of timebomb items.

1000 #Range for the weights.

#Generating data: Strongly correlated instances: Weights wj are distributed in
R] and p j = wj + R/10

_j = np.random.randint (1,R,n)

_j = -—np.sort(—w_j)

j =w_j+ R/10

= —
Il

s 2

kel

tbitems = p_j[0:T—1]
detitems = p_j[T:n]

q_j = np.random.beta(1,10,n)
q_j[T+1l:n] =0

Time-Bomb Knapsack Problems

19

¢ = np.sum(w_j)/2

L=1

x0 = np.zeros(n)

beta = 0.9 #Treshold for explosion probability

#Class 1 uncorrelated
B = 0.6 #Proportion of items that are timebomb items.
n =75 #mber of items.

math. floor (Bxn) #number of timebomb items.

T
R 1000 #Range for the weights.

w_j = np.random.randint (1,R,n)

p_j = np.random.randint (1,R,n)
p_j = —np.sort(—w_j)

tbitems = p_j[0:T—1]

detitems = p_j[T:n]

pmax = max(tbitems)

pmin = min(tbitems)

pp = max(detitems)

q_j = 0.1x((p_j—pp)/(pmax—pp))

q_j[T+1lin] =0

¢ = np.sum(w_j) /2 #Capacity (For now set to total weight/2)
L=1

x0 = np.zeros(n)

beta = 0.9 #Treshold for explosion probability

#Class 2 uncorrelated
B = 0.6 #Proportion of items that are timebomb items.

n = 100 #mber of items.
T = math. floor (B#n) #number of timebomb items.
R = 1000 #Range for the weights.

#Generating data: Strongly correlated instances: Weights wj are distributed in [1;
R] and p j = wj + R/10

w_j = np.random.randint (1,R,n)

p_j = np.random.randint (1,R,n)

p_j = —np.sort(—w_j)

tbitems = p_j[0:T—1]

detitems = p_j[T:n]

q_j = np.random.beta(1,10,n)

q_j[T+1l:in] =0

¢ = np.sum(w_j)/2

L =

x0 = np.zeros(n)

beta = 0.9 #Treshold for explosion probability

A.2 The model

#The model in pyomo

opt = SolverFactory (’Couenne’)

model = pyo.ConcreteModel ()

model.x = pyo.Var(range(n), within=pyo.Binary)
model .P = pyo.Param(initialize = L, mutable = True)
alphas = 1-np.multiply (q_j,model.x)

model. value = pyo.Objective (

20

expr = (sum(p_j[i]*model.x[i] for i in range(n)) + model.Px(pyo.prod(alphas|i]

i in range(n))—beta)) |,
sense = pyo.maximize)

model. weight = pyo.Constraint (
expr = sum(w_j[i]*model.x[i] for i in range(n))<=c)

for

A.3 The algorithm

#The first part to find the starting lambda

startl = time.time ()
N = 100
gamma = 2
x0 = np.zeros(n)
x0[n—1]=1
x1 = np.ones(n)
Z1b = np.dot(p_j,x0)
Z1b0 = ZIlb
Zub = np.dot(p_j,x1)+1
current best sol = x0
current_best_obj_val = Zlb
iterr =0
err = 0.01
gap = 10
for i in range(N):
print (i)
if gap < abs(err):
break
result = opt.solve (model)
a = model.x.extract_values ()
new_lis = list (a.values())
x_vals = np.array (new_lis)

#print (x_vals)

obj_val = model. value ()

#print (obj_val)

alp = 1-np. multiply (q_j,x_vals)
#print (alp)

gk = prod(alp) — beta

#print (gk)

Zub old = Zub

Zub = min(Zub_old, obj_val)

if gk>=0:

Zlb = max(Zlb, obj_val—(Lxgk))
if (obj_val—(L*gk))>= current_best_obj_val:
current best sol = x_ vals
current_best_obj_val = obj_val—(Lxgk)
model .P = L
break
if Zub = Zub_ old:
iterr +=1
if iterr = 4:
iterr = 0
gamma = gamma/2
gap = (Zub—Zlb) /Zlb
#print (gap)
#gaps4d4 .append (gap)
#Compute step size here
step = (gamma x(obj_val—Zlb))/np.linalg.norm(gk)
#print (current__best_sol)

L = max(0,L — stepx*gk)

21

#print (L)

model .P = L
#print (np.dot (w_j,x_vals), current_best_sol)
endl time . time ()
totaltimel = endl — startl

#The dichotomy approach

start2 = time.time ()
N = 100
L _min_ feas = np.inf
L max unfeas = 0
err = 0.01
gap = 10
for i in range(N):
print (i)
if gap < abs(err):
break
if abs(L_min_feas—L_max_unfeas) <1:
break
result = opt.solve (model)
a = model.x.extract_values ()
new _ lis list (a.values())
x_vals = np.array (new_lis)
print (x_vals)
obj_val = model. value ()

#print (obj_val)

alp = l-np.multiply (q_j,x_vals)
#print (alp)

gk = prod(alp) — beta

print (gk)

Zub_old = Zub

if gk>=0:
Zub = min(Zub_old, obj_val)
L min feas = L

Zlb = max(Zlb, obj_val—(Lxgk))
if (obj_val—(L#gk))>= current_best_obj_ val:
current best sol = x vals
current_best_obj_val = obj_val—(Lxgk)
if gk<O0:
L max unfeas = L
if Zub =— Zub_ old:
iterr +=1
if iterr = 4:
iterr = 0
gamma = gamma/2
gap = (Zub—Zlb)/Z1lb
print (gap)
#gapsd4 . append (gap)
#Compute step size here
step = (gamma x(obj_val—Zlb))/np.linalg .norm(gk)
print (current_best_sol)

print (L_min_feas,L_max_unfeas)

L = 0.5%(L_max_unfeas+L_min_feas)

print (L)

model .P = L

#print (np.dot (w_j,x_vals), current_best_sol)

end2 = time.time ()
totaltime2= end2 — start2

22

	Contents
	Introduction
	Preliminaries
	Upper and lower bounds for the 01-TB-KPG
	Bounding the explosion probability
	Lagrangian Relaxation in general
	Subgradient method

	Lagrangian Relaxation applied

	Computational experiments
	Instance generation
	Results
	Interpretation of results

	Conclusions

