
 Eindhoven University of Technology

BACHELOR

Graph Searching Methods for Hide-and-Search Games on the Examples of Scotland Yard
and Letters from Whitechapel

Obszyńska, Alicja D.

Award date:
2023

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/cbab7df4-ab03-45e3-9b77-464f20f5fdfc

Graph Searching Methods for Hide-and-Search
Games on the Examples of Scotland Yard and

Letters from Whitechapel

Author: Alicja Obszyńska
Supervisor: Bart Smeulders

July 3, 2023

Abstract

Inspired by the hide-and-search board games Scotland Yard and Letters from
Whitechapel, we are looking for an optimal strategy for the detectives. We focus
on a simplified game on starlike trees, where the goal of the detectives is to find
the criminal’s hideout in as few moves as possible. We start with finding optimal
strategies for special cases of such trees, namely, path graphs and stars, in order
to build up to the general case of starlike trees. Finally, we suggest possible
further steps for more complex graphs or different rules for the games.

Eindhoven University of Technology
Department of Applied Mathematics and Computer Science

i

Contents

1 Introduction 1
1.1 Scotland Yard and Letters from Whitechapel 1
1.2 The Simplified Game . 3

2 Preliminaries 3
2.1 Notation . 3
2.2 Variables . 4

3 Problem Statement 4

4 Path Graphs 5
4.1 SC in an Endpoint . 6
4.2 SC in the Centre . 9
4.3 Other SC . 11
4.4 General SC . 14

5 Stars 15

6 Trees 18

7 Conclusion and Recommendations 23
7.1 Further Research . 23

8 Acknowledgements 24

ii

1 Introduction

Mathematics is employed in every board game in the world and some of them
make use of graph theory. We will focus on one type of them - cops and robbers
games, as they are arguably the most famous graph-searching games.

There are many variants of cops and robbers games, the classical one being a
two-player game of perfect information, where one player is the robber and the
other one is the cops and they can see all the moves. The goal of the cops is
to capture the robber, and the goal of the robber is to run away. The board
that they move on can be seen as a graph, where each vertex is a spot where
they can stand and the edges correspond to the possible moves between vertices.
There is also a possibility to pass, which means that the player stays in their
current position. The players play in turns, moving along the edges between
neighbouring vertices or deciding to pass [1].

We will focus on a different variant of the game, however. The games that we
will consider are games of imperfect information, where the moves of the robber
are not known to the cops. These are also known as hide-and-search games,
where the cops would be the seekers and the robber - the hider [2].

1.1 Scotland Yard and Letters from Whitechapel

Two modern-day popular board games that we will focus on are Scotland Yard
and Letters from Whitechapel. In both of them, we have detectives as the seekers
and a criminal (Mr X in Scotland Yard and Jack the Ripper in Letters from
Whitechapel) as the hider. We can have multiple players play as the detectives
and one player as the criminal. Nevertheless, we consider these games as 1v1,
as all the detectives have to cooperate or can be controlled by one person.

Both of them are games of imperfect information. However, the games differ in
what information is revealed to the detectives. In Scotland Yard, the current
location of the criminal is known every few turns and in Letters from Whitechapel
the detectives check if the criminal was in the vertices around them.

Moreover, in Scotland Yard, there are three different means of transportation
- depending which one the players use, they can get to different vertices. This
can be seen in Figure 1, where different colours of edges correspond to different
transportation methods - taxi (yellow), bus (green) and underground (red).
The choice of transportation for each move of the criminal is also known to the
detectives and it is marked as shown in the picture. The detectives check if the
criminal is in the same vertex as they are in and if one of them is - they win,
the criminal wins if he manages to escape the detectives for 23 turns.

In Letters from Whitechapel, the graph that we consider is two graphs put
together - there are different vertices for the criminal and different for the de-
tectives. This can be seen in Figure 2, where the black squares are the vertices
for the detectives and the circles with numbers are the vertices for the criminal.

1

Figure 1: Scotland Yard board [3].

The detectives have two actions that they can choose from - either check if the
criminal previously visited their neighbouring vertices or if he is in one of the
neighbouring vertices right now - if that is the case, the detectives win. If the
criminal manages to get to his hideout (a vertex that he chooses at the begin-
ning of the game) in 15 turns, he wins. If he does not manage to do that, the
detectives win.

Figure 2: Letters from Whitechapel board [4].

There are a few additional rules in both of the games, which allow the criminal
to move more in one turn or hide his moves. We will not take them into
consideration, as they introduce more unknowns and thus make it much easier

2

for the criminal to win. It is important, as we are looking for winning strategies
for the detectives. This is not entirely possible in the given setting, as the
Scotland Yard game is proven to be NP-complete [5]. However, there are neural
networks made to play this game - an adversarial neural network designed to
play only Scotland Yard [6] and the “Player of Games” designed to play multiple
perfect information games and two imperfect information games [7].

1.2 The Simplified Game

Since Scotland Yard is NP-complete, we will focus on smaller graphs and differ-
ent cases with simplified rules that would be a mix of the rules of the two board
games. It is worthwhile to summarise these rules.

• there is one criminal and one detective,

• the criminal first makes all his moves, then the detective makes all their
moves,

• the detective wants to get to the criminal’s hideout as quickly as possible,

• the criminal wants to make the detective move as much as possible before
they reach his hideout,

• the detective gets to know if the criminal was in a given vertex or if that
vertex is the final destination only when they are in that vertex.

2 Preliminaries

Before diving into the problem, we need to introduce some definitions and no-
tations first. Moreover, we will focus on connected graphs, as we need them to
be representative of a possible board for a game where both players can play
together.

2.1 Notation

We have two players in the game - the criminal, denoted as C, and the detective,
denoted as D. The starting position of the criminal is fixed, not chosen by
the criminal, and is denoted by SC . The starting position of the detective
(later referred to as ”starting position” for short) is chosen by the detective and
denoted by SD. The final destination of the criminal, F , is where the detective
strives to reach. If our graph is G = (V,E), then SC , SD, F ∈ V .

Both players need to make moves to reach the final destination. A single move
is visiting a vertex in V and can be done only along one of the existing edges or
by staying in the same vertex. A sequence of visited vertices, say (v0, v1, . . . , vk)
is a v0 − vk walk, as vi and vi+1 (∈ V) are connected for all i = 0, 1, . . . , k − 1.
Such a walk is denoted by w(v0, vk) The length of such a walk is then k and is
denoted by l(w(v0, vk)). The v0 − vk walk that includes only distinct vertices is

3

called a path. Distance between two vertices v0, vk is defined as the length of
the shortest v0 − vk path and is denoted by d(v0, vk).

2.2 Variables

There are a few variables that are used throughout the report, we introduce
some of them here:

• the number of criminal’s moves is t ∈ N (and is known to the detective),

• the number of moves of the detective is d ∈ N (and is to be found),

• the distance from SC to the furthest vertex is m, defined as
m := maxv∈V {d(SC , v)}.

Any other variables are defined further on.

3 Problem Statement

As mentioned earlier, the criminal starts in one of the vertices, labelled SC , and
needs to choose a final destination F and a walk leading to it.

The goal of the criminal is to make the detective move as much as possible
before reaching F . We will call that situation the worst-case scenario. This
corresponds to a strategy of the detective, which consists of a set of rules that
they follow when making moves and their starting position SD.

The detective’s goal is to move as little as possible before reaching F and for that,
they need to choose the optimal strategy. We need to define what the optimal
starting position and set of rules mean so that it is clear what we shall prove
later on. Note that they need not be unique, so there can exist multiple optimal
strategies for a given graph. We focus on finding one of them for multiple types
of graphs.

Definition 3.1. An optimal starting position of the detective is an SD that
results in the smallest d in all worst-case scenarios for a given t and some set of
rules.

Definition 3.2. An optimal set of rules is an algorithm that the detective
follows while moving, which results in the smallest d in all worst-case scenarios
for given t and SD.

Definition 3.3. An optimal strategy is a combination of a set of rules according
to which the detective moves and a starting point that results in the smallest d
for a given t.

Moreover, let us define W as the set of all walks that the criminal can make
and R as the set of rules that the detective follows. Then, for a w ∈ W , we
can define n(SD, w,R) to be the length of the walk of D given a walk w of the

4

criminal, a starting position SD and a set of rules R. The number of moves of
D is then defined as

d = max
w∈W

n(w, SD, R).

Our objective is to find an R and an SD that will result in the smallest d for a
given graph G, i.e. an optimal strategy for a given graph G.

4 Path Graphs

We will first focus on the basic cases so that we can build up on them at the
further stages. We start with the path graphs and multiple variants for SC .

Definition 4.1 (Path graph). A path graph is a graph whose vertices can
be listed in the order v1, v2, . . . , vn such that the edges are {vi, vi+1} where
i = 1, 2, . . . , n− 1.

The set of rules for the detective (R) that we choose for path graphs can be
expressed with the following algorithm.

Algorithm 1 The set of rules for path graphs.

1: if current vertex is F then
2: D stops
3: else
4: if current vertex is an endpoint then
5: D moves towards the other endpoint
6: else if current vertex is SC then
7: if current vertex is SD then
8: D moves to the longer side of the graph
9: else

10: D moves in the same direction as earlier
11: end if
12: else if current vertex is not visited by C then
13: D moves towards SC

14: else if D started moving towards SC then
15: D moves towards SC

16: else
17: D moves away from SC

18: end if
19: end if

We will prove that this set of rules is optimal later on. For now, we will focus
on finding the optimal starting position for the detective and criminal’s moves.
We assume that the criminal knows what the strategy of the detective is and
their moves are a response to that strategy.

5

We will investigate a few different cases of path graphs which differ by the choice
of SC .

4.1 SC in an Endpoint

The first case of path graphs that we consider is one where SC is one of the
outermost vertices - referred to as the endpoints of the graph. Without loss
of generality, we assume that it is always the leftmost vertex, as if it were the
rightmost one we can always rotate the graph so that it is on the left.

We also assume that t ≥ m, as if t < m we could always take the subgraph
consisting of vertices that are reachable from SC , i.e. those that are at a distance
at most t from SC .

Moreover, for ease of notation, we will label all vertices as vi ∈ V for i =
0, 1, . . . , m such that d(SC , vi) = i. An example of such a path graph can be
seen in Figure 3.

Figure 3: A path graph with SC in an endpoint and m = 6.

Lemma 4.1. Let G be a path graph with m + 1 vertices. Let t ≥ m and let
SC be the leftmost vertex of G.
An optimal starting position is SD = vj , with the number of moves of the
detective, d, such that:

• for 2 ≤ m ≤ t < 2m− 2: j =
⌈
t
2

⌉
+ 1 and d =

⌈
t
2

⌉
+ 1,

• for t ≥ 2m− 2: j = m and d = m.

In order to prove that vj is indeed an optimal starting position, we need to
show:

(a) for this SD there is no choice of a walk for C, w, that would make D move
more, i.e. that

d = max
w∈W

n(w, SD, R),

(b) for any other starting position S̃D there is a walk and F that make D move
at least equally much, i.e. d̃ ≥ d, where d̃ corresponds to the number of
moves required for D to reach F when starting in S̃D and d for SD.

We will prove the two cases separately.

Proof. 2 ≤ m ≤ t < 2m− 2
Let j =

⌈
t
2

⌉
+ 1.

6

In order to use up all his moves, C can move to vk with k =
⌈
t
2

⌉
and go back

to v0 if t even or to v1 if t odd.

We have that SD = vj = vk+1 which is not visited, so D needs to go only
towards F . Therefore, in case t is odd, C could go to v0 via any walk instead of
going to vk and then to v1, as this would increase the number of moves needed
for D. Thus

d = j =

⌈
t

2

⌉
+ 1.

(a) Let F̃ = vf for some f = 0, 1, . . . ,m.

Let us define WF̃ as the set of all walks of the criminal with F̃ as the final
destination, then we need to show that

max
wF̃∈WF̃

n(wF̃ , SD, R) = d.

Case distinction:

• f ≥ j
C has t moves and uses j of them to get to vj , so has at most m− j moves
to get to vf from vj , i.e. f − j ≤ m− j.
Since we know that D starts in a visited vertex, they move only to the
right, i.e. towards vf and thus the number of moves is:

d̃ = d(vj , vf) = f − j ≤ m− j ≤ t− j = t−
(⌈

t

2

⌉
+ 1

)
=

⌊
t

2

⌋
− 1 ≤ d.

• f < j
We have that d(vf , vj) = j − f and C can reach vk with

k = min{f +

⌊
t− f

2

⌋
, m− 1},

where they can turn around and go to vf .
vk is visited by C and vk+1 is not, so D needs to go to vk+1 and then turn
back, so the number of moves is:

d̃ = 2(d(vk, vj) + 1) + d(vf , vj) = 2 (k + 1− j) + (j − f)

≤ 2

(
f +

⌊
t− f

2

⌋
+ 1− j

)
+ j − f = 2

⌊
t− f

2

⌋
+ f + 2− j

≤ t− f + f + 2−
(⌈

t

2

⌉
+ 1

)
= t−

⌈
t

2

⌉
+ 1

≤
⌊
t

2

⌋
+ 1 ≤ d.

Since in both cases, we get that d̃ ≤ d, it holds that

max
wF̃∈WF̃

n(wF̃ , SD, R) = d.

7

(b) Let S̃D = vi for some i = 0, 1, . . . , t. Case distinction:

• t = 2

◦ i = 0 or i = 2
Then C can choose F = vf with f = t− i and thus

d̃ = d(vi, vf) = 2 = d.

◦ i = 1
C can go to vi and back (F = SC), so

d̃ = 2 + t− i = 2 + 1 = 3 > d.

• t > 2

◦ i ≥
⌈
t
2

⌉
+ 1 or i ≤

⌈
t
2

⌉
− 2

Then ∃ v ∈ V : d(vi, v) ≥
⌈
t
2

⌉
+ 1 = d, so C can choose F = v and

the number of moves of D is then d̃ = d(vi, v) ≥ d.

◦ i =
⌈
t
2

⌉
− 1 or i =

⌈
t
2

⌉
Then C can go to vi and turn around, so

d̃ = 2 + t− i =

{
2 + t− (

⌈
t
2

⌉
− 1) =

⌊
t
2

⌋
+ 3 ≥

⌈
t
2

⌉
+ 1 = d

2 + t−
⌈
t
2

⌉
=

⌊
t
2

⌋
+ 2 ≥

⌈
t
2

⌉
+ 1 = d

Therefore for all S̃D : d̃ ≥ d.

Proof. t ≥ 2m− 2
Let j = m and F = SC .
D moves only in one direction, so d = d(SD, SC) = m.

(a) All the other choices of F , say vf , would be closer to SD, because SC

and SD are the endpoints of the graph. D would still move only in one
direction, so d̃ = d(SD, vf) ≤ d(SD, F) = m = d.

Hence, indeed, maxw∈W n(w, SD, R) = d.

(b) Let S̃D = vi for some i = 0, 1, . . . , t.

C can always go to vm−1 and back to SC , as he has t ≥ 2m − 2 moves.
Therefore any choice of the starting position would be a visited vertex and
D would have to first move to the right and then go to F = SC . This
gives d̃ moves with

d̃ = 2 · d(vi, vm) + i = d(vi, vm) +m > m = d.

Hence any other choice of the starting position results in a greater or equal
number of moves for D.

8

4.2 SC in the Centre

Another case of path graphs is the one with the criminal’s starting position SC

in the very middle of the graph, as seen in Figure 4. This means that there are
now two ways they can go. We will call the vertices and edges on two different
sides of SC tails and label the vertices belonging to them as vi for the right tail
and v̂i for the left tail for i = 0, 1, . . . , m such that d(SC , vi) = d(SC , v̂i) = i.

Figure 4: A path graph with SC in the centre and m = 3.

In this case we assume that t ≥ m, as if t < m we could have taken a subgraph
reaching up to vm̃ such that m̃ = t, analogously to the case with SC in an
endpoint.

Without loss of generality, we will focus on the starting positions on the right
side of SC , as the graphs are symmetric.

Lemma 4.2. Let G be a path graph with two tails of length m ≥ 1 such that
SC is a vertex of G which is the centre. Let t ≥ m.
Let t ≥ m and let SC be the middle vertex of a path graph G. An optimal
starting position is SD = vj , with the number of moves of the detective, d, such
that:

• for m ≤ t < 3m− 2: j =
⌈
t−m
2

⌉
+ 1 and d =

⌈
t+m
2

⌉
+ 1,

• for t ≥ 3m− 2: j = m and d = 2m.

Similarly to the previous case, in order to prove that vj is an optimal starting
position, we need to show (a) and (b) from 4.1. Again, we will prove the two
cases separately.

Proof. m ≤ t < 3m− 2
Let SD = vj with j =

⌈
t−m
2

⌉
+ 1.

In order to use up all his moves, C can move to vk with k =
⌈
t−m
2

⌉
, turn around

and go to v̂m if t−m even or to v̂m−1 if t−m odd.

We choose j = k + 1, because if D starts in vk+1 which is not visited by C,
they need to go only towards F . Therefore, in case t−m is odd, to increase the
number of moves needed for D, C can go to v̂m via any walk instead of going to
vk and then to v̂m−1. Thus C chooses F = v̂m and an arbitrary walk, and then

d = j +m =

⌈
t−m

2

⌉
+ 1 +m =

⌈
t+m

2

⌉
+ 1.

(a) We need to show that

max
w∈W

n(w, SD, R) = d.

9

Any choice of the final destination, F̃ ̸= v̂m, and a walk for C that does
not include vj will result in a smaller number of moves for D, say d̃, as
then C would end on the left side of vj and therefore

d̃ = d(vj , F̃) < j +m = d.

Any choice of a walk for C leading to some F̃ = vf with f ≥ j will also

result in a smaller number of moves d̃, as then

d̃ = d(vj , F̃) = f − j ≤ m− j ≤ j +m = d.

Now, for any choice of a walk for C that includes vj at least twice, i.e.

(v0, v1, . . . , vk, vj , . . . , vl−1, vl, vl−1, . . . , vj , F̃) and is of length t.
Every vertex that C visits on the right of vk (i.e. vk+1, vk+2, . . . , vm)
requires two moves, as C needs to go there and back. This means that F̃
would have to be two vertices to the right of F . Then, for every vertex
visited by C, D needs to do two more moves to check the next vertex (get
to know it is not visited) and go back, but also do two moves less in the
end, as F̃ is forced to be placed two vertices to the right.
This means that for any choice of a walk of C which includes vj , the
number of moves for D is the same as d (or d − 2, if C visits vm, as it is
impossible to go further).

Hence, indeed, maxw∈W n(w, SD, R) = d.

(b) Let S̃D = vi or v̂i for some i = 0, 1, . . . , m. Case distinction:

• S̃D = vi or v̂i with i > j
C can then choose F̃ to be the further endpoint and the number of moves
of D is d̃ = i+m > j +m = d.

• S̃D = vi or v̂i with i ≤ j
In the case S̃D = vi, C can keep the same walk and F̃ = F as in the case
for SD = vj (or a reflection of it for v̂i), then D starts in a visited node
and has to walk to vk+1 = vj (or v̂k+1 = v̂j) and back. This results in the

number of moves d̃ = d(vi, vj) + j +m = d(vi, vj) + d ≥ d.

Hence any other choice of the starting position results in a greater or equal
number of moves for D.

Proof. t ≥ 3m− 2
Let j = m and F = v̂m, then d = 2m, as there is only one way D can move.

(a) All the other choices for the final destination F̃ would be closer to vm than
v̂m (by the definition of an endpoint).

10

Since the set of rules thatD follows makes them move only in one direction
when starting in an endpoint (as we then disregard whether a given vertex
was visited or not), the number of moves will always be

d̃ = d(vm, F̃) =

{
m+m− f < 2m = d if F̃ = v̂f ,

m− f < 2m = d if F̃ = vf .

Hence, indeed, maxw∈W n(w, SD, R) = d.

(b) Let S̃D = vi for some i = 0, 1, . . . , m− 1.
Choose F = v̂m and the walk (v0, v1, . . . , vm−2, vm−1, vm−2, . . . , v0, v̂1,
. . . , v̂m).
Then S̃D is always visited and therefore D has to make d̃ moves with

d̃ = d(vi, vm) +m+m > 2m = d.

If we consider S̃D = v̂i for some i = 0, 1, . . . , m− 1, we can argue analo-
gously and get the same result for d̃.

Hence any other choice of the starting position results in a greater or equal
number of moves for D.

4.3 Other SC

The last case of a path graph that we consider is with SC anywhere else than
the centre or the endpoints of the graph. This means that the graph is not
symmetric and the two tails are not of the same length. We label the vertices
similarly to the previous case: the ones on the right tail are labelled as vi for
i = 0, 1, . . . , m such that d(SC , vi) = i, and the ones on the left - as v̂i for
i = 0, 1, . . . , m̂ such that d(SC , v̂i) = i.

Analogously to the previous cases, we assume that, without loss of generality,
the left tail is shorter than the right one, i.e. m̂ < m, and t ≥ m. An example
of such a graph with m = 4 and m̂ = 2 can be seen in Figure 5. Since we are
only looking into asymmetric graphs with two tails, we assume that m ≥ 2 and
m̂ ≥ 1.

Figure 5: A path graph with m = 4 and m̂ = 2.

Lemma 4.3. Let G be a path graph with two tails of length m̂ and m such
that m > m̂ ≥ 1 and SC is the vertex of G between the tails. Let t ≥ m.
An optimal starting position is SD = vj , with the number of moves of the
detective, d, such that:

11

• for m ≤ t < 2m− 2 + m̂: j =
⌈
t−m̂
2

⌉
+ 1 and d =

⌈
t+m̂
2

⌉
+ 1,

• for t ≥ 2m− 2 + m̂: j = m and d = m+ m̂.

We will prove the lemma analogously to the previous cases.

Proof. m ≤ t < 2m− 2 + m̂
Let SD = vj with j =

⌈
t−m̂
2

⌉
+ 1.

Analogously to the case with SC in the centre, in order to use up all his moves,
C can move to vk with k =

⌈
t−m̂
2

⌉
, turn around and go to v̂m̂ if t−m even or

to v̂m̂−1 if t− m̂ odd.

We choose j = k + 1, because if D starts in vk+1 which is not visited by C,
they need to go only towards F . Therefore, in case t− m̂ is odd, to increase the
number of moves needed for D, C can go to v̂m̂ via any walk instead of going to
vk and then to v̂m̂−1. Thus C chooses F = v̂m and an arbitrary walk, and then

d = j + m̂ =

⌈
t− m̂

2

⌉
+ 1 + m̂ =

⌈
t+ m̂

2

⌉
+ 1.

(a) We need to show that

max
w∈W

n(w, SD, R) = d.

Any choice of the final destination, F̃ ̸= v̂m̂, and a walk for C that does
not include vj will result in a smaller number of moves for D, say d̃, as
then C would end on the left side of vj and therefore

d̃ = d(vj , F̃) < j + m̂ = d.

Any choice of a walk for C leading to some F̃ = vf with f ≥ j will also

result in a smaller or equal number of moves d̃, as then
d̃ = d(vj , F̃) = f − j ≤ m − j ≤ m −

⌈
m−m̂

2

⌉
− 1 =

⌈
m+m̂

2

⌉
− 1 ≤⌈

t+m̂
2

⌉
+ 1 = j + m̂ = d.

Now, for any choice of a walk for C that includes vj at least twice, i.e.

(v0, v1, . . . , vk, vj , . . . , vl−1, vl, vl−1, . . . , vj , F̃) and is of length t.
Every vertex that C visits on the right of vk (i.e. vk+1, vk+2, . . . , vm)
requires two moves, as C needs to go there and back. This means that F̃
would have to be two vertices to the right of F . Then, for every vertex
visited by C, D needs to do two more moves to check the next vertex (get
to know it is not visited) and go back, but also do two moves less in the
end, as F̃ is forced to be placed two vertices to the right.
This means that for any choice of a walk of C which includes vj , the
number of moves for D is the same as d (or d − 2, if C visits vm, as it is
impossible to go further).

Hence, indeed, maxw∈W n(w, SD, R) = d.

12

(b) Let S̃D = vi for some i = 0, 1, . . . , m or S̃D = v̂i for some i = 0, 1, . . . , m̂.
Case distinction:

• S̃D = vi or v̂i with i > j
C can then choose F̃ to be the further endpoint and the number of moves
of D is d̃ = i+m > j +m = d.

• S̃D = vi or v̂i with i ≤ j
In the case S̃D = vi, C can keep the same walk and F̃ = F as in the case
for SD = vj (or a reflection of it for v̂i), then D starts in a visited node
and has to walk to vk+1 = vj (or v̂k+1 = v̂j) and back. This results in the
number of moves

d̃ =

{
d(vi, vj) + j + m̂ = d(vi, vj) + d ≥ d,

d(v̂i, v̂j) + j +m ≥ d(v̂i, v̂j) + j + m̂ = d(v̂i, v̂j) + d ≥ d.

Hence any other choice of the starting position results in a greater or equal
number of moves for D.

Proof. t ≥ 2m− 2 + m̂
Let j = m and F = v̂m̂, then d = m+ m̂, as there is only one way D can move.

(a) We need to show that

max
w∈V

n(w, SD, R) = d.

All the other choices of the final destination F̃ would be closer to vm than
v̂m̂ (by the definition of an endpoint).

Since the set of rules thatD follows makes them move only in one direction
when starting in an endpoint (as we then disregard whether a given vertex
was visited or not), the walk that C can be arbitrary and the number of
moves will always be

d̃ = d(vm, F̃) =

{
m+ m̂− f < m+ m̂ = d if F̃ = v̂f ,

m− f < m+ m̂ = d if F̃ = vf .

Hence, indeed, maxw∈W n(w, SD, R) = d.

(b) Let S̃D = vi for some i = 0, 1, . . . , m− 1.
Choose F̃ = v̂m̂ and the walk (v0, v1, . . . , vm−2, vm−1, vm−2, . . . , v0, v̂1,
. . . , v̂m̂).
Then S̃D is always visited by C and therefore D has to make d̃ moves with

d̃ = d(vi, vm) +m+ m̂ > m+ m̂ = d.

13

If we consider S̃D = v̂i for some i = 0, 1, . . . , m̂− 1, we can argue analo-
gously and get

d̃ = d(v̂i, v̂m̂) + m̂+m > m+ m̂ = d.

Hence any other choice of the starting position results in a greater or equal
number of moves for D.

4.4 General SC

We can combine the results of this section to derive a formula for all cases of
path graphs. We will not prove it, as it follows directly from the proofs above.

Lemma 4.4. Let G be a path graph with two tails of length m̂ ≥ 0 and m ≥ 1
such that m ≥ m̂ and SC is a vertex of G between the tails. Let t ≥ m.
An optimal starting position is SD = vj , with the number of moves of the
detective, d, such that:

• for 2 ≤ m ≤ t < 2m− 2 + m̂: j =
⌈
t−m̂
2

⌉
+ 1 and d =

⌈
t+m̂
2

⌉
+ 1,

• for t ≥ 2m− 2 + m̂: j = m and d = m+ m̂.

Now we can prove that the chosen set of rules, R, is indeed optimal. We will
show that any other set of rules for a given graph G and a starting position of
the detective S̃D is equally good or worse by showing that any deviation from
the set of rules R would result in at least equally long walk for D.

Proof. Let G be a path graph with two tails of length m and m̂ such that m ≥ m̂
and m ≥ 1. Let t ≥ m. Let d be defined as in Lemma 4.4.
Note that in the case 2 ≤ m ≤ t < 2m− 2 + m̂ we have that d =

⌈
t+m̂
2

⌉
+ 1 <⌈

2m−2+m̂+m̂
2

⌉
+ 1 = m + m̂ and in the case t ≥ 2m − 2 + m̂: d = m + m̂, so

∀t ≥ m : d ≤ m+ m̂.
Let us check all the rules in R.

• The rule in lines 1 and 2 is necessary for all the algorithms, as it is our
objective to stop in F .

• The rule in lines 4 and 5 is also necessary, as if the endpoint is not F ,
then, in order to find F , D needs to move, and the only possible way to
move is towards the other endpoint.

• The alternative to the rule in lines 6, 7 and 8, is for D to move to the
shorter side of the graph. In principle, this move can be arbitrary, as the
length of the walk is determined more by other rules and choosing SC

to be SD does not give any information, so it would not be an optimal
starting position (besides the case when m̂ = 0 and m = 1, then both
possibilities for SD give the same number of moves).
However, there needs to be a rule for a situation when SD = SC , so we

14

choose this one, as it is more suitable in the case when SC is an endpoint
of G.

• The alternative to the rule in lines 6, 9 and 10 is for D to move in the
opposite direction after arriving at SC , which means going back to the
previously checked vertex. This would make a loop, which makes the
walk longer than it would have been otherwise (if keeping the rest of the
rules the same as in R). The choice of other rules would also result in this
loop making the walk longer.

• The alternative to the rule in lines 12 and 13 is for D to move away from
SC if the current vertex is not visited by C.
Since the current vertex is not visited, any vertex further from SC is not
visited either, as G is a path graph. Thus, if D moves away from SC , they
are not going to check any visited vertex, so also not F . In order to find
F they would have to turn around at some point, which makes a loop in
their walk. This results in a walk of length at least d+2, as if D followed
the rule in R, they would have turned around at least one vertex earlier.

• For the rule in lines 14 and 15, the alternative is for D to move away from
SC if D started moving towards SC . C can then choose F to be on the
other side of SC . In that case, this alternative rule causes D to make a
loop of length at least 2, if there is another rule that would cancel this
one at some point, or to never arrive at F , as D would make infinitely
many loops (caused by the rule in lines 4 and 5 or other possible additional
rules).

• The alternative to the last rule is analogous to the previous one - if D
is moving away from SC , then D moves towards SC . In this case, C
can choose F to be on the same side of SC as the current vertex. Then,
analogously to the previous rule, D either has to make an additional loop
or can never reach F .

Since any deviation from the rules in R results in an equally long or longer walk
for D, the chosen set of rules is optimal.

5 Stars

Another type of graphs that we consider is stars.

Definition 5.1 (Star). A star Sk is a tree on k + 1 vertices with one vertex
having vertex degree k (called the internal node if k ≥ 2) and the other k vertices
having vertex degree 1 (called leaves).

We label the vertices in a star differently than in a path graph. Say the number
of leaves is k, then the internal node is labelled as v0 and all the leaves are vi
for i = 1, 2, . . . , k, where we start on top of the graph and count clockwise,

15

as shown in Figure 6. Similarly to path graphs, we can assume that labelling
without loss of generality, as stars are symmetric.

Figure 6: A star with 8 leaves.

If SC = v0, we can have t ≥ 1, as it takes exactly one move for C to reach any
leaf. We also assume that if SC = vi for any i ̸= 0, then t ≥ 2, as if t = 1, then
F could only be in SC or in v0, which are trivial cases.

The set of rules that we consider for stars is as follows.

Algorithm 2 The set of rules for stars.

if current vertex is F then
D stops

else
if current vertex is v0 then

D moves to the next leaf (counting clockwise)
else

D moves to v0
end if

end if

Checking a vertex does not give any information, unless it is F , in which situ-
ation D is done, because C could go anywhere from v0 in one move. Therefore
any other set of rules would result in the same or worse outcome, because D
and C can move only along the existing edges or pass, i.e. they need to go to
v0 before moving onto any other vertex. Thus we can say that this set of rules
is optimal.

Lemma 5.1. Let G be a star graph with k leaves. Let t ≥ 2 and SC be a vertex
of G. An optimal starting position is SD = v1, with the number of moves of the
detective, d = 2k − 2.

16

In order to prove this lemma, we need to show (a) and (b) from 4.1, as in the
previous cases.

Proof. t ≥ 2
Let SD = v1.

(a) All the leaves have only one neighbour - the internal node - so C and D
always need to go there before going to another leaf. Therefore we can
easily see that t does not influence the worst-case scenarios for any choice
of SD, as checking any vertex does not give any information (unless it is
the final destination). Therefore we can assume that C takes the path
(v0, F) of length 1.

If F = vk, then D needs to check all the vertices, starting in v1 and ending
in vk, so the number of moves is

d = 1 + 2(k − 2) + 1 = 2k − 2.

If F = vf with 0 < f < k, then D needs to check all the vertices between
v1 and vf (i.e. v0 and vi for all i = 2, 3, . . . , f − 1) and end in vf , so the
number of moves is

d̃ = 1 + 2(f − 1− 1) + 1 = 2f − 2 < 2k − 2 = d.

If F = v0, then D needs to make only one move and 1 < d.

Hence, indeed, maxw∈W n(w, SD, R) = d.

(b) Let us consider two cases.

• S̃D = vi for some i = 2, 3, . . . , k
As mentioned earlier, star graphs are symmetric, so the labelling does not
matter and thus in a worst-case scenario for any vi with i ̸= 0, we get the
number of moves d̃ = 2k − 2 = d.

• S̃D = v0
Choose F̃ = vm. Then D needs to check all the vertices (k − 1 of them)
before getting to F , so the number of moves is d̃ = 2(k−1)+1 = 2k−1 >
2k − 2 = d.

Hence any other choice of the starting position results in a greater or equal
number of moves for D.

17

6 Trees

As we have found optimal strategies for path graphs and stars, the next step is
to investigate starlike trees. Let us first define starlike trees.

Definition 6.1 (Starlike tree). A starlike tree is a tree which has exactly one
vertex of vertex degree greater than 2 (called the root).

Without loss of generality and for ease of notation we will present the trees with
the shortest branch on top of the graph, while the other branches increase in
length in a clockwise direction. Note that some branches can be of equal length.

Similarly to stars, we will label the branches starting on top and going clockwise
and, similarly to path graphs, we will label vertices with respect to their distance
from the centre (labelled as v0) which is always going to be the starting position
of the criminal, SC . Thus, if we have k branches, their lengths are 1 ≤ m1 ≤
m2 ≤ · · · ≤ mk−1 ≤ mk and the vertices are labelled vik , where ik is the distance
from v0 = SC on the kth branch. An example of such a graph can be seen in
Figure 7.

Figure 7: A starlike tree with 4 branches.

Analogously to path graphs, we assume that the number of moves of the criminal
is t ≥ mk, as if it was smaller than mk we could have taken a subgraph ending
in the vertex which is at distance t from SC (the centre). We will consider two
cases of starlike trees, depending on the value of t:

mk ≤ t < 2

k∑
l=1,l ̸=k−1

(ml − 1) +mk−1

18

and

t ≥ 2

k∑
l=1,l ̸=k−1

(ml − 1) +mk−1.

This case distinction is made analogously to the ones in path graphs, as in the
latter case C is able to go to one-to-last vertex on each branch and go back, and
end in the furthest vertex on the shortest branch. Note that if ml = 1 for some
l ≥ 2, then C does not visit that branch at all, but D does still have to check
it, analogously to stars.

We will propose strategies, so a combination of a starting position SD and a set
of rules R, for both cases and prove that a given strategy is optimal. We do
that rather than considering SD and R separately, like in previous cases, as now
we can make use of those results. We will start with a strategy for the greater
t, as we will use it for smaller t as well.

Lemma 6.1. Let G be a starlike tree with k branches of lengths ml for l =
1, 2, . . . , k, such that 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk−1 ≤ mk and SC is the root of

G. Let t ≥ 2
∑k

l=1,l ̸=k−1(ml − 1) +mk−1.
An optimal strategy consists of the set of rules R and the starting position SD

such that:
SD = vmk

, with the number of moves of the detective

d = mk +mk−1 + 2

k−2∑
l=1

ml

and R is described with the following algorithm.

Proof. The rules in lines 1 to 8 and 12 to 17 are analogous to the ones in the
algorithm for path graphs and those were proven to be necessary in an optimal
set of rules.

The rule in lines 6, 9 and 10 is connected to the choice of SD.
Choose SD = vmk

.
Since t is big enough for C to visit all vertices but the last one on all the branches
and reach the furthest vertex on the (k + 1)th branch, he can do that and end
in vmk−1

.
Let us choose w - the walk of C visiting all those vertices and F = vmk−1

.
Then ifD starts in vmk

and checks all the branches clockwise, they end in vmk−1
.

That way they go to the endpoint and back on the shortest branches and only
to the endpoints of the longest ones.
Essentially the order of checking the branches between the last one and the first
one does not matter, as long as the second longest one is the last one to be
checked (for the chosen SD). That saves going back and forth on the longest
branches, which would make longer loops in the detective’s walk. An equally
good rule would be to start in the endpoint of the second longest branch and
go counterclockwise, as then D takes the same walk but in reverse.

19

Algorithm 3 The set of rules for starlike trees.

1: if current vertex is F then
2: D stops
3: else
4: if current vertex is an endpoint then
5: D moves towards SC

6: else if current vertex is SC then
7: if current vertex is SD then
8: D moves to the longest branch
9: else

10: D moves to the next branch (counting clockwise)
11: end if
12: else if current vertex is not visited by C then
13: D moves towards SC

14: else if D started moving towards SC then
15: D moves towards SC

16: else
17: D moves away from SC

18: end if
19: end if

If they skipped a branch, however, C could choose the endpoint of that branch
as the final destination, so D needs to check all the branches.

As mentioned earlier, since D starts in the longest one and ends in the second
longest one, they traverse those only once. As they need to check all the other
branches, they need to traverse them twice (go to the endpoint and back). This
gives

d = mk +mk−1 + 2

k−2∑
l=1

ml.

Now we need to show (a) and (b) from 4.1, as in the previous cases.

(a) To show: maxw∈W n(w, SD, R) = d. Any choice of the final destination
F̃ ̸= vmk−1

and any walk leading to it would makeD move less, asD checks
the branches clockwise and in that sense vmk−1

is the furthest vertex from
vmk

= SD.

Hence, indeed, maxw∈W n(w, SD, R) = d.

(b) Let us consider two cases:

• S̃D = vik , where 0 ≤ ik < mk, so 0 ≤ d(vik , v0) < d(SD, v0)
C can choose the same walk, w, and F̃ = F , then the number of moves
for D is:

d̃ = d(vik , SD) + d > d.

20

• S̃D = vih for some ih = 1, 2, . . . , h for some h = 1, 2, . . . , k − 1
C can choose a walk that visits all branches in the same way as earlier*
and ends in F̃ = vmh−1

for h ≥ 2 or in F̃ = vmk
for h = 1.

* Note that if t = 2
∑k

l=1,l ̸=k−1(ml−1)+mk−1, C can visit all the vertices

up to the one-to-last one on all the branches but the (k − 1)th branch, so
on that one, he reaches the vertex vak−1

with ak−1 =
⌊mk−1

2

⌋
and then

turns around. When t is greater, he can move further on the (k − 1)th

branch, making D move more as well.
Therefore the number of moves of D is:

d̃ ≥

d(vik−1

, vmk−1
) +mk−1 +mk−2 + 2

∑
l ̸=k−1,h−2 ml if h = k − 1,

d(vi1 , vm1
) +m1 +mk + 2(

⌊mk−1

2

⌋
+

∑k−2
l=2 ml) if h = 1,

d(vih , vmh
) +mh +mh−1 + 2(

⌊mk−1

2

⌋
+

∑
l ̸=h,h−1,k−1 ml) else,

≥ d(vi1 , vm1) +m1 +mk +mk−1 − 1 + 2 ·
k−2∑
l=2

ml

≥ mk +mk−1 + 2

k−2∑
l=1

ml

= d.

Hence d̃ ≥ d for all other possibilities for a starting position.

Thus the chosen SD and R form an optimal strategy.

Lemma 6.2. Let G be a starlike tree with k branches of lengths ml for l =
1, 2, . . . , k, such that 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk−1 ≤ mk and SC is the root of

G. Let mk ≤ t < 2
∑k

l=1,l ̸=k−1(ml − 1) +mk−1.
An optimal strategy consists of the set of rules R, as introduced above, and the
starting position SD such that:
SD = vjk is a vertex on the longest branch with

• for mk ≤ t < mk−1 + 2
∑k−2

l=1 (ml − 1): jk = 1 and the number of moves
of the detective:

d = 1 + t+ 2(k − 2),

• for mk−1 + 2
∑k−2

l=1 (ml − 1) ≤ t < 2
∑k

l=1,l ̸=k−1(ml − 1) +mk−1:

jk =

⌈
t− (2

∑k−2
l=1 (ml − 1) +mk−1)

2

⌉
+ 1

and the number of moves of the detective:

d = jk +mk−1 + 2

k−2∑
l=1

ml.

21

Proof. Analogously The rules in R follow from the previous algorithms, and the
proof for the rule in lines 6, 9 and 10 is analogous to the case above.
If we choose SD = vjk as defined above, C could visit the other branches and
end in the endpoint of the second longest one. This means that D starts in a
not visited vertex (analogously to path graphs), so they need to walk directly
to the internal vertex, traverse the shorter branches up to the first not visited
vertex twice and go to the endpoint of the second longest branch.

Moving as described above gives us the number of moves of the detective:

• for mk ≤ t < mk−1 + 2
∑k−2

l=1 (ml − 1):

d = 1 + t+ 2(k − 2),

• for mk−1 + 2
∑k−2

l=1 (ml − 1) ≤ t < 2
∑k

l=1,l ̸=k−1(ml − 1) +mk−1:

d = jk +mk−1 + 2

k−2∑
l=1

(ml − 1) + 2(k − 2) = jk +mk−1 + 2

k−2∑
l=1

ml.

That is because D needs to reach the internal node, do all the moves of C and
check one more vertex on each branch between the first and the last one, which
gives 2(k − 2) additional moves. Now we need to show (a) and (b) from 4.1, as
in the previous cases.

(a) To show: maxw∈W n(w, SD, R) = d.
Analogously to path graphs, C can visit any further vertex, but uses two
moves for that, as he would have to go there and back, so he has to end
two vertices closer. This gives the same number of moves for the detective,
d. If those further vertices are endpoints, say e of them, then the number
of moves of D is d − 2e, because D would have checked the endpoints
anyways and C uses up two moves for each, so removes two vertices in the
end of his walk. Note that this formula is true only if F ̸= v0, because
then D would finish in v0 the first time they visit it, and then the number
of moves of D would be even smaller.
C could also visit different branches (without reaching the endpoints), but
the number of his moves, t, is still the same, so the number of moves for
D is the same too.

Hence, indeed, maxw∈W n(w, SD, R) = d.

(b) Let us consider two cases:

• S̃D = vik for i ̸= j
In this case, C can take the same walk as earlier and the number of moves
of D is then

d̃ =

{
d+ ih − jk > d if ih > jk,

d+ 2(jk − ih) > d if ih < jk.

22

• S̃D = vih for some ih = 1, 2, . . . , h for some h = 1, 2, . . . , k − 1
Analogously to the case above, C can choose a walk that visits other
branches in the same way as earlier and ends in F̃ = vmh−1

for h ≥ 2 or in

F̃ = vmk
for h = 1. The number of moves is then still the same (for smaller

t) or bigger (for greater t), as C can go further on the longest branches
(for the greater t) and checking any vertex on any branch requires one (if
it is vgh for some g < h or any vertex on the last branch) or two moves
(for any other vertex). The number of moves of D is then

d̃ ≥

d+ ih − jk > d if ih > jk,

d if ih = jk,

d+ 2(jk − ih) > d if ih < jk.

Hence d̃ ≥ d for all other possibilities for a starting position.

Thus the chosen SD and R form an optimal strategy.

7 Conclusion and Recommendations

We have found optimal strategies, that consist of a set of rules and a starting
position of the detective, for path graphs, stars and starlike trees. We should
note that path graphs and stars are special cases of starlike trees, but this
division was needed to build up to the more general case.

As mentioned earlier, the game Scotland Yard was proven to be NP-complete,
and therefore it is very difficult to find an optimal strategy for it. However,
there are multiple possibilities to get closer to solving it.

7.1 Further Research

Further steps could include finding optimal strategies for a general case of trees
and later for cyclic planar graphs as well. Then the specific cases of the boards
for both games could be solved, as they are both cyclic graphs. This can be
done while keeping the simplified rules, but another possibility is to consider
more or different rules.

To make it more similar to the games, one might look for strategies for a game
with turns, where the moves of the criminal and the detective are alternating.
The objective would then be different, as we would not look for the hideout of
the criminal, but rather for the criminal himself. One could also include more
detectives, as it is in the game in order to cover the given graph to a greater
extent and increase the chances of the detectives winning.

As the two games are originally built differently, another further step could be to
look for strategies for graphs made like the one for Scotland Yard, where we have
multiple means of transportation or like the one for Letters from Whitechapel,
where we have different sets of vertices for the detectives and the criminal.

23

Another extension could be considering a probabilistic approach for graph search-
ing methods for cops and robbers games as described in the book Graph Search-
ing Games and Probabilistic Methods [1]. This, however, focuses on games with
perfect information, so the first step would be to use determinization to handle
the imperfect information, as in [8], where Monte Carlo Tree Search is applied
to the Scotland Yard game.

8 Acknowledgements

I would like to thank Bart Smeulders for his supervision and many encouraging
words. I would also like to thank my friends who immediately bought me both
games when they heard about this project.

24

References

[1] Anthony Bonato and Pralat Pawel. Graph Searching Games and Proba-
bilistic Methods. Chapman and Hall/CRC, Nov. 2017, pp. 29–30. isbn:
9781315212135. doi: 10.1201/9781315212135.

[2] Eduardo J Subelman. “A Hide-Search Game”. In: Journal of Applied Prob-
ability 18.3 (1981), pp. 628–640. issn: 00219002. doi: 10.2307/3213317.
url: http://www.jstor.org/stable/3213317.

[3] Jonathan Liu. Getting Away With Murder: Letters From Whitechapel. May
2011. url: https://www.wired.com/2011/05/getting-away-with-
murder-letters-from-whitechapel/.

[4] Board Game Geek - Letters from Whitechapel board. Apr. 2011. url: https:
//boardgamegeek.com/image/971115/letters-whitechapel.

[5] Merlijn Sevenster. “The Complexity of Scotland Yard”. In: Interactive Logic
(J. van Benthem, B. Löwe, and D. Gabbay, eds.) (2006), pp. 209–246.

[6] Tirtharaj Dash et al. “Adversarial neural networks for playing hide-and-
search board game Scotland Yard”. In: Neural Computing and Applications
32.8 (Apr. 2020), pp. 3149–3164. issn: 14333058. doi: 10.1007/s00521-
018-3701-0.

[7] Martin Schmid et al. “Player of Games”. In: (Dec. 2021). url: http://
arxiv.org/abs/2112.03178.

[8] P Nijssen and M H M Winands. “Monte Carlo Tree Search for the Hide-
and-Seek Game Scotland Yard”. In: IEEE Transactions on Computational
Intelligence and AI in Games 4.4 (2012), pp. 282–294. issn: 1943-0698.
doi: 10.1109/TCIAIG.2012.2210424.

25

https://doi.org/10.1201/9781315212135
https://doi.org/10.2307/3213317
http://www.jstor.org/stable/3213317
https://www.wired.com/2011/05/getting-away-with-murder-letters-from-whitechapel/
https://www.wired.com/2011/05/getting-away-with-murder-letters-from-whitechapel/
https://boardgamegeek.com/image/971115/letters-whitechapel
https://boardgamegeek.com/image/971115/letters-whitechapel
https://doi.org/10.1007/s00521-018-3701-0
https://doi.org/10.1007/s00521-018-3701-0
http://arxiv.org/abs/2112.03178
http://arxiv.org/abs/2112.03178
https://doi.org/10.1109/TCIAIG.2012.2210424

	Introduction
	Scotland Yard and Letters from Whitechapel
	The Simplified Game

	Preliminaries
	Notation
	Variables

	Problem Statement
	Path Graphs
	SC in an Endpoint
	SC in the Centre
	Other SC
	General SC

	Stars
	Trees
	Conclusion and Recommendations
	Further Research

	Acknowledgements

