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Abstract

Control charts are used to detect changes in a process. They require a
benchmark period (i.e., Phase i), but if this is infeasible, self-starting charts
can be used instead. For effective use of these charts, the charted statistics
must be independent. However, we found that the existing proofs of the
independence of the self-starting statistic either show a weaker property
(e.g., serial independence) or depend on other complicated results. There-
fore, in this thesis, we provide a new, detailed proof which shows that the
self-starting statistics are mutually independent. Furthermore, we extend
this proof to a regression setting and show that the studentized recursive
residuals are independent. Also, we give a practical example that shows
how normalized recursive residuals (i.e., studentized recursive residuals
transformed to a standard normal distribution) combine control charts
with linear regression.
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Chapter 1

Introduction

In this thesis, we will study the independence properties of a statistical tool called
control charts and, in the context of linear regression, a special type of residual called
recursive residuals. In this chapter, we will first give some background on these topics
and demonstrate why they are important (Section 1.1). Then, we will define the goal
of this thesis and establish the central research questions (Section 1.2). Finally, we will
outline the structure of the remainder of the thesis (Section 1.3).

1.1 Context

Especially in the age of big data, monitoring data streams is important. For example,
consider manufacturing processes, where products should conform to the specification,
or wind turbines, where the temperature may not exceed an upper limit. For such
applications, control charts are a simple but effective tool. In their simplest form,
measurements of some process are plotted on the chart, and if the points on the chart
exceed predetermined limits, there is likely a problem. An example is shown in Fig-
ure 4.1. Control charts are most effective when these measurements are independent,
since this minimizes the likelihood of false alarms.

Before control charts can be used for monitoring, their limits must first be calibrated
using benchmark data. However, sometimes this is infeasible. For this reason, another
type of control chart was developed, called self-starting control charts. Essentially,
these charts compute the limits on-the-fly by transforming each measurement using
all previous measurements. However, due to this transformation, it is not apparent
anymore whether the computed statistics are independent, even if the underlying
measurements are. Therefore, since independence is an important theoretical property,
it needs to be investigated more carefully.

Sometimes, the measurements are affected by (external) influences. For example,
the generator temperature of a wind turbine is affected by the outside temperature.

1



CHAPTER 1. INTRODUCTION 2

To detect changes among expected fluctuations, it is important to account for these
influences. This can be achieved by plotting the residuals of a linear regression model.
Recursive residuals, a special type of residual, are self-starting (i.e., they do not require
benchmark data) and independent, whichmakes them suitable for self-starting control
charts.

When combining self-starting control charts with linear regression, we will refer to it
as “the regression case”. On the other hand, ordinary self-starting control charts are
referred to as “the univariate case”.

1.2 Problem statement

The goal of this thesis is to formally prove that the statistics used in self-starting control
charts are independent, in both the univariate and regression case. To achieve this, we
will answer the following research questions.

• Which proofs exist in the literature on the independence of the statistics used
in self-starting control charts, in both the univariate and regression case, or of
other related concepts?

• Are the existing proofs valid? And if not, how can we correct or extend them?

1.3 Outline of thesis

First, in Chapter 2, we perform a literature review on control charts in general and on
proofs of independence in particular. Next, Chapter 3 introduces preliminaries that
are used in the later chapters. In Chapter 4, we lay a mathematical foundation for
control charts. Then, Chapter 5 presents new proofs of mutual independence of the
self-starting statistics using elementary methods. In Chapter 6, a practical example of
self-starting control charts is presented. Finally, the work is summarized and possible
extensions are suggested in Chapter 7.

The first research question is mainly addressed in Chapter 2, and the second one in
Chapter 5. The remaining chapters provide the necessary background and mathemati-
cal preliminaries. Furthermore, some notation is presented in Appendix A, Appendix B
contains miscellaneous mathematical results, and the code used for this thesis can be
found in Appendix C.



Chapter 2

Literature review

In this chapter, we will place this thesis and its results in a broader context. First, we
will give an outline of relevant literature on control charts, with a focus on self-starting
charts (Section 2.1). Next, we will explore two related concepts, namely slippage tests
(Section 2.2) and recursive residuals (Section 2.3), and see how they connect to self-
starting control charts. Lastly and most importantly, we will give an overview of proofs
of independence for the self-starting statistics and recursive residuals as found in the
literature (Section 2.4).

2.1 Control charts

The field of statistical process monitoring1 (SPM) is said to be founded by Shewhart
(1931) when he introduced control charts. It employs a number of statistical tools that
are used to monitor processes. These tools are also known under names such as The
Magnificent Seven and are part of methodologies like Six Sigma (Montgomery, 2019).
An introduction to SPM and control charts is given in Chapter 4. An overview of both
mathematical theory and practical applications can be found in Qiu (2013).

Although basic Shewhart charts are suitable to detect large, sudden shifts in the mean,
they are less suitable to detect other types of changes. For this purpose, well-known
alternatives such as cumulative sum charts (CUSUM) (Page, 1954) and exponentially
weighted moving average charts (EWMA) (Roberts, 1959) can be used. Instead of only
the current sample, these charts take the entire history of the process into account. In
general, these charts are better at detecting small shifts or gradual drifts than Shewhart
charts. Nevertheless, due to their simplicity, basic Shewhart charts are still widely used
today.

1This is the modern name for statistical process control (SPC), as proposed by Woodall (2017). SPC
is a misnomer, since “control” suggests that control actions are part of the toolset, which is almost never
the case.
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Another type of chart that detects changes in the mean, known as the regression chart,
combines Shewhart charts with linear regression to remove external influences. These
were first proposed by Mandel (1969). A recent review is included in Centofanti et al.
(2021). Regression charts are closely related to (linear) profile monitoring, as noted by
Kim et al. (2003).

In low-volume manufacturing, basic Shewhart charts are not suitable, since they re-
quire a relatively long benchmark period. Alternatively, the self-starting CUSUM
charts introduced by Hawkins (1987) can be used, which do not require that distribu-
tional parameters are known at the start of production. A few years later, Quesenberry
(1991) proposed a similar technique for Shewhart charts, called 𝑄-charts. Their perfor-
mance is analyzed in Del Castillo and Montgomery (1994) and some improvements
are proposed.

2.2 Slippage tests

A field closely related to control charts is that of outlier tests. In particular, a statistic
similar to the self-starting statistic2 is used in an article by Quesenberry and David
(1961) on slippage tests. These tests were first introduced by Mosteller (1948) and
can be considered a generalization of the one-sample outlier problem. They are used
to test whether one of multiple samples (each typically containing more than one
measurement) have “slipped”, e.g., whether the sample has a different mean. These
samples can be compared to rational subgroups for control charts (see Section 4.2).

The results by Quesenberry and David (1961) are essentially a simplification of earlier
work by Doornbos et al. (1956). Both approaches are also discussed in a survey by
Doornbos (1976). For a complete overview of slippage tests, we refer to Chapter 5 of
Barnett and Lewis (1994).

2.3 Recursive residuals

Recursive residuals are a powerful tool in regression diagnostics. They were presented
in the seminal paper by Brown et al. (1975), though, according to Farebrother (1978),
they date back to the 19th century. They are a special type of residual (see Section 3.3)
which are independent and homoscedastic3. These properties make them attractive
for statistical tests and monitoring. They can be used to test for structural change4,
heteroscedasticity, influential observations, and more. A number of these applications
are discussed by Galpin and Hawkins (1984), and a review is given by Kianifard and

2Strictly speaking, “the self-starting statistic” (singular) refers to case iv as discussed in Section 2.4.
3A collection of random variables is homoscedastic if they have the same (finite) variance. Otherwise,

they are heteroscedastic.
4An (unexpected) change in the regression coefficients.
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Swallow (1996). Recursive residuals are also known in the field of econometrics. For
example, see Theil (1971). Furthermore, they are a special case of Kalman filters. This
is discussed by Pollock (2003) in more detail.

A statistic essentially equivalent to recursive residuals was defined by Hedayat and
Robson (1970), called stepwise residuals. Furthermore, a studentized variant of re-
cursive residuals was introduced by Marr and Quesenberry (1991), called normalized
uniform (NU) residuals. These are also discussed in Section 6.5.7 of Quesenberry
(1986a). The same statistic is used in the context of linear profile monitoring by Zou
et al. (2007), where they are referred to as standardized recursive residuals. Lastly, up
to a multiplicative constant, the same statistic is also given by Hawkins (1991).

Recursive residuals are similar to the (sequential) uniform residuals for self-starting
control charts defined by Quesenberry (1986b), both in name and approach. This
can be explained by the fact that both follow from the conditional probability integral
transformation (CPIT) by O’Reilly and Quesenberry (1973), which is discussed in more
detail in Section 2.4. This common link to the CPIT suggests that the self-starting
statistic and recursive residuals are “structured” in a similar way. In fact, the latter can
be seen as a generalization of the former, as will be shown by Corollary 5.14.

2.4 Proofs of independence

The goal of this thesis is to prove that the self-starting statistics are independent,
and that independence also holds for their extension to the regression case, i.e., the
recursive residuals. Therefore, we will now look more closely at existing proofs of this
in the literature.

In the original paper by Quesenberry (1991) on self-starting charts, four cases of the
self-starting statistic are introduced in the section on individual measurements. In
that paper, they are referred to as 𝑄-statistics. Readers of that paper are referred
to the appendix for a proof that the 𝑄-statistics are i.i.d. standard normal random
variables. For cases i to iii it is stated that independence follows “immediately” from
previous work on the CPIT by O’Reilly and Quesenberry (1973), even though the
author acknowledges this paper is “rather abstract”. For case iv, a succinct proof is
given. However, the proof is flawed, since only serial independence (see Definition 3.4)
is shown, not mutual independence. The proof has other issues as well, which are
discussed in detail throughout Section 5.1.

When the 𝑄-statistic for each of the four cases is defined, a previous paper by Quesen-
berry (1986b) on outlier detection in control charts is cited. There, the same random
variables are used as test statistics. They are transformed to a standard uniform dis-
tribution instead of a standard normal distribution, but this does not affect their
independence. The 𝑘-th statistic is regarded as the (studentized) residual of the 𝑘-th
measurement based on the sample mean and variance of the first 𝑘− 1measurements,
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so the test statistics are referred to as sequential (uniform) residuals. In that paper,
Property 1 states that these are i.i.d., but no further details are given, and O’Reilly and
Quesenberry (1973) is cited for the proof.

The CPIT, which is applied in both papers by Quesenberry discussed above, builds on
earlier work by Rosenblatt (1952). The transformation is also described in Section 6.2.2
of Quesenberry (1986a), and without measure-theoretic details by Gaudoin (1999).
In Examples 4.1 and 4.3 of the original paper by O’Reilly and Quesenberry (1973),
the mutual independence of random variables similar to the self-starting statistic and
recursive residuals is discussed. However, these concepts are not mentioned explicitly,
the random variables do not match the ordinary definitions directly, and some steps
are omitted. For these reasons, the proofs are difficult to verify. Therefore, this calls
for a more thorough verification.

In an article by Hawkins (1987), the case iv self-starting statistic is used to introduce
self-starting CUSUM charts. Again, these are referred to as (studentized) residuals. It is
stated that successive statistics are independent, referencing earlier work of Hawkins
(1969). This, in turn, cites Quesenberry and David (1961) on slippage tests. Here,
Basu’s theorem5 is invoked in order to argue that the test statistics are serially indepen-
dent. However, details are missing, i.e., it is not clear how Basu’s theorem is applied.
Quesenberry and David (1961) note that this proof is a simpler alternative to a proof
by Doornbos et al. (1956), who prove serial independence by directly computing the
density.

In the preceding discussion, we searched for proofs of independence of the self-starting
statistic. Alternatively, we can search for a proof that shows the recursive residuals are
independent, which then implies independence of the self-starting statistic as a special
case. Brown et al. (1975) prove mutual independence, but the variance is assumed
to be known (i.e., the distribution depends on 𝜎), making it only comparable to the
case ii self-starting statistic. Zou et al. (2007) assume that the variance is unknown
(i.e., they consider the studentized recursive residuals), but they justify independence
by only mentioning Basu’s theorem, without presenting further details. This is unsat-
isfactory. Other sources that discuss studentized recursive residuals, namely Marr and
Quesenberry (1991) and Hawkins (1991), both refer to the CPIT without providing any
details. Hence, we return to the same work by O’Reilly and Quesenberry (1973).

In conclusion, to the author’s knowledge, focusing on the case with unknown variance,
there are four proofs of independence in the literature.

• In the context of slippage tests, Quesenberry and David (1961) prove serial
independence using a theorem by Basu (1955). Doornbos et al. (1956) also prove
serial independence, but achieve this by computing the density.

5This well-known theorem states that a complete sufficient statistic is independent of any ancillary
statistic. It was presented by Basu (1955).
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• Quesenberry (1991) proves serial independence. This approach is further dis-
cussed in Section 5.1.2, and extended in Section 5.1.3.

• An application of the CPIT by O’Reilly and Quesenberry (1973) proves mutual
independence.

Of these proofs, only the last proves the strongest property of mutual independence.
However, as discussed above, the precise application of the CPIT is unclear. Therefore,
in Chapter 5, we will give a proof using more elementary methods.

Chapter summary
We introduced three concepts (i.e., self-starting control charts, slippage tests, and
recursive residuals) that all involve a type of outlier test, and are closely related.
With the goal of proving the mutual independence of the self-starting statistic and
of the recursive residuals, we reviewed the existing literature on these topics. We
found that all proofs either show serial independence (a weaker condition) or are
highly technical and simultaneously terse. Therefore, this topic requires further
study.



Chapter 3

Preliminaries

In this chapter, we will present some preliminaries that are used in Chapter 4 and,
most importantly, for the proofs in Chapter 5. Since the focus of this thesis is on
independence, we will formalize this notion and give a number of results related to it
(Section 3.1). Specifically, we will discuss the joint normal distribution and how it can
be used to prove independence (Section 3.2). Next, we will introduce linear regression
(Section 3.3), which provides the necessary background to define the recursive residuals
(Section 3.3.4). Lastly, wewill state and prove several updating formulae that are critical
to the proofs in Chapter 5 (Section 3.4).

3.1 Independence

The concept of independence is central to this thesis. Therefore, in this section, some
important definitions and theorems will be presented, with a focus on continuous
random variables.

In general terms, two random variables are independent if knowing the value of
one does not change the distribution of the other. Since this thesis only deals with
probability distributions for which the density exists (e.g., the normal distribution and
𝑡-distribution), we will use the following formal characterization.

Definition 3.1— Let 𝑋 and 𝑌 be continuous random variables with marginal densities
𝑓𝑋 and 𝑓𝑌, respectively, and joint density 𝑓𝑋,𝑌. Then 𝑋 and 𝑌 are independent if and
only if 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦) for all 𝑥, 𝑦 ∈ ℝ.

The symbol “⟂⟂” is used to denote independence, i.e., 𝐴 ⟂⟂ 𝐵means that the random
variables 𝐴 and 𝐵 are independent.

When considering more than two random variables, we distinguish between two
types of independence. Namely, a collection of random variables is called pairwise
independent if any pair of them is independent, but it is mutually independent if,

8
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informally speaking, each random variable is independent of any combination of
other random variables. In other words, the random variables 𝑋1,… , 𝑋𝑛 are pairwise
independent if Definition 3.1 holds for any 𝑋𝑖 and 𝑋𝑗 (𝑖 ≠ 𝑗), but they are only mutually
independent under a more general condition, such as the following.

Theorem 3.2 — Let 𝑋1,… , 𝑋𝑛 be continuous random variables with a joint density 𝑓.
Then 𝑋1,… , 𝑋𝑛 are mutually independent if and only if 𝑓(𝑥1,… , 𝑥𝑛) can be written as a
product of functions of 𝑥1,… , 𝑥𝑛 alone, i.e., 𝑓(𝑥1,… , 𝑥𝑛) = 𝑔1(𝑥1)⋯𝑔𝑛(𝑥𝑛).

Proof. See Appendix B.

If we take 𝑔𝑖 as 𝑓𝑋𝑖 (i.e., the marginal density of 𝑋𝑖), this result corresponds directly
to a stronger variant of Definition 3.1. However, it is sufficient if 𝑔𝑖 equals 𝑓𝑋𝑖 up to a
multiplicative constant (which is essentially only a normalization issue). This makes
the practical application of Theorem 3.2 easier. We will sometimes summarize this
result by writing “the density factorizes”.

Mutual independence implies pairwise independence, but the converse is not true in
general. Below, we provide a counterexample to prove this. There exist many coun-
terexamples using discrete random variables, but we give one using normal random
variables, taken from Section 2.12 of Romano and Siegel (1986).

Counterexample 3.3 — Let 𝑋, 𝑌, 𝑍0 be mutually independent standard normal ran-
dom variables, and define 𝑍 = |𝑍0| sgn(𝑋𝑌), where

sgn(𝑡) =
⎧⎪
⎨⎪
⎩

−1 if 𝑡 < 0,
0 if 𝑡 = 0,
1 if 𝑡 > 0.

Then, 𝑍 also has a standard normal distribution. For a proof, see Appendix B. We
assumed that 𝑋 ⟂⟂ 𝑌, and it can also be shown that 𝑋 ⟂⟂ 𝑍 and 𝑌 ⟂⟂ 𝑍, so 𝑋, 𝑌, 𝑍 are
pairwise independent. However, they are not mutually independent, since

P(𝑋 < 0, 𝑌 < 0, 𝑍 < 0) = 0 ≠ 1
8
= P(𝑋 < 0)P(𝑌 < 0)P(𝑍 < 0). �

When the type of independence is not explicitly stated, it (usually) refers to mutual
independence. This logic also applies to the notion of “i.i.d.”, which is therefore an
abbreviation of “mutually independent and identically distributed”. To eliminate
ambiguity, we will always specify whether independence is mutual or pairwise. Fur-
thermore, we will introduce a third type: serial independence.

Definition 3.4 — The sequence 𝑋1,… , 𝑋𝑛 of random variables is serially independent
if 𝑋𝑖 ⟂⟂ 𝑋𝑖+1 for all 𝑖 = 1,… , 𝑛 − 1.

This is essentially a weaker version of pairwise independence (and therefore of mutual
independence as well). It will be useful when we investigate the independence of
random variables which have some inherent order.
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A last important result is that “transforming” random variables retains independence.
This is formalized by the following theorem.

Theorem 3.5 — Let 𝑋1,… , 𝑋𝑛 be mutually independent continuous random variables,
and let 𝑔1,… , 𝑔𝑛 be regular1 functions. Then 𝑔1(𝑋1),… , 𝑔𝑛(𝑋𝑛) are mutually indepen-
dent random variables.

Proof. See Theorem 5.6.13 of Meester (2008).

3.2 Joint normal distribution

In this thesis, we almost always work with more than one (normally distributed)
random variable at once. Therefore, we want to generalize the normal distribution
to higher dimensions. Since this distribution and its properties play a critical role in
Chapter 5, we will state some important results here. Our presentation follows the
exposition of Bingham and Fry (2010).

If a random vector X = (𝑋1,… , 𝑋𝑛)T has a joint normal (or multivariate normal)
distribution, we say that X is a normal random vector and we write

X ∼ 𝒩(𝝁, Σ).

Here, E[X] = 𝝁 ∈ ℝ𝑛 is the mean vector, and Cov(X) = Σ ∈ ℝ𝑛×𝑛 the covariance
matrix. Note that Σ𝑖𝑗 = Cov(𝑋𝑖, 𝑋𝑗), so Σ is symmetric.

Not every collection of normal random variables is jointly normal, but the following
theorems provide sufficient conditions for this. For proofs, see Definition 4.8 and
Proposition 4.9 of Bingham and Fry (2010).

Theorem 3.6 — Let X = (𝑋1,… , 𝑋𝑛)T be a random vector. If aTX has a (univariate)
normal distribution for all a ∈ ℝ𝑛, then X has a joint normal distribution.

Theorem 3.7 — Let X = (𝑋1,… , 𝑋𝑛)T be a normal random vector. Then 𝐴X + b has a
joint normal distribution for all 𝐴 ∈ ℝ𝑚×𝑛 and b ∈ ℝ𝑚.

Equivalently, Theorem 3.6 states that a collection of random variables is jointly normal
if any linear combination of them is normally distributed, and Theorem 3.7 states
that any linear transformation of a normal random vector is again jointly normal. An
important corollary of the first theorem is that mutually independent normal random
variables are always jointly normal.

For our purposes, the following theorem is the most important property of the joint
normal distribution.

Theorem 3.8— Let (𝑋1,… , 𝑋𝑛)T ∼ 𝒩(𝝁, Σ). Then𝑋1,… , 𝑋𝑛 aremutually independent
if and only if Σ is diagonal.

1See Definition 5.6.11 of Meester (2008). All functions considered in this thesis are regular.
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Proof. See Corollary 4.11 of Bingham and Fry (2010).

In other words, in case of joint normality, pairwise uncorrelatedness implies mutual
independence. This is a powerful tool, especially if combined with Theorem 3.5. Since
all results in this section are well-known, these theorems will be applied throughout
the thesis without reference.

3.3 Linear regression

The goal of this section is to introduce recursive residuals, which are closely related to
the self-starting statistic. These are formally defined in Section 3.3.4. First, however,
we will introduce the necessary preliminaries, namely (multiple) linear regression and
a number of distributional properties. This is largely based on Chapter 3 of Bingham
and Fry (2010), although with slightly different notation.

3.3.1 Model

In short, linear regression is used to model the relationship between a response vari-
able and one or more explanatory variables. We will describe this relation using the
following model equation:

y = 𝑋𝜷 + 𝜺, (3.9)

where

• y ∈ ℝ𝑛 is the vector of the observed values of the response variable,

• 𝑋 ∈ ℝ𝑛×𝑝 is the designmatrix, whose rows x1,… , x𝑛 contain the observed values
of the explanatory variables,

• 𝜷 ∈ ℝ𝑝 is the vector of coefficients, and

• 𝜺 ∈ ℝ𝑛 is the vector of errors2, where we assume 𝜀1,… , 𝜀𝑛
iid∼ 𝒩(0, 𝜎2).

Note that 𝑛 is equal to the number of observations (where a row of 𝑋 is regarded as
one unit), and 𝑝 the number of coefficients. Often, the first coefficient is chosen as the
intercept3, and therefore the first column of 𝑋 consists of all ones.

2There is a subtle but important difference between errors and residuals. The error 𝜀𝑖 is the difference
between the observed value 𝑦𝑖 and the true value x𝑖𝜷, while the residual ̂𝜀𝑖 is the difference between the
observed value 𝑦𝑖 and the fitted value x𝑖 ̂𝜷. Note that the true value is unobservable, so the error is as
well. The residual, which is observable, is an estimate of the error.

3For a simple linear regression model, i.e., 𝑦𝑖 = 𝛼+ 𝛽𝑥𝑖 + 𝜀𝑖, the intercept is 𝛼.
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3.3.2 Ordinary least squares

We wish to find an estimate of the coefficients 𝜷, denoted by ̂𝜷, such that the residuals,
defined as

̂𝜀𝑖 = 𝑦𝑖 − x𝑖 ̂𝜷, 𝑖 = 1,… , 𝑛

are as “small” as possible. In particular, we minimize the sum of squared residuals4,
i.e.,

𝑆𝑆𝑅 = ̂𝜺T ̂𝜺 =
𝑛
∑
𝑖=1
(𝑦𝑖 − x𝑖 ̂𝜷)

2
= (y − 𝑋 ̂𝜷)

T
(y − 𝑋 ̂𝜷).

According to the Gauss-Markov theorem,

̂𝜷 = (𝑋T𝑋)−1𝑋Ty (3.10)

is the “best” estimator of 𝜷, i.e., it has the lowest variance among all linear unbiased
estimators. This estimator is also known as the ordinary least squares (OLS) estimator.
Formula 3.10 requires that 𝑋T𝑋 is invertible. Therefore, we assume that 𝑋 has full rank
𝑝. For a proof of the Gauss-Markov theorem, see Theorems 3.5 and 3.13 of Bingham
and Fry (2010).

An important property is that

̂𝜷 ∼ 𝒩(𝜷, 𝜎2(𝑋T𝑋)−1). (3.11)

More details are given in Section 3.3 of Bingham and Fry (2010). Using ̂𝜷, we can also
estimate 𝜎2. In particular, an unbiased estimator is given by

𝜎̂2 = 1
𝑛−𝑝

𝑆𝑆𝑅, (3.12)

where
1
𝜍2
𝑆𝑆𝑅 ∼ 𝜒2(𝑛 − 𝑝). (3.13)

This follows from Corollary 3.23 and Theorem 3.26 of Bingham and Fry (2010). Lastly,
as shown in Theorem 3.31 of Bingham and Fry (2010), it holds that

̂𝜷 ⟂⟂ 𝑆𝑆𝑅.

3.3.3 Notation for partial data

In the next sections, we often perform linear regression on a subset of the data, i.e.,
the first 𝑘 observations. For this we need to introduce some notation. We write 𝑋𝑘 to

4Not to be confused with the sum of squares for regression, as defined by Bingham and Fry (2010),
which has the same abbreviation. Furthermore, adding to the confusion, the sum of squared residuals
is also known as the sum of squares for (estimate of) error.
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denote the matrix consisting of only the first 𝑘 ≤ 𝑛 rows of 𝑋,5 i.e.,

𝑋𝑘 = (
x1
⋮
x𝑘
) ∈ ℝ𝑘×𝑝.

Similarly, y[1∶𝑘] denotes the vector of the first 𝑘 elements of y.6 Furthermore, we define
̂𝜷(𝑘) and 𝑆𝑆𝑅𝑘 to be the estimate of 𝜷 and 𝑆𝑆𝑅 based on the first 𝑘 ≥ 𝑝 observations,
respectively. That is,

̂𝜷(𝑘) = (𝑋T
𝑘 𝑋𝑘)

−1𝑋T
𝑘 y[1∶𝑘]

and
𝑆𝑆𝑅𝑘 = (y[1∶𝑘] − 𝑋𝑘 ̂𝜷(𝑘))

T
(y[1∶𝑘] − 𝑋𝑘 ̂𝜷(𝑘)). (3.14)

Note that for ̂𝜷(𝑘) (and 𝑆𝑆𝑅𝑘) to exist, we assume that 𝑋𝑘 has full rank. It is sufficient
to assume that 𝑋𝑝 has full rank, since the rank of submatrices is less than or equal to
the rank of the full matrix. Hence, 𝑝 = rank(𝑋𝑝) ≤ rank(𝑋𝑘). Furthermore, due to its
dimensions, rank(𝑋𝑘) ≤ min(𝑘, 𝑝) = 𝑝. Therefore, rank(𝑋𝑘) = 𝑝 as well.

3.3.4 Recursive residuals

To assess the validity of a regression model, practitioners often perform residual anal-
ysis, where assumptions such as homoscedasticity are verified. However, (ordinary)
residuals are correlated, which means that departures in one part of the model can
“spread” to all other residuals. This makes them ineffective. A number of specific
issues are discussed by Kianifard and Swallow (1996).

An alternative is to use the recursive residuals introduced by Brown et al. (1975), which
are a special type of residual that are mutually independent. They are the (scaled)
difference between the current observed value and the predicted value based only on
the previous values. In particular, values are not used to predict themselves. Essentially,
these are one-step-ahead predictive residuals. Other types of independent residuals
exist,7 but recursive residuals have the advantage that they correspond one-to-one to
the observations from which they were computed. This is an important property for
many statistical (outlier) tests, such as those to detect influential observations. This
also makes them suitable for control charts, which is discussed in Section 4.4.

The values of the recursive residuals depend on the order in which they are calculated.
In the case of control charts, there is often a natural ordering we can exploit, e.g., time.
Since recursive residuals only depend on past measurements, they can be used in a

5A notation such as 𝑋[1∶𝑘]• would be more explicit (and flexible), but also more verbose, which
harms readability. Therefore, this notation was chosen. It should not be confused with x𝑘, which
denotes the 𝑘-th row of 𝑋.

6In line with the notation for matrices, y𝑘 would be more consistent. However, this is too similar to
𝑦𝑘, which denotes the 𝑘-th element of y.

7For example, the BLUS residuals discussed by Theil (1971).
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dynamic environment, where new measurements are continuously received. This
is in contrast to ordinary residuals, which can only be used in a static environment,
where all measurements are available from the start. It is important to note that, unlike
ordinary residuals, there exist no recursive residuals for the first 𝑝 observations. This
is because the initial estimation of the coefficients requires at least 𝑝 observations.

We will now define them formally. Using the notation from the previous section, the
recursive residuals are defined as

𝑤𝑘 =
𝑦𝑘 − x𝑘 ̂𝜷(𝑘−1)

√1+ x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1xT
𝑘

, 𝑘 = 𝑝 + 1,… , 𝑛. (3.15)

As will be shown below, they have a normal distribution with mean 0 and variance 𝜎2.
To eliminate the dependency on 𝜎2 (which is assumed to be unknown), we studentize
it using (3.12). That is, we define the studentized recursive residuals as

𝑤′
𝑘 =

𝑤𝑘

√
1

𝑘−1−𝑝
𝑆𝑆𝑅𝑘−1

, 𝑘 = 𝑝 + 2,… , 𝑛. (3.16)

It is well-known that the (ordinary) recursive residuals are independent (i.e., when
𝜎2 is known). For example, see Brown et al. (1975). Furthermore, the studentized
recursive residuals are independent as well. Proofs of both of these facts are presented
in Section 5.2.

In the remainder of this section, we will derive the distributions of these statistics.
First, note that 𝑦𝑘 and x𝑘 ̂𝜷(𝑘−1) are normally distributed and independent, since ̂𝜷(𝑘−1)

is a function of (𝑦1,… , 𝑦𝑘−1), which is independent of 𝑦𝑘. Therefore, the numerator
𝑦𝑘 − x𝑘 ̂𝜷(𝑘−1) is normally distributed with mean

E[𝑦𝑘 − x𝑘 ̂𝜷(𝑘−1)] = E[𝑦𝑘] − x𝑘 E[ ̂𝜷(𝑘−1)] = x𝑘𝜷 + 0 − x𝑘𝜷 = 0,

and variance

Var(𝑦𝑘 − x𝑘 ̂𝜷(𝑘−1)) = Var(𝑦𝑘) + Var(x𝑘 ̂𝜷(𝑘−1)) (since 𝑦𝑘 ⟂⟂ ̂𝜷(𝑘−1))

= 𝜎2 + x𝑘𝜎2(𝑋T
𝑘−1𝑋𝑘−1)

−1xT
𝑘 (by (3.11))

= 𝜎2(1 + x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1xT
𝑘).

Therefore, if we divide the numerator by the constant (1 + x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1xT
𝑘)

1/2
, we

find that
𝑤𝑘 ∼ 𝒩(0, 𝜎2).

Next, we consider the distribution of 𝑤′
𝑘. We know that ̂𝜷(𝑘−1) ⟂⟂ 𝑆𝑆𝑅𝑘−1 from the

previous section. Furthermore, note that both are functions of (𝑦1,… , 𝑦𝑘−1), so 𝑦𝑘 ⟂⟂
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( ̂𝜷(𝑘−1), 𝑆𝑆𝑅𝑘−1). Together, this implies that 𝑦𝑘 − x𝑘 ̂𝜷(𝑘−1) ⟂⟂ 𝑆𝑆𝑅𝑘−1.8 Therefore, by
Definition B.5,

𝑤′
𝑘 =

1
𝜍
𝑤𝑘

√
1

𝑘−1−𝑝
1
𝜍2
𝑆𝑆𝑅𝑘−1

∼ 𝑡(𝑘 − 1 − 𝑝),

since 1
𝜍
𝑤𝑘 ∼ 𝒩(0, 1), and 1

𝜍2
𝑆𝑆𝑅𝑘−1 ∼ 𝜒2(𝑘 − 1 − 𝑝) by (3.13).

3.4 Updating formulae

It is often useful to perform numerical computations in a single pass, i.e., calculate
a quantity such as the variance by querying each value 𝑋𝑖 only once. This is because
computer memory may be too small or too slow. To achieve this, we essentially need a
recurrence relation between, for example, the variance of the first 𝑛 and of the first
𝑛+1 values. In other words, this recurrence relation allows us to sequentially “update”
a quantity if new data arrives. Therefore, these are also known as updating formulae.
Normally, they are used for efficient numerical algorithms, but they also play a key
role in the proofs of independence presented in Chapter 5. Therefore, in this section,
we will derive updating formulae for both the sample variance (Section 3.4.1) and the
sum of squared residuals (Section 3.4.2).

3.4.1 Sample variance

Let 𝑋1, 𝑋2,… denote observations. Then, define

𝑋𝑛 =
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖, 𝑛 ≥ 1, (3.17)

𝑆2𝑛 =
1

𝑛−1

𝑛
∑
𝑖=1
(𝑋𝑖 − 𝑋𝑛)

2
, 𝑛 ≥ 2, (3.18)

as the sample mean and (unbiased) sample variance of the first 𝑛 observations. We
will make use of the following updating formulae:

𝑋𝑛 =
𝑛−1
𝑛
𝑋𝑛−1 +

1
𝑛
𝑋𝑛, 𝑛 ≥ 2, (3.19)

𝑆2𝑛 =
𝑛−2
𝑛−1

𝑆2𝑛−1 +
1
𝑛
(𝑋𝑛 − 𝑋𝑛−1)

2
, 𝑛 ≥ 3. (3.20)

The first follows trivially from the definition; the second is derived from a recurrence
relation for the sum of squares published in a note byWelford (1962). For completeness,
we will give the proof here as well.

8This is similar to the derivation of the distribution of case iv in Section 4.3.1, where more details
are provided.
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Proof of (3.20). First, note that

(𝑛 − 1)𝑆2𝑛 =
𝑛−1
∑
𝑖=1

(𝑋𝑖 − 𝑋𝑛)
2

⏟⎵⎵⏟⎵⎵⏟
≔𝐴

+(𝑋𝑛 − 𝑋𝑛)
2

⏟⎵⎵⏟⎵⎵⏟
≔𝐵

.

Using (3.19), we find that

𝐴 = (𝑋𝑖 −
𝑛−1
𝑛
𝑋𝑛−1 −

1
𝑛
𝑋𝑛)

2

= ([𝑋𝑖 − 𝑋𝑛−1] −
1
𝑛
[𝑋𝑛 − 𝑋𝑛−1])

2

= (𝑋𝑖 − 𝑋𝑛−1)
2
− 2

𝑛
(𝑋𝑖 − 𝑋𝑛−1)(𝑋𝑛 − 𝑋𝑛−1) +

1
𝑛2
(𝑋𝑛 − 𝑋𝑛−1)

2

and

𝐵 = (𝑋𝑛 −
𝑛−1
𝑛
𝑋𝑛−1 −

1
𝑛
𝑋𝑛)

2

= (𝑛−1
𝑛
)
2
(𝑋𝑛 − 𝑋𝑛−1)

2
.

Therefore,

(𝑛 − 1)𝑆2𝑛 =
𝑛−1
∑
𝑖=1

[(𝑋𝑖 − 𝑋𝑛−1)
2
− 2

𝑛
(𝑋𝑖 − 𝑋𝑛−1)(𝑋𝑛 − 𝑋𝑛−1) +

1
𝑛2
(𝑋𝑛 − 𝑋𝑛−1)

2
]

+ (𝑛−1
𝑛
)
2
(𝑋𝑛 − 𝑋𝑛−1)

2

=
𝑛−1
∑
𝑖=1

(𝑋𝑖 − 𝑋𝑛−1)
2
− 2

𝑛
(𝑋𝑛 − 𝑋𝑛−1)

𝑛−1
∑
𝑖=1

(𝑋𝑖 − 𝑋𝑛−1)
⏟⎵⎵⎵⏟⎵⎵⎵⏟

=0

+ 𝑛−1
𝑛2
(𝑋𝑛 − 𝑋𝑛−1)

2

+ (𝑛−1
𝑛
)
2
(𝑋𝑛 − 𝑋𝑛−1)

2

=
𝑛−1
∑
𝑖=1

(𝑋𝑖 − 𝑋𝑛−1)
2
+ 𝑛−1+(𝑛−1)2

𝑛2
(𝑋𝑛 − 𝑋𝑛−1)

2

= (𝑛 − 2)𝑆2𝑛−1 +
𝑛−1
𝑛
(𝑋𝑛 − 𝑋𝑛−1)

2
.

Finally, dividing both sides by 𝑛 − 1 yields the formula.

Repeatedly applying (3.20) yields the following alternative formula for the variance.

Proposition 3.21 — Let 𝑋1, 𝑋2,… denote observations. Then the (unbiased) sample
variance of the first 𝑛 ≥ 2 observations is given by

𝑆2𝑛 =
1

𝑛−1

𝑛
∑
𝑖=2

𝑖−1
𝑖
(𝑋𝑖 − 𝑋𝑖−1)

2
.

Proof. We will prove the claim by induction. For the base case 𝑛 = 2, the formula
simplifies to 1

2
(𝑋2 − 𝑋1)

2, which is indeed equal to Definition 3.18, since

𝑆22 = (𝑋1 −
1
2
(𝑋1 + 𝑋2))

2
+ (𝑋2 −

1
2
(𝑋1 + 𝑋2))

2

= 1
4
(𝑋1 − 𝑋2)

2 + 1
4
(𝑋2 − 𝑋1)

2

= 1
2
(𝑋2 − 𝑋1)

2.
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Now, we assume that the formula holds for 𝑛 = 𝑘 (induction hypothesis) and show
that it also holds for 𝑛 = 𝑘 + 1. We verify that

𝑆2𝑘+1 =
𝑘−1
𝑘
𝑆2𝑘 +

1
𝑘+1

(𝑋𝑘+1 − 𝑋𝑘)
2

(by (3.20))

= 1
𝑘

𝑘
∑
𝑖=2

𝑖−1
𝑖
(𝑋𝑖 − 𝑋𝑖−1)

2
+ 1

𝑘
𝑘

𝑘+1
(𝑋𝑘+1 − 𝑋𝑘)

2
(by IH)

= 1
𝑘

𝑘+1
∑
𝑖=2

𝑖−1
𝑖
(𝑋𝑖 − 𝑋𝑖−1)

2
.

Incidentally, this formula provides another way to verify the well-known fact that

(𝑛 − 1)𝑆
2
𝑛

𝜍2
∼ 𝜒2(𝑛 − 1). (3.22)

This is because

(𝑛 − 1)𝑆
2
𝑛

𝜍2
=

𝑛
∑
𝑖=2
( 1
𝜍√

𝑖−1
𝑖
(𝑋𝑖 − 𝑋𝑖−1))

2

is a sumof 𝑛−1 squared independent standard normal random variables, by Lemma 4.1
and Theorem 5.2.

3.4.2 Sum of squared residuals

Similarly to the variance, we will now give an updating formula for the sum of squared
residuals. Consider the linear regression model as defined in Section 3.3, but with an
arbitrary number of observations. Then

𝑆𝑆𝑅𝑛 = 𝑆𝑆𝑅𝑛−1 + 𝑤2
𝑛, 𝑛 ≥ 𝑝 + 1, (3.23)

where 𝑤𝑛 is defined by (3.15).

This formula allows us to efficiently calculate 𝑆𝑆𝑅 when a new observation is made,
without refitting the whole model.9 A proof is given by Brown et al. (1975), referencing
a formula from Bartlett (1951). However, the notation is different than our own, and
many details are omitted, so we provide our own proof below. First, we will derive
updating formulae for ̂𝜷(𝑛) and (𝑋T

𝑛𝑋𝑛)−1, given by (3.25) and (3.26), respectively. Then,
these are used to prove (3.23). Similar formulae are proven by Plackett (1950) that
make it possible to update these quantities in case of more than one new observation.

Proof of (3.23). It follows from (3.10) that

𝑋T
𝑘 𝑋𝑘 ̂𝜷(𝑘) = 𝑋T

𝑘 y[1∶𝑘], 𝑘 ≥ 𝑝. (3.24)

9That is, if you also update ̂𝜷(𝑛) using the formula below.
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Hence,

𝑋T
𝑛𝑋𝑛 ̂𝜷(𝑛) = 𝑋T

𝑛−1y[1∶𝑛−1] + xT
𝑛𝑦𝑛

= 𝑋T
𝑛−1𝑋𝑛−1 ̂𝜷(𝑛−1) + xT

𝑛𝑦𝑛
= (𝑋T

𝑛𝑋𝑛 − xT
𝑛x𝑛) ̂𝜷(𝑛−1) + xT

𝑛𝑦𝑛 (by Lemma B.8)

= 𝑋T
𝑛𝑋𝑛 ̂𝜷(𝑛−1) + xT

𝑛(𝑦𝑛 − x𝑛 ̂𝜷(𝑛−1)),

After multiplying both sides by (𝑋T
𝑛𝑋𝑛)

−1 on the left and rearranging the terms, we
obtain

̂𝜷(𝑛) − ̂𝜷(𝑛−1) = (𝑋T
𝑛𝑋𝑛)

−1xT
𝑛(𝑦𝑛 − x𝑛 ̂𝜷(𝑛−1)). (3.25)

Furthermore, by Lemmas B.8 and B.9, we have that

(𝑋T
𝑛𝑋𝑛)

−1 = (𝑋T
𝑛−1𝑋𝑛−1 + xT

𝑛x𝑛)
−1

= (𝑋T
𝑛−1𝑋𝑛−1)

−1 −
(𝑋T

𝑛−1𝑋𝑛−1)
−1xT

𝑛x𝑛(𝑋T
𝑛−1𝑋𝑛−1)

−1

1 + x𝑛(𝑋T
𝑛−1𝑋𝑛−1)

−1xT
𝑛

.
(3.26)

Next, define

𝐴 = y[1∶𝑛] − 𝑋𝑛 ̂𝜷(𝑛−1),

𝐵 = 𝑋𝑛( ̂𝜷(𝑛) − ̂𝜷(𝑛−1))

such that

𝑆𝑆𝑅𝑛 = (y[1∶𝑛] − 𝑋𝑛 ̂𝜷(𝑛))
T
(y[1∶𝑛] − 𝑋𝑛 ̂𝜷(𝑛)) = (𝐴 − 𝐵)T(𝐴 − 𝐵).

Note that

𝐵T𝐴 = ( ̂𝜷(𝑛) − ̂𝜷(𝑛−1))
T
𝑋T
𝑛 (y[1∶𝑛] − 𝑋𝑛 ̂𝜷(𝑛−1))

= ( ̂𝜷(𝑛) − ̂𝜷(𝑛−1))
T
(𝑋T

𝑛 y[1∶𝑛] − 𝑋T
𝑛𝑋𝑛 ̂𝜷(𝑛−1))

= ( ̂𝜷(𝑛) − ̂𝜷(𝑛−1))
T
(𝑋T

𝑛𝑋𝑛 ̂𝜷(𝑛) − 𝑋T
𝑛𝑋𝑛 ̂𝜷(𝑛−1)) (by (3.24))

= ( ̂𝜷(𝑛) − ̂𝜷(𝑛−1))
T
𝑋T
𝑛𝑋𝑛( ̂𝜷(𝑛) − ̂𝜷(𝑛−1))

= 𝐵T𝐵.

Furthermore, 𝐵T𝐴 = (𝐵T𝐴)T = 𝐴T𝐵, since it is symmetric. Hence,

𝑆𝑆𝑅𝑛 = 𝐴T𝐴 − 𝐴T𝐵 − 𝐵T𝐴 + 𝐵T𝐵 = 𝐴T𝐴 − 𝐵T𝐵,

where

𝐴T𝐴 =
𝑛
∑
𝑖=1
(𝑦𝑖 − x𝑖 ̂𝜷(𝑛−1))

2

=
𝑛−1
∑
𝑖=1
(𝑦𝑖 − x𝑖 ̂𝜷(𝑛−1))

2
+ (𝑦𝑛 − x𝑛 ̂𝜷(𝑛−1))

2

= 𝑆𝑆𝑅𝑛−1 + (𝑦𝑛 − x𝑛 ̂𝜷(𝑛−1))
2
,
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and where

𝐵T𝐵 = (𝑦𝑛 − x𝑛 ̂𝜷(𝑛−1)) x𝑛(𝑋T
𝑛𝑋𝑛)

−1𝑋T
𝑛𝑋𝑛(𝑋T

𝑛𝑋𝑛)
−1xT

𝑛(𝑦𝑛 − x𝑛 ̂𝜷(𝑛−1))

= (𝑦𝑛 − x𝑛 ̂𝜷(𝑛−1))
2
x𝑛(𝑋T

𝑛𝑋𝑛)
−1xT

𝑛

by (3.25). Hence,

𝑆𝑆𝑅𝑛 = 𝑆𝑆𝑅𝑛−1 + (𝑦𝑛 − x𝑛 ̂𝜷(𝑛−1))
2
(1 − x𝑛(𝑋T

𝑛𝑋𝑛)
−1xT

𝑛).

Define 𝐶 = x𝑛(𝑋T
𝑛−1𝑋𝑛−1)

−1xT
𝑛 . Then, by (3.26),

1 − x𝑛(𝑋T
𝑛𝑋𝑛)

−1xT
𝑛

= 1 − x𝑛((𝑋T
𝑛−1𝑋𝑛−1)

−1 −
(𝑋T

𝑛−1𝑋𝑛−1)
−1xT

𝑛x𝑛(𝑋T
𝑛−1𝑋𝑛−1)

−1

1 + 𝐶 )xT
𝑛

= 1 − 𝐶 + 𝐶2

1 + 𝐶

= 1
1 + 𝐶.

Therefore,

𝑆𝑆𝑅𝑛 = 𝑆𝑆𝑅𝑛−1 +
(𝑦𝑛 − x𝑛 ̂𝜷(𝑛−1))

2

1 + 𝐶 = 𝑆𝑆𝑅𝑛−1 + 𝑤2
𝑛.

The following result is similar to Proposition 3.21. An alternative proof of this formula
is given by Kianifard and Swallow (1996), who state that “the sum of squares of the
𝑛 − 𝑝 LUS residuals10 is equal to the sum of squares of the 𝑛 OLS residuals.”

Proposition 3.27— Consider the linear regression model given by y = 𝑋𝜷+𝜺 as defined
in Section 3.3, with the assumptions that 𝑋𝑝 has full rank and that 𝜀1,… , 𝜀𝑛

iid∼ 𝒩(0, 𝜎2).
Then, the sum of squared residuals based on the first 𝑛 ≥ 𝑝 observations is given by

𝑆𝑆𝑅𝑛 =
𝑛
∑

𝑖=𝑝+1
𝑤2
𝑖 .

Proof. We will prove the claim by induction. For the base case 𝑛 = 𝑝, the formula
simplifies to 0, which is indeed equal to Definition 3.14, since

y[1∶𝑝] − 𝑋𝑝 ̂𝜷(𝑝) = y[1∶𝑝] − 𝑋𝑝(𝑋T
𝑝 𝑋𝑝)

−1𝑋T
𝑝 y[1∶𝑝]

= y[1∶𝑝] − 𝑋𝑝𝑋−1
𝑝 (𝑋T

𝑝 )−1𝑋T
𝑝 y[1∶𝑝]

= y[1∶𝑝] − y[1∶𝑝]
= 0.

10A class of linear unbiased estimators with a scalar covariance matrix, which includes the recursive
residuals.
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This holds because 𝑋𝑝 is square and has full rank, and is therefore invertible. Now, we
assume that the formula holds for 𝑛 = 𝑘 (induction hypothesis) and show that it also
holds for 𝑛 = 𝑘 + 1. We verify that

𝑆𝑆𝑅𝑘+1 = 𝑆𝑆𝑅𝑘 + 𝑤2
𝑘+1 (by (3.23))

=
𝑘
∑

𝑖=𝑝+1
𝑤2
𝑖 + 𝑤2

𝑘+1 (by IH)

=
𝑘+1
∑

𝑖=𝑝+1
𝑤2
𝑖 .

Chapter summary
We established the concept of independence between random variables and pre-
sented several results (i.e., Theorems 3.2, 3.5, and 3.8) that will be helpful in
proving independence in later chapters. Furthermore, using Counterexample 3.3,
we showed the difference between mutual and pairwise independence, the former
being a stronger property than the latter.

Next, we defined the recursive residuals and derived their distribution using results
from linear regression. We found that the recursive residuals are i.i.d.𝒩(0, 𝜎2)
random variables, and that they can be studentized to eliminate their dependency
on 𝜎2. The 𝑘-th studentized recursive residual has a 𝑡-distribution with 𝑘 − 1 − 𝑝
degrees of freedom.

Lastly, we showed that the sample variance and sum of squared residuals can
be efficiently updated. Propositions 3.21 and 3.27 essentially provide alternative
formulas of the variance and sum of squared residuals, respectively. We will take
advantage of their structure to prove independence in Chapter 5.



Chapter 4

Control charts

In this chapter, we will introduce control charts in more detail. First, we will introduce
some terminology and discuss the goal of control charts (Section 4.1). Next, we will
outline how control charts are used and which assumptions they rely on (Section 4.2).
We will also shortly explore how control charts are linked to hypothesis testing and
how this allows us to analyze their performance. Then, we will give some practical
limitations of control charts and introduce self-starting charts as a solution to them
(Section 4.3). The formulas defined here are the focus of the remainder of this thesis.
Lastly, we will present regression charts, a type of control chart that monitors the
residuals of a linear regression model (Section 4.4).

4.1 Context

In short, a control chart is a graphical tool that is used to monitor the variability
of a process and detect changes. When he first introduced them, Shewhart (1931)
differentiated between two causes of variability:

• chance causes, referring to essentially unavoidable sources of variability inherent
to the process (i.e., “background noise”);

• assignable causes, referring to controllable sources of variability due to malfunc-
tioning parts of the process, such as operator errors or misconfigured machines.

These are also known as common and special causes, respectively. If a process is subject
to assignable causes, it is said to be out-of-control (or unstable). On the other hand, if
only chance causes are present, it is in-control (or stable). When using control charts
(and SPM in general), the ultimate goal is to reduce variability due to assignable causes
and ensure that the process is in-control.

Typically, the usage of control charts consists of two distinct phases.

21
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• In Phase i (retrospectivemonitoring), an initial set of process data is collected and
analyzed. If unusual “patterns” are found in the data, the process is fine-tuned to
eliminate them. This is repeated until a “clean” set of data (i.e., under in-control
conditions) is collected, from which the parameters for future monitoring are
computed.

• In Phase ii (onlinemonitoring), the parameters determined in Phase i are used
to sequentially monitor new samples during regular production. If a significant
deviation is detected, the process is typically stopped and the (assignable) cause
is investigated.

This approach works well in high-volume manufacturing, but not for short-run pro-
cesses where there is too little data available to compute accurate control limits. We
are therefore interested in self-starting charts, which do not require the use of Phase i.
These are discussed in Section 4.3. Since self-starting charts are a variant of the classic
Shewhart chart, these will be discussed first, in Section 4.2.

4.2 Shewhart charts

In a control chart, a quality characteristic of a process is plotted against the time (or
simply the sample number), together with a center line (𝐶), lower control limit (𝐿),
and upper control limit (𝑈). A typical chart is shown in Figure 4.1. Commonly, the
quality characteristic is a summary statistic computed from batches of products which
are grouped in a natural way. These batches are known as rational subgroups. The
most well-known chart of this type is the Shewhart 𝑋-chart, which plots the mean of
the subgroups. However, we will focus on charts for rational subgroups of size one.
These are known as individuals charts.

A frequent choice is to set the control limits at 𝜇±3𝜎, where 𝜇 and 𝜎 are the mean and
standard deviation of the charting statistic, respectively, which are assumed known
after Phase i. These three-sigma limits were set by Shewhart based on practical experi-
ence, and are intended as a heuristic. In particular, when a point is plotted outside the
limits, this is taken as evidence that the process is out-of-control. However, the inverse
is not necessarily true; even if all points are inside the limits, the process may not be
in-control. For example, if many consecutive points are on one side of the center line,
this might indicate correlated behavior, and therefore an assignable cause.1

It is typically assumed that the measurements are i.i.d. In this thesis, we will make
the common assumption that they are normally distributed, which is often justified
by the central limit theorem. Although control charts still work well if the normality
assumption is broken to a moderate degree (Woodall, 2000; Montgomery, 2019), the

1For practical use, many rules exist to systematically detect such patterns. These are called runs rules.
Perhaps most famous are those by Western Electric (1958).
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Figure 4.1: An example of an 𝑋-chart based on data from Qiu (2013). It monitors an injection molding
process, where the quality characteristic is the compressive strength. Each point is the mean of a sample
of 5 measurements. The center line and control limits are determined from the first 20 samples (Phase i)
and are visualized as dashed horizontal lines. The boundary between Phase i and ii is indicated by a
dashed vertical line. Note that it is common practice to connect the points with lines.

independence assumption is much more critical. In particular, Alwan (1992) showed
that even mild levels of autocorrelation will significantly increase the number of false
alarms.2 This, in turn, makes it much more difficult to identify assignable causes
among chance causes.

Control charts, especially as used in Phase ii, are closely linked to hypothesis testing.
To illustrate this, we will consider the situation in which an assignable cause induces
an abrupt shift in the mean of the charting statistic.3 For this example, we will not use
additional decision rules, and simply say that the process is in-control if and only if all
points are inside the control limits. Let 𝑋 ∼ 𝒩(𝜇, 𝜎2) represent a measurement of the
quality characteristic, with true mean 𝜇 and variance 𝜎2. Let 𝜇0 indicate the in-control
mean, determined in Phase i. We will test

𝐻0∶ 𝜇 = 𝜇0 vs. 𝐻1∶ 𝜇 ≠ 𝜇0.

We fail to reject the null hypothesis if the point is plotted inside the control limits, i.e,
𝑋 ∈ [𝜇 − 3𝜎, 𝜇 + 3𝜎], and reject the null hypothesis if it is plotted outside. That is, we

2False alarms become even more frequent if runs rules are used. For example, a common rule is
to stop the process if a large number of consecutive points are on one side of the center line, which
becomes more common if the measurements are autocorrelated.

3Other effects are possible as well, such as a (gradual) drift. However, they fit less well into a
(non-sequential) hypothesis testing framework and will not be considered here.



CHAPTER 4. CONTROL CHARTS 24

reject 𝐻0 if
|||
𝑋 − 𝜇
𝜎

||| > 3.

This test is repeated for eachmeasurement. Under the assumption of normality (which
implies the test statistic has a standard normal distribution), the probability of a type i
error is equal to

𝛼 = Φ(−3) + (1 − Φ(3)) ≈ 0.0027.

Note that a type i error (i.e., a “false alarm”) corresponds to a scenario where we
conclude the process is out-of-control although it is actually in-control, and that a
type ii error corresponds to one where we conclude the process is in-control although
it is actually out-of-control.

The link to hypothesis testing is especially useful for analyzing the performance of
control charts. This is often done by studying the average run length (ARL), where the
run length is defined as the number of samples collected until the first type i error.
Ideally, it is as large as possible. Under the assumptions above (i.e., independence,
normality, three-sigma limits, and no runs rules) the run length has a geometric
distribution with mean

𝐴𝑅𝐿 = 1
𝛼 ≈ 370.

It is important to note that this simple calculation only holds for basic Shewhart charts
under the stated assumptions. For many other types of charts, the computations are
much more complex.

Although this link to hypothesis testing is an interesting topic, it is not the focus of
this thesis, and therefore we will not go into further detail. However, formal analysis
of control charts in the context of hypothesis testing is not without problems, even
though it proves to be helpful. This is because it relies on strong assumptions which
most often do not hold in practice. Woodall (2000) discusses this topic in more detail.

4.3 Self-starting charts

Control charts as described in the previous section are often used in practice, but
Quesenberry (1991) notes the following two issues.

• In low-volume production (e.g., in job shops, where highly-tailored products are
manufactured in low numbers) the total number of products may not even reach
the number required for accurate parameter estimation during Phase i.4

• In general, for all processes, it is beneficial to start monitoring as soon as possible,
even if the parameters are not yet known. This allows us to identify assignable
causes and bring the process into control at an earlier time.

4Jensen et al. (2006) recommend that at a minimum 100 individual measurements are needed in
Phase i.
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For these reasons, Quesenberry (1991) introduced a type of self-starting chart called 𝑄-
charts, which do not require a separate Phase i, but essentially estimate the parameters
in real time. This means they can already be used for the very first units of production.

Next, we will formally define the charting statistic. Let 𝑋1, 𝑋2,…
iid∼ 𝒩(𝜇, 𝜎2) represent

measurements in order of time. We will consider four cases, in which both, either, or
neither of the two parameters 𝜇 and 𝜎2 are known at the start of monitoring. In the
following definitions, notation from Section 3.4 is used. Furthermore, Φ denotes the
CDF of the standard normal distribution, and 𝐺𝑘 denotes the CDF of the Student’s
𝑡-distribution with 𝑘 degrees of freedom.

(i) If both 𝜇 and 𝜎 are known, let

𝑄𝑛 =
𝑋𝑛 − 𝜇
𝜎 , 𝑛 ≥ 1.

(ii) If 𝜇 is unknown but 𝜎 is known, let

𝑄𝑛 =
1
𝜎√

𝑛 − 1
𝑛 𝑇𝑛 where 𝑇𝑛 = 𝑋𝑛 − 𝑋𝑛−1, 𝑛 ≥ 2.

(iii) If 𝜇 is known but 𝜎 is unknown, let

𝑄𝑛 = Φ−1(𝐺𝑛−1(𝑇𝑛)) where 𝑇𝑛 =
𝑋𝑛 − 𝜇
𝑆′𝑛−1

, 𝑛 ≥ 2,

where 𝑆′𝑛−1 is defined in terms of 𝜇, i.e., (𝑆′𝑛−1)2 =
1

𝑛−1
∑𝑛−1

𝑖=1 (𝑋𝑖 − 𝜇)2.

(iv) If both 𝜇 and 𝜎 are unknown, let

𝑄𝑛 = Φ−1(𝐺𝑛−2(𝑇𝑛)) where 𝑇𝑛 =√
𝑛 − 1
𝑛

𝑋𝑛 − 𝑋𝑛−1
𝑆𝑛−1

, 𝑛 ≥ 3.

Case i is equivalent to the standard individuals chart. Of the remaining cases, iv is
the most interesting, since the assumption for ii and iii that one of the parameters is
known (but not the other) is rather unrealistic.

Note that the mean and variance are estimated using only the previous measurements,
i.e., not all available data is used, even though this might yield a better estimate. This is
becausewe assume all previousmeasurements are in-control, while this is unknown for
the current measurement. If we included the current measurement in the estimation,
the underlying statistical test would bias toward failure to reject the null hypothesis.
In other words, the 𝑄-statistic would be more likely to be inside the control limits.

In all cases, an important result is that 𝑄1, 𝑄2,…
iid∼ 𝒩(0, 1). Therefore, we typically set

the limits at ±3. For case i, this fact is trivial.5 For the other cases, the distribution
5The transformation is simply the well-known standardization, and independence follows directly

from Theorem 3.5.
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will be derived in Section 4.3.1 and independence will be proven in Chapter 5. First,
however, we will perform a small-scale simulation study in Section 4.3.2 to confirm
that independence is indeed likely the case.

As a side note, a practical benefit of the charting statistics being i.i.d. standard normal
is that multiple variables (of the same process) can be plotted on the same chart. On
the other hand, the original scale of the data is lost, and with it some context.

4.3.1 Distribution

In this section we will derive the distribution of cases ii, iii, and iv of the 𝑄-statistic
defined in the previous section. First, we will prove the following lemma that will be
applied multiple times.

Lemma 4.1 — Let 𝑋1, 𝑋2,…
iid∼ 𝒩(𝜇, 𝜎2). Then 𝑇 ≔ 𝑋𝑘 − 𝑋𝑛 is normally distributed

with E[𝑇] = 0 and

Var(𝑇) = 𝜎2 ⋅ {
𝑛−1
𝑛

if 𝑘 ≤ 𝑛,
𝑛+1
𝑛

if 𝑘 > 𝑛.

Proof. Since 𝑇 is a linear combination of independent normal random variables, it is
normally distributed. Furthermore,

E[𝑇] = E[𝑋𝑘] −
1
𝑛

𝑛
∑
𝑖=1

E[𝑋𝑖] = 𝜇 − 𝑛
𝑛
𝜇 = 0.

Next, if 𝑘 ≤ 𝑛,

Var(𝑇) = Var(𝑛−1
𝑛
𝑋𝑘 −

1
𝑛

𝑛
∑
𝑖=1
𝑖≠𝑘

𝑋𝑖)

= (𝑛−1)2

𝑛2
Var(𝑋𝑘) +

1
𝑛2

𝑛
∑
𝑖=1
𝑖≠𝑘

Var(𝑋𝑖)

= ( (𝑛−1)
2

𝑛2
+ 𝑛−1

𝑛2
)𝜎2

= 𝑛−1
𝑛
𝜎2.

Otherwise, similarly,

Var(𝑇) = Var(𝑋𝑘 −
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖) = (1 + 𝑛
𝑛2
)𝜎2 = 𝑛+1

𝑛
𝜎2.

Now, we examine each case individually. Recall that we assume 𝑋1, 𝑋2,…
iid∼ 𝒩(𝜇, 𝜎2).

The general idea is to consider the numerator and divide it by its standard deviation to
standardize it. Next, for the cases where 𝜎 is unknown, we replace it with an estimator.
Then, if the resulting statistic does not have a normal distribution, we transform it
using Theorem B.6.
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(ii) By Lemma 4.1, note that 𝑇𝑛 ≔ 𝑋𝑛 − 𝑋𝑛−1 ∼ 𝒩(0, 𝜎2 𝑛
𝑛−1) for 𝑛 ≥ 2. Therefore,

𝑄𝑛 =
1
𝜎√

𝑛 − 1
𝑛 𝑇𝑛 ∼ 𝒩(0, 1).

(iii) Note that 𝑋𝑛 − 𝜇 ∼ 𝒩(0, 𝜎2). Since 𝜎 is unknown, we instead divide by an
estimator based on the first 𝑛 − 1measurements, i.e.,

(𝑆′𝑛−1)2 ≔
1

𝑛−1

𝑛−1
∑
𝑖=1

(𝑋𝑖 − 𝜇)2.

This requires that 𝑛 ≥ 2. It holds that6

(𝑛 − 1) (𝑆
′
𝑛−1)2

𝜍2
∼ 𝜒2(𝑛 − 1).

Furthermore, note that 𝑆′𝑛−1 is a function of (𝑋1,… , 𝑋𝑛−1), which is independent
of 𝑋𝑛, so 𝑋𝑛 − 𝜇 ⟂⟂ 𝑆′𝑛−1. Therefore, by Definition B.5,

𝑇𝑛 =
𝑋𝑛 − 𝜇
𝑆′𝑛−1

=
1
𝜍
(𝑋𝑛 − 𝜇)

√
1
𝜍2
(𝑆′𝑛−1)2

∼ 𝑡(𝑛 − 1).

Then, by the probability integral transformation, 𝐺𝑛−1(𝑇𝑛) ∼ 𝑈(0, 1) and

𝑄𝑛 = Φ−1(𝐺𝑛−1(𝑇𝑛)) ∼ 𝒩(0, 1).

(iv) For this case, the reasoning largely follows the previous cases. By Lemma 4.1,
note that 𝑇𝑛 ≔ 𝑋𝑛−𝑋𝑛−1 ∼ 𝒩(0, 𝜎2 𝑛

𝑛−1). Since 𝜎 is unknown, we instead divide
by 𝑆𝑛−1 as given by (3.18). This requires that 𝑛 ≥ 3. By (3.22), it holds that

(𝑛 − 2)𝑆
2
𝑛−1
𝜍2

∼ 𝜒2(𝑛 − 2).

By Theorem B.10, we have that 𝑋𝑛−1 ⟂⟂ 𝑆2𝑛−1. Furthermore, note that both are
functions of (𝑋1,… , 𝑋𝑛−1), so 𝑋𝑛 ⟂⟂ (𝑋𝑛−1, 𝑆2𝑛−1). Together, this implies that 𝑋𝑛,
𝑋𝑛−1, and 𝑆2𝑛−1 are mutually independent7 and, in particular, that 𝑋𝑛 − 𝑋𝑛−1 ⟂⟂
𝑆2𝑛−1. Therefore, by Definition B.5,

𝑇𝑛 =√
𝑛 − 1
𝑛

𝑋𝑛 − 𝑋𝑛−1
𝑆𝑛−1

=

1
𝜍√

𝑛−1
𝑛
(𝑋𝑛 − 𝑋𝑛−1)

√
1
𝜍2
𝑆2𝑛−1

∼ 𝑡(𝑛 − 2).

Then, like above, we find that

𝑄𝑛 = Φ−1(𝐺𝑛−2(𝑇𝑛)) ∼ 𝒩(0, 1).
6To see this, note that it is a sum of 𝑛 terms ( 1

𝜍
(𝑋𝑖 − 𝜇))

2
, which are squared standard normal

random variables that are independent by Theorem 3.5. Then, the result follows from Definition B.4.
7This is because the joint density 𝑓𝑋𝑛,𝑋𝑛−1,𝑆2

𝑛−1
can first be factorized into 𝑓𝑋𝑛𝑓𝑋𝑛−1,𝑆2

𝑛−1
and then

into 𝑓𝑋𝑛𝑓𝑋𝑛−1
𝑓𝑆2

𝑛−1
. This is a convoluted proof of a fact that follows quite intuitively from Theorem B.10

directly.



CHAPTER 4. CONTROL CHARTS 28

−0.10

−0.05

0.00

0.05

0.10

Correlation of self−starting statistic

sa
m

pl
e 

co
rr

el
at

io
n

Figure 4.2: A scatter plot of the sample correlation between self-starting statistics. These were computed
from a simulation, which is described in Section 4.3.2.

4.3.2 Simulation of correlation

In this section, we will show using a simple simulation that the self-starting statistics
are likely independent. We will focus on case iv, since it is the most complex. In
short, we will randomly generate many independent measurements, calculate the
self-starting statistics, and compute the sample correlation (i.e., Pearson’s correlation
coefficient) between them. If the correlation is high, the self-starting statistics are
dependent, and if it is low, they may be independent (but this is not guaranteed).
Nevertheless, it will provide a good heuristic argument.

The simulation was implemented using Mathematica. It has four parameters: the
mean 𝜇 and variance 𝜎2 of the normal distribution, the size 𝑛 of each sample, and
the number of samples 𝑚. First, we generate 𝑛𝑚 random values from a 𝒩(𝜇, 𝜎2)
distribution, in samples of size 𝑛. Then, for each sample, we calculate 𝑇3,… , 𝑇𝑛 as
defined in case iv in Section 4.3. For each 𝑇3,… , 𝑇𝑛 this yields 𝑚 random values in
total. Next, we compute the sample correlation corr(𝑇𝑖, 𝑇𝑗) for each pair, 𝑖 ≠ 𝑗. These
can then be analyzed further. The code for this can be found in Section C.1.

In Figure 4.2 the correlation coefficients for a simulation with 𝜇 = 5, 𝜎2 = 4, 𝑛 = 50,
and𝑚 = 1000 are plotted. The points are ordered as follows:

corr(𝑇1, 𝑇2), corr(𝑇1, 𝑇3), corr(𝑇2, 𝑇3), corr(𝑇1, 𝑇4), … , corr(𝑇𝑛−1, 𝑇𝑛).

Note that most coefficients are less than 0.05 in absolute value, which means the
self-starting statistics are extremely weakly correlated. In fact, when we increase
𝑚, we can lower the correlation to arbitrarily low values. Furthermore, the points
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resemble (normally distributed) noise, i.e., no pattern is visible even though the points
are ordered. Hence, uncorrelatedness seems to hold for all pairs.

The simulation was only performed for fixed 𝑛, but there is no apparent reason why the
conclusion would not generalize to any 𝑛. This suggests that the self-starting statistics
are pairwise uncorrelated. This does not imply independence, but since we assume
i.i.d. normality (for which Theorem 3.8 holds), it is reasonable to conjecture that the
self-starting statistics are mutually independent.

4.4 Regression charts

For conventional control charts, we make the (implicit) assumption that the true mean
is constant. However, the quality characteristic may be dependent on other influences.
These are called covariates by Centofanti et al. (2021). For example, the outside tem-
perature is a covariate of the generator temperature of a wind turbine. As a result,
the mean of the quality characteristic varies based on the value of the covariates. If
the covariates are not accounted for, this can introduce a number of issues. For exam-
ple, if a covariate takes extreme values, we may wrongly conclude that the process is
out-of-control. Furthermore, the variance could be overestimated if the effect of the
covariates is ignored.

Onemethod to account for covariates is to combine control chartswith linear regression
(see Section 3.3). The case with simple linear regression (i.e., with one covariate) was
discussed by Mandel (1969). In short, we measure the covariates and take them as
explanatory variables in a linear regression model8, where the response variable is the
quality characteristic we want to monitor. Then, we can consider two types of control
charts.

• Instead of the quality characteristic, we chart the residuals of the linear regression
model. We call this the regression control chart.

• In the case of simple linear regression, we can chart the response variable against
the explanatory variable, together with the regression line. Then, the control
limits are parallel to the regression line. This has the advantage that the applica-
tion of linear regression is evident from the chart, but the disadvantage that the
time axis is lost. Furthermore, the chart cannot be generalized to multiple linear
regression.

One straightforward implementation of regression charts would be to estimate the
coefficients in Phase i and plot the predictive residuals (i.e., the difference between
the observed value and the predicted value) in Phase ii. This is the approach used by
Mandel (1969). However, one issue is that the predictive residuals are dependent, as
was shown by, for example, Van Dalen (2018).

8In the context of profile monitoring (e.g., see Zou et al. (2007)), this model is called a profile.
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An alternative is to use the (studentized) recursive residuals, which are independent
as will be shown in Section 5.2. Then, the chart effectively becomes a self-starting
regression chart. Note that the studentized recursive residuals are not identically
distributed (i.e., they differ in the degrees of freedom). Therefore, like the case iv
𝑄-statistic, we will transform them to standard normal random variables. For 𝑘 =
𝑝 + 2,… , 𝑛 we define

𝑟𝑘 = Φ−1(𝐺𝑘−1−𝑝[𝑤′
𝑘])

= Φ−1(𝐺𝑘−1−𝑝[
𝑦𝑘 − x𝑘 ̂𝜷(𝑘−1)

√
1

𝑘−1−𝑝
(1 + x𝑘(𝑋T

𝑘−1𝑋𝑘−1)
−1xT

𝑘)𝑆𝑆𝑅𝑘−1
])

as the normalized recursive residuals. Here, Φ denotes the CDF of the standard normal
distribution, and 𝐺𝑘 denotes the CDF of the Student’s 𝑡-distribution with 𝑘 degrees
of freedom. By Theorems 5.13 and B.6 they are i.i.d.𝒩(0, 1) random variables. An
example of a regression chart using the normalized recursive residuals is shown in
Figure 6.1 in Chapter 6.

Chapter summary
Control charts monitor a process in order to detect assignable causes. If the quality
characteristic exceeds the control limits, the process is out-of-control. These control
limits are computed in Phase i and are typically set at 𝜇 ± 3𝜎. Control charts are
most effective when the measurements are (mutually) independent.

In case there is too little data for Phase i, we can instead use self-starting charts. This
type of chart rescales each measurement using all previous measurements such
that the charting statistic has a standard normal distribution. Using a simulation
study, we showed that it is likely that they are independent. This will be formally
shown in Chapter 5.

A third type of control chart, the regression chart, uses linear regression to account
for the influence of covariates. Normalized recursive residuals are the regression
case generalization of the self-starting statistic. In particular, they have the same
property of being i.i.d. standard normal.



Chapter 5

Proofs of independence

This chapter contains the main contribution of this thesis. Namely, we will show in
detail that, for each case, the self-starting statistics are mutually independent (Sec-
tion 5.1). Then, we will extend these proofs and show that the recursive residuals are
independent, for both the ordinary and studentized case (Section 5.2).

5.1 Self-starting statistics

In the following sections, we will prove mutual independence for each case of the
self-starting statistics, which are defined in Section 4.3. Note that by Theorem 3.5, it is
sufficient to show the independence of 𝑇𝑛, which allows us to focus on the key ideas.
In fact, the mutual independence of case i follows directly from Theorem 3.5,1 so it
will not be considered below.

Among the remaining cases, we will first consider case ii, which is the easiest. Then,
we will proceed directly to case iv, since the mutual independence of case iii follows
from practically the same argument.

5.1.1 Case ii

First, we will prove the minor lemma below. It essentially shows the pairwise indepen-
dence of case ii. The proof utilizes a common strategy: we show that the two random
variables of interest are jointly normal, and then verify that their covariance is zero.
Then, by Theorem 3.8, the random variables are independent.

Lemma 5.1 — Let 𝑋1, 𝑋2,…
iid∼ 𝒩(𝜇, 𝜎2). Then, for 𝑘, 𝑛 < ℓ and 𝑘, 𝑛 ≤ 𝑚, the random

variables
𝑇1 ≔ 𝑋𝑘 − 𝑋𝑛 and 𝑇2 ≔ 𝑋ℓ − 𝑋𝑚

1Simply note that 𝑄𝑛 = (𝑋𝑛 − 𝜇)/𝜍 is a function of 𝑋𝑛, and that 𝑋1, 𝑋2,… are assumed to be
mutually independent.

31
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are independent.

Proof. Note that 𝑇1 and 𝑇2 are jointly normal, since 𝑎𝑇1 + 𝑏𝑇2 is normally distributed
for all 𝑎, 𝑏 ∈ ℝ. This is because it is a linear combination of 𝑋1, 𝑋2,… which are
independent and normal. Furthermore, 𝑇1 and 𝑇2 are uncorrelated, since

Cov(𝑇1, 𝑇2) = Cov(𝑋𝑘, 𝑋ℓ − 𝑋𝑚) − Cov(𝑋𝑛, 𝑋ℓ − 𝑋𝑚)

= Cov(𝑋𝑘, −
1
𝑚
𝑋𝑘) −

𝑛
∑
𝑖=1

Cov( 1
𝑛
𝑋𝑖, −

1
𝑚
𝑋𝑖)

= − 1
𝑚
Var(𝑋𝑘) +

1
𝑛𝑚

𝑛
∑
𝑖=1

Var(𝑋𝑖)

= −𝜍2

𝑚
+ 𝑛𝜍2

𝑛𝑚

= 0.

All cross terms disappear due to independence, i.e., Cov(𝑋𝑖, 𝑋𝑗) = 0 for all 𝑖 ≠ 𝑗. Now,
independence follows from joint normality and uncorrelatedness.

The preceding lemma is used in the proof of Theorem 5.3, but, most importantly, it is
used in the following theorem to show mutual independence of case ii.

Theorem 5.2 — Let 𝑛 ≥ 2 and 𝑋1,… , 𝑋𝑛
iid∼ 𝒩(𝜇, 𝜎2). Then, the random variables

𝑇𝑘 ≔ 𝑋𝑘 − 𝑋𝑘−1, 𝑘 = 2,… , 𝑛

are mutually independent.

Proof. Note that 𝑇2,… , 𝑇𝑛 are jointly normal, since 𝑎2𝑇2 + ⋯ + 𝑎𝑛𝑇𝑛 is normally
distributed for all 𝑎2,… , 𝑎𝑛 ∈ ℝ. This is because it is a linear combination of 𝑋1,… , 𝑋𝑛
which are independent and normal. Furthermore, 𝑇2,… , 𝑇𝑛 are pairwise independent
by Lemma 5.1.2 Together, joint normality and pairwise independence imply mutual
independence.

5.1.2 Case iv: Serial independence

Case iv is much more complex than case ii. Hence, we will first prove serial indepen-
dence, and then generalize the proof to mutual independence in Section 5.1.3.

Theorem 5.3 — Let 𝑛 ≥ 3 and 𝑋1,… , 𝑋𝑛
iid∼ 𝒩(𝜇, 𝜎2). Then, the random variables

𝑇𝑘 ≔√
𝑘 − 1
𝑘

𝑋𝑘 − 𝑋𝑘−1
𝑆𝑘−1

, 𝑘 = 3,… , 𝑛

are serially3 independent.
2In further detail: fix any 2 ≤ 𝑘, ℓ ≤ 𝑛 such that 𝑘 ≠ ℓ. Assume 𝑘 < ℓ without loss of generality.

Then 𝑋𝑘 −𝑋𝑘−1 and 𝑋ℓ −𝑋ℓ−1 are independent by Lemma 5.1.
3See Definition 3.4.
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Quesenberry (1991) presents a proof of Theorem 5.3 in the appendix.4 It uses a lemma
similar to Lemma 5.4, the proof of which is unclear. Basically, it claims that the
pairwise independence of three random variables (namely 𝑌1/𝑌2, 𝑌1 + 𝑌2, and 𝑌3)
implies independence between the first (i.e., 𝑌1/𝑌2) and the other two jointly (i.e.,
𝑌1 + 𝑌2 and 𝑌3). This is not true in general.5 For completeness and to circumvent this
issue, we will give an alternative proof that directly factorizes the joint density. With
this approach, Lemma 1 by Quesenberry (1991) is not necessary anymore.

In short, Lemma 5.4 will be proven as follows. To compute the joint density of 𝑊1
and𝑊2, we transform the joint density of 𝑌1, 𝑌2, and 𝑌3 using Theorem B.7. Because
there are fewer “output” than “input” variables, we introduce an auxiliary variable𝑊3.
Since we are not interested in it, we compute the joint density 𝑓𝑊1,𝑊2 from 𝑓𝑊1,𝑊2,𝑊3 by
integrating out𝑊3. In the end, we can conclude that𝑊1 ⟂⟂ 𝑊2 if the density factorizes.

Lemma 5.4 — Let 𝑌1, 𝑌2, 𝑌3 be mutually independent 𝜒2-distributed random variables
with 𝜈1, 𝜈2, 𝜈3 degrees of freedom, respectively. Then, the random variables

𝑊1 ≔
𝑌1
𝑌2

and 𝑊2 ≔
𝑌3

𝑌1 + 𝑌2

are independent.

Proof. First, we introduce an auxiliary variable𝑊3 ≔ 𝑌3.6 We write Y = (𝑌1, 𝑌2, 𝑌3)
andW = (𝑊1,𝑊2,𝑊3). Note thatW = 𝑔(Y), where 𝑔∶ ℝ3 → ℝ3 is defined by

𝑔(𝑦1, 𝑦2, 𝑦3) = (
𝑦1
𝑦2
,

𝑦3
𝑦1 + 𝑦2

, 𝑦3).

Next, we will derive ℎ ≔ 𝑔−1 by solving the system of equations given by

⎧
⎪

⎨
⎪
⎩

𝑤1 =
𝑦1
𝑦2
,

𝑤2 =
𝑦3

𝑦1+𝑦2
,

𝑤3 = 𝑦3,

for 𝑦1, 𝑦2, 𝑦3. The first and third equation yield 𝑦1 = 𝑤1𝑦2 and 𝑦3 = 𝑤3, respectively.
Using the second equation we find that

𝑦2 =
𝑦3
𝑤2

− 𝑦1 =
𝑤3

𝑤2
− 𝑤1𝑦2 ⟹ 𝑦2 =

𝑤3

(1+𝑤1)𝑤2
,

4Specifically, refer to (7) in Theorem 1.
5This is closely related to the fact that pairwise independence does not imply mutual independence;

refer to Counterexample 3.3. However, in this case, the claim does hold and can be proven using more
precise reasoning. Note that (𝑌1/𝑌2, 𝑌1 + 𝑌2) ⟂⟂ 𝑌3 (since 𝑌1, 𝑌2, 𝑌3 are assumed to be mutually
independent) and that𝑌1/𝑌2 ⟂⟂ 𝑌1+𝑌2 (by Lemma 1). Hence, the joint density can be fully factorized
in two steps, so the three random variables are in fact mutually independent.

6Note that𝑊3 has a chi-squared distribution, so its support is [0,∞). This property will be used
when integrating out𝑊3.
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which implies that 𝑦1 =
𝑤1𝑤3

(1+𝑤1)𝑤2
. Therefore,

ℎ(𝑤1, 𝑤2, 𝑤3) = (
𝑤1𝑤3

(1 + 𝑤1)𝑤2
,

𝑤3
(1 + 𝑤1)𝑤2

, 𝑤3).

The Jacobian matrix of ℎ evaluated atw = (𝑤1, 𝑤2, 𝑤3) equals

Jℎ(w) =
⎛
⎜
⎜
⎜
⎝

𝑤3

(1+𝑤1)2𝑤2

−𝑤1𝑤3

(1+𝑤1)𝑤2
2

𝑤1

(1+𝑤1)𝑤2
−𝑤3

(1+𝑤1)2𝑤2

−𝑤3

(1+𝑤1)𝑤2
2

1
(1+𝑤1)𝑤2

0 0 1

⎞
⎟
⎟
⎟
⎠

,

and therefore
||det(Jℎ(w))|| =

|
|
|

−𝑤2
3

(1 + 𝑤1)2𝑤3
2

|
|
|
=

𝑤2
3

(1 + 𝑤1)2𝑤3
2
,

since chi-squared random variables are non-negative.

For the density of 𝑌𝑖 it holds that

𝑓𝑌𝑖(𝑦) ∝ 𝑦𝜈𝑖/2−1𝑒−𝑦/2

if 𝑦 > 0 and 0 otherwise.7 Since 𝑌1, 𝑌2, 𝑌3 are mutually independent, it holds for the
joint density of Y that

𝑓Y(𝑦1, 𝑦2, 𝑦3) ∝ 𝑦𝜈1/2−11 𝑦𝜈2/2−12 𝑦𝜈3/2−13 exp(−1
2
(𝑦1 + 𝑦2 + 𝑦3))

if 𝑦1, 𝑦2, 𝑦3 > 0 and 0 otherwise. Then, by Theorem B.7, we find that

𝑓W(𝑤1, 𝑤2, 𝑤3) ∝ (
𝑤1𝑤3

(1 + 𝑤1)𝑤2
)
𝜈1/2−1

(
𝑤3

(1 + 𝑤1)𝑤2
)
𝜈2/2−1

𝑤𝜈3/2−1
3

⋅ exp(−1
2
[

𝑤1𝑤3
(1 + 𝑤1)𝑤2

+
𝑤3

(1 + 𝑤1)𝑤2
+ 𝑤3]) ⋅

𝑤2
3

(1 + 𝑤1)2𝑤3
2

= 𝑤𝜈1/2−1
1 (1 + 𝑤1)

−(𝜈1+𝜈2)/2 ⋅ 𝑤−(𝜈1+𝜈2)/2−1
2

⋅ 𝑤(𝜈1+𝜈2+𝜈3)/2−1
3 exp(−

1 + 𝑤2
2𝑤2

𝑤3)

if 𝑤1, 𝑤2, 𝑤3 > 0 and 0 otherwise. To obtain the joint density of (𝑊1,𝑊2), we integrate
out𝑊3. First, let

𝑐1 =
1
2
(𝜈1 + 𝜈2 + 𝜈3) and 𝑐2 =

1+𝑤2

2𝑤2
.

Then, by Lemma B.11, we find that

∫
∞

0
𝑤𝑐1−1
3 𝑒−𝑐2𝑤3 d𝑤3 ∝ (1+𝑤2

𝑤2
)
−(𝜈1+𝜈2+𝜈3)/2

.

7The symbol ∝ denotes proportionality. See Appendix A for the exact definition.
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Hence,

𝑓𝑊1,𝑊2(𝑤1, 𝑤2) = ∫
∞

−∞
𝑓W(𝑤1, 𝑤2, 𝑤3) d𝑤3

∝ 𝑤𝜈1/2−1
1 (1 + 𝑤1)

−(𝜈1+𝜈2)/2 ⋅ 𝑤−(𝜈1+𝜈2)/2−1
2

⋅ ∫
∞

0
𝑤(𝜈1+𝜈2+𝜈3)/2−1
3 exp(−

1 + 𝑤2
2𝑤2

𝑤3) d𝑤3

∝ 𝑤𝜈1/2−1
1 (1 + 𝑤1)

−(𝜈1+𝜈2)/2⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
≔𝑝1(𝑤1)

⋅ 𝑤𝜈3/2−1
2 (1 + 𝑤2)

−(𝜈1+𝜈2+𝜈3)/2⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
≔𝑝2(𝑤2)

.

if 𝑤1, 𝑤2 > 0 and 0 otherwise. Therefore, by Theorem 3.2, it holds that𝑊1 ⟂⟂ 𝑊2.

Now, we will reproduce Quesenberry’s proof of Theorem 5.3, which uses this lemma.
The key observation of this proof is that, using (3.20), the sample variance can be
updated with the numerator of the self-starting statistic.

Fix 𝑘 such that 3 ≤ 𝑘 < 𝑛. We will attempt to show that 𝑇𝑘 ⟂⟂ 𝑇𝑘+1. Let

𝑌1 =
1
𝜍2

𝑘−1
∑
𝑖=1

(𝑋𝑖 − 𝑋𝑘−1)
2
= 𝑘−2

𝜍2
𝑆2𝑘−1,

𝑌2 =
1
𝜍2

𝑘−1
𝑘
(𝑋𝑘 − 𝑋𝑘−1)

2
,

𝑌3 =
1
𝜍2

𝑘
𝑘+1

(𝑋𝑘+1 − 𝑋𝑘)
2
.

It follows from (3.22) that 𝑌1 ∼ 𝜒2(𝑘 − 2) and Lemma 4.1 implies that 𝑌2, 𝑌3 ∼ 𝜒2(1).
Next, let

𝑊1 =
𝑌2
1

𝑘−2
𝑌1

= 𝑘 − 1
𝑘 (

𝑋𝑘 − 𝑋𝑘−1
𝑆𝑘−1

)
2

and, using (3.20),

𝑊2 =
𝑌3

1
𝑘−1

(𝑌1 + 𝑌2)
=

𝑘
𝑘+1

(𝑋𝑘+1 − 𝑋𝑘)
2

𝑘−2
𝑘−1

𝑆2𝑘−1 +
1
𝑘
(𝑋𝑘 − 𝑋𝑘−1)

2 =
𝑘

𝑘 + 1(
𝑋𝑘+1 − 𝑋𝑘

𝑆2𝑘
)
2

.

It can be shown that 𝑌1, 𝑌2, and 𝑌3 are mutually independent,8 which implies that
𝑊1 ⟂⟂ 𝑊2 by Lemma 5.4. Therefore, by Theorem 3.5,√𝑊1 = |𝑇𝑘| and√𝑊2 = |𝑇𝑘+1| are
independent as well, but we cannot conclude the same for 𝑇𝑘 and 𝑇𝑘+1. This is because
the square function is not bijective. This means that squaring 𝑇𝑘 oversimplifies the
problem and Lemma 5.4 is too weak to prove Theorem 5.3, although Quesenberry
(1991) glosses over this issue.

8We will not go into detail here, but this follows from Lemma 5.1 and joint normality.
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To resolve this issue, we state a new lemma that proves independence for statistics
modeled after 𝑇𝑘 instead of 𝑇2

𝑘 . Thus, some input variables have to change from a 𝜒2

to a normal distribution. The resulting statistics are more complex, but it turns out
the same proof strategy still works: using an auxiliary variable we compute the joint
density and show that it factorizes.

Lemma 5.5 — Let 𝑌 ∼ 𝜒2(𝑘) and 𝑍1, 𝑍2 ∼ 𝒩(0, 1). Assume that 𝑌, 𝑍1, 𝑍2 are mutually
independent. Then, the random variables

𝑉1 ≔
𝑍1
√𝑌

and 𝑉2 ≔
𝑍2

√𝑌 + 𝑍21
are independent.

Proof. First, we introduce an auxiliary variable 𝑉0 ≔ 𝑌. We write Z = (𝑌, 𝑍1, 𝑍2) and
V = (𝑉0, 𝑉1, 𝑉2). Note that V = 𝑔(Z), where 𝑔∶ ℝ3 → ℝ3 is defined by

𝑔(𝑦, 𝑧1, 𝑧2) = (𝑦,
𝑧1
√𝑦

, 𝑧2
√𝑦 + 𝑧21

).

Its inverse ℎ ≔ 𝑔−1 is defined by

ℎ(𝑣0, 𝑣1, 𝑣2) = (𝑣0, √𝑣0𝑣1, √𝑣0(1 + 𝑣21)𝑣2).

The Jacobian matrix of ℎ evaluated at v = (𝑣0, 𝑣1, 𝑣2) equals9

Jℎ(v) =
⎛
⎜⎜
⎝

1 0 0
∗ √𝑣0 0
∗ ∗ √𝑣0(1 + 𝑣21)

⎞
⎟⎟
⎠

and therefore
||det(Jℎ(v))|| = ||√𝑣

2
0(1 + 𝑣21)|| = |𝑣0|√1 + 𝑣21 .

Now, for the densities, note that

𝑓𝑌(𝑥) ∝ 𝑥𝑘/2−1 exp(−1
2
𝑥), (if 𝑥 > 0 and 0 otherwise)

𝑓𝑍𝑖(𝑥) ∝ exp(−1
2
𝑥2).

Since 𝑌, 𝑍1, 𝑍2 are mutually independent, it holds for the joint density of Z that

𝑓Z(𝑦, 𝑧1, 𝑧2) ∝ 𝑦𝑘/2−1 exp(−1
2
(𝑦 + 𝑧21 + 𝑧22))

if 𝑦 > 0 and 0 otherwise. Then, by Theorem B.7, we find that

𝑓V(𝑣0, 𝑣1, 𝑣2) ∝ 𝑣𝑘/2−10 exp(−1
2
(𝑣0 + 𝑣0𝑣21 + 𝑣0(1 + 𝑣21)𝑣22)) ⋅ |𝑣0|√1 + 𝑣21

= 𝑣𝑘/20 √1 + 𝑣21 exp(−
1
2
𝑣0(1 + 𝑣21)(1 + 𝑣22))

= 𝑣𝑧−10 √1 + 𝑣21 exp(−𝑐𝑣0)
9The symbol ∗ is used as a placeholder for irrelevant expressions.
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if 𝑣0 > 0 and 0 otherwise, where 𝑧 ≔ 1
2
𝑘 + 1 and 𝑐 ≔ 1

2
(1 + 𝑣21)(1 + 𝑣22). To obtain the

joint density of (𝑉1, 𝑉2), we integrate out 𝑉0. Since 𝑐, 𝑧 > 0 and neither depends on 𝑣0,
it follows from Lemma B.11 that

𝑓𝑉1,𝑉2(𝑣1, 𝑣2) = ∫
∞

−∞
𝑓V(𝑣0, 𝑣1, 𝑣2) d𝑣0

∝ √1 + 𝑣21 ∫
∞

0
𝑣𝑧−10 exp(−𝑐𝑣0) d𝑣0

= √1 + 𝑣21 𝑐−𝑧 Γ(𝑧)

∝ (1 + 𝑣21)
−(𝑘+1)/2(1 + 𝑣22)

−𝑘/2−1.

Therefore, by Theorem 3.2, we conclude that 𝑉1 ⟂⟂ 𝑉2.

This new lemma is sufficient to prove Theorem 5.3, in a similar way that we attempted
before.

Proof of Theorem 5.3. Fix 𝑘 such that 3 ≤ 𝑘 < 𝑛. We will show that 𝑇𝑘 ⟂⟂ 𝑇𝑘+1. Let

𝑌 = 1
𝜍2

𝑘−1
∑
𝑖=1

(𝑋𝑖 − 𝑋𝑘−1)
2
= 𝑘−2

𝜍2
𝑆2𝑘−1,

𝑍1 =
1
𝜍√

𝑘−1
𝑘
(𝑋𝑘 − 𝑋𝑘−1),

𝑍2 =
1
𝜍√

𝑘
𝑘+1

(𝑋𝑘+1 − 𝑋𝑘).

It follows from (3.22) that 𝑌 ∼ 𝜒2(𝑘 − 2) and Lemma 4.1 implies that 𝑍1, 𝑍2 ∼ 𝒩(0, 1).
Next, let

𝑉1 ≔
𝑍1
√𝑌

and 𝑉2 ≔
𝑍2

√𝑌 + 𝑍21
such that

√𝑘 − 2𝑉1 =
𝑍1

√
1

𝑘−2
𝑌
= √

𝑘 − 1
𝑘

𝑋𝑘 − 𝑋𝑘−1
𝑆𝑘−1

= 𝑇𝑘

and, using (3.20),

√𝑘 − 1𝑉2 =
√

𝑘
𝑘+1

(𝑋𝑘+1 − 𝑋𝑘)

√
𝑘−2
𝑘−1

𝑆2𝑘−1 +
1
𝑘
(𝑋𝑘 − 𝑋𝑘−1)

2
=√

𝑘
𝑘 + 1

𝑋𝑘+1 − 𝑋𝑘
𝑆𝑘

= 𝑇𝑘+1.

If 𝑉1 ⟂⟂ 𝑉2, then 𝑇𝑘 ⟂⟂ 𝑇𝑘+1 by Theorem 3.5, which concludes the proof. The former
follows from Lemma 5.5 if 𝑌, 𝑍1, 𝑍2 are mutually independent. To prove this, we define
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the random vector

U =

⎛
⎜
⎜
⎜
⎜
⎝

𝑋1 − 𝑋𝑘−1
⋮

𝑋𝑘−1 − 𝑋𝑘−1
𝑋𝑘 − 𝑋𝑘−1
𝑋𝑘+1 − 𝑋𝑘

⎞
⎟
⎟
⎟
⎟
⎠

.

Note that 𝑍1 is a function of 𝑈𝑘, 𝑍2 of 𝑈𝑘+1, and 𝑌 of (𝑈1,… ,𝑈𝑘−1). Using Lemma 5.1,
we find that 𝑈𝑘 ⟂⟂ 𝑈𝑘+1 and that

∀𝑖 = 1,… , 𝑘 − 1 ∶ 𝑈𝑖 ⟂⟂ 𝑈𝑘 and 𝑈𝑖 ⟂⟂ 𝑈𝑘+1.

Furthermore, due to the joint normality of U,10 pairwise independence implies mutual
independence. Therefore (𝑈1,… ,𝑈𝑘−1), 𝑈𝑘, 𝑈𝑘+1 are mutually independent, which
implies 𝑌, 𝑍1, 𝑍2 are also mutually independent.

5.1.3 Case iv: Mutual independence

It is possible to generalize Theorem 5.3 to prove pairwise independence, i.e., show
that 𝑇𝑘 ⟂⟂ 𝑇ℓ for some 𝑘 < ℓ. Using the notation from Lemma 5.5, we would need
to introduce a fourth random variable, i.e., 𝑌 ′, that “updates” the variance 𝑆2𝑘 to 𝑆

2
ℓ−1.

This would require modifying Lemma 5.5 to prove that

𝑍1
√𝑌

⟂⟂ 𝑍2
√𝑌 + 𝑍21 + 𝑌 ′

Note that 𝑌 ′ would have a chi-squared distribution with ℓ − 1 − 𝑘 degrees of freedom.
One disadvantage of this approach, however, is that it requires a second auxiliary
variable.

An alternative is to directly generalize the proof tomutual independence, which implies
pairwise independence as a special case. For this proof, themost important preliminary
is Proposition 3.21. This formula reveals a relationship between the numerator and
denominator of the self-starting statistic. In particular, the variance of the first 𝑘
measurements is essentially the sum of the squared numerators of the first 𝑘 − 2
self-starting statistics (and an initial term). This is shown in full detail in the proof of
Theorem 5.10.

In order to prove mutual independence, we need to generalize Lemma 5.5. Since we
will express the denominator of the self-starting statistic in terms of the numerators,
we do not need a 𝜒2-distributed variable 𝑌 to “kick start” the variance. Instead, all
input variables can be standard normal, which simplifies the derivation of the density.
Furthermore, we will transform 𝑛 “input” variables to 𝑛 − 1 “output” variables, so still

10Note that any linear combination of the components ofU is itself a linear combination of𝑋1,… ,𝑋𝑛
which are independent and normal.



CHAPTER 5. PROOFS OF INDEPENDENCE 39

only one auxiliary variable is necessary. Therefore, in some sense, the proof for mutual
independence is more elegant than the proof for pairwise independence.

Now, we will prove the generalized lemma.

Lemma 5.6 — Let 𝑍1,… , 𝑍𝑛
iid∼ 𝒩(0, 1). Then, the random variables

𝑉2 ≔
𝑍2
√𝑍21

, 𝑉3 ≔
𝑍3

√𝑍21 + 𝑍22
, … , 𝑉𝑛 ≔

𝑍𝑛
√𝑍21 +⋯+ 𝑍2𝑛−1

are mutually independent.

Proof. First, we introduce an auxiliary variable 𝑉1 ≔ 𝑍1.11 We write Z = (𝑍1,… , 𝑍𝑛)
and V = (𝑉1,… , 𝑉𝑛). Note that V = 𝑔(Z), where the components of 𝑔∶ ℝ𝑛 → ℝ𝑛 are
defined by

𝑔1(z) = 𝑧1,
𝑔𝑘(z) = 𝑧𝑘 / √𝑧21 +⋯+ 𝑧2𝑘−1, 𝑘 = 2,… , 𝑛.

Next, we will derive ℎ ≔ 𝑔−1 by solving the system of equations given by

⎧
⎪

⎨
⎪
⎩

𝑣1 = 𝑧1,
𝑣2 = 𝑧2 / √𝑧21 ,

⋮
𝑣𝑛 = 𝑧𝑛 / √𝑧21 +⋯+ 𝑧2𝑛−1,

for 𝑧1,… , 𝑧𝑛. Define 𝑠𝑘 = ∑𝑘
𝑖=1 𝑧

2
𝑖 . The 𝑘-th equation in the system above implies that

𝑧𝑘 = √𝑠𝑘−1 𝑣𝑘, 𝑘 = 2,… , 𝑛. (5.7)

Now, by induction, we will show that

𝑠𝑘 = 𝑣21
𝑘
∏
𝑖=2

(1 + 𝑣2𝑖 ), 𝑘 = 1,… , 𝑛. (5.8)

The base case 𝑠1 = 𝑧21 = 𝑣21 holds trivially. Assuming that (5.8) holds for 1 ≤ 𝑘 < 𝑛
(induction hypothesis), we will show that it also holds for 𝑘 + 1. Indeed,

𝑠𝑘+1 = 𝑠𝑘 + 𝑧2𝑘+1 (by definition)
= 𝑠𝑘 + 𝑠𝑘𝑣2𝑘+1 (by 5.7)
= 𝑠𝑘(1 + 𝑣2𝑘+1)

= 𝑣21
𝑘+1
∏
𝑖=2

(1 + 𝑣2𝑖 ). (by IH)

11Other definitions for the auxiliary variable are possible as well, such as 𝑉1 ≔ 𝑍𝑛. However, this
particular choice greatly simplifies the Jacobian matrix later in the proof.
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Therefore, (5.7) and (5.8) imply that

𝑧1 = 𝑣1,

𝑧𝑘 = 𝑣𝑘
√√√

√
𝑣21

𝑘−1
∏
𝑖=2

(1 + 𝑣2𝑖 ), 𝑘 = 2,… , 𝑛

and, consequently,

ℎ1(v) = 𝑣1,

ℎ2(v) = √𝑣21 𝑣2,

ℎ3(v) = √𝑣21(1 + 𝑣22) 𝑣3,
⋮

ℎ𝑛(v) = √𝑣21(1 + 𝑣22)⋯ (1 + 𝑣2𝑛−1) 𝑣𝑛.

Next, we want to compute the determinant of Jℎ(v), i.e., the Jacobian matrix of ℎ
evaluated at (𝑣1,… , 𝑣𝑛). For 𝑖 < 𝑗, note that ℎ𝑖(v) does not involve 𝑣𝑗, so

(Jℎ(v))𝑖𝑗 =
𝜕ℎ𝑖
𝜕𝑣𝑗

(v) = 0.

In other words, Jℎ(v) is lower triangular. This implies that its determinant is simply
the product of its diagonal. Therefore,

||det(Jℎ(v))|| =
𝑛
∏
𝑖=1

𝜕ℎ𝑖
𝜕𝑣𝑖
(v) = |𝑣1|𝑛−1

𝑛
∏
𝑖=2

(1 + 𝑣2𝑖 )
𝑛−𝑖
2

⏟⎵⎵⎵⏟⎵⎵⎵⏟
≔𝑝1(v)

.

Since 𝑍𝑖 are i.i.d. 𝒩(0, 1), it holds that

𝑓Z(z) ∝
𝑛
∏
𝑖=1

𝑒−𝑧2𝑖 /2 = 𝑒−𝑠𝑛/2, z ∈ ℝ𝑛.

Then, by Theorem B.7, we find that

𝑓V(v) = 𝑓Z(ℎ(v)) ||det(Jℎ(v))||. (5.9)

To simplify our derivation, we define

𝑝2(v) =
1
2

𝑛
∏
𝑖=2

(1 + 𝑣2𝑖 )

such that 𝑒−𝑠𝑛/2 = 𝑒−𝑝2(v) 𝑣21 by (5.8). Combining the above, (5.9) resolves to

𝑓V(v) ∝ 𝑝1(v) |𝑣1|𝑛−1𝑒−𝑝2(v) 𝑣
2
1.

Next, we integrate out 𝑉1 to obtain the joint density of 𝑉2,… , 𝑉𝑛. Note that 𝑝1(v) and
𝑝2(v) do not depend on 𝑣1, so they are effectively constants. Using Lemma B.12, we
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find that

𝑓𝑉2,…,𝑉𝑛(𝑣2,… , 𝑣𝑛) = ∫
∞

−∞
𝑓V(v) d𝑣1

∝ 𝑝1(v)∫
∞

−∞
|𝑣1|𝑛−1𝑒−𝑝2(v) 𝑣

2
1 d𝑣1

∝ 𝑝1(w)(𝑝2(w))
−𝑛/2.

This can be simplified further, but it is sufficient to note that 𝑓𝑉2,…,𝑉𝑛 factorizes into
functions of 𝑣2,… , 𝑣𝑛. This is because 𝑝1(v) and 𝑝2(v) are factorizable and do not
depend on 𝑣1. Therefore, by Theorem 3.2, we conclude that 𝑉2,… , 𝑉𝑛 are mutually
independent.

Using the preceding lemma, we can now prove the mutual independence of the case iv
self-starting statistic.

Theorem 5.10 — Let 𝑛 ≥ 3 and 𝑋1,… , 𝑋𝑛
iid∼ 𝒩(𝜇, 𝜎2). Then, the random variables

𝑇𝑘 ≔√
𝑘 − 1
𝑘

𝑋𝑘 − 𝑋𝑘−1
𝑆𝑘−1

, 𝑘 = 3,… , 𝑛

are mutually independent.

Proof. Let

𝑍𝑘 =
1
𝜍√

𝑘−1
𝑘
(𝑋𝑘 − 𝑋𝑘−1), 𝑘 = 2,… , 𝑛.

These are the case ii self-starting statistics, which are mutually independent by Theo-
rem 5.2 and have a𝒩(0, 1) distribution. Note that, by Proposition 3.21,

𝑆2𝑘 =
𝜍2

𝑘−1

𝑘
∑
𝑖=2

𝑍2𝑖 , 𝑘 = 2,… , 𝑛.

Hence,

𝑇𝑘 =
𝜎𝑍𝑘

√
𝜍2

𝑘−2
∑𝑘−1

𝑖=2 𝑍
2
𝑖

= √𝑘 − 2𝑉𝑘 where 𝑉𝑘 ≔
𝑍𝑘

√𝑍22 +⋯+ 𝑍2𝑘−1

for 𝑘 = 3,… , 𝑛. Since the 𝑉𝑘 are independent by Lemma 5.6,12 the 𝑇𝑘 are independent
by Theorem 3.5.

In the end, our proof is substantially different from the one given by Quesenberry
(1991). This is because, in summary, it is faulty regarding the following aspects.

• The main text claims that the self-starting statistics are mutually independent,
referring to the appendix, but in fact only serial independence is shown.

12Compared to Lemma 5.6, note that the indices in this proof are offset by one. That is, 𝑍𝑘 in this
proof corresponds to 𝑍𝑘−1 in the lemma, and similarly for 𝑉𝑘.
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• The proof of Lemma 2 incorrectly assumes that if a random variable is pairwise
independent of two other random variables, then it is also independent of any
function (i.e., jointly independent) of the other two. Symbolically, for random
variables 𝐴, 𝐵1, and 𝐵2,

𝐴 ⟂⟂ 𝐵1 ∧ 𝐴 ⟂⟂ 𝐵2 ⟹/ 𝐴 ⟂⟂ (𝐵1, 𝐵2).

• In the proof of Theorem 1, it is claimed that two random variables are indepen-
dent because their squares are independent. This is not true, however, since the
square root is not a bijective function.

5.1.4 Case iii

To show mutual independence for case iii, we follow almost the same strategy.

Theorem 5.11 — Let 𝑛 ≥ 2 and 𝑋1,… , 𝑋𝑛
iid∼ 𝒩(𝜇, 𝜎2). Then, the random variables

𝑇𝑘 ≔
𝑋𝑘 − 𝜇
𝑆′𝑘−1

, 𝑘 = 2,… , 𝑛

where

(𝑆′𝑘−1)
2 = 1

𝑘−1

𝑘−1
∑
𝑖=1
(𝑋𝑖 − 𝜇)2

are mutually independent.

Proof (sketch). Let
𝑍𝑘 =

𝑋𝑘 − 𝜇
𝜎 , 𝑘 = 1,… , 𝑛

such that 𝑍1,… , 𝑍𝑛
iid∼ 𝒩(0, 1). Then,

𝑇𝑘 =
𝜎𝑍𝑘

√
𝜍2

𝑘−1
∑𝑘−1

𝑖=1 𝑍
2
𝑖

=
(𝑘 − 1)𝑍𝑘

√𝑍21 +⋯+ 𝑍2𝑘−1
.

Therefore, the 𝑇𝑘 are independent by Lemma 5.6.

5.2 Recursive residuals

The correspondence between Propositions 3.21 and 3.27 reveals that the studentized
recursive residuals and the self-starting statistics are similar in structure (this connec-
tion will be formalized in Corollary 5.14). Therefore, in Section 5.2.2, we will show that
the studentized recursive residuals are mutually independent using a proof similar to
Theorem 5.10. First, however, we will show the mutual independence of the (ordinary)
recursive residuals in Section 5.2.1.
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Note that in order to standardize the (ordinary) recursive residuals, we need to divide
them by 𝜎, in a fashion analogous to the case ii self-starting statistic. Therefore, we
refer to them as the case with “known variance”. Likewise, the studentized recur-
sive residuals correspond to case iv, so we refer to them as the case with “unknown
variance”.

5.2.1 Known variance

The proof of the following theorem is a simplification of the proof by Van Dalen
(2018), which is based on the proof by Brown et al. (1975). Although it requires more
calculation than, for example, the proof of Theorem 5.2, the underlying idea is again
that joint normality and pairwise uncorrelatedness implies mutual independence.

Theorem 5.12 — Consider the linear regression model given by y = 𝑋𝜷 + 𝜺 as defined
in Section 3.3, with the assumptions that 𝑋𝑝 has full rank and that 𝜀1,… , 𝜀𝑛

iid∼ 𝒩(0, 𝜎2).
Then, the recursive residuals

𝑤𝑘 =
𝑦𝑘 − x𝑘 ̂𝜷(𝑘−1)

√1+ x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1xT
𝑘

, 𝑘 = 𝑝 + 1,… , 𝑛

are mutually independent.

Proof. By Theorem 3.5, it is sufficient to show that

𝑇𝑘 ≔ 𝑦𝑘 − x𝑘 ̂𝜷(𝑘−1), 𝑘 = 𝑝 + 1,… , 𝑛

are mutually independent. Note that

𝑇𝑘 = 𝑦𝑘 − x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1𝑋T
𝑘−1y[1∶𝑘−1]

= x𝑘𝜷 + 𝜀𝑘 − x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1𝑋T
𝑘−1(𝑋𝑘−1𝜷 + 𝜺[1∶𝑘−1])

= x𝑘𝜷 + 𝜀𝑘 − x𝑘𝜷 − x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1𝑋T
𝑘−1𝜺[1∶𝑘−1]

= 𝜀𝑘 − x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1𝑋T
𝑘−1𝜺[1∶𝑘−1].

Hence, 𝑇𝑘 is a linear combination of 𝜀1,… , 𝜀𝑘. Furthermore, note that 𝑇𝑝+1,… , 𝑇𝑛 are
jointly normal, since 𝑎𝑝+1𝑇𝑝+1+⋯+𝑎𝑛𝑇𝑛 is normally distributed for all 𝑎𝑝+1,… , 𝑎𝑛 ∈
ℝ. This is because it is a linear combination of 𝜀1,… , 𝜀𝑛 which are independent and
normal. Therefore, due to joint normality, mutual independence is implied by pairwise
uncorrelatedness. It remains to compute the covariance between 𝑇𝑘 and 𝑇ℓ, where
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𝑘 < ℓ (without loss of generality). We find that

Cov(𝑇𝑘, 𝑇ℓ)

= Cov(𝜀𝑘 − x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1𝑋T
𝑘−1𝜺[1∶𝑘−1], 𝜀ℓ − xℓ(𝑋T

ℓ−1𝑋ℓ−1)
−1𝑋T

ℓ−1𝜺[1∶ℓ−1])

= Cov(𝜀𝑘, 𝜀ℓ − xℓ(𝑋T
ℓ−1𝑋ℓ−1)

−1𝑋T
ℓ−1𝜺[1∶ℓ−1])

+ Cov(−x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1𝑋T
𝑘−1𝜺[1∶𝑘−1], 𝜀ℓ − xℓ(𝑋T

ℓ−1𝑋ℓ−1)
−1𝑋T

ℓ−1𝜺[1∶ℓ−1])

= Cov(𝜀𝑘, −xℓ(𝑋T
ℓ−1𝑋ℓ−1)

−1xT
𝑘𝜀𝑘)

+ Cov(−x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1𝑋T
𝑘−1𝜺[1∶𝑘−1], −xℓ(𝑋

T
ℓ−1𝑋ℓ−1)

−1𝑋T
𝑘−1𝜺[1∶𝑘−1])

= (−xℓ(𝑋T
ℓ−1𝑋ℓ−1)

−1xT
𝑘) 𝜎2

+ (−x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1𝑋T
𝑘−1) 𝜎2𝐼𝑘−1 (−xℓ(𝑋

T
ℓ−1𝑋ℓ−1)

−1𝑋T
𝑘−1)

T

= (−xℓ(𝑋T
ℓ−1𝑋ℓ−1)

−1xT
𝑘) 𝜎2

+ (x𝑘(𝑋T
𝑘−1𝑋𝑘−1)

−1𝑋T
𝑘−1𝑋𝑘−1(𝑋

T
ℓ−1𝑋ℓ−1)

−1xT
ℓ ) 𝜎2

= (−xℓ(𝑋T
ℓ−1𝑋ℓ−1)

−1xT
𝑘 + x𝑘(𝑋T

ℓ−1𝑋ℓ−1)
−1xT

ℓ ) 𝜎2

= 0.

In the third step above, it is used that Cov(𝜀𝑖, 𝜀𝑗) = 0 for all 𝑖 ≠ 𝑗 due to independence.
Furthermore, the fourth step uses that Cov(𝐴𝜺, 𝐵𝜺) = 𝐴Cov(𝜺) 𝐵T.

5.2.2 Unknown variance

Now, lastly, we will show that the studentized recursive residuals are mutually inde-
pendent. The proof of this is almost identical to the proof of Theorem 5.10, except
that a different updating formula is used. Interestingly, the proof of the “easier” case
(i.e., Theorem 5.12) is used in the same way that Theorem 5.2 is applied in the proof of
Theorem 5.10.

Theorem 5.13 — Consider the linear regression model given by y = 𝑋𝜷 + 𝜺 as defined
in Section 3.3, with the assumptions that 𝑋𝑝 has full rank and that 𝜀1,… , 𝜀𝑛

iid∼ 𝒩(0, 𝜎2).
Then, the studentized recursive residuals

𝑤′
𝑘 =

𝑤𝑘

√
1

𝑘−1−𝑝
𝑆𝑆𝑅𝑘−1

, 𝑘 = 𝑝 + 2,… , 𝑛

are mutually independent. Here, 𝑤𝑘 is defined by (3.15).

Proof. Let
𝑍𝑘 =

1
𝜍
𝑤𝑘, 𝑘 = 𝑝 + 1,… , 𝑛.
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These are the standardized recursive residuals, which are mutually independent by
Theorem 5.12 and have a𝒩(0, 1) distribution. Note that, by Proposition 3.27,

𝑆𝑆𝑅𝑘 = 𝜎2
𝑘
∑

𝑖=𝑝+1
𝑍2𝑖 , 𝑘 = 𝑝 + 1,… , 𝑛.

Hence,

𝑤′
𝑘 =

𝜎𝑍𝑘

√
𝜍2

𝑘−1−𝑝
∑𝑘−1

𝑖=𝑝+1 𝑍
2
𝑖

= √𝑘 − 1 − 𝑝𝑉𝑘 where 𝑉𝑘 ≔
𝑍𝑘

√𝑍2𝑝+1 +⋯+ 𝑍2𝑘−1

for 𝑘 = 𝑝+2,… , 𝑛. Since the𝑉𝑘 are independent by Lemma 5.6, the𝑤′
𝑘 are independent

by Theorem 3.5.

Note that Theorem 5.13 is stronger than Theorem 5.10, i.e., the former implies the
latter as a special case. This is shown by the following result. The basic idea is to use
a linear regression model that only includes an intercept. Then, the first (and only)
coefficient is the mean.

Corollary 5.14 — Let 𝑛 ≥ 3 and 𝐴1,… , 𝐴𝑛
iid∼ 𝒩(𝜇, 𝜎2).13 Then, the random variables

𝑇𝑘 ≔√
𝑘 − 1
𝑘

𝐴𝑘 − 𝐴𝑘−1
𝑆𝑘−1

, 𝑘 = 3,… , 𝑛

are mutually independent.

Proof. Consider the linear regression model given by y = 𝑋𝜷 + 𝜺 as defined in Sec-
tion 3.3, with the assumption that 𝜀1,… , 𝜀𝑛

iid∼ 𝒩(0, 𝜎2). Choose y = (𝐴1,… , 𝐴𝑛)T and
𝑋 = 1𝑛 such that 𝜷 = (𝜇) = 𝜇.14 Note that rank(𝑋𝑝) = 1 = 𝑝, so 𝑋𝑝 has full rank.
Then, x𝑘 = (1) = 1 and

̂𝜷(𝑘) = (1T
𝑘1𝑘)

−11T
𝑘y[1∶𝑘] = 𝑘−1

𝑘
∑
𝑖=1

𝐴𝑖 = 𝐴𝑘

for 𝑘 = 1,… , 𝑛. Hence,

𝑆𝑆𝑅𝑘 =
𝑘
∑
𝑖=1
(𝑦𝑖 − x𝑖 ̂𝜷(𝑘))

2
=

𝑘
∑
𝑖=1
(𝐴𝑖 − 1 ⋅ 𝐴𝑘)

2
= (𝑘 − 1)𝑆2𝑘

for 𝑘 = 2,… , 𝑛. Therefore, recursive residuals simplify to

𝑤𝑘 =
𝐴𝑘 − 1 ⋅ 𝐴𝑘−1

√1+ 1 ⋅ (1T
𝑘−11𝑘−1)

−1 ⋅ 1
=
𝐴𝑘 − 𝐴𝑘−1

√1+ 1
𝑘−1

=√
𝑘−1
𝑘
(𝐴𝑘 − 𝐴𝑘−1)

13Since the design matrix is already denoted by 𝑋, we instead use𝐴𝑖 to denote measurements. This
also means that 𝑆2 is now defined in terms of 𝐴𝑖.

14Note that 𝜷 can be considered a normal random variable with zero variance.
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for 𝑘 = 2,… , 𝑛. Furthermore, the studentized recursive residuals simplify to

𝑤′
𝑘 =

√
𝑘−1
𝑘
(𝐴𝑘 − 𝐴𝑘−1)

√
1

𝑘−2
(𝑘 − 2)𝑆2𝑘−1

=√
𝑘 − 1
𝑘

𝐴𝑘 − 𝐴𝑘−1
𝑆𝑘−1

for 𝑘 = 3,… , 𝑛. Then, independence of 𝑇𝑘 = 𝑤′
𝑘 follows from Theorem 5.13.

Chapter summary
We proved mutual independence for each case of the self-starting statistic and
for both the ordinary and studentized recursive residuals. For case iv and the
studentized recursive residuals, mutual independence effectively follows from the
updating formulae and Lemma 5.6. The other results were proven by showing
joint normality and pairwise uncorrelatedness. An interesting observation is
that the independence of the case iv self-starting statistic is a special case of the
independence of the studentized recursive residuals.



Chapter 6

Example application

In this chapter, as an example, we will apply the techniques discussed in this thesis to
a real-world problem, namely the monitoring of wind turbines. This is based on the
work by Kenbeek (2016) in the context of the Dutch national project DAISY (Dynamic
Asset Information System). Kenbeek (2016) created a model that can be used to predict
failures ahead of time and efficiently schedule maintenance. Following Meeuwis
(2017) and Van Dalen (2018), our goal is to find a representative benchmark period
(i.e., Phase i) which can be used to create a regression model. For this, we will use
self-starting control charts and recursive residuals.

Our analysis uses the same dataset as Kenbeek (2016) of a single wind turbine located
in the Netherlands. It consists of 110 variables that were measured every 4 minutes
from 2013–06–19, 18:32 to 2015–03–18, 23:56. Before we analyze the data, we first
filter it based on findings by Kenbeek (2016).

• There was extensive maintenance on 2013–11–16, so we only consider data
before that for the benchmark period.

• To decrease autocorrelation, we subsample the data at a frequency of 4 hours.

• We only consider measurements when the main generator is in use (i.e., when
the rotor speed exceeds 25.8 RPM).

Then, only 200measurements remain (each containing values for the 110 variables).

Using all-subset and stepwise selectionmethods, Kenbeek (2016) found good regression
models for the temperature of various components of the wind turbine. We will focus
on the first and simplest model, where the nacelle1 temperature (response variable) is
predicted from the environment temperature (explanatory variable). We will reproduce
(the first part of) Method 1 of Van Dalen (2018), where the recursive residuals from
this model are plotted. When these exceed the lower or upper limit, this indicates an

1The housing that contains all other components.
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Figure 6.1: The normalized recursive residuals from the model which predicts the nacelle temperature
from the environment temperature. The lower control limit, center line, and upper control limit are
indicated by dashed lines labeled 𝐿, 𝐶, and 𝑈 respectively. Compare this figure to Figure 6.2b of
Van Dalen (2018).3

out-of-control situation.2 We can then conclude that the benchmark period should not
include the corresponding measurements. However, instead of (ordinary) recursive
residuals, we will compute the normalized recursive residuals as defined in Section 4.4.

Recall that control charts are most effective when the measurements are independent.
It is important to note that, in this case, there are two potential sources of dependence.

• The underlying data may be dependent. This is certainly true for our application,
since the current temperature is strongly correlated with the temperature from 4
minutes before. We decrease this correlation by subsampling the data, although
this will not eliminate dependence completely.

• We do not chart the measurements directly, but rather the residuals from a
regression model. We use a type of recursive residual which was shown to be
mutually independent in Section 5.2, but the same is not true for ordinary or
predictive residuals, which were used by Kenbeek (2016).

2Van Dalen (2018) set the control limits at ±3, but this seems to be an oversight. This is because
the (ordinary) recursive residuals do not (necessarily) have unit variance. Specifically, in this case, the
variance is slightly greater, so the limits should be farther out. Fortunately, the variance is close to 1, so
the final conclusion is the same.

3As a side note, if the data is not subsampled, Van Dalen (2018) notes that the residuals form clear
“layers”. This is also the case in Figure 6.1, although it is much less noticeable. Van Dalen (2018)
states that these are “inexplicable”, but they are likely caused by the fact that the temperatures are
integer-valued. As a result, most residuals are close to integers as well.
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Now, we will calculate the normalized recursive residuals for the model for the nacelle
temperature. These were computed using R with the strucchange package. The
code, which was adapted from Meeuwis (2017), can be found in Section C.2. The
regression chart is shown in Figure 6.1. Since the normalized recursive residuals have
a standard normal distribution, we set the control limits at the default ±3. Because we
have 2 coefficients (i.e., the intercept and one for the environment temperature), only
200 − (2 + 1) = 197 points are plotted.

The limits are first exceeded on 2013–09–10 at 16:00. This might indicate structural
change, so this measurement (and all subsequent measurements) will not be included
in the benchmark period. Therefore, we take the benchmark period from June 19
to September 9. Coincidentally, this matches the conclusions by Van Dalen (2018),
although they are based on much more thorough research. It is more strict than
Kenbeek (2016), who took 2013–10–12 as the end of the benchmark period. One
flaw of both choices is that the benchmark period takes place almost exclusively in
the summer. Therefore, it might not be representative during colder months. More
nuanced conclusions are given by Van Dalen (2018).

Chapter summary
We used normalized recursive residuals on real-world data to find an in-control
period that can be used for Phase i. For this particular application, it was important
to remove the effect of a covariate (i.e., the outside temperature) from the variable
we want to monitor (i.e., the nacelle temperature). The normalized recursive
residuals are i.i.d. standard normal, which allows them to be plotted on a control
chart with limits at ±3. However, it is important to note that the underlying data
may still be correlated. We resolved this by subsampling the data.



Chapter 7

Conclusion

In this final chapter, we will summarize the results of this thesis (Section 7.1) and list
some options for future research (Section 7.2).

7.1 Summary of results

The first research question (i.e., “Which proofs exist in the literature on the indepen-
dence of the statistics used in self-starting control charts, in both the univariate and
regression case, or of other related concepts?”) was answered in Chapter 2. We found
that the statistics used in self-starting control charts, slippage tests, and recursive
residuals are all closely related. Consequently, we searched extensively for proofs of in-
dependence in the literature on each of these concepts. However, all proofs either show
a weaker condition (i.e., serial independence, while our goal is mutual independence)
or are, arguably, unclear. Therefore, we set the goal of writing a new proof.

First, however, we established some preliminaries in Chapter 3 and introduced control
charts in more detail in Chapter 4. Specifically, we defined the notion of independent
random variables and emphasized the difference between mutual and pairwise inde-
pendence. We also derived two updating formulae that are fundamental to the proofs
in Chapter 5. Most importantly, we defined the (ordinary and studentized) recursive
residuals and the four cases of the self-starting statistic, which were the central focus
of the remainder of the thesis.

In Chapter 5, we answered (the second part of) the other research question (i.e., “Are
the existing proofs valid? And if not, how can we correct or extend them?”). First, we
amended a proof by Quesenberry (1991) of serial independence of the case iv self-
starting statistic. Next, we extended it tomutual independence. Then, we used the same
method to prove that the studentized recursive residuals are mutually independent
(Theorem 5.13). This is the main contribution of this thesis.
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Finally, in Chapter 6, we showed how control charts and recursive residuals can be
used in practice. This is based on Kenbeek (2016) and Van Dalen (2018). In short, we
replicated a case study by Van Dalen (2018), but instead of the (ordinary) recursive
residuals we used the normalized recursive residuals.

7.2 Future research

Finally, we give a number of suggestions for further research.

• Compared to Shewhart charts, (self-starting) regression charts are rather un-
known, even though they are a practical choice for many real-world problems.
In particular, the studentized recursive residuals are not well-known. This topic
is closely related to profile monitoring, on which Woodall et al. (2004) encourage
future research.

• In this thesis, we did not closely study the conditional probability integral trans-
form (CPIT), but it is a powerful technique. It would be interesting to verify, in
detail, the proof of independence of the self-starting statistics with this transform,
or consider new applications of it. A good starting point is Quesenberry (1986a).
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Appendix A

Notation

1𝑛 column vector of 𝑛 ones
𝐼𝑛 𝑛-by-𝑛 identity matrix
𝒩(𝜇, 𝜎2) normal distribution with mean 𝜇 and variance 𝜎2

𝒩(0, 1) standard normal distribution
𝜒2(𝑘) chi-squared distribution with 𝑘 degrees of freedom
𝑡(𝑘) Student’s 𝑡-distribution with 𝑘 degrees of freedom
𝑈(𝑎, 𝑏) continuous uniform distribution on the interval (𝑎, 𝑏)
𝜙 density function of the standard normal distribution
Φ distribution function of the standard normal distribution
𝑥 ∝ 𝑦 𝑥 is proportional to 𝑦, i.e., ∃𝑐 ∈ ℝ ⧵ {0} ∶ 𝑥 = 𝑐𝑦
𝑋 ⟂⟂ 𝑌 𝑋 is independent of 𝑌
𝑋 ∼ 𝒩(0, 1) 𝑋 has a standard normal distribution
i.i.d. mutually independent and identically distributed

Unless stated otherwise, (𝑎1,… , 𝑎𝑛) denotes a row vector and b ∈ ℝ𝑛 a column vector.

As a shorthand, we write 𝑋1, 𝑋2 ∼ 𝒩(0, 1) to mean that both 𝑋1 and 𝑋2 have a standard
normal distribution.

We define the empty sum as being equal to 0 (i.e., the additive identity), and the empty
product to 1 (i.e., the multiplicative identity). For example,∑1

𝑛=2 𝑛 = 0.

i
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Additional preliminaries

Details on Section 3.1

The following is a proof of Theorem 3.2, which is a generalization of, for example,
Lemma 5.5.9 of Meester (2008).

Proof of Theorem 3.2. Let 𝑓𝑋𝑖 denote the marginal density of 𝑋𝑖. If 𝑋1,… , 𝑋𝑛 are inde-
pendent, we simply take 𝑔𝑖 = 𝑓𝑋𝑖 for each 𝑖 = 1,… , 𝑛. To prove the converse, we need
to show that

𝑓(𝑥1,… , 𝑥𝑛) = 𝑓𝑋1(𝑥1)⋯𝑓𝑋𝑛(𝑥𝑛)

given that
𝑓(𝑥1,… , 𝑥𝑛) = 𝑔1(𝑥1)⋯𝑔𝑛(𝑥𝑛) (B.1)

for all 𝑥1,… , 𝑥𝑛 ∈ ℝ. First, we compute the marginal density of 𝑋1 by integrating over
all other 𝑋𝑖, i.e.,

𝑓𝑋1(𝑥1) = ∫
ℝ
⋯∫

ℝ
𝑓(𝑥1,… , 𝑥𝑛) d𝑥2⋯ d𝑥𝑛

= 𝑔1(𝑥1)∫
ℝ
𝑔2(𝑥2) d𝑥2⋯∫

ℝ
𝑔𝑛(𝑥𝑛) d𝑥𝑛,

(B.2)

and similarly for 𝑋2,… , 𝑋𝑛. Furthermore, by integrating both sides over 𝑥1, we find
that

∫
ℝ
𝑔1(𝑥1) d𝑥1⋯∫

ℝ
𝑔𝑛(𝑥𝑛) d𝑥𝑛 = 1. (B.3)

ii
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Now, note that

𝑓𝑋1(𝑥1)⋯𝑓𝑋𝑛(𝑥𝑛)

= 𝑔1(𝑥1)⋯𝑔𝑛(𝑥𝑛)
𝑛
∏
𝑖=1

𝑛
∏
𝑗=1
𝑗≠𝑖

∫
ℝ
𝑔𝑗(𝑥𝑗) d𝑥𝑗 (by (B.2))

= 𝑔1(𝑥1)⋯𝑔𝑛(𝑥𝑛)(
𝑛
∏
𝑖=1

∫
ℝ
𝑔𝑖(𝑥𝑖) d𝑥𝑖)

𝑛−1

= 𝑔1(𝑥1)⋯𝑔𝑛(𝑥𝑛) (by (B.3))
= 𝑓(𝑥1,… , 𝑥𝑛). (by (B.1))

Next, we will fill in the details of Counterexample 3.3. First, we will verify that 𝑍 has
a standard normal distribution. Using the law of total probability, the distribution
function of 𝑍 is given by

𝐹𝑍(𝑧) = P(|𝑍0| sgn(𝑋𝑌) ≤ 𝑧)

= 1
2
⋅ P(|𝑍0| sgn(𝑋𝑌) ≤ 𝑧 ∣ sgn(𝑋𝑌) = −1)

+ 0 ⋅ P(|𝑍0| sgn(𝑋𝑌) ≤ 𝑧 ∣ sgn(𝑋𝑌) = 0)

+ 1
2
⋅ P(|𝑍0| sgn(𝑋𝑌) ≤ 𝑧 ∣ sgn(𝑋𝑌) = 1)

= 1
2
P(−|𝑍0| ≤ 𝑧) + 1

2
P(|𝑍0| ≤ 𝑧)

= 1
2
(1
2
P(−|𝑍0| ≤ 𝑧 ∣ 𝑍0 ≤ 0) + 1

2
P(−|𝑍0| ≤ 𝑧 ∣ 𝑍0 > 0))

+ 1
2
(1
2
P(|𝑍0| ≤ 𝑧 ∣ 𝑍0 ≤ 0) + 1

2
P(|𝑍0| ≤ 𝑧 ∣ 𝑍0 > 0))

= 1
2
(1
2
P(−−𝑍0 ≤ 𝑧) + 1

2
P(−𝑍0 ≤ 𝑧))

+ 1
2
(1
2
P(−𝑍0 ≤ 𝑧) + 1

2
P(𝑍0 ≤ 𝑧))

= 1
2
P(𝑍0 ≤ 𝑧) + 1

2
P(−𝑍0 ≤ 𝑧)

= Φ(𝑧),

where Φ denotes the CDF of a standard normal distribution. The last step holds by
the symmetry of the normal distribution. Now, we will compute the joint distribution
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function of 𝑋 and 𝑍. It holds that

𝐹𝑋,𝑍(𝑥, 𝑧) = P(𝑋 ≤ 𝑥, |𝑍0| sgn(𝑋𝑌) ≤ 𝑧)

= 1
2
⋅ P(𝑋 ≤ 𝑥, |𝑍0| sgn(𝑋𝑌) ≤ 𝑧 ∣ 𝑋 < 0)

+ 0 ⋅ P(𝑋 ≤ 𝑥, |𝑍0| sgn(𝑋𝑌) ≤ 𝑧 ∣ 𝑋 = 0)

+ 1
2
⋅ P(𝑋 ≤ 𝑥, |𝑍0| sgn(𝑋𝑌) ≤ 𝑧 ∣ 𝑋 > 0)

= 1
2
P(𝑋 ≤ 𝑥 ∣ 𝑋 < 0)P(|𝑍0| sgn(−𝑌) ≤ 𝑧)

+ 1
2
P(𝑋 ≤ 𝑥 ∣ 𝑋 > 0)P(|𝑍0| sgn(𝑌) ≤ 𝑧)

= (1
2
P(𝑋 ≤ 𝑥 ∣ 𝑋 < 0) + 1

2
P(𝑋 ≤ 𝑥 ∣ 𝑋 > 0))Φ(𝑧)

= P(𝑋 ≤ 𝑥)Φ(𝑧),

since |𝑍0| sgn(𝑌) and |𝑍0| sgn(−𝑌) both have a standard normal distribution as well.
This follows from a derivation very similar to the one above. Note that the joint
distribution function factorizes into the marginal distribution functions of 𝑋 and 𝑍,
so they are independent. In an analogous fashion, it can be shown that 𝑌 and 𝑍 are
independent.

Probability distributions

The following definitions are well-known and can be found in any textbook. For
example, see pages 32 and 33 of Bingham and Fry (2010).

Definition B.4 — Let 𝑍1,… , 𝑍𝑘 be i.i.d. standard normal random variables. Then

𝑘
∑
𝑖=1

𝑍2𝑖

has a chi-squared distribution with 𝑘 degrees of freedom.

Definition B.5 — Let 𝑍 be a standard normal random variable, and 𝑄 a chi-squared
random variable with 𝑘 degrees of freedom. Suppose that 𝑍 ⟂⟂ 𝑄. Then

𝑍
√𝑄/𝑘

has a 𝑡-distribution with 𝑘 degrees of freedom.
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Transformations of random variables

The following theorem is well-known. For example, it is stated in the second section
of Quesenberry (1991).

Theorem B.6 (Probability integral transformation)— Let 𝑋 be a continuous random
variable with distribution function 𝐹. Then, the random variable 𝐹(𝑋) has a standard
uniform distribution.

Similarly, if 𝑌 has a standard uniform distribution and 𝑋 has a distribution function 𝐹,
then the random variable 𝐹−1(𝑌) has the same distribution as 𝑋.

Theorem B.7 — Let X be an 𝑛-dimensional continuous random vector with density 𝑓X.
Then the density of Y = 𝑔(X), where 𝑔∶ ℝ𝑛 → ℝ𝑛 is an invertible, differentiable function,
is given by

𝑓Y(y) = 𝑓X(𝑔−1(y)) |det(𝐽)|,

where 𝐽 ≔ J𝑔−1(y) is the Jacobian matrix of 𝑔−1 evaluated at y.

Proof. See Section 2.2 of Bingham and Fry (2010).

Linear algebra

Lemma B.8 — Let 𝐴 ∈ ℝ𝑛×𝑝. For concision, let a1,… , a𝑛 denote the rows of 𝐴 and let

𝐴ℓ = (
a1
⋮
aℓ
),

i.e., the matrix consisting of the first ℓ rows of 𝐴. Then, for 1 < 𝑘 ≤ 𝑛,

𝐴T
𝑘𝐴𝑘 = 𝐴T

𝑘−1𝐴𝑘−1 + aT
𝑘a𝑘.

Proof. Both sides of the equation are 𝑝 × 𝑝matrices. We will show they are equal by
proving that each entry is equal. First, note that

(𝐴T
𝑘𝐴𝑘)𝑖𝑗 = 𝐴T

[1∶𝑘]𝑖 𝐴[1∶𝑘]𝑗 =
𝑘
∑
ℓ=0

𝑎ℓ𝑖𝑎ℓ𝑗,

and similarly for 𝐴T
𝑘−1𝐴𝑘−1. Therefore,

(𝐴T
𝑘𝐴𝑘)𝑖𝑗 =

𝑘−1
∑
ℓ=0

𝑎ℓ𝑖𝑎ℓ𝑗 + 𝑎𝑘𝑖𝑎𝑘𝑗 = (𝐴T
𝑘−1𝐴𝑘−1 + aT

𝑘a𝑘)𝑖𝑗.

Although the following formula is named after Sherman and Morrison, in this form it
was first published by Bartlett (1951).
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Lemma B.9 (Sherman–Morrison formula)— Let 𝐴 ∈ ℝ𝑝×𝑝 be an invertible matrix
and let 𝑢, 𝑣 ∈ ℝ𝑝 be row vectors.1 Assume that 1 + 𝑣𝐴−1𝑢T ≠ 0. Then

(𝐴 + 𝑢T𝑣)−1 = 𝐴−1 − 𝐴−1𝑢T𝑣𝐴−1

1 + 𝑣𝐴−1𝑢T .

Proof. It is sufficient to show that the product of 𝐴 + 𝑢T𝑣 and the above inverse is
equal to the identity matrix. Indeed,

(𝐴 + 𝑢T𝑣)(𝐴−1 − 𝐴−1𝑢T𝑣𝐴−1

1 + 𝑣𝐴−1𝑢T) = 𝐼 + 𝑢T𝑣𝐴−1 − 𝑢T𝑣𝐴−1 + 𝑢T𝑣𝐴−1𝑢T𝑣𝐴−1

1 + 𝑣𝐴−1𝑢T

= 𝐼 + 𝑢T𝑣𝐴−1 −
𝑢T(1 + 𝑣𝐴−1𝑢T)𝑣𝐴−1

1 + 𝑣𝐴−1𝑢T

= 𝐼 + 𝑢T𝑣𝐴−1 − 𝑢T𝑣𝐴−1

= 𝐼.

Miscellaneous

The following theorem shows that, in case of normality, the sample mean and variance
are independent.

Theorem B.10 — Let 𝑋1,… , 𝑋𝑛
iid∼ 𝒩(𝜇, 𝜎2). Then 𝑆2 ⟂⟂ 𝑋.

Proof. Let 𝐴 = (𝑋1 − 𝑋,… , 𝑋𝑛 − 𝑋, 𝑋). It has a joint normal distribution, since any
linear combination of its components (each of which is a linear combination of inde-
pendent normal random variables) is univariately normal. Since 𝑆2 is a function of
(𝐴1,… , 𝐴𝑛), it is sufficient to show that (𝐴1,… , 𝐴𝑛) ⟂⟂ 𝐴𝑛+1. Due to joint normality,
uncorrelatedness implies independence. Therefore, the claim follows from the fact
that

Cov(𝑋, 𝑋𝑖 − 𝑋) = Cov(𝑋, 𝑋𝑖) − Cov(𝑋, 𝑋)

= Cov( 1
𝑛
𝑋𝑖, 𝑋𝑖) −

𝑛
∑
𝑖=1

Cov( 1
𝑛
𝑋𝑖,

1
𝑛
𝑋𝑖)

= 1
𝑛
𝜎2 − 𝑛

𝑛2
𝜎2

= 0

for all 𝑖 = 1,… , 𝑛. All cross terms disappear due to independence, i.e., Cov(𝑋𝑖, 𝑋𝑗) = 0
for all 𝑖 ≠ 𝑗.

1Typically, column vectors are used, but our application naturally requires row vectors.
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In the following lemmas, Γ denotes the well-known gamma function.

Lemma B.11 — Let 𝑐, 𝑧 > 0. Then,

∫
∞

0
𝑥𝑧−1𝑒−𝑐𝑥 d𝑥 = 𝑐−𝑧 Γ(𝑧).

Proof. Substituting 𝑢 ≔ 𝑐𝑥,

∫
∞

0
𝑥𝑧−1𝑒−𝑐𝑥 d𝑥 = ∫

∞

0
(ᵆ
𝑐
)
𝑧−1

𝑒−ᵆ ⋅ 1
𝑐
d𝑢

= 𝑐−𝑧∫
∞

0
𝑢𝑧−1𝑒−ᵆ d𝑢

= 𝑐−𝑧 Γ(𝑧).

Lemma B.12 — Let 𝑐, 𝑛 > 0 and 𝑓∶ ℝ → ℝ defined by 𝑓(𝑥) = |𝑥|𝑛−1𝑒−𝑐𝑥2. Then,

∫
∞

−∞
𝑓(𝑥) d𝑥 = 𝑐−𝑛/2 Γ(𝑛/2).

Proof. We compute that

∫
∞

−∞
𝑓(𝑥) d𝑥 = 2∫

∞

0
𝑥𝑛−1𝑒−𝑐𝑥2 d𝑥 (𝑓 is even)

= ∫
∞

0
(𝑥2)𝑛/2−1𝑒−𝑐𝑥2 ⋅ 2𝑥 d𝑥

= ∫
∞

0
(ᵆ
𝑐
)
𝑛/2−1

𝑒−ᵆ ⋅ 1
𝑐
d𝑢 (substitute 𝑢 ≔ 𝑐𝑥2)

= 𝑐−𝑛/2∫
∞

0
𝑢𝑛/2−1𝑒−ᵆ d𝑢

= 𝑐−𝑛/2 Γ(𝑛/2).
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Code

C.1 Simulation of correlation
1 simsize = 1000;
2 mean = 5;
3 sd = 2;
4 n = 50;
5 X = RandomVariate[NormalDistribution[mean, sd], {simsize, n}];
6

7 transform[x_, k_] := (x[[k]] - Mean[Take[x, k-1]]) / StandardDeviation[Take[x, k-1]]
8 T = Table[transform[X[[i]], k], {k, 3, n}, {i, 1, simsize}];
9 cor = Table[Correlation[T[[i]], T[[j]]], {i, 1, Length[T]}, {j, 1, i-1}] // Flatten;
10

11 ListPlot[cor]

C.2 Example application

The following is based on code by Meeuwis (2017). A more extensive implementation
can be found in Appendix D of Van Dalen (2018).

1 library(strucchange)
2

3 # read and process data
4 df_raw <- read.csv2('wind-turbine.txt', stringsAsFactors=FALSE)
5 df_raw[,-1] <- apply(df_raw[,-1], 2, as.numeric)
6 df_raw$Power[df_raw$Power == 0.1] <- NA # fix wrong entries
7 df_raw$Time <- as.POSIXct(strptime(df_raw$Taken, '%d/%m/%Y %T', tz='EST'))
8

9 # filter: turbine is running (as opposed to 'emergency' or 'pause')
10 df <- df_raw[which(df_raw$OpState == 3),]
11

12 # filter: main generator is in use
13 df <- df[which(df$RotorSpeed > 25.8),]
14

15 # filter: before major maintenance
16 df <- df[which(df$Time < '2013-11-16 EST'),]
17

18 # filter: subsample every 4 hours to decrease autocorrelation
19 seq_4h <- seq(min(df$Time), max(df$Time), by='4 hours')

viii



APPENDIX C. CODE ix

20 df <- df[which(is.element(df$Time, seq_4h)),]
21 rm(seq_4h)
22

23 # check that data contains no NA
24 any(is.na(df$EnvTemp))
25 any(is.na(df$NacelleTemp))
26

27

28 # For testing:
29 # df <- data.frame(EnvTemp=rnorm(200, 4, 3))
30 # df$NacelleTemp <- df$EnvTemp + rnorm(nrow(df), 0, 2)
31 # df$Time <- 1:nrow(df)
32

33 p <- 2
34

35 res <- recresid(NacelleTemp ~ EnvTemp, df)
36 res.var <- cumsum(res^2)
37 res.var <- res.var / 1:length(res)
38 res.var <- sqrt(res.var)
39 res <- res[-1] / res.var[-length(res)]
40 res <- pt(res, 1:length(res))
41 res <- qnorm(res)
42 rm(res.var)
43

44 par(
45 las=1,
46 mgp=c(1.8, .6, 0),
47 mar=c(3.25, 3.25, 2.5, 2)
48 )
49 plot(
50 df$Time[(p+2):nrow(df)], res,
51 main='Nacelle temperature ~ Environment temperature',
52 xlab='date', ylab='normalized recursive residual',
53 ylim=c(-3.5, 5)
54 )
55 abline(h=-3, lty='dashed')
56 abline(h= 0, lty='dashed')
57 abline(h= 3, lty='dashed')
58 axis(side=4, at=c(-3, 0, 3), labels=c('L', 'C', 'U'))
59

60 # find out-of-control dates
61 df[which(abs(res) > 3) + p+1,]$Time
62 res[abs(res) > 3]
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