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Abstract

In this thesis, a model for learning neuronal populations in a spatial setting is constructed, based
on a general integrate-and-fire framework. The focus is on deriving mean-field results that predict
neuronal activity and synaptic weight changes in response to each other and external input. Next to
this, synchronization of neuron potentials is also investigated. We find that this tends to occur in exci-
tatory populations. We present a learning rule based on spike-timing-dependent plasticity (STDP) to
model Hebbian learning. In the mean-field limit we show that such a learning rule can coincide with a
rate-based learning rule. The derived mean-field equations predict, under appropriate assumptions,
the relation between external (sensory) input, activity, and network structure in the form of a system
of partial differential equations. Numerical simulations using the Julia language are used to illustrate
concepts and verify some of the results. These verifications indicate that the mean-field approxima-
tion is valid for at least fully connected homogeneous inhibitory populations.
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Chapter 1

Introduction

Learning is arguably the most valuable cognitive skill humans and other mammals possess. The ability
to adapt behavior based on past experiences within an organism’s lifespan, instead of over many
generations due to natural selection, is a significant survival advantage.

But the importance of learning is not limited to the biological domain. The rampant rise of artificial
intelligence over the past few months has shown that emulating biological learning is possible, at least
to some degree.

The mechanics behind learning are analogous in both cases. In organisms, the organ responsi-
ble for learning is the brain. It consists of a system of interconnected cells, called neurons. Machine
learning is accomplished with artificial neural networks, which are modeled on their biological coun-
terparts.

The fact that a group of (artificial) cells, which are relatively simple in and of themselves, can collec-
tively achieve something as complex as learning is fascinating. Given that learning is also foundational
for humans and enables tremendous advancements in AI, studying the process by which neur(on)al1
networks learn is of great interest.

This thesis focuses on biological neurons, which we will model using the integrate-and-fire model.
The benefit of this model is that it approximates empirical observations well, whilst still being sim-
ple enough to enable theoretical analysis. After establishing this model for individual neurons, the
objective will be to model a system, usually called a population, of interacting neurons.

It can however be difficult to analyze a population of neurons due to the large number of neurons
involved: there are over 10, 000 neurons per cubic millimeter of brain tissue [8, p. 3]. This is why we
will employ a mean-field approximation, which will enable us to effectively average the interactions
of a neuron with all other neurons.

To model the learning ability of a neuronal population, we will primarily consider Hebbian theory.
The tenet of this theory is that a connection between two neurons is strengthened if these neurons
are often active together. This associative principle is believed to be at the basis of both memory and
learning, although reward-based learning due to certain neurotransmitters also plays a role.

We will derive mean-field partial differential equations that predict, under appropriate assump-
tions, the relation between external (sensory) input, activity, and network structure. Numerical simu-
lations will be used to verify these results in a few simplified settings.

1“Neuronal” generally refers to biological neurons, whereas “neural” pertains to the artificial variants.
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Chapter 2

Neuron models

To eventually make the leap to interacting and learning populations of neurons, we first have to un-
derstand the behavior of individual neurons. Before diving into the mathematical models used to
model neurons, this chapter will give a short and simplified overview of the biological foundation
upon which these models are built, following Gerstner et al. [8, pp. 3–7].

Once this background has been established we will settle on a certain type of neuron model to
use, namely the integrate-and-fire model. We close the chapter by deriving properties of a general
version of this model.

2.1 Biological background
A neuron is a type of cell that enables the functioning of the nervous system. It typically consists of
three main components: incoming dendrites, the soma, and the axon, illustrated in Figure 2.1. The
dendrites transfer electrical signals coming from other neurons into the soma. The soma combines all
of this input, and if it collectively causes the soma’s electric (membrane) potential to exceed a certain
threshold an output signal is emitted through the axon. The axon branches out to other neurons,
propagating the signal. The point where the axon connects to the dendrite of another neuron is
called a synapse. Schematically, this process is illustrated in Figure 2.1.

It turns out that these electrical signals between the neurons consist of very short1 bursts of elec-
tric current that cross the synapses, which are called spikes. A neuron that emits such a spike is said
to fire. In the context of a firing neuron and a neuron on the receiving end of its spike, we speak of
presynaptic and postsynaptic neurons respectively.

Recapitulating, the basic mechanic is as follows: each neuron receives input from other neurons,
and if this input sums up to be large enough the neuron sends out input itself. However, experiments
with neurons have revealed two complicating aspects of neuronal behavior: refractoriness and adap-
tation. Both of these aspects demonstrate that neurons can “remember” their past stimulus exposure
to some degree.

If a neuron has recently fired there is a period during which it can not fire again, even when it
receives large input. This period is called the absolute refractory period. It is followed by a phase of
relative refractoriness, during which excitation is difficult but not impossible.

Adaptation occurs when a neuron starts being exposed to (near) constant stimulus, strong enough
to trigger spikes. Due to the aforementioned refractory period, the frequency of these spikes is
bounded. One might expect the neuron to commence firing at a fixed frequency when the expo-
sure starts, but this is not the case. Instead, most neurons start firing at a frequency that decays to a
lower frequency over time. This can be interpreted as the neuron adapting to the stimulus, becoming
less sensitive to it over time.

To explain this diverse behavior, various models of neuronal dynamics exist. These range from
the more accurate and complex biophysical models to the simpler integrate-and-fire models. We will
discuss these in the coming sections.

1The relatively short duration of spikes will be important because it justifies the approximation of spikes as instantaneous
events as done by integrate-and-fire models (see Section 2.3).
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CHAPTER 2. NEURON MODELS

Figure 2.1: Schematic of a neuron with its incoming dendrites, central soma, and outgoing axon.
Adapted from [14] and licensed under a CC BY-SA 3.0.

2.2 Biophysical models
Because neurons are ultimately cells, a large class of neuron models predicts spiking behavior by
describing the biological processes that cause the build-up and discharge of potential in the soma.
Generally, this is done by modeling various ion channels in the cell membrane, through which cur-
rent can flow in and out of the cell. These channels open and close (partially) based on the current
potential in the cell, which is modeled using differential equations in time. One of the oldest and most
prominent models of this kind is the Hodgkin-Huxley model, which has 3 ion channels [8, ch. 2].

The variety in the behavior of these ion channels makes it possible to explain a large portion of
observed neuronal behavior. For instance, the Hodgkin-Huxley model has a sodium ion channel that
rapidly opens when the cell potential rises above some threshold, letting in even more current through
the cell membrane. However, the same channel closes again when the potential is large, but this
happens on a slightly longer timescale. The effect is a spike. After the spike the channel is closed off
entirely, causing the post-spike potential to be decreased below the equilibrium (resting) potential.
This causes a phase of (relative) refractoriness.

Similarly, by adding an ion channel that closes at an even slower speed when the potential is large,
adaptive behavior can be modeled.2 One can imagine that adding more ion channels with different
properties can lead to behavior as intricate as desired. There are even spatial versions of these models
that take into account the differences in potential along the dendrites and axons [8, ch. 3], which can
be even more accurate.

However, the cost of this accuracy is a complicated system of coupled differential equations, which
is hard to untangle and analyze analytically. This is why we will focus on a different, simpler kind of
model in this thesis.

2Adaptation is, in essence, refractoriness on a longer timescale.
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CHAPTER 2. NEURON MODELS

2.3 Integrate-and-fire models
Integrate-and-fire models are essentially simplified versions of biophysical models. The primary ingre-
dient is still the time-dependent potential, denoted as u(t), within the cell membrane, which evolves
according to a differential equation. The main simplification is that spikes happen instantaneously
once the potential exceeds a certain threshold: no time elapses during the transmission of current
through the synapses and the closing of the ion channels to return the potential to the post-spike
potential. This means that the mechanism that decreases the potential after a spike does not need to
be incorporated into the model.

In this section, we introduce two prominent models of this type: the leaky integrate-and-fire model
and the exponential integrate-and-fire model. We will use these two models as examples throughout
this thesis.

2.3.1 Leaky integrate-and-fire
The simplest kind of integrate-and-fire model is the leaky integrate-and-fire model [8, sec. 1.3]. Its
differential equation consists of a driving force that exponentially decays the current potential u(t)
back to some resting potential Vrest ∈ R, and an arriving external input current Iext(t) containing for
instance presynaptic spikes. The effect of this input current depends on the resistance of the cell
membrane R > 0, and the speed of the entire process is controlled by a time constant τ > 0.

The potential evolution thus satisfies the differential equation

τ
d

dt
u = −(u− Vrest) +RIext(t). (2.1)

This equation alone would suggest that u could grow arbitrarily large for large input Iext, but as we
know from Section 2.1 there should be a firing threshold VF > Vrest. When u exceeds this threshold VF
the neuron fires, after which u is immediately reset to some reset potential VR < Vrest. In combination
with an initial condition u(t0) = u0, this completely describes the evolution of the potential u. A typical
solution can be seen in Figure 2.2, where Iext is constant.

The fact that the post-spike potential is reset to a value VR < Vrest causes a phase of relative refrac-
toriness. This is because the required potential for causing a spike at that moment is VF − VR, which
is larger than in the equilibrium state when it is VF − Vrest.
Remark 2.1. Note that (2.1) may not be a classical differential equation. The input Iext can contain
presynaptic spikes from other neurons, which happen instantaneously (just like the reset from VF
to VR). This means that Iext(t) can not be a continuous function, but instead contains infinitesimally
short “pulses”. To represent this mathematically we will use Dirac measures, which we will formalize
in Section 2.4.
Remark 2.2. Suppose that at time t either a presynaptic spike arrives or the neuron fires. In both cases
the potential u changes immediately (discontinuously) at time t, but whether u(t) is already affected
by this jump is up to preference. We will adhere to the convention that u is a càdlàg function which
means that the jump already affects u(t), see Definition 2.1 below.

Definition 2.1. A function h : J → X from J ⊂ R to some metric space (X, d) is called a càdlàg3

function if it is right-continuous and has left-limits everywhere. That is, for all t∗ ∈ J ,

lim
t↓t∗

h(t) = h(t∗), and lim
t↑t∗

h(t) exists.

Related to this definition, we introduce some shortened notation for left- and right-limits.

Notation 2.2. Left- and right-limits are denoted with superscript plus and minus signs on the function
argument (when they exist). For example, for f : I → R some function with I ⊂ R some open interval
and t ∈ I we write

f(t+) := lim
τ↓t

f(τ),

provided that this limit exists.

3French: “continue à droite, limite à gauche”
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CHAPTER 2. NEURON MODELS

Figure 2.2: Potential evolution of the leaky integrate-and-fire model. Nondimensionalized parameters
as in Table 2.2, with Iext ≡ 0.65.

Nondimensionalization

To simplify the form of (2.1), we will nondimensionalize this equation to reduce the number of physical
parameters. The involved dimensions are potential u [V ], time t [s], current Iext [A] and resistance
R [Ω = V A−1]. We introduce the new parameters

π := t
τ , v := u−VR

VF−VR
, and S(π) := RIext(τπ)

VF−VR
,

which transforms the equation to

d

dπ
v = −(v − Vrest−VR

VF−VR
) + S(π),

with a reset from v = VF−VR

VF−VR
= 1 to v = VR−VR

VF−VR
= 0.

Relabeling the parameters and the constant Vrest−VR

VF−VR
back to the old symbols (which is a slight

abuse of notation) allows us to write,

d

dt
u = −(u− Vrest) + Iext(t), (2.2)

with resets from 1 to 0 as the nondimensionalized leaky integrate-and-fire model.

2.3.2 Exponential integrate-and-fire
The exponential integrate-and-fire model is more detailed than the leaky variant [6]. In addition to
the decay to the resting potential, this model also describes (part of) the blowup of the potential that
defines a spike. This is modeled by an exponential term in the differential equation that can cause the
potential to rapidly increase once it exceeds the so-called rheobase threshold ϑrh < VF , overpowering
the decay to Vrest. The “sharpness” of this blowup is governed by a parameter ∆T > 0.

The differential equation corresponding to this is the following:

τ
d

dt
u = −(u− Vrest) + ∆T exp

(
u− ϑrh
∆T

)
+RIext(t). (2.3)

with some initial condition u(t0) = u0 and a firing threshold VF ∈ R, after which a reset to VR < VF
takes place. Figure 2.3 shows a typical solution to this system, for constant external input. We used a

6 The Limit of Learning



CHAPTER 2. NEURON MODELS

Figure 2.3: Potential evolution of the exponential integrate-and-fire model. Nondimensionalized pa-
rameters as in Table 2.1, with Iext ≡ 0.2.

lower external input there than what was used for the leaky model to get approximately comparable
firing frequencies.

Because the blowup caused by the exponential term is so rapid (as can be seen in Figure 2.3), the
potential would go to infinity in finite time without the firing threshold. This means that the threshold
VF can be set equal to +∞, or at least arbitrarily large, without significantly affecting the dynamics.
For numerical purposes, this means that the exact value of VF matters little when it is large enough.

This model, with fitted parameters, matches observed neuronal behavior much better than the
leaky model [8, pp. 125–126]. The only facet of neuronal behavior that is not represented is adaptation.
This could be added to increase the predictive performance of the model further [4], but because of
the extra differential equations this requires we will not pursue such a model.
Remark 2.3. Often, an absolute refractory period of duration τref is added to the exponential integrate-
and-fire model. This means that when the neuron spikes, the integration restarts only after a time
period of τref . For simplicity, we opt not to add this to our version of the model. Relative refractoriness
is still modeled because VR < Vrest, as noted in Section 2.3.1.
Remark 2.4. When ∆T is taken very close to zero, the behavior of the exponential integrate-and-fire
model approaches a leaky integrate-and-fire model with a firing threshold of ϑrm. This is because,
when ∆T is small, the blowup happens very quickly after u exceeds ϑrm, causing VF to be reached
almost instantaneously.

Nondimensionalization

We will now nondimensionalize (2.3), just as we did for (2.1). Note that the argument of the exponential
must be dimensionless, so [ϑrh] = [∆T ] = V . A similar argument as given for the leaky model, where
now also ∆T and ϑrh are scaled by VF − VR and the latter is shifted, yields4

d

dt
u = −(u− Vrest) + ∆T exp

(
u− ϑrh
∆T

)
+ Iext(t), (2.4)

with resets from 1 to 0 as the nondimensionalized exponential integrate-and-fire model.
Remark 2.5. This transformation is only possible when VF < +∞. This is one of the reasons for keeping
VR and VF in the general integrate-and-fire model we define in Section 2.4, instead of replacing them
with 0 and 1 respectively.

4Here we again use the same symbols as for the dimensional parameters by abuse of notation.
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2.3.3 Simulation
To illustrate the behavior of integrate-and-fire models, a simulation was created with the Julia pro-
gramming language using the DifferentialEquations.jl library [12]. We used the default set-
tings of this library, which automatically chooses an ODE solver based on the given problem. The
source code can be accessed on GitHub (link). Throughout this thesis, we will use this simulation to
visualize and verify some of our models and results, as done in Figure 2.2 and Figure 2.3.

To perform these simulations, a choice had to be made for the parameters in (2.1) and (2.3), and for
VR and VF . Because this thesis focuses on studying the influence of the neuronal network structure
and external input, all of these parameters, except for Iext, were assigned fixed values.

To choose realistic values, we used parameters that were fitted to the biophysical Wang-Buzsáki
model,5 as done in [6]. These can be seen in Table 2.1. The parameters τ and R are not in this table;
as they pertain to the speed of the process and the external input respectively we set them equal to 1.

Parameter Dimensional Nondimensionalized
VF −50mV∗ 1
ϑrh −59.9mV 0.45
Vrest −65mV 0.17
VR −68mV 0
∆T 3.48mV 0.19

Table 2.1: Exponential integrate-and-fire parameters, based on the Wang-Buzsáki model.
∗ Fourcaud-Trocmé et al. [6] use VF = −30mV, but this was lowered to improve the stability of the numerical integration.

We used the same reset and resting potential for the leaky model as for the exponential model.
Based on Remark 2.4, we chose to take ϑrh from Table 2.1 as the firing threshold of this model. This
results in Table 2.2.

Parameter Dimensionalized Nondimensionalized
VF −59.9mV 1
Vrest −65mV 0.37
VR −68mV 0

Table 2.2: Leaky integrate-and-fire parameters.

2.4 General integrate-and-fire model
In this section, we will formulate the integrate-and-fire model in full generality as an integral initial
value problem, and prove results on the existence of solutions. At the end, we will also introduce the
concept of repetitive firing and the gain function.

2.4.1 Formulation
The setting is as follows: the (membrane) potential u : I → U takes values in the potential space
U := (−∞, VF ) ⊂ R on some time interval I ⊂ R, where VF ∈ R ∪ {+∞} is the firing threshold. The
evolution of u is governed by the following components:

1. A driving force that governs the potential in the absence of resets and pulse inputs, represented
by a function f : I × U → R. We will assume that f is continuous in its first argument (time)
and either continuously differentiable or Lipschitz continuous in its second argument (potential).
This is needed to ensure the existence of unique solutions to the differential equation. Note that
f already contains any continuous external input Iext(t).

2. A set of arriving pulses independent of the potential, possibly from other neurons. We will rep-
resent these by N ∈ N arbitrary probability measures µ1, . . . , µN ∈ P(R) on the time space with
corresponding weights ω1, . . . , ωN ∈ R. Note that in all applications these measures will simply
be (sums of) Dirac measures.

5The Wang-Buzsáki model is a variant of the standard Hodgkin-Huxley model.

8 The Limit of Learning
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CHAPTER 2. NEURON MODELS

3. A reset to VR < VF whenever the firing threshold VF is reached. The set of firing times is implicitly
defined as follows

T := {τ ∈ I | u(τ−) +
N∑
i=1

ωiµi({τ}) ≥ VF }, (2.5)

where we need to use u(τ−) and take into account spikes arriving at time τ separately since
we formulate the system in a way that makes u càdlàg. Namely, if τ ∈ T then by construction
u(τ) = VR. We will revisit this set T in Section 2.4.4.

4. An initial condition u0 ∈ U at time t0 ∈ I.

All in all, we formulate the following formal and implicit system for u: du = f(t, u) dt+
∑
τ∈T

(VR − u(τ−)−
N∑
i=1

ωiµi({τ}))δτ (dt) +
N∑
i=1

ωiµi(dt), t ∈ I,

u(t0) = u0.

(2.6)

In the expression for du, the first term is the contribution of the driving force f , the second term
causes the reset to VR, and the third term contains the arriving pulses. The reason for the subtraction
of the singleton measures in the second term is that pulses arriving at a firing time should be able
to cause the firing (see (2.5)), but they should not affect the post-spike potential VR.6 As they are not
included in u(τ−), they have to be subtracted separately.

We are going to make this system more precise by rewriting it as an integral initial value problem,
but to do so we first introduce some notation.

Notation 2.3. The Lebesgue measure L : BL
Rd → [0,+∞], where BL

Rd is the completion of the Borel σ-
algebra w.r.t. the Lebesgue measure, will be denoted by dx instead ofL(dx)when confusion is unlikely.
Here x is the variable from the measured space Rd, which is often the integration variable.

Notation 2.4. For a measure space (R,F , µ) with F ⊇ BR (so that half-open intervals are measurable),
an interval J ⊂ R, a µ-integrable function f : J → R and constants t0, t1 ∈ J with t1 ≥ t0, we denote∫ t1

t0

f dµ :=

∫
(t0,t1]

f dµ,

and for t1 < t0 we define ∫ t1

t0

f dµ := −
∫ t0

t1

f dµ.

This convention ensures that
∫ t0
t0
f dµ = 0 and

∫ s

t0
f dµ +

∫ t1
s
f dµ =

∫ t1
t0
f dµ. The choice to include the

upper bound of the integration domain makes it so that functions of the type t 7→
∫ t

t0
f dµ are càdlàg

(as a consequence of the Dominated Convergence Theorem A.4).

With these conventions in mind, we reformulate (2.6) as

u(t) = u0 +

∫ t

t0

(
f(τ, u(τ)) dτ +

∑
σ∈T

(VR − u(σ−)−
N∑
i=1

ωiµi({σ}))δσ(dτ) +
N∑
i=1

ωiµi(dτ)

)
, t ∈ I. (2.7)

Observe that this equation is still implicit becauseT depends on u. Therefore, the existence of (unique)
solutions is not obvious. We will address this in the next three sections: first, we will prove the exis-
tence of (1) local and (2) global càdlàg solutions if we disregard the reset terms, and (3) then we will
show how the resets can be incorporated by “gluing” together solutions without resets.

2.4.2 Local solution existence
When looking for a local solution to (2.7), we can disregard the reset term by assuming that the arriving
spikes locally do not elevate the potential to VF . In this case the existence of a unique local càdlàg
solution can be shown, which is the topic of the following theorem.

6Allowing this could let u exceed VF .
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Remark 2.6. In the theorem below, the choice to assume continuous differentiability instead of Lips-
chitz continuity of f in its second argument is made to accommodate the exponential integrate-and-
fire model, whose driving force f is not globally Lipschitz continuous in case VF = +∞.

Theorem 2.1 (Picard-Lindelöf with measures). Let (X, ∥ · ∥) be a real finite-dimensional Banach space
with U ⊂ X and I ⊂ R both open and nonempty. Let f ∈ C0,1(I ×U,X), meaning that f is continuous and
continuously differentiable in its second argument. Also let µ1, . . . , µN ∈ P(R), N ∈ N be Borel probability
measures with associated weights ω1, . . . , ωN ∈ X . Suppose that for (t0, u0) ∈ I × U there exists a closed
interval J̃ ⊂ I containing t0 in its interior for which it holds that B(u0,

∑N
i=1 ∥ωi∥µi(J̃) + 1) ⊂ U , then there

exists an open interval J ⊂ J̃ , t0 ∈ J such that the (integral) initial value problem

u(t) = u0 +

∫ t

t0

(
f(τ, u(τ)) dτ +

N∑
i=1

ωiµi(dτ)

)
, t ∈ J, (2.8)

has a unique solution u ∈ Db(J,X), the space of bounded càdlàg functions from J to X . Here (2.8) should
be interpreted with Notation 2.4 in mind.

Proof. The proof is inspired by the proof of the Picard-Lindelöf Theorem A.1.
Define K :=

∑N
i=1 ∥ωi∥µi(J̃) + 1. We start by defining the interval J , using the assumptions on the

function f .
By assumption, f is continuously differentiable in its second argument. Denote this derivative by

D2f : I × U → BLin(X), which is thus continuous. Here BLin(X) is the space of bounded linear maps
from X to X. Because J̃ × B(u0,K) is closed and bounded, it is compact by finite-dimensionality of
the Banach space X. Thus, we can define

L := max
(t,x)∈J̃×B(u0,K)

∥D2f(t, x)∥BLin(X). (2.9)

Moreover, by continuity of f , there exists an M > 0 such that

∥f(t, x)∥ ≤M for (t, x) ∈ J̃ ×B(u0,K). (2.10)

Now choose R > 0 such that MR < 1, LR < 1 and J := (t0 − R, t0 + R) ⊂ J̃ . On this interval J we
will prove the existence of a unique solution to (2.8).

Define the set D := BDb(J,X)(u0,K), where u0 : J → X : t 7→ u0 is a constant function. Here
(Db(J,X), ∥ · ∥∞) is the Banach space of bounded càdlàg functions from J to X with supremum norm
(this space is complete by Lemma B.2). The supremum norm is defined as

∥u∥∞ := sup
t∈J

∥u(t)∥.

Also define the map T : D → Db(J,X) : u 7→ T u by

(T u)(t) := u0 +

∫ t

t0

(
f(τ, u(τ)) dτ +

N∑
i=1

ωiµi(dτ)

)
, t ∈ J. (2.11)

This map is well-defined, since for u ∈ D we have u(τ) ∈ U ∀ τ ∈ J (because B(u0,K) ⊂ U ). The
resulting function T u : J → X is furthermore bounded, because (2.10) combined with t0, t ∈ J ⊂ J̃
guarantees boundedness of the first term of the integrand whereas the finiteness of the measures
µ1, . . . , µN does so for the second term. By Lemma B.1, T u is also càdlàg. Therefore T indeed maps
from D into Db(J,X).

Note that if u∗ ∈ D is a fixed point of T , i.e., T u∗ = u∗, then u∗ satisfies (2.8). We will now apply the
Banach Fixed Point Theorem (Theorem A.2) to show that T has a unique fixed point. We do this by
checking the 3 conditions of this theorem:

10 The Limit of Learning
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1. Db(J,X) is complete by Lemma B.2, so as D is a closed subset it is complete as well.

2. Let v ∈ D. Then we have for all t ∈ J that

∥(T v)(t)− u0∥ =

∥∥∥∥∥
∫ t

t0

(
f(τ, v(τ)) dτ +

N∑
i=1

ωiµi(dτ)

)∥∥∥∥∥ ,
=

∥∥∥∥∥
∫ t

t0

f(τ, v(τ)) dτ + sgn(t− t0)

N∑
i=1

ωiµi((t, t0] ∪ (t0, t])

∥∥∥∥∥ ,
≤
∫ t

t0

∥f(τ, v(τ))∥ dτ +
N∑
i=1

∥ωi∥µi(J̃),

(2.10)
≤ MR+K − 1 < K.

The final inequality holds by our choice of R. Therefore, ∥T v − x0∥∞ < K, which implies that
T : D → D.

3. Finally, for any v, w ∈ D and t ∈ J , it follows from the mean-value inequality that

∥(T v)(t)− (T w)(t)∥ =

∥∥∥∥∫ t

t0

(f(τ, v(τ))− f(τ, w(τ))) dτ

∥∥∥∥ ,
≤ R · sup

τ∈J
∥f(τ, v(τ))− f(τ, w(τ))∥,

(MVI)
≤ R · sup

(τ,s)∈J×(0,1)

{
∥D2f(τ, (1− s)v(τ) + sw(τ))∥BLin(X) · ∥v(τ)− w(τ)∥

}
,

(2.9)
≤ R · L∥v − w∥∞.

Since the above holds for all t ∈ J , also

∥T v − T w∥∞ ≤ LR︸︷︷︸
<1

∥v − w∥∞,

which means that T is a contraction.

From the Banach Fixed Point Theorem, we may now conclude that T has a unique fixed point
u∗ ∈ D. This function u∗ is a unique bounded càdlàg solution to (2.8) on J . ■

2.4.3 Global solution existence without resets
In this section, we will demonstrate that the unique local solution to (2.7) from the previous section
is global under the additional assumption of Lipschitz continuity of f in its second argument, where
we still disregard the resets. Because we can no longer ensure that u stays away from VF , we have to
set VF = +∞ (so U = R) to prevent resets from being necessary.
Remark 2.7. Due to the assumption of Lipschitz continuity, this result does not apply to the exponential
integrate-and-fire model. This makes sense, as under that model VF is reachable in finite time which
prevents globality of the solution.

For the proof of Theorem 2.2, we first introduce the exponential norm for bounded functions.

Definition 2.5. Let (X, ∥·∥)be a Banach space and consider the space of bounded functionsB([t0, s], X)
(where t0, s ∈ R with t0 < s). Then the exponential norm ∥ · ∥λ : B([t0, s], X) → R+ with parameter
λ > 0 is defined as

∥u∥λ := sup
t∈[t0,s]

e−λ(t−t0)∥u(t)∥.

Theorem 2.2. The setting is mostly the same as in Theorem 2.1. Instead of assuming that f is continuously
differentiable in its second argument we now assume that it is Lipschitz continuous in its second argument,
with a Lipschitz constant L(t) ≥ 0 that depends continuously on t. Additionally, assume that I = R and
U = X (the latter means that the requirement on

∑N
i=1 ∥ωi∥µi we had in Theorem 2.1 is always satisfied).

Then (2.8) has a unique solution in Db([t0,+∞), X).
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Proof. The proof is analogous to the proof of Theorem 2.1. This time we take D := Db([t0, s], X) for
some fixed s > t0, and again define the map T : D → D in the same way as in (2.11).

To apply the Banach Fixed Point Theorem, we use the exponential norm defined in Definition 2.5
with

λ := sup
t∈[t0,s]

L(t).

Thus, we show the existence of a unique solution in (D, ∥ · ∥λ).
The first condition then holds in the same way as in (1) because of Lemma B.3, and (2) holds trivially

this time due to U = X. For the third and final condition, consider any v, w ∈ D. Then

∥T v − T w∥λ = sup
t∈[t0,s]

e−λ(t−t0)∥(T v)(t)− (T w)(t)∥,

= sup
t∈[t0,s]

e−λ(t−t0)

∥∥∥∥∫ t

t0

(f(τ, v(τ))− f(τ, w(τ))) dτ

∥∥∥∥ ,
≤ sup

t∈[t0,s]

e−λ(t−t0)

∫ t

t0

L(τ) ∥v(τ)− w(τ)∥ dτ,

= sup
t∈[t0,s]

∫ t

t0

L(τ)e−λ(t−τ)e−λ(τ−t0) ∥v(τ)− w(τ)∥ dτ,

≤ λ sup
t∈[t0,s]

∫ t

t0

e−λ(t−τ) ∥v − w∥λ dτ,

= λ sup
t∈[t0,s]

1
λ (1− e−λ(t−t0)) ∥v − w∥λ ,

= (1− e−λ(s−t0))︸ ︷︷ ︸
<1

∥v − w∥λ .

(2.12)

This shows that T is a contraction on D, so just as in Theorem 2.1 we conclude that it has a unique
fixed point u∗ ∈ D. This function u∗ is a unique bounded càdlàg solution to (2.8) on [t0, s]. Because
s > t0 is arbitrary, it follows that there must exist a unique solution in Db([t0,+∞), X). ■

Remark 2.8. Theorem 2.2 states that (sub)linear growth of f implies global solution existence, which
can also be proved using Gronwall’s inequality.

2.4.4 Solution construction with resets
Having established solution existence without resets, we now derive an explicit solution of the implicit
system (2.7). To do this, we start from the following preliminary system without resets: dũ = f(t, ũ) dt+

N∑
i=1

ωiµi(dt), t ∈ I, ũ ∈ U,

ũ(t̃0) = ũ0.

(2.13)

By Theorem 2.1 this system has a unique càdlàg solution on some open7 interval J(t̃0, ũ0) ⊂ I, which
we will denote by ũ(·, t̃0, ũ0). Note that we explicitly incorporate the initial conditions t̃0 ∈ I and ũ0 ∈ U .
This will be important since we are going to construct the solution to (2.7) as a sum of instances of
this function with different initial conditions.

We start by constructing the set of firing times T ⊂ I of the neuron. Define the potential evolution
before the first (possible) spike as

ũ(1)(t) := ũ(t, t0, u0), t ∈ J(t0, u0),

which will be the first part of the potential trajectory. In accordance with (2.5), we define the first firing
time as

r1 := inf{τ ∈ J(t0, u0) | τ > t0 ∧ ũ(1)(τ−) +
N∑
i=1

ωiµi({τ}) ≥ VF }.

7Or half-open in case t̃0 ∈ ∂I
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Often r1 will coincide with sup J(t0, u0), because f is not defined at or above VF .8 We only consider
τ > t0 because of Remark 2.9 below. Note that when the above subset of J(t0, u0) is empty, we have
r1 = +∞. In that case the neuron never fires, and also no resets take place. We henceforth assume
that there is at least one spike, so r1 ∈ J(t0, u0) ⊂ I.

Recursively, we then define for k ∈ N,

ũ(k+1)(t) := ũ(t, rk, VR), t ∈ J(rk, VR),

and

rk+1 := inf{τ ∈ J(rk, VR) | τ > rk ∧ ũ(k+1)(τ−) +

N∑
i=1

ωiµi({τ}) ≥ VF }. (2.14)

In this way, we have constructed all firing times rk. Thus

T = {rk | k ∈ N} \ {+∞}

is the set of all firing times of the neuron. Here we exclude +∞ for the technical reason that rk = +∞
when the infimum in (2.14) is empty.

Finally, we can explicitly express the potential evolution u for t > t0 by gluing together all interspike
solutions u(k). Namely,

u(t) :=
∑
k∈N

ũ(k)(t)1[rk−1,rk)(t), t ∈ I ∩ [t0, sup
k∈N

rk),

where by convention we set r0 := t0. By construction, this solution satisfies (2.7).
We intersect I with [t0, supk∈N rk) here because we could theoretically have supk∈N rk < sup I. How-

ever, we will see in Lemma 3.1 that this will not happen for VF < +∞, making this intersection unnec-
essary.
Remark 2.9. The construction above is only (uniquely) possible in the forward time-direction. Namely,
if one were to traverse the potential trajectory backwards, then upon approaching VR from above
it would in general be impossible to know if VR was reached from below or due to a reset from VF .
Therefore it only makes sense to consider (2.7) on intervals of the form I = [t0,+∞).

2.4.5 Repetitive firing
Now that we have constructed solutions to the general integrate-and-fire model, it is time to explore
some of their properties. Namely, we will investigate the repetitive firing of a neuron when exposed
to constant input, which can be observed in Figure 2.2 and Figure 2.3. In particular, the frequency of
this firing will be of interest.

Throughout this section we make the simplifying assumptions that there is no time-dependent
input, meaning that driving force is homogeneous (f(t, ·) = f(·)), and that no measures (external
spikes) contribute (ωi = 0).

Lemma 2.3. Assume the driving force is bounded below by some constant c > 0 on [VR, VF ). Then the
neuron will enter a state of periodic firing with some period T for any initial condition in [VR, VF ). Further-
more, there exists a strictly increasing (so order-preserving) diffeomorphism ν : [0, T ) → [VR, VF ) satisfying
dν
dt = f(ν). When given a time since the last spike this function yields the current potential of the neuron.

Proof. We define ν(t) := ũ(t, 0, VR) for t ∈ J(0, VR) (recall (2.13)). Note that f is bounded below by c > 0
on [VR, VF ), so ν is strictly increasing. The fact that ν reaches VF follows by the Mean-Value Theorem.
Namely, for all t ∈ J(0, VR) with t > 0 we have

ν(t)− VR = ν(t)− ν(t0) = f(ν(s))(t− t0) ≥ c(t− t0)

for some s ∈ (0, t). As c > 0, this implies that for t ≥ VF−VR

c we would have ν(t) ≥ VF if t ∈ J(0, VR).
Since ν ’s range is U = (−∞, VF ), it follows that ν must have reached VF from below at a time in the
interval (0, VF−VR

c ). It follows that we can define

T := inf{t ∈ J(0, VR) | ν(t−) = VF } = sup J(0, VR).

Because ν is continuous and strictly increasing on [0, T ) with ν(0) = VR, it is a bijection between [0, T )
and [VR, VF ). ■

8To be precise, we have sup J(t0, u0) ≤ r1. This inequality is strict if and only if ũ diverges to −∞ in finite time.
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Example 2.1. For the (nondimensionalized) leaky integrate-and-fire model under constant input Iext ≡
I0 it is easy to compute the function ν. Namely, we can analytically solve (2.2) with Iext(t) = I0 and
u(0) = VR = 0 to obtain

ν(τ) = ũ(τ, 0, VR) = Vrest + I0 − (Vrest + I0)e
−τ ,

which will reach VF = 1 provided I0 > VF − Vrest = 1− Vrest.

The lemma above states that for sufficiently strong external stimulus (which ensures that f that
is bounded below) the neuron will continuously fire with some fixed frequency. A natural question
would be what this frequency is for a given input, which is precisely the purpose of the so-called gain
function.

Definition 2.6 (Gain function). Suppose the driving force is of the form f(t, u) = f(u) + I0, where
I0 ∈ R is a constant external input current. The gain function g : R → R+ relates this input current to
the firing rate it elicits in a single neuron for an arbitrary initial condition in [VR, VF ). Possible one-time
spikes due to the initial condition are ignored here. Thus, the firing frequency of a neuron exposed
to a constant current I0 is given by g(I0).

Gain functions are often studied experimentally by exposing an in vitro neuron to a fixed current.
The empirical gain function this yields can be used to fit the parameters of a neuron model. To this
end, it is useful that we can derive an analytical expression for the gain function of a neuron model,
as done in the lemma below.
Remark 2.10. Gain functions can be classified into two types, namely continuous and discontinuous
ones. This distinction is based on whether repetitive firing picks up gradually as the external current
increases, or whether there is a jump from zero to a nonzero firing rate [for details see 8, sec. 4.4].

Lemma 2.4. The gain function g : R → R+, as defined in Definition 2.6, is given by

g(I0) =


0 if I0 ≤ − inf

u∈[VR,VF )
f(u),(∫ VF

VR

1

f(u) + I0
du

)−1

if I0 > − inf
u∈[VR,VF )

f(u).
(2.15)

Proof. First, suppose I0 ≤ − infu∈[VR,VF ) f(u). Then we have infu∈[VR,VF ) f(u) + I0 ≤ 0. The potential of
a neuron evolves according to du

dt = f(u) + I0, so as f is continuous the uniqueness of the solution
implies that ũ(·, 0, VR) never attains the value VF . Depending on u0 there could still be one spike, but
no repetitive spikes take place. This means that g(I0) = 0.

Now consider the case I0 > − infu∈[VR,VF ) f(u). Then du
dt = f(u)+I0 is bounded below on [VR, VF ) by

a positive constant, so we are in the realm of Lemma 2.3. This lemma implies that periodic repetitive
firing takes place. Hence g(I0) = 1

T > 0, where T is the period (as defined in the lemma).
We will now use the differentiable bijection ν : [0, T ) → [VR, VF ) to determine T . Its inverse ν−1 :

[VR, VF ) → [0, T );u 7→ ν−1(u) exists, and is differentiable with

dν−1

du
(u) =

(
dν

dt
(ν−1(u))

)−1

=
(
f(ν(ν−1(u)) + I0

)−1
=

1

f(u) + I0
.

It now follows that

T = ν−1(VF ) = ν−1(VR) +

∫ VF

VR

dν−1

du
(u) du =

∫ VF

VR

1

f(u) + I0
du.

Thus we conclude that

g(I0) =
1

T
=

(∫ VF

VR

1

f(u) + I0
du

)−1

.

■
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Example 2.2. We again consider the leaky model, for which the computations are easy. For this model
we have f(u) = −(u− Vrest) on U , so clearly − infu∈[VR,VF ) f(u) = VF − Vrest. For I0 > VF − Vrest we find(∫ VF

VR

1

f(u) + I0
du

)−1

=

(∫ VF

VR

1

Vrest + I0 − u
du

)−1

=
(
[− ln(Vrest + I0 − u)]

u=VF

u=VR

)−1

= 1/ ln

(
Vrest + I0 − VR
Vrest + I0 − VF

)
,

and thus

g(I0) =

0 if I0 ≤ VF − Vrest,

1/ ln

(
Vrest + I0 − VR
Vrest + I0 − VF

)
if I0 > VF − Vrest.

For the nondimensionalized model, this simplifies to

g(I0) =

0 if I0 ≤ 1− Vrest,

1/ ln

(
Vrest + I0

Vrest + I0 − 1

)
if I0 > 1− Vrest.

If we substitute the standard parameter Vrest = 0.37 and I0 = 0.65 into this we find a predicted firing
frequency of

g(0.65) = 1/ ln

(
0.37 + 0.65

0.37 + 0.65− 1

)
≈ 0.25Hz,

which corresponds approximately with the frequency observed in Figure 2.2.

In Section 3.3.3 we will see that there is an interesting link between the gain function of an individ-
ual neuron and the stationary activity of a population of neurons. These populations will be the topic
of the next chapter.
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Chapter 3

Populations of neurons

In this chapter, we will make the jump from individual neurons to populations of N ∈ N interacting
neurons. With a population we mean a group of similar neurons that interact (predominantly) with
each other. This notion is based on the existence of structures in the cortex, such as columns, layers,
and neuronal assemblies, that consist of neurons with similar properties [8, pp. 293–297]. Although
the model will be more general, for all applications and examples we will restrict to homogeneous
populations. In such a population all neurons are identical in terms of parameters, but not necessarily
in terms of external input.

As explained in Section 2.1, the interaction between the neurons of a population takes place through
the synapses between them. Whenever a presynaptic neuron fires, the spike travels through the axon
and traverses the outgoing synapses to postsynaptic neurons, causing a change in the latter’s mem-
brane potentials. This change can be both an increase or a decrease in the potential, which determines
whether we call the corresponding synapse excitatory or inhibitory respectively.

In Section 3.1 we will incorporate these interaction mechanics rigorously into the single-neuron
model formulated in Section 2.4.1, after which we will construct a solution analogous to Section 2.4.4.
Then we will explore two cases of this model. First, a simplified version where the population is ho-
mogeneous with the same external input and full connectivity (all weights between the neurons are
the same), for which we will study possible synchronization of the neurons. Afterwards, we consider a
more general version of the model with a spatial component, in which the external input and weights
depend on the (relative) positions of the neurons. For both of these models, we are ultimately inter-
ested in the behavior of the network whenN grows large. We will approximate this behavior by taking
the so-called mean-field limit, and explore stationary solutions of the resulting mean-field equations.

3.1 Formulation of the coupled system
The potentials of the different neurons at time t ∈ I will be denoted by u1(t), . . . , uN (t). Here I ⊂ R
is still the time interval on which we consider the system. Because of Remark 2.9 we restrict to time
intervals of the form I = [t0, te] or I = [t0,+∞).

The potential ui of each neuron i ∈ {1, . . . , N} evolves according to the general integrate-and-fire
model (2.3). The driving force fi : I × U → R is now neuron-dependent because different neurons
might have different parameters and/or external input.

The external pulses ωk in (2.3) are replaced with Dirac measures located at the firing times of the
other neurons. These model the spike arrivals from other neurons in the population. To describe
whether and to what degree a synapse is excitatory or inhibitory, we introduce the synaptic weights
wij ∈ R from presynaptic neuron j and postsynaptic neuron i.1 For instance, if wij = 1 then the
potential of neuron i is increased by 1 if neuron j fires. If wij = 0 there is no synapse from neuron j
to neuron i. A neuron is not connected to itself, so the values wii are irrelevant.
Remark 3.1. We could have also preserved separate external pulses ωk, which could model spikes
from neurons of a different population, but for simplicity we choose not to do so. This means that all
external input is contained in the driving forces fi, and thus assumed to be continuous.

1This ordering of the indices might seem unnatural, but this order is conventional.
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Remark 3.2. According to Dale’s principle, a neuron is either excitatory or inhibitory. This would mean
that for a fixed presynaptic neuron j the weights {wij}i∈{1,...,N} should all be of the same sign (with
zero allowed). Thus, our model is usually more general than required, although there are neurons for
which Dale’s principle does not hold [11, p. 10].

Based on (2.6) and the fact that valueswii should be ignored, an obvious formulation of the system
would be dui = fi(t, ui) dt+

∑
τ∈Ti

(VR − ui(τ
−))δτ (dt) +

N∑
j=1

∑
τ∈Tj\Ti

wijδτ (dt), i ∈ {1, . . . , N}, t ∈ I,

ui(t0) = vi, i ∈ {1, . . . , N},
(3.1)

where Tj is the set of firing times for neuron j defined in (2.5), and vi ∈ U are initial potentials for all
neurons at t0. Here the third term’s inner summation excludes Ti, which is equivalent to the subtrac-
tion of the sum of singleton measures in (2.6).

However, this exclusion of Ti has an undesirable property now that the pulses are no longer ex-
ternal. When the spike of a neuron j at time τ ∈ Tj causes the potential of another neuron i to also
(immediately) exceed VF , the resulting spike of neuron i does not affect the potential of neuron j
in any way. Namely, we will simply have uj(τ) = ui(τ) = VR. To see why this is problematic from a
modeling perspective, we have to go back to the premise of our model.

The central assumption in the general integrate-and-fire model is that spikes occur and traverse
synapses instantaneously. However, in reality or in biophysical models, these events take place over a
short but non-infinitesimal time window. Consider again a pair of mutually connected neurons i and
j, with the synapse from j to i being excitatory (so wij > 0). Neuron j fires and its spike subsequently
causes the postsynaptic neuron i to fire as well. Then neuron j ’s potential has already been reset, or
is in the process of resetting, when neuron i’s spike arrives at neuron j. This means that neuron j ’s
potential is affected by the spike from neuron i.2

As mentioned above, in our integrate-and-fire model both of these spikes would happen at the
same moment in time τ ∈ Ti ∩ Tj because ui(τ−) +wij ≥ VF , even though in “reality” neuron j would
have fired before neuron i. To reflect this ordering, we will reset neuron j to VR +wji and neuron i to
VR.

It could still be that two neurons i and j exceed VF at the same time without one causing the
other: either when both neurons continuously approach VF simultaneously due to fi and fj , or if a
presynaptic spike from some third neuron k puts both potentials above VF .

In the first case, there is no way to establish any kind of order, so the effects of both spikes have
to be processed at the same time. We choose not to let the neurons affect each other’s post-spike
potential in this case.

In the second case it could be that (w.l.o.g.) uj exceeds VF by more than ui, i.e., uj(τ−) + wjk >
ui(τ

−)+wik. In that case, we assume that in the process we are modeling neuron j fired before neuron
i, so we choose to process neuron j ’s spike first. This assumption is based on the idea that exceeding
VF by a larger amount causes the neuron to spike faster, which is generally consistent with biophysical
models.
Remark 3.3. If we have wij < 0 in the example above, i.e., the synapse from neuron j to neuron i is
inhibitory, this modeling choice means that neuron j ’s spike could prevent neuron i from firing even
though neuron i’s potential would have exceeded VF due to neuron k’s spike.
Remark 3.4. Most of these considerations about neurons immediately causing other neurons to spike
are not relevant for the exponential integrate-and-fire model with VF = +∞. Under that model, a
neuron j that fires at time τ ∈ Tj can never cause another neuron i to fire immediately at time τ as
well because ui(τ

−) + wij < +∞ = VF . When VF is finite but large this immediate spiking is also
unlikely to happen if wij is relatively small.

With these modeling choices in mind, we adapt (3.1) to
dui = fi(t, ui) dt+

∑
τ∈Ti

(VR − ui(τ
−))δτ (dt) +

∑
τ∈T

∑
j∈

⋃N
n=ℓi(τ)+1 Nn(τ)

wijδτ (dt), i ∈ {1, . . . , N}, t ∈ I,

ui(t0) = vi, i ∈ {1, . . . , N}.

2Note that possible (absolute) refractory behavior is also relevant here, but we neglect this.

18 The Limit of Learning



CHAPTER 3. POPULATIONS OF NEURONS

Here ℓi(τ) and Nn(τ) are not yet defined, which we will do in the next section where it is more conve-
nient. For now, we state that they provide an ordering of the neurons that fire at time τ in accordance
with the choices made above.

3.2 Solution construction
The process behind this solution construction is the same as in Section 2.4.4. As in that section, we
first formulate a preliminary system without resets or presynaptic spikes. We now do so for every
i ∈ {1, . . . , N}: {

d

dt
ũi = fi(t, ũi), t ∈ I, ũi ∈ U,

ũi(t̃0) = ũ0.
(3.2)

We again explicitly incorporate the initial conditions by writing ũi(·, t̃0, ũ0) to denote the solution of
this system. Let Ji(t̃0, ũ0) ⊂ I be the maximal existence interval of this solution.

Now we define the potential evolutions before the first spike as

ũ
(1)
i (t) := ũi(t, t0, vi), t ∈ Ji(t0, vi), i ∈ {1, . . . , N}. (3.3)

Before the first firing time we, by definition, do not have any spikes. Thus the first firing time is given
by

r1 := inf{τ ∈
N⋂
i=1

Ji(t0, vi) | ∃ i ∈ {1, . . . , N} : ũ
(1)
i (τ−) ≥ VF }.

To determine which neurons fire at time r1, we need to take into account that presynaptic spikes can
trigger postsynaptic spikes immediately. We have to be careful here because the order in which spikes
and resets are processed can influence the behavior of the model as explained in Section 3.1.

We define N(τ) to be the set of neurons that fire at time τ ∈ I (which could be empty). To determine
N(r1)we have to perform a recursive construction. Since this construction will be the same for all firing
times rk, we do it in general already. Let

N1(rk) :=

(
argmax
i∈{1,...,N}

ũ
(k)
i (r−k )

)
∩ {i ∈ {1, . . . , N} | ũ(k)i (r−k ) ≥ VF }, (3.4)

which we know is non-empty by definition of rk. Here we are selecting the neurons whose potential
is largest and above VF , in accordance with Section 3.1. Unless two or more neurons have exactly the
same potential, this set will contain just one neuron. Now define recursively, for l ∈ N,

Nl+1(rk) :=

 argmax
i∈{1,...,N}\

⋃l
n=1 Nn(rk)

ũ
(k)
i (rk) +

∑
j∈

⋃l
n=1 Nn(rk)

wij


∩ {i ∈ {1, . . . , N} | ũ(k)i (rk) +

∑
j∈

⋃l
n=1 Nn(rk)

wij ≥ VF }, (3.5)

where by construction Nl+1(rk) contains the neurons that fire at time rk after l previous “batches” of
neurons that fired (at time rk).

Note that the sequence of sets {Nl(rk)}l∈N is disjoint, and that for l ∈ N,

Nl(rk) = ∅ =⇒ ∀m > l : Nm(rk) = Nl(rk) = ∅.

Since always Nl(rk) ⊂ {1, . . . , N}, it follows that for all l > N we have Nl(rk) = ∅. This corresponds
with the fact that at most all neurons 1, . . . , N neurons can fire at time rk. Hence the set of neurons
that fire at time rk, which is N(rk) as defined above, satisfies

N(rk) =

N⋃
n=1

Nn(rk). (3.6)
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We require a way to tell to which firing batch Nl a given neuron at a given firing time belongs.
To this end, we define for a neuron i ∈ {1, . . . , N} at one of its firing times τ ∈ Ti the integer
ℓi(τ) ∈ {1, . . . , N} to be the unique batch index such that i ∈ Nℓ

i(τ). It will be convenient for (3.11)
below to also define ℓi(τ) = 0 if τ /∈ Ti.

Inductively we now define the other firing times and for k ∈ N,

ũ
(k+1)
i (t) :=

{
ũi(t, rk, ũ

(k)
i (rk) +

∑
j∈N(rk)

wij), t ∈ Ji(rk, ũ
(k)
i (rk) +

∑
j∈N(rk)

wij), if i /∈ N(rk),

ũi(t, rk, VR +
∑

j∈
⋃N

n=ℓi(τ)+1 Nn(rk)
wij), t ∈ Ji(rk, VR), if i ∈ N(rk),

(3.7)
and

rk+1 := inf{τ ∈
N⋂
i=1

Ji(rk, ũ
(k+1)
i (rk)), τ > rk | ∃ i ∈ {1, . . . , N} : ũ

(k+1)
i (τ−) ≥ VF }. (3.8)

For (3.7) to be well-defined we have to avoid immediate refiring of a neuron, which could occur if
the weights were large. To this end, we introduce Assumption 3.1 below, which ensures for (3.7) that
in its second case the initial potential (third argument of ũi) is still less than VF , so in U .

Assumption 3.1. For each neuron i we have

N∑
j=1

max{0, wij} < VF − VR.

With this, we have inductively constructed all firing times rk and their associated sets of firing
neurons. Thus,

T = {rk | k ∈ N} \ {+∞} (3.9)

is the set of all firing times.3
Finally, the potential evolution ui for every neuron i ∈ {1, . . . , N} is given by patching together all

interspike solutions u(k)i . Namely,

ui(t) :=
∑
k∈N

ũ
(k)
i (t)1[rk−1,rk)(t), t ∈ I ∩ [t0, sup

k∈N
rk), (3.10)

where again by convention we set r0 := t0. Note that the difference between supT and supk∈N rk
is relevant here because the latter can be +∞ when sup I < +∞ whereas the former can not. This
ensures that ui also defined on (supT, sup I] when sup I < +∞.

We intersect I with [t0, supk∈N rk) here because we could theoretically have supk∈N rk < sup I.
However, we will see in Lemma 3.1 that this will not happen for VF < +∞ due to the continuity of
{fi}i∈{1,...,N}, making this intersection unnecessary.

By construction, u satisfies the following (formal) differential equation:
dui = fi(t, ui) dt+

∑
τ∈Ti

(VR − ui(τ
−))δτ (dt) +

∑
τ∈T

∑
j∈

⋃N
n=ℓi(τ)+1 Nn(τ)

wijδτ (dt), i ∈ {1, . . . , N}, t ∈ I,

ui(t0) = vi, i ∈ {1, . . . , N},
(3.11)

which we already stated in the previous section. Here the sets Ti depend implicitly on u. Because of
the following lemma, in most cases the constructed solution will hold on all of I instead of only on
I ∩ [t0, supk∈N rk).

Lemma 3.1. Suppose I = [t0, te], VF < +∞, and let Assumption 3.1 hold. Then there is a uniform lower
bound ∆tmin > 0 for the time between two spikes of the same neuron, i.e.,

∀ i ∈ {1, . . . , N} : inf
τ1,τ2∈Ti
τ1 ̸=τ2

|τ2 − τ1| ≥ ∆tmin. (3.12)

In particular, this implies that we have supk∈N rk ≥ sup I . This means that the solution is global on I .
3We subtract +∞ for the same reason as in Section 2.4.4.
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Proof. As N is finite we can define, for all u ∈ U ,

F (u) := max
i∈{1,...,N}

max
t∈I

fi(t, u),

which is the maximum potential growth rate at uover all neurons and all of I. Here the inner maximum
is well-defined as I is compact and fi is continuous. Note furthermore that since fi is continuous, for
fixed u ∈ U the map t 7→ fi(t, u) on I is uniformly continuous as I is compact. This implies that the
map u 7→ maxt∈I fi(t, u) is continuous on U for all i ∈ {1, . . . , N}, so F is also continuous.

Now choose some neuron i ∈ {1, . . . , N} and one of its firing times τ1 ∈ Ti, and suppose there
is a next firing time τ2 = minTi ∩ (τ1,+∞). We can assume without loss of generality that all other
neurons {1, . . . , N} \ {i} fire at most once in [τ1, τ2), because otherwise we would choose a different
neuron i with firing times τ̂1, τ̂2 ∈ [τ1, τ2) such that τ̂2 − τ̂1 < τ2 − τ1.

It suffices to construct ∆tmin > 0 in such a way that τ2 − τ1 ≥ ∆tmin.

In the absence of arriving spikes from the other neurons, we would have ui(τ1) = VR, and τ2 would
depend only on the time it takes fi to increase ui by VF − VR. By an analogous argument as given in
the proof of Lemma 2.4, we would have

τ2 − τ1 ≥
∫ VF

VR

1

F (u)
du.

Here the fact that T ̸= ∅ implies that F is bounded below by some positive constant (similar to the
condition required in Lemma 2.3), so this integral is positive and finite.

However, the time between spikes can of course be reduced due to spike arrivals from excitatory
synapses. This is where Assumption 3.1 comes in, which states that

∆w :=

N∑
j=1

max{0, wij} < VF − VR.

On [τ1, τ2), ui can thus be instantaneously incremented at most N − 1 times by in total at most ∆w,
as we assumed that each other neuron fires no more than once on that interval. As these increments
can come at any moment in the trajectory of neuron i, we instead have

τ2 − τ1 ≥ inf

{
n∑

k=1

∫ q2k

q2k−1

1

F (u)
du

∣∣∣∣∣ n ∈ N, VR = q1 ≤ · · · ≤ q2n = VF ,

n−1∑
k=1

(q2k+1 − q2k) ≤ ∆w

}
. (3.13)

Here q2k and q2k+1, k = 1, . . . , n−1, are respectively the values of the potential before and after the kth
instantaneous increment of ui.4 Note that q2k+1−q2k is thus the size of the kth increment, of which the
total has to be less than ∆w. Also observe that on the intervals (q2k−1, q2k) the potential is continuous,
which explains why the integral of 1/F contributes to the inter-spike time there, and that not all of
these intervals are empty since

n∑
k=1

(q2k − q2k−1) = q2n − q1 −
n−1∑
k=1

(q2k+1 − q2k) ≥ VF − VR −∆w > 0. (3.14)

We could have imposed n ≤ N − 1 in (3.13), because there are at most N − 1 increments, but for what
follows this will not be necessary.

Let V∆ ∈ R be such that VR +∆w < V∆ < VF . Then F attains a maximum on [VR, V∆], because F is
continuous. Let M := maxu∈[VR,V∆] F (u). Now the idea is that at least a distance of V∆ − VR −∆w has
to be traversed continuously (without jumps) during which F is bounded by M .

Consider any n ∈ N with q1, . . . , q2n as in (3.13), and define m := max{k ∈ {1, . . . , n− 1} | q2k ≤ V∆}.

4For k ̸= 1, n, we have for some firing time τ ∈ (τ1, τ2)∩T that q2k+1 = ui(τ
−) and q2k = ui(τ) (not necessarily for k = 1, n

because the first and last increment could be special due to happening at VR and VF ).
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Then by (3.14) we get
m∑

k=1

(q2k − q2k−1) ≥ VF − VR −∆w −
n∑

k=m+1

(q2k − q2k−1),

≥ VF − VR −∆w −
2n∑

k=2m+2

(qk − qk−1),

= VF − VR −∆w − (VF − q2m+1),

≥ VF − VR −∆w − (VF − V∆),

= V∆ − VR −∆w > 0.

(3.15)

Now the argument is straightforward, because we have for all k = 1, . . . ,m,∫ q2k

q2k−1

1

F (u)
du ≥ (q2k − q2k−1)/M,

so using (3.15) we find that
n∑

k=1

∫ q2k

q2k−1

1

F (u)
du ≥

m∑
k=1

(q2k − q2k−1)/M
(3.15)
≥ (V∆ − VR −∆w)/M.

Thus, we have
τ2 − τ1 ≥ ∆tmin

for
∆tmin := (V∆ − VR −∆w)/

(
max

u∈[VR,V∆]
F (u)

)
> 0

where we are free to choose V∆ ∈ (VR +∆w, VF ) (which could be used to maximize this lower bound).
As this choice of ∆tmin is independent of the chosen neuron i and the spike times τ1, τ2, we conclude
that it satisfies (3.12).

We now show that the existence of this minimal inter-spike time implies that supk∈N rk ≥ sup I.
We argue by contradiction. Suppose that supk∈N rk < sup I. From (3.9) it is clear that this implies that
#T = +∞. Consider (3.11) on the compact interval Î := [t0, supk∈N rk], which contains all firing times
in T. Let L := supk∈N rk − t0 be the length of this interval. Then we know that each individual neuron
fired at most ⌈L/∆tmin⌉ times on Î, so

#T ≤ N ⌈L/∆tmin⌉ < +∞.

This contradicts #T = +∞, so supk∈N rk ≥ sup I. ■

3.3 Homogeneous populations with full connectivity
As a first example of the system defined in Section 3.1, we will consider the simplified case where
all neurons have the same driving force fi = f and are fully connected with equal synaptic weights
wij = w0

N , for some fixed parameter w0 ∈ R. The reason we divide by the number of neurons N here
is to enable the mean-field limit analysis we will perform in Section 3.3.2, where we will take N to ∞.
But first, we analyze possible synchronization between the neurons under this connectivity scheme.
Remark 3.5. To satisfy Assumption 3.1 we require w0 < VF − VR.

3.3.1 Synchronization
In excitatory networks, where w0 > 0, the potentials of the neurons tend to synchronize over time
when the driving force is decreasing in u. This behavior is interesting in and of itself, but it will also
be relevant for the mean-field limit in the next section because it violates some of the absolute conti-
nuity assumptions we make there. Analyzing when synchronization takes place thus provides us with
necessary conditions for the validity of some of the results we will derive.
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The following proposition does not provide a full characterization of long-term synchronizing be-
havior, but it does establish that the potentials get closer together after one firing cycle if they start
reasonably close together but are still separated enough so as to fire at separate times. It also gives
a lower bound for the reduction in their spread after this firing cycle.

The proof is rather technical, but the basic idea is that because we consider a decreasing driving
force f the effect of arriving pulses is greater on neurons close to VF than on neurons close to VR.
This causes the “pull” of the neurons that fire first on the neurons behind them to be stronger than
the “push” the neurons that fire last exert on the first neurons.
Remark 3.6. The assumption that all potentials are sufficiently well-separated in the proposition below
is stronger than what is required. Specifically, it suffices for theN th neuron to fire separately (in time)
from the (N − 1)th neuron. It is however difficult to ensure this elegantly with an assumption on the
initial conditions.

Proposition 3.2. Assume that w0 > 0, and that the driving force is homogeneous (meaning f(t, ·) = f(·)),
decreasing and bounded below by some positive constant on U ; this means that Lemma 2.3 applies (we
will use the function ν defined there). Suppose that the initial potentials ui(t0) = vi satisfy VR < vN <
vN−1 < . . . < v1 < VF . Moreover, we assume

Rpre := ν−1(v1)− ν−1(vN ) <
T

2
, (3.16)

where T is the period of Lemma 2.3, and

∀ i ∈ {1, . . . , N − 1} : ν−1(vi)− ν−1(vi+1) > T − ν−1(VF − w0

N ). (3.17)

Then all neurons will have spiked once at firing time rN , and at that point the spread of the potentials will
have decreased, with

Rpost := ν−1(u1(rN ))− ν−1(uN (rN )) < Rpre − (N − 1)

∫ w0

N

0

(
1

f(u+ T −Rpre)
− 1

f(u+Rpre)

)
du < Rpre.

Proof. By Lemma 2.3 it follows that each neuron on its own would enter a mode of repetitive firing.
The difference with the setting of Chapter 2 is that there are now also inter-neuron spikes, but as
all weights wij = w0

N are positive it is clear that these can only accelerate the firing of a neuron, not
prevent it.

We will use the bijection ν from Lemma 2.3 to map between potential-space [VR, VF ) and time-
space [0, T ), where time-space refers to the position in time w.r.t. the periodic firing of an isolated
neuron under the same conditions. To keep track of the position in time-space we define

τi(t) := ν−1(ui(t)), i ∈ {1, . . . , N}.

A neuron i fires when its potential ui reaches VF , but because ν is an order-preserving bijection we
can equivalently say (or even define) that a neuron fires when τi reaches T . The advantage of working
in time-space is that the distance between any pair of neurons can change only at firing times. This
is straightforward: suppose s > t0 with s /∈ T. Then for any i ∈ {1, . . . , N} we have that ui satisfies the
ODE in (3.2) at s. Recall also the derivative of ν−1 as computed in the proof of Lemma 2.3, which is

dν−1

du
(u) =

1

f(u)
.

Using this, we obtain

d

dt
τi(t)

∣∣∣∣
t=s

=
d

dt
ν−1(ui(t))

∣∣∣∣
t=s

=
dν−1

du
(ui(s))

d

dt
ui(s) =

1

f(ui(s))
f(ui(s)) = 1.

So between firing times τi changes at a constant rate of 1. This also means that the distance between
any pair of neurons in time-space remains the same. To study synchronization, we thus only have to
look at what happens at the firing times.
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The crucial observation of the proof is that because f is decreasing, the increase τi(r) − τi(r
−)

caused by a presynaptic spike at some firing time r of strength w is larger when τi(r
−) is larger. This

can be seen from the following explicit expression for this increase. Define for τ ∈ [0, T ) and w > 0
with ν(τ) + w < VF ,

∆τ [τ, w] := ν−1(ν(τ) + w)− τ,

= ν−1(ν(τ)) +

∫ ν(τ)+w

ν(τ)

dν−1

du
(u) du− τ,

=

∫ ν(τ)+w

ν(τ)

1

f(u)
du,

=

∫ w

0

1

f(u+ ν(τ))
du.

(3.18)

Because f is decreasing and ν is increasing, ∆[·, w] is increasing. So when τi(r−) is larger, it receives a
larger boost (for fixed w). Because we only have to study what happens at the firing times, we define
for k ∈ N

∆rk := rk − rk−1,

where by convention r0 = t0. This is the increase in all τ ’s between the (k− 1)th and kth firing time. It
follows from this that in general

τi(rk) =

{
∆τ [0, w0

N

∑N
n=l+1 #Nn(rk)] if i ∈ Nl(rk),

τi(rk−1) + ∆rk +∆τ [τi(rk−1) + ∆rk,
w0

N #N(rk)] if i /∈ N(rk).
(3.19)

Because in our special case the second argument of ∆τ will turn out to always be w0

N , we will omit it.
We claim that all neurons fire at separate moments in time during the first cycle, which means that

∀ k ∈ {1, . . . , N} : N(rk) = {k}. (3.20)

We will show this by induction using the assumption (3.17). To show that N(r1) = {1}, we first observe
that since v1 > v2 > · · · > vN (and the ordering of the potentials is preserved until r1 because of local
uniqueness), we certainly have N1(r1) = {1} by (3.4). Note that this also means that

∆r1 = r1 − t0 = T − τ1(t0).

Subsequently, by (3.5),

N2(r1) = argmax
i∈{2,...,N}

(
ui(r

−
1 ) +

w0

N

)
∩ {i ∈ {1, . . . , N} | ui(r−1 ) + w0

N ≥ VF }.

However, from (3.17) it follows that

u2(r
−
k ) +

w0

N = ν(τ2(r
−
k )) +

w0

N ,

= ν(τ2(t0) + ∆r1) +
w0

N ,

(3.17)
< ν(τ1(t0) + ν−1(VF − w0

N )− T +∆r1) +
w0

N ,

= ν(T + ν−1(VF − w0

N )− T ) + w0

N ,

= VF − w0

N + w0

N ,

= VF .

And since u2(r−k ) > u3(r
−
k ) > · · · > uN (r−k ) we find that N2(r1) = ∅, which means that indeed

N(rk) = {1}

by (3.6). Now suppose (3.20) holds for all k ≤ m for some m ∈ {1, . . . , N − 2}. Then

τi(rm) =

{
rm − ri +

∑m
n=i+1 ∆τ [τi(rn−1) + ∆rn] if i ∈ {1, . . . ,m},

τi(t0) + rm − t0 +
∑m

n=1 ∆τ [τi(rn−1) + ∆rn] if i ∈ {m+ 1, . . . , N}.
(3.21)

For firing time rm+1 we then find that τm+1(r
−
m+1) = τi(rm)+∆rm+1 is largest, since ∆τ [·] is increasing

(and nonnegative) and τm+1(t0) = vm+1 > vm+2 > · · · > vN . As τm+1(r
−
m+1) = ν−1(um+1(r

−
m+1)) where

ν is an order-preserving bijection, we must have N1(rm+1) = {m+ 1}.
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Now, since m + 1 < N we have that the next-largest potential is um+2(r
−
m+1), so by a similar argu-

ment as given above, using (3.17), we get N2(rm+1) = ∅ meaning N(rm+1) = {m+ 1}.
By induction it now follows that (3.20) holds at least for all k ∈ {1, . . . , N −1}. Furthermore, the first

part of the argument also applies when m = N − 1, so N ∈ N1(rN ). We will show that that (3.20) also
holds for k = N in a moment.

Just before the N th firing time uN is coming up on VF (because N ∈ N1(rN )), so

τN (r−N ) = rN − t0 + τN (t0) +

N−1∑
n=1

∆τ [τN (rn−1) + ∆rn] = T.

Therefore

rN − t0 = T − τN (t0)−
N−1∑
n=1

∆τ [τN (rn−1) + ∆rn].

For the other neurons, we have a similar expression as in (3.21), namely for i ∈ {1, . . . , N − 1},

τi(r
−
N ) = rN − ri +

N−1∑
n=i+1

∆τ [τi(rn−1) + ∆rn].

In particular,

τ1(r
−
N ) = rN − r1 +

N−1∑
n=2

∆τ [τ1(rn−1) + ∆rn],

= T − τN (t0)−
N−1∑
n=1

∆τ [τN (rn−1) + ∆rn]− (T − τ1(t0)) +

N−1∑
n=2

∆τ [τ1(rn−1) + ∆rn],

= Rpre −
N−1∑
n=2

(∆τ [τN (rn−1) + ∆rn]−∆τ [τ1(rn−1) + ∆rn])−∆τ [τN (t0) + ∆r1],

< Rpre

(3.16)
<

T

2
.

(3.22)

Here we used that τN (rn−1) > τ1(rn−1) for all n ∈ {2 . . . , N − 1}. This means that the firing of neuron
N does not trigger neuron 1, since combining (3.16) and (3.17) clearly yields

(N − 1)(T − ν−1(VF − w0

N )) <
T

2
,

T

2
< (1− 1

2(N − 1)
)T < ν−1(VF − w0

N ),

and thus
u1(r

−
N ) + w0

N = ν(τ1(r
−
N )) + w0

N < ν(T2 ) +
w0

N < ν(ν−1(VF − w0

N )) + w0

N = VF

Because τ1(r−N ) is the largest among the neurons that have already fired, we can now conclude that
N2(rN ) = ∅ so that (3.20) holds also for k = N (as foreshadowed). This means that we can finally write

τ1(rN ) = Rpre −
N−1∑
n=2

(∆τ [τN (rn−1) + ∆rn]−∆τ [τ1(rn−1) + ∆rn])

− (∆τ [τN (t0) + ∆r1]−∆τ [τ1(rN−1) + ∆rN ]) .

Note that for all n ∈ {2, . . . , N − 1} we have

τN (rn−1) + ∆rn = τN (r−n ) > τN (r−1 ) = τN (t0) + ∆r1,

and for all n ∈ {2, . . . , N},

τ1(rn−1) + ∆rn = τ1(r
−
n ) < τ1(r

−
N−1)

(3.22)
< Rpre.
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Therefore

Rpost = τ1(rN )− τN (rN ),

= τ1(rN ),

< Rpre − (N − 2) (∆τ [τN (t0) + ∆r1]−∆τ [Rpre])− (∆τ [τN (t0) + ∆r1]−∆τ [Rpre]) ,

= Rpre − (N − 1) (∆τ [τN (t0) + ∆r1]−∆τ [Rpre]) ,

= Rpre − (N − 1) (∆τ [τN (t0) + T − τ1(t0)]−∆τ [Rpre]) ,

= Rpre − (N − 1) (∆τ [T −Rpre]−∆τ [Rpre]) .

Because of (3.16), we know that

T −Rpre > T − T

2
=
T

2
> Rpre,

which means that

∆τ [T −Rpre]−∆τ [Rpre] =

∫ w0

N

0

(
1

f(u+ T −Rpre)
− 1

f(u+Rpre)

)
du > 0.

So we indeed have

Rpost < Rpre − (N − 1)

∫ w0

N

0

(
1

f(u+ T −Rpre)
− 1

f(u+Rpre)

)
du < Rpre.

■

The proof of the proposition above requires two rather technical assumptions in the form of (3.16)
and (3.17), and also only claims that progress towards synchronization takes place during one fir-
ing cycle. A stronger result about long-term synchronization to some minimal distance between the
potentials is probably possible. Especially (3.20) could likely be weakened, as noted in Remark 3.6.
However, the technical assumptions do play a role in preventing certain pathological initial conditions
from which synchronization will not take place at all.

For instance, suppose N = 2 with initial conditions such that τ1(r−1 ) = T , which always holds, and
τ2(r

−
1 ) =

T
2 − ε for some 0 < ε < T

2 (note that his violates (3.16)) and weight parameter w0 > 0 such
that ∆τ [T2 − ε, w0

2 ] = 2ε. Then we have τ2(r1) = T
2 + ε, so at the second firing time r2 = r1+T − τ2(r1) =

r1+
T
2 −εwe have τ1(r−2 ) = T

2 −ε and τ2(r−2 ) = T . We are back in the same situation as at r1 (except with
the roles of neuron 1 and 2 reversed), so this system will continue indefinitely without synchronizing.

Based on numerical results, examples like this one where the time-space distance of the neurons
remains constant are likely unstable, meaning that synchronization would eventually occur for most
initial conditions. This is also observed in the example below, in Figure 3.1b. Still, these pathological
cases illustrate that a claim about global synchronization is not as straightforward as it might seem.

Example 3.1. Proposition 3.2 applies to the (nondimensionalized) leaky integrate-and-fire model un-
der sufficient constant input Iext ≡ I0, because the driving force f(u) = −(u−VR)+ I0 of that model is
decreasing. Specifically, the proposition applies when I0 > VF − Vrest = 1− Vrest as then f is bounded
below by a positive constant on U .

We will again consider our standard parameters Vrest = 0.37 and I0 = 0.65. From Example 2.1 and
Example 2.2 we find that in that case

ν−1(u) = ln
Vrest + I0

Vrest + I0 − u
= ln

1.02

1.02− u
,

and
T = 1/g(I0) = ν−1(VF ) = ln

1.02

1.02− 1
≈ 3.93.

To satisfy (3.16), we thus require

ln
1.02− vN
1.02− v1

= ν−1(v1)− ν−1(vN ) <
T

2
≈ 1.97. (3.23)
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In Figure 3.1 we see simulation results for a case where the initial potentials are uniformly dis-
tributed on [0, 0.85] and a case where they are distributed on [0, 0.99] = U . Note that the first case
satisfies (3.23), because

ln
1.02− 0

1.02− 0.85
≈ 1.79 <

T

2
,

whereas the second case does not since

ln
1.02− 0

1.02− 0.99
≈ 3.52 >

T

2
.

For the first case, we observe in Figure 3.1a that the variance of the potentials decreases rapidly to a
minimum value. The activity histogram, which shows when spikes took place, shows that the firings
of the neurons synchronize (almost) immediately.

Figure 3.1b corresponding to the second case is markedly different. The variance eventually decays
to a low value, but this takes multiple firing cycles to achieve. If we look closely at the activity graph we
see that between t = 10 s and t = 40 s most neurons fire around the same time, but a small contingent
of neurons fires before the main group. This is likely an example of a pathological case similar to the
one discussed above.
Remark 3.7. The spikes in the variance graph in Figure 3.1b (and the single variance spike in Fig-
ure 3.1a) are due to some neurons already being past VF while some are still before it, causing their
inter-distances to increase. The variance does not take into account the torus-like nature of U .
Remark 3.8. The reason that the variance does not converge to 0 but instead stays slightly above it is
due to how we have chosen to handle simultaneous spikes. Namely, the post-spike potential of the
first neuron that crosses VF is affected by the pulses of the neurons that cross VF afterwards. This
prevents the neurons from attaining exactly the same potential.

(a) Initial potentials on [0, 0.85]. (b) Initial potentials on [0, 0.99].

Figure 3.1: Variance of the potentials and activity histogram over time for the leaky model, with a
homogeneous population of N = 1000 neurons. The constant external input is I0 = 0.65 and the
neurons are fully connected with w0 = 0.1. Initial potentials were chosen uniformly at random, on
different intervals.

Example 3.2. In contrast to the leaky integrate-and-fire model, the driving force of the exponential
integrate-and-fire model is not decreasing in u (see (2.3) or (2.4)). This means that we do not expect
synchronization on the basis of Proposition 3.2.

Indeed, simulating the same system as in Example 3.1 under the exponential model (with the
parameters adapted following Section 2.3.3) demonstrates that no synchronization occurs, or at least
not on the same timescale. This can be seen in Figure 3.2). However, some periodic pattern does seem
to emerge in the activity.

In Figure 3.3 we can see the activity on a longer timescale for two different bin sizes. While there is
no synchronization, a kind of regularity is undoubtedly present. Based on this pattern, we conjecture
that various subgroups of neurons do undergo a form of synchronization, leading to the visually
distinct periodic bin patterns we observe. Further research would be necessary to confirm this.
Remark 3.9. If the sharpness parameter ∆T of this exponential model is decreased, we observe syn-
chronizing behavior similar to Example 3.1. This is because then the exponential integrate-and-fire
model approaches the leaky model, as noted in Remark 2.4.
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Figure 3.2: Variance of the potentials and activity histogram over time for the exponential model,
with a homogeneous population of N = 1000 neurons. The constant external input is I0 = 0.2 and
the neurons are fully connected with w0 = 0.1. Initial potentials were chosen uniformly at random on
[0, 0.85].

3.3.2 Mean-field limit
In this section, we will determine the mean-field limit of a population of neurons that are fully con-
nected. This entails taking the limit N → ∞ to say something about the behavior of the system when
the number of neurons becomes very large. Under certain regularity assumptions, we will derive
equations for the evolution of the distribution of the neuron potentials and the population activity in
this limit sense.

From now on, we only consider our model on time intervals of the form I = [t0, te], te > t0, which
ensures finiteness of T by Lemma 3.1. Among other benefits, this makes the empirical population
activity measure we will define below finite.

Before being able to perform a mean-field analysis we first introduce two relevant measures, start-
ing with the population activity measure. As the name suggests, this measure measures how active
the neuronal population is during a certain time period. In this context, activity refers to the number
of spikes that occur at or around a given time t. We will stick to a straightforward definition in the
form of an empirical measure.

Definition 3.2 (Empirical population activity measure). We define the empirical population activity
measure AN : BI → [0,+∞) as

AN (dt) :=
1

N

N∑
i=1

∑
τ∈Ti

δτ (dt),

or equivalently, for S ∈ BI ,

AN (S) :=
1

N

N∑
i=1

#(Ti ∩ S) =
1

N

∑
τ∈T∩S

#N(τ).
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(a) Activity histogram with a bin size of 1 s. (b) Activity histogram with a bin size of 2 s.

Figure 3.3: Activity histograms over time for the exponential model, with a homogeneous population
of N = 1000 neurons. The constant external input is I0 = 0.2 and the neurons are fully connected with
w0 = 0.1. Initial potentials were chosen uniformly at random on [0, 0.85].

This empirical measure counts the number of neuronal firings in some time period S and scales
it by the number of neurons. This scaling is necessary because the idea behind the mean-field limit
is that for large N this empirical measure narrowly converges to some finite measure A. Proving this
convergence is outside of the scope of this thesis, so we make the following assumption:

Assumption 3.3. There exists a finite measure A : BI → [0,+∞) to which AN converges narrowly.
That is, for all test functions φ ∈ Cb(I) we have

lim
N→∞

∫
I

φ(τ)AN (dτ) =

∫
I

φ(τ)A(dτ).

We call A the mean-field population activity measure. We also make a uniformity assumption on this
convergence of AN . It states that the measure that has Radon-Nikodym derivative #N(τ)

N w.r.t. AN

evaluated on I converges to zero, i.e.,

lim
N→∞

∫
I

#N(τ)
N AN (dτ) = lim

N→∞

∫
I

AN ({τ})AN (dτ) = 0. (3.24)

Remark 3.10. The last part of Assumption 3.3 could for instance be satisfied when the number of firing
neurons at one time point grows at most sublinearly as N increases, uniformly over I. That is,

lim sup
N→∞

sup
t∈I

#N(t)
N = lim sup

N→∞
sup
t∈I

AN ({t}) = 0.

This is because ∫
I

#N(τ)
N AN (dτ) ≤ sup

t∈I

#N(t)
N AN (I),

where AN (I) converges to A(I) < +∞ by narrow convergence.
The second measure we are interested in is the potential measure. At every t ∈ I, this measure is

the law of the distribution of the potentials in U . Thus, it contains important information on the state
of the system: for instance how many neurons are close to the firing threshold. As for the population
activity, we will have an empirical version of this measure for which we hope that a limiting measure
exists.

Definition 3.4 (Empirical potential measure). The empirical potential measure for N ∈ N neurons
ρN : I × BU → [0, 1] is defined as

ρN (t, du) :=
1

N

N∑
i=1

δui(t)(du).

We assume that this empirical measure converges uniformly narrowly to a mean-field limit version
of the measure. The uniformity of this convergence will be needed, because this measure will be
integrated against AN over time. We will also need some form of uniformity for the convergence of
AN itself, but this will be part of the conditions of the theorem below.
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Assumption 3.5. There exists a time-dependent probability measure ρ : I ×BU → [0, 1] such that, for
all test functions φ ∈ Cb(I × U) and for all t ∈ I, we have the following uniform narrow convergence

lim
N→∞

sup
t∈I

∣∣∣∣∫
U

φ(u)ρN (t, du)−
∫
U

φ(u)ρ(t, du)

∣∣∣∣ = 0.

We call ρ the mean-field potential measure. We also assume that for any φ ∈ Cb(I × U) the map

τ 7→
∫
U

φ(τ, u)ρ(τ, du), τ ∈ I,

is continuous. Note that this implies that this map is also bounded since I = [t0, te] is compact.

Note that this assumption also implies pointwise narrow convergence of ρN to ρ, as in for fixed
t. Here we are thus also implicitly assuming that the initial potentials ui(t0) are distributed with law
ρ(t0, du) as N increases, although they need not be random variables.
Remark 3.11. We will mostly use test functions that are smooth and compactly supported, so for our
purposes the assumptions of (uniform) narrow convergence on ρN and AN are stronger than strictly
necessary. However, these stronger assumptions are the most convenient. Weaker versions of the
mean-field equations we will derive might be possible under different topologies, e.g., weak, weak*,
or vague.

Under these assumptions, we can derive a mean-field limit equation, at least when the firing
threshold is finite. Under additional absolute continuity assumptions, we can derive a partial dif-
ferential equation (PDE) from this equation.

Theorem 3.3. Assume that the firing threshold VF is finite. As stated above, we consider a time interval of
the form I = [t0, te].

(i.) Under Assumption 3.3 and Assumption 3.5, the mean-field potential measure ρ and the mean-field
activity measure A are related by the mean-field equation∫

U

(φ(te, u)ρ(te, du)− φ(t0, u)ρ(t0, du))

=

∫
I

∫
U

[∂tφ(τ, u) + ∂uφ(τ, u)f(τ, u)]ρ(τ, du) dτ +

∫
I

(φ(τ, VR)− φ(τ, VF ))A(dτ)

+

∫
I

∫
U

w0∂uφ(τ, u)ρ(τ, du)A(dτ),

(3.25)

for any smooth and compactly supported test function φ ∈ C∞
c (I × U).

(ii.) Suppose further that ρ and A are absolutely continuous w.r.t. the Lebesgue measure, i.e., ρ(t, du) =
p(t, u) du and A(dt) = A(t) dt. For the potential density p : I × U → R+ we assume that it is differen-
tiable everywhere except at u = VR, but still càdlàg in u.5 We also assume that p(t, V −

F ) and f(t, V −
F )

exist for all t ∈ I . For the population activity densityA : I → R+ we assume that it is continuous. Then
the population activity density is given by

A(t) =
f(t, V −

F )p(t, V −
F )

1− w0p(t, V
−
F )

=
f(t, VR)

[
p(t, VR)− p(t, V −

R )
]

1− w0

(
p(t, VR)− p(t, V −

R )
) , t ∈ I, (3.26)

and p satisfies the following transport Cauchy problem:{
∂tp(t, u) + ∂uJ(t, u) = 0, (t, u) ∈ I × (U \ {VR}),
J(t, VR)− J(t, V −

R ) = J(t, V −
F ), t ∈ I,

(3.27)

where the flux J : I × U → R is defined as

J(t, u) := [f(t, u) + w0A(t)] p(t, u), (t, u) ∈ I × U.

Proof. Because this result is a special case of Theorem 3.4, the proof is postponed. ■

5The values of p(·, VR) do not matter, as it is a density of an absolutely continuous measure. Thus we can choose p to be
right-continuous here.
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In the expression for A(t), which is (3.26), we see that when p(t, V −
F ) is close to 1

w0
it is possible for

the activity to blow up. This can only happen when w0 > 0, which might correspond with the fact that
synchronization can take place for some models in that case (see Section 3.3.1). This syncing would
probably violate some of the assumptions we made to derive the second part of Theorem 3.3 over
time, for instance the absolute continuity of A. Thus, the second part of Theorem 3.3 likely does not
hold for the leaky model with w0 > 0, or at least not globally on I.
Remark 3.12. Observe that (3.26), (3.27) and the definition of the flux J imply

A(t) = J(t, V −
F ) = J(t, VR)− J(t, V −

R ), t ∈ I,

which is in fact the result from which (3.26) is derived (see (3.48) in the proof of Theorem 3.4).

3.3.3 Stationary solution
After determining the Cauchy problem governing the behavior of the system in the limit of a large
number of particles, the natural next step would be to solve this equation. However, even though
the PDE in (3.27) looks like a simple first-order linear transport system, it is significantly more compli-
cated due to the nonlinear dependence of A(t) on p(t, V −

F ). We therefore only determine a stationary
solution of (3.27), meaning that we assume p(t, ·) = p(·) and f(t, ·) = f(·) for all t ∈ I, i.e., no time-
dependence. The system then simplifies to{

∂uJ(u) = 0, u ∈ U \ {VR},
J(VR)− J(V −

R ) = J(V −
F ),

(3.28)

with
J(u) = [f(u) + w0A] p(u), u ∈ U, (3.29)

where
A =

f(V −
F )p(V −

F )

1− w0p(V
−
F )

=
f(VR)

[
p(VR)− p(V −

R )
]

1− w0

(
p(VR)− p(V −

R )
) ,

is the now constant population activity. The first equation in (3.28) yields

J(u) =

{
J1 if u < VR,

J2 if u ≥ VR,

for some constants J1, J2 ∈ R, where we had to take the possible discontinuity at u = VR into account
and the fact that p, and thus also J , is imposed to be càdlàg. The second equation in (3.28) now yields
that J2 − J1 = J2, so J1 = 0. Furthermore, we know from Remark 3.12 that J2 = J(V −

F ) = A. It follows
from (3.29) that

p(u) =
J(u)

f(u) + w0A
=

{
0 if u < VR,

A
f(u)+w0A

if u ≥ VR.
(3.30)

Because p is a probability density, we must have∫
U

p(u) du = 1,

so the constant A is constrained by the equation∫ VF

VR

A

f(u) + w0A
du = 1. (3.31)

Example 3.3. In case of the nondimensionalized leaky integrate-and-fire model from (2.2) with con-
stant external input I0, we have f(u) = −(u− Vrest) + I0 and VR = 0, VF = 1. Then (3.31) becomes

1 =

∫ VF

VR

A

f(u) + w0A
du = A

∫ 1

0

1

Vrest + I0 + w0A− u
du = A ln

(
Vrest + I0 + w0A

Vrest + I0 + w0A− 1

)
, (3.32)

provided Vrest + I0 + w0A /∈ [0, 1]. Now, note that for any activity to be expected (A > 0) we require
Vrest + I0 > 1, else (2.2) will become negative before u reaches VF = 1.
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We are primarily interested in the case w0 < 0, because as noted at the end of the previous section
the absolutely continuous version of the mean-field limit is unlikely to be valid for w0 > 0. For w0 < 0,
the map

A 7→ Vrest + I0 + w0A

Vrest + I0 − 1 + w0A

has a vertical asymptote at A = 1−Vrest−I0
w0

> 0, and is increasing for A ∈ [0, 1−Vrest−I0
w0

). From this, we
deduce that the map

A 7→ ln

(
Vrest + I0 + w0A

Vrest + I0 + w0A− 1

)
is continuous and increasing on [0, 1−Vrest−I0

w0
), zero at A = 0 and diverging to +∞ for A ↑ 1−Vrest−I0

w0
.

It follows that (3.32) has a unique solution A ∈ [0, 1−Vrest−I0
w0

), which can be determined numerically.
Note that this A satisfies Vrest + I0 + w0A > Vrest + I0 + 1 − Vrest − I0 = 1 which is sufficient for the
validity of (3.32).

Taking the standard parameter VR = 0.37 as in Table 2.2 and I0 = 0.8 combined with w0 = −0.1,
numerically solving (3.32) yields A ≈ 0.454 which is indeed less than 1−Vrest−I0

w0
= 1.7. Thus we get from

(3.30) that

p(u) =

{
0 if u < VR,

A
f(u)+w0A

if u ≥ VR,
≈

{
0 if u < 0,
0.454

1.125−u if u ≥ 0,
(3.33)

In Figure 3.4 we can see the numerical results for these parameters. In Figure 3.4a we see that
the activity seems to be converging to the theoretical stationary value A ≈ 0.454. Furthermore, in
Figure 3.4b we see that at the end of the simulation, the numerical potential density agrees closely
with the function p from (3.33).

Different values of w0 < 0 and I0 were simulated, for which the results also appeared to match the
theoretical results. This suggests that for w0 < 0 the mean-field equations of Theorem 3.3 not only
hold, but also that the system converges to a stationary solution of those equations.

(a) Population activity over time, visualized using a
histogram of neuronal firings, versus the theoreti-
cal stationary value A ≈ 0.454.

(b) Potential density histogram at te = 40 s ver-
sus the theoretical stationary density p according
to (3.33).

Figure 3.4: Simulation results for the leaky model with a homogeneous population of N = 1000 neu-
rons. The constant external input is I0 = 0.8 and the neurons are fully connected with w0 = −0.1.
Initial potentials were chosen uniformly at random on [0, 0.85].

The expression in (3.32) might look familiar, as it is quite similar to the gain function found for the
leaky model in Example 2.2. This is no coincidence, there is a close relation between the stationary
solution in (3.30) and the gain function corresponding to a single neuron (recall Definition 2.6). From
Lemma 2.4 we know that the gain function is of the form

g(I0) =


0 if I0 ≤ − inf

u∈[VR,VF )
f(u),(∫ VF

VR

1

f(u) + I0
du

)−1

if I0 > − inf
u∈[VR,VF )

f(u).

where I0 ∈ R is constant external input.
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Now, observe that
g(w0A) = A

is equivalent to the implicit equation (3.31) for the activity, provided I0 is large enough. This is no
coincidence; since each neuron is identical and receives the same input (both external and from all
other neurons) the firing rate of one neuron given by g(I0+w0A) is equal to the average firing rate A.
This relation holds more generally, for instance also in models with noise [see 8, sec. 12.4.2].

3.4 Spatial populations
The assumption of a fully homogeneous population of neurons with synapses of equal weight be-
tween all of them is an oversimplification. In this section, we will consider a more realistic version of
the model developed in Section 3.1. We will assign to each neuron i a coordinate xi that determines
its parameters and external input. The synaptic connection strength to and from a neuron j will now
depend on xi and xj .

The coordinates do not necessarily refer (only) to a neuron’s physical position in the brain. Namely,
xi could just as well contain information about the parameters of its driving force, or the kind of
sensory input neuron i responds to. An example of the latter is the response of neurons in the visual
cortex to images in different orientations, which can be used to group the neurons into columns with
shared properties [8, pp. 293–294]. However, for simplicity we will use spatial terminology such as
“position” and “location”.

3.4.1 Formulation
Adding the spatial component does not require altering the model mechanics as defined in Sec-
tion 3.1. Rather, we only have to add coordinates to each neuron which determine the weightswij and
the driving force fi. Let Ω ⊂ Rd be a compact d-dimensional space. As stated above, to every neuron
i ∈ {1, . . . , N} we now associate not only a potential ui : I → U but also a coordinate xi ∈ Ω.

This location plays a role in determining the strength of the synaptic connections between the
neurons, the neuron’s characteristics, and the strength of the external input it receives. The last two
are encapsulated in the driving force fi(t, u) := f(t, xi, u). The function f : I × Ω × U → R is assumed
to be continuous, also in its second argument.

The synaptic weight between postsynaptic neuron i and presynaptic neuron j is given by

wij =
1
Nw(xi, xj),

where the weight function w : Ω2 → [−w0, w0] represents a certain connectivity pattern. We require
this function to be continuous. Here w0 ∈ R+ is a fixed parameter. Note that in contrast to Section 3.3,
this parameter is now always nonnegative. We still scale by a factor of 1

N to facilitate the mean-field
limit we will take in the next section.

Observe that choosing f(t, x, u) := f(t, u) and w(x, y) := w0 recovers the full connectivity model
from Section 3.3. Thus, this spatial model is a generalization.
Remark 3.13. For simulation purposes, we will always take Ω = [0, 1]2. This choice for two dimensions
is based on the fact that the cerebral cortex is approximately two-dimensional [7, p. 315].
Remark 3.14. We will not pay much attention to how the neurons are assigned a location in Ω as N
increases. This could be either a deterministic or a stochastic process, although we will not consider
the xi’s to be random variables to avoid having to distinguish between sure and almost sure conver-
gence. In our simulation, we will distribute them uniformly at random over Ω, which should at least
be more realistic than a fixed grid structure.

Implicitly however, we are assuming that this process is somewhat uniform due to the convergence
assumptions we will make on the potential and activity measures in the next section. In Chapter 4 we
will need this explicitly, where for Definition 4.1 we will also assume that no pair of neurons shares
the same coordinate.
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Example 3.4. Consider a homogeneous population of leaky neurons with constant external input.
Instead of full connectivity, we now study a Gaussian weight function w : Ω2 → [−w0, w0] of the form

w(x, y) := w0e
−

∥x−y∥2

2σ2 , (3.34)

where σ > 0 is a parameter determining how “wide” the function is. Note that this weight function
only depends on the distance between the neurons. Thus, it is symmetric.

Because w0 > 0, all weights are positive. Also, all neurons are connected, albeit with negligible
synaptic strength if ∥xi − xj∥ is large enough. Thus, the circumstances are somewhat similar to those
in Example 3.1, leading us to expect synchronization.

In Figure 3.5 we indeed see this occurring. At t = 10.30 we observe that the neurons have already
mostly synchronized in local clusters, before reaching global synchronization at t = 25.55 where they
fire all at the same time.

(a) t = 0 (b) t = 10.30 (c) t = 25.55

Figure 3.5: Snapshots of the state of a homogeneous population of N = 100 leaky neurons, which are
distributed uniformly at random over Ω = [0, 1]2. A color scaling visualizes the current potential of the
neurons, and firing neurons are marked with larger red dots. The constant external input is I0 = 0.65
and the neurons are connected with Gaussian weights according to (3.34), with w0 = 0.1 and σ = 0.2.
Initial potentials were chosen uniformly at random on [0, 0.85].

Remark 3.15. If we reduce σ in Example 3.4, we observe that local synchronization still takes place
whereas global synchronization does not. There should be a critical value σc above which global syn-
chronization occurs, and below which it no longer does. This value likely depends on the number of
neurons and their spatial distribution, as these determine the maximum distance between any two
neurons.

3.4.2 Mean-field limit
We are again going to examine the mean-field limit of this model, which will yield a more general result
than we found in Section 3.3.2. To do so, we first reintroduce the population activity and potential
measures which will now also measure space, and their convergence assumptions. This will be entirely
analogous to Section 3.3.2, with the assumptions we make here being stronger versions of the ones
we already made.

Definition 3.6 (Empirical spatiotemporal population activity measure). The spatiotemporal popula-
tion activity measure AN : BI ⊗ BΩ → [0,+∞) is defined as

AN (dtdx) :=
1

N

N∑
i=1

∑
τ∈Ti

δ(τ,xi)(dtdx) =
1

N

∑
τ∈T

∑
i∈N(τ)

δ(τ,xi)(dtdx).

Definition 3.7 (Empirical spatiotemporal potential measure). The spatiotemporal potential measure
ρN : I × BΩ ⊗ BU → [0, 1] is defined as

ρN (t, dxdu) :=
1

N

N∑
i=1

δ(xi,ui(t))(dxdu).

Remark 3.16. The notation for the spatiotemporal population activity and potential measures is the
same as for the population activity measure from Definition 3.2 and the potential measure from Defini-
tion 3.4. This should cause no confusion, as these measures can be distinguished by their arguments.
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Assumption 3.8. There exists a time-dependent probability measure ρ : I×BΩ⊗BU → [0, 1] such that
we have the following uniform narrow convergence, for all test functions φ ∈ Cb(I × Ω× U),

lim
N→∞

sup
t∈I

∣∣∣∣∫
Ω

∫
U

φ(t, x, u)ρN (t, dxdu)−
∫
Ω

∫
U

φ(t, x, u)ρ(t, dxdu)

∣∣∣∣ = 0.

We call ρ the mean-field potential measure. We also assume that for any φ ∈ Cb(I × Ω× U) the map

τ 7→
∫
Ω

∫
U

φ(τ, x, u)ρ(τ, dxdu), τ ∈ I,

is continuous. Note that this implies that this map is also bounded since I = [t0, te] is compact.

Assumption 3.9. There exists a finite measure A : BI → [0,+∞) such that AN converges narrowly to
A. This means that for all test functions φ ∈ Cb(I × Ω) we have

lim
N→∞

∫
I

∫
Ω

φ(τ, x)AN (dτdx) =

∫
I

∫
Ω

φ(τ, x)A(dτdx).

We call A the mean-field population activity measure. We again also make the following uniformity
assumption on this convergence of AN :

lim
N→∞

∫
I

∫
Ω

#N(τ)
N AN (dτdx) = lim

N→∞

∫
I

∫
Ω

AN ({τ} × Ω)AN (dτdx) = 0. (3.35)

Having reintroduced the relevant measures and assumptions, we can now state the mean-field
result for the spatial model. Note that this result is a generalization of Theorem 3.3, so by proving it
we will prove that theorem as well.

Theorem 3.4. Assume that the firing threshold VF is finite.

(i.) Under Assumption 3.9 and Assumption 3.8, the mean-field potential measure ρ and the mean-field
activity measure A are related by the mean-field equation∫

Ω

∫
U

(φ(te, x, u)ρ(te, dxdu)− φ(t0, x, u)ρ(t0, dxdu))

=

∫
I

∫
Ω

∫
U

[∂tφ(τ, x, u) + ∂uφ(τ, x, u)f(τ, x, u)]ρ(τ, dxdu) dτ +

∫
I

∫
Ω

(φ(τ, x, VR)− φ(τ, x, VF ))A(dτdx)

+

∫
I

∫
Ω2

∫
U

w(y, x)∂uφ(τ, y, u)ρ(τ, dydu)A(dτdx),

(3.36)

for any smooth and compactly supported test function φ ∈ C∞
c (I × Ω× U).

(ii.) Suppose further that ρ and A are absolutely continuous w.r.t. the Lebesgue measure, i.e., ρ(t, dxdu) =
p(t, x, u) dxdu and A(dtdx) = A(t, x) dtdx. For the potential density p : I × Ω × U → R+ we assume
that it is differentiable everywhere except at u = VR, but still càdlàg in u and continuous in time at
u = VR. We also assume that p(t, x, V −

F ) and f(t, x, V −
F ) exist for all t ∈ I , x ∈ Ω. For the population

activity density A : I × Ω → R+ we assume that it is continuous. Then the population activity density
is a solution of

A(t, x) =

[
f(t, x, V −

F ) +

∫
Ω

w(x, y)A(t, y) dy

]
p(t, x, V −

F ), (t, x) ∈ I × Ω,

and p satisfies the following transport Cauchy problem:{
∂tp(t, x, u) + ∂uJ(t, x, u) = 0, (t, x, u) ∈ I × Ω× (U \ {VR}),
J(t, x, VR)− J(t, x, V −

R ) = J(t, x, V −
F ), (t, x) ∈ I × Ω,

(3.37)

where the flux J : I × Ω× U → R is defined as

J(t, x, u) :=

[
f(t, x, u) +

∫
Ω

w(x, y)A(t, y) dy

]
p(t, x, u), (t, x, u) ∈ I × Ω× U.
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Notation 3.10. When integrating over Ω twice we often abuse notation by abbreviating this with an
integral over Ω2, even when the integration is performed against different measures. For an example,
see (3.41) in the proof below. This is just for notational conciseness; the integrals should be interpreted
as being separate.

In a similar vein, we do not explicitly denote it when we integrate w.r.t. product measures, but
instead simply juxtapose the component measures. Note that Fubini’s Theorem will usually apply in
these cases, because we will often integrate continuous and compactly supported functions against
finite measures, so this should not cause confusion.

Proof. We consider the system (3.11), with N ∈ N fixed for now. Consider the set of firing times
{r1, . . . , rM} = T, which is finite as a consequence of Lemma 3.1. For notational convenience also
define r0 := t0 and rM+1 := te.

Now observe that on all time intervals (rk, rk+1), k ∈ {0, . . . ,M} no neurons fire, meaning that ui(τ)
is differentiable with derivative f(τ, xi, ui(τ)). Using this we obtain for any neuron i ∈ {1, . . . , N} and
any test function φ ∈ C∞

c (I × Ω× U),

φ(te, xi, ui(te))− φ(t0, xi, ui(t0))

=

M∑
k=0

(φ(rk+1, xi, ui(rk+1))− φ(rk, xi, ui(rk))) ,

=

M∑
k=0

(
φ(rk+1, xi, ui(r

−
k+1))− φ(rk, xi, ui(rk)) + φ(rk+1, xi, ui(rk+1))− φ(rk+1, xi, ui(r

−
k+1))

)
,

=

M∑
k=0

(
φ(rk+1, xi, ui(r

−
k+1))− φ(rk, xi, ui(rk))

)
+

M∑
k=0

(
φ(rk+1, xi, ui(rk+1))− φ(rk+1, xi, ui(r

−
k+1))

)
,

(∗)
=

M∑
k=0

∫ rk+1

rk

d

dτ
φ(τ, xi, ui(τ)) dτ +

∑
τ∈T

(
φ(τ, xi, ui(τ))− φ(τ, xi, ui(τ

−))
)
,

(∗∗)
=

∫
I

[∂tφ(τ, xi, ui(τ)) + ∂uφ(τ, xi, ui(τ))f(τ, xi, ui(τ))] dτ

+
∑
τ∈Ti

(
φ(τ, xi, ui(τ))− φ(τ, xi, ui(τ

−))
)
+

∑
τ∈T\Ti

(
φ(τ, xi, ui(τ))− φ(τ, xi, ui(τ

−))
)
,

=

∫ te

t0

[∂tφ(τ, xi, ui(τ)) + ∂uφ(τ, xi, ui(τ))f(τ, xi, ui(τ))] dτ +
∑
τ∈Ti

(
φ(τ, xi, VR +∆post

i (τ))− φ(τ, xi, VF −∆pre
i (τ))

)
+

∑
τ∈T\Ti

φ
τ, xi, ui(τ−) + ∑

j∈N(τ)

wij

− φ(τ, xi, ui(τ
−))

 .
(3.38)

In step (∗) we used the fact that φ is smooth and ui is càdlàg. Note that this equality also holds when
rM = rM+1 = te, because then the final terms in the two summations of the previous line cancel.
Afterwards in step (∗∗), we used that T = {r1, . . . , rM} is a finite set, and thus a (Lebesgue) null set, to
combine the M + 1 integrals in the first term into one integral.

We introduced two new symbols in (3.38), which are

∆post
i (τ) :=

∑
j∈

⋃N
n=ℓi(τ)+1 Nn(τ)

wij , and 0 ≤ ∆pre
i (τ) ≤

∑
j∈

⋃ℓi(τ)−1
n=1 Nn(τ)

wij ,

where ∆pre
i (τ) is such that ui(τ−) + ∆pre

i (τ) = VF . These are error terms after and before the spike,
respectively. Note that ∆post

i (τ) can be negative.
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The derivation in (3.38) holds in general for the model formulated in Section 3.1. If we substitute
our connectivity assumption wij =

1
Nw(xi, xj), we get

φ(te, xi, ui(te))− φ(t0, xi, ui(t0))

=

∫
I

[∂tφ(τ, xi, ui(τ)) + ∂uφ(τ, xi, ui(τ))f(τ, xi, ui(τ))] dτ +
∑
τ∈Ti

(
φ(τ, xi, VR +∆post

i (τ))− φ(τ, xi, VF −∆pre
i (τ))

)
+

∑
τ∈T\Ti

φ
τ, xi, ui(τ−) + ∑

j∈N(τ)

1
Nw(xi, xj)

− φ(τ, xi, ui(τ
−))

 .

We now combine this expression with the empirical potential measure to obtain∫
Ω

∫
U

(φ(te, x, u)ρN (te, dxdu)− φ(t0, x, u)ρN (t0, dxdu))

=
1

N

N∑
i=1

(φ(te, xi, ui(te))− φ(t0, xi, ui(t0))),

=
1

N

N∑
i=1

[∫
I

[∂tφ(τ, xi, ui(τ)) + ∂uφ(τ, xi, ui(τ))f(τ, xi, ui(τ))] dτ

+
∑
τ∈Ti

(
φ(τ, xi, VR +∆post

i (τ))− φ(τ, xi, VF −∆pre
i (τ))

)
+

∑
τ∈T\Ti

φ
τ, xi, ui(τ−) + ∑

j∈N(τ)

1
Nw(xi, xj)

− φ(τ, xi, ui(τ
−))

 ,

=

(I)︷ ︸︸ ︷∫
I

∫
Ω

∫
U

[∂tφ(τ, x, u)f(τ, x, u) + ∂uφ(τ, x, u)]ρN (τ, dxdu) dτ

+

(II)︷ ︸︸ ︷
1

N

N∑
i=1

∑
τ∈Ti

(
φ(τ, xi, VR +∆post

i (τ))− φ(τ, xi, VF −∆pre
i (τ))

)
+

1

N

N∑
i=1

∑
τ∈T\Ti

φ
τ, xi, ui(τ−) + ∑

j∈N(τ)

1
Nw(xi, xj)

− φ(τ, xi, ui(τ
−))


︸ ︷︷ ︸

(III)

.

We will take the mean-field limit N → ∞ for each of these three terms separately.

I. This is the term corresponding to the driving force f . It has a straightforward limit using the narrow
convergence of the empirical measure ρN to ρ, which is implied by Assumption 3.8. Namely,

lim
N→∞

∫
I

∫
Ω

∫
U

[∂tφ(τ, x, u) + ∂uφ(τ, x, u)f(τ, x, u)]ρN (τ, dxdu) dτ

=

∫
I

∫
Ω

∫
U

[∂tφ(τ, x, u) + ∂uφ(τ, x, u)f(τ, x, u)]ρ(τ, dxdu) dτ. (3.39)

Note that f is not necessarily bounded. However, due to the multiplication with ∂uφ, which has com-
pact support, the product is a continuous and compactly supported function, and thus bounded. Thus,
we can indeed apply Assumption 3.8.

II. This second term arises due to the potential resets. We apply a Taylor expansion with Lagrange re-
mainder (Theorem A.3), which is possible because φ ∈ C∞

c (I × Ω× U). This gives us

φ(τ, xi, VF −∆pre
i (τ)) = φ(τ, xi, VF )−∆pre

i (τ)∂uφ(τ, xi, VF − ξprei (τ)),

φ(τ, xi, VR +∆post
i (τ)) = φ(τ, xi, VR) + ∆post

i (τ)∂uφ(τ, xi, VR + ξposti (τ)),

where ξprei (τ) ∈ [0,∆pre
i (τ)) ⊂ [0, w0

#N(τ)−1
N ) and similarly

∣∣ξposti (τ)
∣∣ ≤ w0

#N(τ)−1
N .

The Limit of Learning 37



CHAPTER 3. POPULATIONS OF NEURONS

Using this expansion we obtain

1

N

N∑
i=1

∑
τ∈Ti

(
φ(τ, xi, VR +∆post

i (τ))− φ(τ, xi, VF −∆pre
i (τ))

)
=

1

N

∑
τ∈Ti

(
φ(τ, xi, VR)− φ(τ, xi, VF ) + ∆post

i (τ)∂uφ(τ, xi, VR + ξposti (τ)) + ∆pre
i (τ)∂uφ(τ, xi, VF − ξprei (τ))

)
,

=

∫
I

∫
Ω

(φ(τ, x, VR)− φ(τ, x, VF ))AN (dτdx)

+
1

N

N∑
i=1

∑
τ∈Ti

(
∆post

i (τ)∂uφ(τ, xi, VR + ξposti (τ)) + ∆pre
i (τ)∂uφ(τ, xi, VF − ξprei (τ))

)
.

Because of the narrow convergence of AN to A, the limit of the first term is clear. We claim that the
second term vanishes in the limit of N → ∞. For this, we require the convergence assumption we
made on AN in (3.35). Also, we use that ∂uφ is bounded by virtue of being continuous and compactly
supported, and both ∆i-factors are bounded by w0

#N(τ)
N . This yields∣∣∣∣∣ 1N

N∑
i=1

∑
τ∈Ti

(
∆post

i (τ)∂uφ(τ, xi, VR + ξposti (τ)) + ∆pre
i (τ)∂uφ(τ, xi, VF − ξprei (τ))

)∣∣∣∣∣
≤ 1

N

N∑
i=1

∑
τ∈Ti

2w0
#N(τ)

N ∥∂uφ∥∞ ,

= 2w0 ∥∂uφ∥∞
∫
I

∫
Ω

#N(τ)
N AN (dτdx).

(3.40)

This upper bound converges to zero because of (3.35) in Assumption 3.9. It follows that

lim
N→∞

1

N

N∑
i=1

∑
τ∈Ti

(
∆post

i (τ)∂uφ(τ, xi, VR + ξposti (τ)) + ∆pre
i (τ)∂uφ(τ, xi, VF − ξprei (τ))

)
= 0.

Thus,

lim
N→∞

1

N

N∑
i=1

∑
τ∈Ti

(
φ(τ, xi, VR +∆post

i (τ))− φ(τ, xi, VF −∆pre
i (τ))

)
=

∫
I

∫
Ω

(φ(τ, x, VR)− φ(τ, x, VF ))A(dτdx).

III. We consider the last term now, which stems from the spikes between the neurons. Using the fact that
φ ∈ C∞

c (I ×Ω×U), we again Taylor expand with Lagrange remainder. We do so around ui(τ) instead
of ui(τ−) to prevent possible issues with this left-limit. This yields

φ

τ, xi, ui(τ−) + ∑
j∈N(τ)

1
Nw(xi, xj)

− φ(τ, xi, ui(τ
−))

= φ(τ, xi, ui(τ))− φ

τ, xi, ui(τ)− ∑
j∈N(τ)

1
Nw(xi, xj)

 ,

=
1

N


∑

j∈N(τ)

w(xi, xj)∂uφ(τ, xi, ui(τ))− 1
2∂

2
uφ(τ, xi, ui(τ)− ηi(τ))︸ ︷︷ ︸

=:κi(τ)

1
N


∑

j∈N(τ)

w(xi, xj)︸ ︷︷ ︸
=:ζi(τ)


2 ,

=
1

N

 ∑
j∈N(τ)

w(xi, xj)∂uφ(τ, xi, ui(τ))− 1
N κi(τ)ζi(τ)

2

 ,
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with |ηi(τ)| ≤ 1
N |ζi(τ)| ≤ w0

#N(τ)
N . Note that κi(τ) is uniformly bounded for all i and τ , because

φ ∈ C∞
c (I × Ω× U). Thus

1

N

N∑
i=1

∑
τ∈T\Ti

φ
τ, xi, ui(τ−) + ∑

j∈N(τ)

1
Nw(xi, xj)

− φ(τ, xi, ui(τ
−))


=

1

N2

N∑
i=1

∑
τ∈T\Ti

 ∑
j∈N(τ)

w(xi, xj)∂uφ(τ, xi, ui(τ))− 1
N κi(τ)ζi(τ)

2

 ,

=
1

N2

N∑
i=1

∑
τ∈T

∑
j∈N(τ)

w(xi, xj)∂uφ(τ, xi, ui(τ))−
1

N2

N∑
i=1

∑
τ∈Ti

ζi(τ)∂uφ(τ, xi, ui(τ))

− 1

N2

N∑
i=1

∑
τ∈T\Ti

κi(τ)
ζi(τ)

2

N .

In this expression, the second and third terms vanish for N → ∞. This can be shown with a similar
argument to the one used for the reset term (II) in (3.40), using (3.35) combined with |ζi(τ)| ≤ w0

#N(τ)
N

and the fact that ∂uφ(τ, xi, ui(τ)) and κi(τ) are bounded uniformly over i and τ .
Therefore, we only have to consider the first term. Taking note of Notation 3.10, we can rewrite this
term in terms of empirical measures as

1

N2

N∑
i=1

∑
τ∈T

∑
j∈N(τ)

w(xi, xj)∂uφ(τ, xi, ui(τ)) =
1

N

∑
τ∈T

∑
j∈N(τ)

∫
Ω

∫
U

w(y, xj)∂uφ(τ, y, u)ρN (τ, dxdu),

=

∫
I

∫
Ω2

∫
U

w(y, x)∂uφ(τ, y, u)ρN (τ, dydu)AN (dτdx),

→
∫
I

∫
Ω2

∫
U

w(y, x)∂uφ(τ, y, u)ρ(τ, dydu)A(dτdx), as N → ∞.

(3.41)

where the convergence follows from Lemma B.4, because of the uniform narrow convergence of the
empirical potential according to Assumption 3.8, the continuity and boundedness of w, and narrow
convergence of the population activity measure according to Assumption 3.9.

Combining the three terms from (I), (II) and (III), the following mean-field equation follows from the
uniformly narrow convergence of ρN from Assumption 3.8∫

Ω

∫
U

(φ(te, x, u)ρ(te, dxdu)− φ(t0, x, u)ρ(t0, dxdu))

= lim
N→∞

(∫
Ω

∫
U

φ(te, x, u)ρN (te, dxdu)−
∫
Ω

∫
U

φ(t0, x, u)ρN (t0, dxdu)

)
,

=

∫
I

∫
Ω

∫
U

[∂tφ(τ, x, u) + ∂uφ(τ, x, u)f(τ, x, u)]ρ(τ, dxdu) dτ +

∫
I

∫
Ω

(φ(τ, x, VR)− φ(τ, x, VF ))A(dτdx)

+

∫
I

∫
Ω2

∫
U

w(y, x)∂uφ(τ, y, u)ρ(τ, dydu)A(dτdx),

(3.42)

for any φ ∈ C∞
c (I × Ω× U). This proves part (i.) of the theorem.

To prove part (ii.) we use the assumptions of absolute continuity w.r.t. the Lebesgue measure, viz.
ρ(τ, dxdu) = p(τ, x, u) dxdu and A(dτdx) = A(τ, x) dτdx. This reduces (3.42) to∫

Ω

∫
U

(φ(te, x, u)p(te, x, u)− φ(t0, x, u)p(t0, x, u)) dudx

=

∫
I

∫
Ω

∫
U

[∂tφ(τ, x, u) + ∂uφ(τ, x, u)f(τ, x, u)]p(τ, x, u) dudxdτ +

∫
I

∫
Ω

(φ(τ, x, VR)− φ(τ, x, VF ))A(τ, x)dxdτ

+

∫
I

∫
Ω2

∫
U

w(y, x)∂uφ(τ, y, u)p(τ, y, u)A(τ, x)dudydxdτ.

(3.43)
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We now stipulate that φ is separable as φ(τ, x, u) = ψ(τ)ϕ(x, u), where ψ ∈ C∞
c (I) and ϕ ∈ C∞

c (Ω× U).
Substituting this into (3.43) yields∫

Ω

∫
U

(ψ(te)ϕ(x, u)p(te, x, u)− ψ(t0)ϕ(x, u)p(t0, x, u)) dudx

=

∫
I

∫
Ω

∫
U

[ψ′(τ)ϕ(x, u) + ψ(τ)∂uϕ(x, u)f(τ, x, u)]p(τ, x, u) dudxdτ +

∫
I

∫
Ω

ψ(τ) (ψ(x, VR)− ψ(x, VF ))A(τ, x)dxdτ

+

∫
I

∫
Ω2

∫
U

ψ(τ)∂uϕ(y, u)w(y, x)p(τ, y, u)A(τ, x)dudydxdτ.

(3.44)

As we assumed that p is differentiable in its first argument, and since I = [t0, te], we can perform
partial integration (p.i.) on the first term of the integrand of the first term in (3.44) as follows∫

I

∫
Ω

∫
U

ψ′(τ)ϕ(x, u)p(τ, x, u) dudxdτ
p.i.
=

∫
Ω

∫
U

(ψ(te)ϕ(x, u)p(te, x, u)− ψ(t0)ϕ(x, u)p(t0, x, u)) dudx,

−
∫
I

∫
Ω

∫
U

ψ(τ)ϕ(x, u)∂tp(τ, x, u) dudxdτ.

Here we observe that the first term is the same as the left-hand side of (3.44). Cancellation of these
terms allows us to simplify (3.44) to∫

I

∫
Ω

∫
U

ψ(τ)ϕ(x, u)∂tp(τ, x, u) dudxdτ

=

∫
I

∫
Ω

∫
U

ψ(τ)∂uϕ(x, u)f(τ, x, u)p(τ, x, u) dudxdτ +

∫
I

∫
Ω

ψ(τ) (ψ(x, VR)− ψ(x, VF ))A(τ, x)dxdτ

+

∫
I

∫
Ω2

∫
U

ψ(τ)∂uϕ(y, u)w(y, x)p(τ, y, u)A(τ, x)dudydxdτ.

Note that in this expression we are integrating all terms over I and multiplying all integrands with
ψ ∈ C∞

c (I) which is arbitrary. Also, f , p, and A are all assumed to be continuous in time. This implies
that we have∫

Ω

∫
U

ϕ(x, u)∂tp(τ, x, u) dudx

=

∫
Ω

∫
U

∂uϕ(x, u)f(τ, x, u)p(τ, x, u) dudx+

∫
Ω

(ψ(x, VR)− ψ(x, VF ))A(τ, x)dx

+

∫
Ω2

∫
U

∂uϕ(y, u)w(y, x)p(τ, y, u)A(τ, x)dudydx,

(3.45)

for all τ ∈ I, which follows by concentrating ψ around a fixed time τ .
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Because of the resets to VR, we expect p to have a discontinuity at u = VR. Thus, we distinguish be-
tween p(·, ·, V −

R ) and p(·, ·, V +
R ) = p(·, ·, VR) (p is assumed càdlàg). We again perform partial integration

on (3.45) but now on the potential integral over U , where we take into account the aforementioned
discontinuity at u = VR. This yields for all τ ∈ I that∫

Ω

∫
U

ϕ(x, u)∂tp(τ, x, u) dudx

=

∫
Ω

∫
U

∂uϕ(x, u)f(τ, x, u)p(τ, x, u) dudxdτ +

∫
Ω

(ϕ(x, VR)− ϕ(x, VF ))A(τ, x)dx

+

∫
Ω2

∫
U

∂uϕ(x, u)w(x, y)p(τ, x, u)A(τ, y)dudxdy,

=

∫
Ω

(∫
U

∂uϕ(x, u)

[
f(τ, x, u) +

∫
Ω

w(x, y)A(τ, y) dy

]
p(τ, x, u) du+ (ϕ(x, VR)− ϕ(x, VF ))A(τ, x)

)
dx,

=

∫
Ω

(∫
U

∂uϕ(x, u)J(τ, x, u) du+ (ϕ(x, VR)− ϕ(x, VF ))A(τ, x)

)
dx,

=

∫
Ω

(∫ VR

−∞
∂uϕ(x, u)J(τ, x, u) du+

∫ VF

VR

∂uϕ(x, u)J(τ, x, u) du+ (ϕ(x, VR)− ϕ(x, VF ))A(τ, x)

)
dx,

p.i.
=

∫
Ω

(
[ϕ(x, u)J(τ, x, u)]

u=V −
R

u→−∞ + [ϕ(x, u)J(τ, x, u)]
u=V −

F

u=V +
R

−
∫ VR

−∞
ϕ(x, u)∂uJ(τ, x, u) du

−
∫ VF

VR

ϕ(x, u)∂uJ(τ, x, u) du+ (ϕ(x, VR)− ϕ(x, VF ))A(τ, x)

)
dx,

=

∫
Ω

(
ϕ(x, VF )

[
J(τ, x, V −

F )−A(τ, x)
]
+ ϕ(x, VR)

[
J(τ, x, V −

R )− J(τ, x, VR) +A(τ, x)
]

−
∫
U

ϕ(x, u)∂uJ(τ, x, u) du

)
dx.

(3.46)

Note that possible issues with integrability in this derivation are avoided because our test function φ
is compactly supported. This is also why the boundary condition at u→ −∞ vanished after the partial
integration.

As (3.46) holds for all ϕ ∈ C∞
c (Ω × U) and J , ∂uJ and A are assumed to be continuous (except at

u = VR), it follows that

∀ t ∈ I, x ∈ Ω, u ∈ U \ {VR} : ∂tp(t, x, u) = −∂uJ(t, x, u). (3.47)

Since (3.47) holds L-a.e. on I ×Ω×U the inner U -integrals cancel on both sides of (3.46), so it follows
that for all ϕ ∈ C∞

c (Ω× U),∫
Ω

(
ϕ(x, VF )

[
J(τ, x, V −

F )−A(τ, x)
]
+ ϕ(x, VR)

[
J(τ, x, V −

R )− J(τ, x, VR) +A(τ, x)
])
dx = 0.

By choosing ϕ(·, VF ) or ϕ(·, VR) to be arbitrarily concentrated around some x ∈ Ω, we find that

J(t, x, V −
F ) = A(t, x), (t, x) ∈ I × Ω,

J(t, x, VR)− J(t, x, V −
R ) = A(t, x), (t, x) ∈ I × Ω.

(3.48)

Writing this without the a priori unknown activity gives

J(t, x, VR)− J(t, x, V −
R ) = J(t, x, V −

F ), (t, x) ∈ I × Ω.

Also, the population activity density thus satisfies the equation

A(t, x) = J(t, x, V −
F ) =

[
f(t, x, V −

F ) +

∫
Ω

w(x, y)A(t, y) dy

]
p(t, x, V −

F ), (t, x) ∈ I × Ω.
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Similarly, using the continuity of f ,

A(t, x) = J(t, x, VR)− J(t, x, V −
R ),

=

[
f(t, x, VR) +

∫
Ω

w(x, y)A(t, y) dy

]
p(t, x, VR)−

[
f(t, x, V −

R ) +

∫
Ω

w(x, y)A(t, y) dy

]
p(t, x, V −

R ),

= f(t, x, VR)
[
p(t, x, VR)− p(t, x, V −

R )
]
+
(
p(t, x, VR)− p(t, x, V −

R )
) ∫

Ω

w(x, y)A(t, y) dy,

=

[
f(t, x, VR) +

∫
Ω

w(x, y)A(t, y) dy

] (
p(t, x, VR)− p(t, x, V −

R )
)
.

This shows that part (ii.) of the theorem also holds, concluding the proof. ■

3.4.3 Stationary solution
Entirely analogous to Section 3.3.3, we will determine the equations corresponding to a stationary
solution of the mean-field equations (3.37). We thus assume p(t, ·, ·) = p(·, ·) and f(t, ·, ·) = f(·, ·) for all
t ∈ I, i.e., no time-dependence. The system then simplifies to{

∂uJ(x, u) = 0, (x, u) ∈ Ω× (U \ {VR}),
J(x, VR)− J(x, V −

R ) = J(x, V −
F ),

with
J(x, u) =

[
f(x, u) +

∫
Ω

w(x, y)A(t, y) dy

]
p(x, u), (x, u) ∈ Ω× U.

By the same argument as in Section 3.3.3, we find that for all x ∈ Ω,

p(x, u) =
J(x, u)

f(x, u) +
∫
Ω
w(x, y)A(y) dy

=

{
0 if u < VR,

A(x)
f(x,u)+

∫
Ω
w(x,y)A(y) dy

if u ≥ VR.

where the function A is constrained by the equation∫
Ω

∫ VF

VR

A(x)

f(x, u) +
∫
Ω
w(x, y)A(y) dy

du dx = 1. (3.49)

In contrast to Section 3.3.3 however, it is difficult to find solutions to (3.49), even for simple f and w.
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Chapter 4

Learning populations

In the previous two chapters, we have developed a model of individual neurons that together form
an interacting population. We will now add the missing piece: making this network learn. To achieve
this, we are going to model synaptic plasticity. This refers to the process that changes the connec-
tivity pattern between the neurons over time, by growing new synapses or adapting the strength of
existing synapses. Such changes in the network, if persistent, can permanently alter the response of
the population to external input.

The biological causes for synaptic plasticity are complex and full of exceptions, but there is a prin-
ciple that, at least under simple conditions, is able to predict the type of changes that take place in
the network of a neuronal population [8, p. 493]. This form of learning is called Hebbian learning,
which we will explain in the first section of this chapter. Afterwards, we will incorporate a learning
rule capable of emulating this into our model, of which we will again take the mean-field limit. We
conclude by considering a few concrete examples of learning rules for our model, and how they relate
to variants in the literature.

4.1 Hebbian learning
The essence of Hebbian learning, sometimes also called associative learning, is captured by the fol-
lowing pithy claim:

Neurons that fire together, wire together.

In slightly more words: when two neurons fire close in time (together), the synapse between them
is strengthened (wired). This idea is due to Donald Hebb, who proposed it back in 1949. As noted by
Gerstner et al. in [8, p. 492], the original postulate due to Hebb was more detailed than the summary
above:

When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased. (Hebb [9])

Here Hebb distinguishes between the neuron that fires first and the neuron that fires second,
with the second firing being (partially) caused by the first. This necessitates a temporal ordering
between the spikes, giving rise to the concept of spike-timing-dependent plasticity (STDP). Indeed,
experimental results suggest that whether the synaptic weight change is an increase or a decrease
depends on the order of the pre- and postsynaptic spikes, even when they are very close in time [10].
Therefore, the time between the pre- and postsynaptic spikes will play a role in our model.
Remark 4.1. An alternative to STDP is the so-called rate-based approach. Under this model, each
neuron has an associated (time-dependent) firing rate, with spikes arising from a Poisson process
with that rate. The changes in synaptic weights are no longer dependent on individual spikes, but
instead on these firing rates.
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4.2 Learning rule formulation
To model STDP, the weights wij(t) (which are now time-dependent) will be updated whenever a pre-
or postsynaptic spike occurs at neuron j or i respectively. These weight changes will depend on the
current weight, which of the two neurons fired, and the time elapsed since previous firings of the pre-
or postsynaptic neuron. The sign and magnitude of an update will depend on the update functions
F± : [−w0, w0]×R+ → R andG± : [−w0, w0] → R, inspired by [8, p. 500]. These functions are assumed to
be continuous everywhere on their domains. The plus-variants are used for postsynaptic spikes, and
the minus-variants are relevant in case of a presynaptic spike. As we are modeling STDP, the functions
F± will take into account all past pre- and postsynaptic spikes respectively. Their two arguments are

• the current normalized weight wN (t, xi, xj) of the synapse (defined in Definition 4.1 below); and

• the time elapsed since a past presynaptic spike in case of a current postsynaptic spike for F+,
and vice versa for F−.

The functionsG± will be applied only once for each post- and presynaptic spike respectively, with their
argument being the current normalized weight.

Definition 4.1 (Normalized weight function). We define wN : I ×Ω2 → [−w0, w0] for t ∈ I and x, y ∈ Ω
as

wN (t, x, y) :=

{
Nwij(t), if ∃ i, j ∈ {1, . . . , N} : (x, y) = (xi, xj),

0, otherwise.

This scaling by N is necessary, because in order to take the mean-field limit we still require that the
true weights wij are proportional to 1

N . Their limit for N → ∞ would thus not be interesting to study.

Remark 4.2. In Definition 4.1 we are tacitly assuming that no two neurons share the same coordinate.
This could be avoided by for instance averaging wij and wik (in case xj = xk), but we do not do this
here for simplicity.

From a modeling perspective this is not very important, since two neurons would be identical and
in the same location. Furthermore, if the coordinates are assigned stochastically from a continuous
probability distribution, almost surely no coordinates would coincide (for finite N ).

We will construct our learning rule in a way that makes the function wN càdlàg in time. Note that
wN will only change at firing times of either the pre- or postsynaptic neuron. Namely, for fixed neurons
i, j ∈ {1, . . . , N}, the effects of pre- and postsynaptic spikes on wN (·, xi, xj) (and by extension on wij(·))
are defined as follows:

• At τ ∈ Ti \ Tj a firing time of only the postsynaptic neuron i, we have

wN (τ, xi, xj)− wN (τ−, xi, xj) :=
∑

σ∈Tj∩(t0,τ ]

F+

(
wN (τ−, xi, xj), τ − σ

)
+G+(wN (τ−, xi, xj)), (4.1)

• For a presynaptic firing time σ ∈ Tj \ Ti the synaptic is updated following

wN (σ, xi, xj)− wN (σ−, xi, xj) :=
∑

τ∈Ti∩(t0,σ]

F−
(
wN (σ−, xi, xj), σ − τ

)
+G−(wN (σ−, xi, xj)). (4.2)

• When τ ∈ Ti∩Tj , we distinguish between the firing batches introduced in Section 3.2. The batch
indices ℓi(τ) and ℓj(τ) provide information on which neuron fires “first”, even though both fire at
the same moment in time in the model. A lower batch index means that the neuron fired earlier,
so using this we can the update analogous to the previous two cases:

wN (τ, xi, xj)− wN (τ−, xi, xj)

:=



∑
σ∈Tj∩(t0,τ ]

F+

(
wN (τ−, xi, xj), τ − σ)

)
+G+(wN (τ−, xi, xj)), if ℓi(τ) > ℓj(τ),∑

σ∈Ti∩(t0,τ ]

F−
(
wN (τ−, xi, xj), τ − σ)

)
+G−(wN (τ−, xi, xj)), if ℓi(τ) < ℓj(τ),

0, if ℓi(τ) = ℓj(τ).

(4.3)
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Remark 4.3. The choice we made for the last case in (4.3) matters relatively little from a modeling
perspective because ℓi(τ) = ℓj(τ) is rather unlikely to happen in non-pathological cases (the potentials
of i and j would have to be identical). Here we chose to not change the weight in that case, because no
temporal ordering can be assigned to the pre- and the postsynaptic spike. An alternative is applying
both (4.1) and (4.2) simultaneously.
Remark 4.4. This class of learning rules could be extended by adding the inter-neuron distance ∥xi − xj∥
as an argument to F± and G±. This could for instance be used to inhibit the growth of connections
between neurons that are far apart in Ω.1.

The functionsF± andG± can not be completely arbitrary for these updating rules to work. Namely,
they must satisfy the following assumption:

Assumption 4.2. The functions F± and G± are such that none of (4.1), (4.2) nor (4.3) can cause wN to
exit its range [−w0, w0], provided wN (t0, xi, xj) ∈ [−w0, w0] for all i, j ∈ {1, . . . , N}.

This condition is mild for G± because the current value of wN is known, but for F± one needs to
be careful because these update functions are summed over sets of firing times (of a single neuron).
It should still be possible to guarantee this assumption is met by requiring that F± decay fast enough
in time, using for instance the minimum time between firings of a single neuron from Lemma 3.1.

4.3 Mean-field limit
With this learning rule model under our belt, it is time to study its behavior in the limit ofN → ∞. That
is, we will again take the mean-field limit. The empirical population activity and potential measures
AN and ρN are again of interest, for which we still assume that Assumption 3.9 and Assumption 3.8
hold. As alluded to in Remark 3.14, we will now explicitly need notation for the distribution of the
neuron coordinates. The associated measure is closely related to the potential measure.

Definition 4.3 (Empirical spatial measure). The empirical spatial measure XN : BΩ → [0, 1] is defined
as

XN (dx) :=
1

N

N∑
i=1

δxi
(dx).

Note that for any S ∈ BΩ and all t ∈ I we have XN (S) = ρN (t, S × U).

With Assumption 3.8, we have already implicitly assumed that this empirical measure XN con-
verges narrowly to a probability measure X(S) := ρ(t, S ×U) for arbitrary t ∈ I. The absolute continu-
ity assumption made on this measure in Theorem 3.4 similarly implies absolute continuity of X, with
density χ(x) :=

∫
U
p(t, x, u) du for arbitrary t ∈ I.

Remark 4.5. If the coordinates xi are sampled from a distribution with law X, then this (almost sure)
narrow convergence of XN would be a consequence of the Strong Law of Large Numbers. Thus, it is
not dependent on Assumption 3.8 in that case.

Of course, the primary new object of interest is the limit of the weights themselves. To this end,
we introduce the following empirical measure.

Definition 4.4 (Empirical weight measure). We define the (signed) empirical weight measure ωN :
I × BΩ2 → [−w0, w0] as

ωN (t, dxdy) :=
1

N2

N∑
i=1

N∑
j=1

wN (t, xi, xj)δ(xj ,xi)(dxdy).

This measure computes the average normalized synaptic efficacy from dx to dy. Note the order of the
coordinates in the subscript of the Dirac measure.

Similar to the empirical measures from Chapter 3, we require a convergence assumption on ωN . In
particular, we need narrow convergence. With the next assumption in mind, we will also immediately
assume absolutely continuity here.

1If Ω (predominantly) corresponds to the spatial positions of the neuron, this would not necessarily be realistic. Some axons
connect neurons in different brain areas or even travel all the way through the spinal cord [8, pp. 72–75]
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Assumption 4.5. There exists a time-dependent signed measure ω : I × BΩ2 → [−w0, w0] such that
for each fixed t ∈ I, ωN (t, dxdy) converges narrowly to ω(t, dxdy). We call ω the mean-field weight
measure. This measure ω is absolutely continuous w.r.t. the Lebesgue measure, with a continuous
Radon-Nikodym derivative w : I × Ω2 → [−w0, w0] such that ω(t, dxdy) = w(t, y, x)dxdy.2 Furthermore,
w is differentiable in time.

Next to ωN , we also need the normalized weight function wN itself to converge. Pointwise con-
vergence on all of Ω2 is not feasible, as wN is only nonzero at neuron coordinates. However, if we
restrict to the support of the product measure the empirical population activity measure and twice
the empirical spatial measure from Definition 4.3 (which only contains neuron coordinates), there is
hope for convergence.

Assumption 4.6. The normalized weight functionwN converges uniformly on suppAN (dt)XN (dx)XN (dy)
to the density w : I × Ω2 → [−w0, w0] from Assumption 4.5. Here AN refers to the global population
activity measure from Definition 3.2. That is,

lim
N→∞

sup
(t,x,y)∈suppAN⊗XN⊗XN

∣∣w(t, y, x)− wN (t−, y, x)
∣∣ = 0.

Note that AN (dtdx) ≪ AN (dt)X(dx), so this in particular implies uniform convergence of wN on
suppAN (dσdx)AN (dtdy) (for σ a dummy argument of wN ) and on suppXN (dx)AN (dtdy). These two
properties will be used in the proof of Theorem 4.1.

The fact that we are assuming the limit of wN to coincide with the density of ω might seem unrea-
sonable, but given the fact that wN is by Definition 4.4 the Radon-Nikodym derivative of ωN w.r.t. to
the product spatial measure, it is somewhat tenable.

We also require an additional assumption related to the population activity measure, which guar-
antees that for fixed i and j the sets Ti∩{τ | ℓi(τ) ≤ ℓj(τ)} and Tj∩{τ | ℓi(τ) ≥ ℓj(τ)} do not contribute
to the limit. This is for instance achieved when their superset Ti ∩ Tj is empty or small for all i, j.

Assumption 4.7. We have

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

∑
τ∈Ti

ℓi(τ)≤ℓj(τ)

 ∑
σ∈Tj∩(t0,τ ]

F+

(
wN (τ−, xi, xj), τ − σ

)
+G+(wN (τ−, xi, xj))

 = 0,

and

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

∑
σ∈Tj

ℓi(σ)≥ℓj(σ)

 ∑
τ∈Ti∩(t0,σ]

F−
(
wN (σ−, xi, xj), σ − τ

)
+G−(wN (σ−, xi, xj))

 = 0.

With all of these definitions and assumptions in mind, we finally arrive at the following result for
the mean-field weight function w:

Theorem 4.1. Under all assumptions from Theorem 3.4, plus Assumption 4.5, Assumption 4.6 and As-
sumption 4.7, item (ii.) of Theorem 3.4 still holds (after adding a time dependence to the function w there).
Furthermore,

∂tw(t, y, x) = A(t, y)

(∫ t

t0

F+(w(t, y, x), t− σ)A(σ, x)dσ + χ(x)G+(w(t, y, x))

)
+A(t, x)

(∫ t

t0

F−(w(t, y, x), t− σ)A(σ, y)dσ + χ(y)G−(w(t, y, x))

)
, (t, x, y) ∈ I × Ω2. (4.4)

2This function w should not be confused with the weight function w of the spatial model of Section 3.4, which was a fixed
function independent of the model dynamics.

46 The Limit of Learning



CHAPTER 4. LEARNING POPULATIONS

Proof. The fact that (ii.) still holds follows in the same way as in the proof of Theorem 3.4, using that
still |wij(t)| = 1

N |wN (t, xi, xj)| ≤ w0

N by Assumption 4.2. The only location where some care is required
is in (3.41), which now requires Assumption 4.6 to hold. We will thus focus on proving (4.4). For any
φ ∈ C∞

c (I × Ω2) we have∫
Ω2

(φ(te, x, y)ωN (te, dxdy)− φ(t0, x, y)ωN (t0, dxdy))

=
1

N2

N∑
i=1

N∑
j=1

(φ(te, xj , xi)wN (te, xi, xj)− φ(t0, xj , xi)wN (t0, xi, xj)) ,

to which we can apply a similar argument as done in (3.38), yielding

=
1

N2

N∑
i=1

N∑
j=1

(∫
I

∂tφ(τ, xj , xi)wN (τ, xi, xj) dτ +
∑
τ∈T

φ(τ, xj , xi)
(
wN (τ, xi, xj)− wN (τ−, xi, xj)

))
,

=

∫
I

∫
Ω2

∂tφ(τ, x, y)ωN (τ, dxdy) dτ +
1

N2

N∑
i=1

N∑
j=1

∑
τ∈T

φ(τ, xj , xi)
(
wN (τ, xi, xj)− wN (τ−, xi, xj)

)
,

(4.5)

As a consequence of Assumption 4.5, the limits for N → ∞ of the left-hand side and the first term of
the right-hand side are clear. For the second term we have, by Section 4.2,∑
τ∈T

φ(τ, xj , xi)
(
wN (τ, xi, xj)− wN (τ−, xi, xj)

)
=

∑
τ∈T

ℓi(τ)>ℓj(τ)

φ(τ, xj , xi)
(
wN (τ, xi, xj)− wN (τ−, xi, xj)

)
+

∑
σ∈T

ℓi(σ)<ℓj(σ)

φ(σ, xj , xi)
(
wN (σ, xi, xj)− wN (σ−, xi, xj)

)
,

=
∑
τ∈Ti

ℓi(τ)>ℓj(τ)

φ(τ, xj , xi)
(
wN (τ, xi, xj)− wN (τ−, xi, xj)

)
+

∑
σ∈Tj

ℓi(σ)<ℓj(σ)

φ(σ, xj , xi)
(
wN (σ, xi, xj)− wN (σ−, xi, xj)

)
,

=
∑
τ∈Ti

ℓi(τ)>ℓj(τ)

φ(τ, xj , xi)

 ∑
σ∈Tj∩(t0,τ ]

F+

(
wN (τ−, xi, xj), τ − σ

)
+G+(wN (τ−, xi, xj))



+
∑
σ∈Tj

ℓi(σ)<ℓj(σ)

φ(σ, xj , xi)

 ∑
τ∈Ti∩(t0,σ]

F−
(
wN (σ−, xi, xj), σ − τ

)
+G−(wN (σ−, xi, xj))

 .

Recall here that ℓi(τ) = 0 if and only if τ /∈ Ti, which enabled the second equality. We also used that in
case ℓi(τ) = ℓj(τ) there is no change in wN at τ . Adding back the summations over i and j, we obtain

1

N2

N∑
i=1

N∑
j=1

∑
τ∈T

φ(τ, xj , xi)
(
wN (τ, xi, xj)− wN (τ−, xi, xj)

)

=
1

N2

N∑
i=1

N∑
j=1

 ∑
τ∈Ti

ℓi(τ)>ℓj(τ)

φ(τ, xj , xi)

 ∑
σ∈Tj∩(t0,τ ]

F+

(
wN (τ−, xi, xj), τ − σ

)
+G+(wN (τ−, xi, xj))



+
∑
σ∈Tj

ℓi(σ)<ℓj(σ)

φ(σ, xj , xi)

 ∑
τ∈Ti∩(t0,σ]

F−
(
wN (σ−, xi, xj), σ − τ

)
+G−(wN (σ−, xi, xj))


 .
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From the first term we can split off the following summation:

1

N2

N∑
i=1

N∑
j=1

∑
τ∈Ti

ℓi(τ)≤ℓj(τ)

φ(τ, xj , xi)

 ∑
σ∈Tj∩(t0,τ ]

F+

(
wN (τ−, xi, xj), τ − σ

)
+G+(wN (τ−, xi, xj))

 ,

which vanishes by Assumption 4.7, since φ is bounded. Thus we only have to consider

1

N2

N∑
i=1

N∑
j=1

∑
τ∈Ti

φ(τ, xj , xi)

 ∑
σ∈Tj∩(t0,τ ]

F+

(
wN (τ−, xi, xj), τ − σ

)
+G+(wN (τ−, xi, xj))


+
∑
σ∈Tj

φ(σ, xj , xi)

 ∑
τ∈Ti∩(t0,σ]

F−
(
wN (σ−, xi, xj), σ − τ

)
+G−(wN (σ−, xi, xj))

 ,
=

1

N

N∑
i=1

∑
τ∈Ti

∫ τ

t0

∫
Ω

φ(τ, x, xi)F+

(
wN (τ−, xi, x), τ − σ

)
AN (dσdx)

+
1

N

N∑
j=1

∑
σ∈Tj

∫ σ

t0

∫
Ω

φ(σ, xj , y)F−
(
wN (σ−, y, xj), σ − τ

)
AN (dτdy)

+
1

N

N∑
j=1

∫
I

∫
Ω

φ(τ, xj , y)G+(wN (τ−, y, xj))AN (dτdy) +
1

N

N∑
i=1

∫
I

∫
Ω

φ(σ, x, xi)G−(wN (σ−, xi, x))AN (dσdx),

=

∫
I

∫ τ

t0

∫
Ω2

φ(τ, x, y)F+

(
wN (τ−, y, x), τ − σ

)
AN (dσdx)AN (dτdy)

+

∫
I

∫ σ

t0

∫
Ω2

φ(σ, x, y)F−
(
wN (σ−, y, x), σ − τ

)
AN (dτdy)AN (dσdx)

+

∫
I

∫
Ω2

φ(τ, x, y)G+(wN (τ−, y, x))XN (dx)AN (dτdy) +

∫
I

∫
Ω2

φ(σ, x, y)G−(wN (σ−, y, x))XN (dy)AN (dσdx),

→
∫
I

∫ τ

t0

∫
Ω2

φ(τ, x, y)F+ (w(τ, y, x), τ − σ)A(dσdx)A(dτdy)

+

∫
I

∫ σ

t0

∫
Ω2

φ(σ, x, y)F− (w(σ, y, x), σ − τ)A(dτdy)A(dσdx)

+

∫
I

∫
Ω2

φ(τ, x, y)G+(w(τ, y, x))X(dx)A(dτdy) +

∫
I

∫
Ω2

φ(σ, x, y)G−(w(σ, y, x))X(dy)A(dσdx), as N → ∞.

Here the final convergence follows from the narrow convergence of both AN and XN , which by [5,
p. 330] implies narrow convergence of the product measures we are integrating against here. It also
relies on the continuity of F± and G± combined with Assumption 4.6 and Lemma B.4. Going back to
(4.5), the narrow convergence of ωN to ω now implies∫

Ω2

(φ(te, x, y)ω(te, dxdy)− φ(t0, x, y)ω(t0, dxdy))

=

∫
I

∫
Ω2

∂tφ(τ, x, y)ω(τ, dxdy) dτ +

∫
I

∫ τ

t0

∫
Ω2

φ(τ, x, y)F+ (w(τ, y, x), τ − σ)A(dσdx)A(dτdy)

+

∫
I

∫ σ

t0

∫
Ω2

φ(σ, x, y)F− (w(σ, y, x), σ − τ)A(dτdy)A(dσdx)

+

∫
I

∫
Ω2

φ(τ, x, y)G+(w(τ, y, x))X(dx)A(dτdy) +

∫
I

∫
Ω2

φ(σ, x, y)G−(w(σ, y, x))X(dy)A(dσdx).
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Now we use that ω(t, dxdy) has Radon-Nikodym derivative w(t, y, x) w.r.t. the Lebesgue measure,
and that also A and X are absolutely continuous to get∫

Ω2

(φ(te, x, y)w(te, y, x)− φ(t0, x, y)w(t0, y, x)) dxdy

=

∫
I

∫
Ω2

∂tφ(τ, x, y)w(τ, y, x)dxdydτ +

∫
I

∫ τ

t0

∫
Ω2

φ(τ, x, y)F+ (w(τ, y, x), τ − σ)A(σ, x)A(τ, y)dσdxdτdy

+

∫
I

∫ σ

t0

∫
Ω2

φ(σ, x, y)F− (w(σ, y, x), σ − τ)A(τ, y)A(σ, x)dτdydσdx

+

∫
I

∫
Ω2

φ(τ, x, y)G+(w(τ, y, x))χ(x)A(τ, y)dxdτdy +

∫
I

∫
Ω2

φ(σ, x, y)G−(w(σ, y, x))χ(y)A(σ, x)dydσdx,

=

∫
I

∫
Ω2

∂tφ(τ, x, y)w(τ, y, x)dxdy dτ

+

∫
I

∫ τ

t0

∫
Ω2

φ(τ, x, y) [F+(w(τ, y, x), τ − σ)A(σ, x)A(τ, y) + F−(w(τ, y, x), τ − σ)A(σ, y)A(τ, x)] dxdydσdτ

+

∫
I

∫
Ω2

φ(τ, x, y) [G+(w(τ, y, x))χ(x)A(τ, y) +G−(w(τ, y, x))χ(y)A(τ, x)] dxdydτ.

Using the fact that w is assumed to be differentiable in time, a similar argument as in the proof of
Theorem 3.4 with separation of the test function into a temporal and a spatial factor yields, for all
ϕ ∈ C∞

c (Ω2) and t ∈ I,∫
Ω2

ϕ(x, y)∂tw(t, y, x)dxdy

=

∫
Ω2

ϕ(x, y)

(∫ t

t0

[F+(w(t, y, x), t− σ)A(σ, x)A(t, y) + F−(w(t, y, x), τ − σ)A(σ, y)A(t, x)] dσ

+G+(w(t, y, x))χ(x)A(t, y) +G−(w(t, y, x))χ(y)A(t, x)

)
dxdy,

and thus pointwise

∂tw(t, y, x) = A(t, y)

(∫ t

t0

F+(w(t, y, x), t− σ)A(σ, x)dσ + χ(x)G+(w(t, y, x))

)
+A(t, x)

(∫ t

t0

F−(w(t, y, x), t− σ)A(σ, y)dσ + χ(y)G−(w(t, y, x))

)
,

for all (t, x, y) ∈ I × Ω2, which is identical to (4.4). ■

Remark 4.6. The two terms in (4.4) correspond closely to the definitions of the weight updates in (4.1)
and (4.2). The multiplications with A(t, y) and A(t, x) respectively are a consequence of the fact that
these updates are applied at postsynaptic and presynaptic firing times respectively.

4.4 Short-memory limit
In this final section, we will show how our mean-field equation for w can be simplified by limiting the
time-dependence of our learning rule. In this context, we also provide some examples of concrete
learning rules. This will also demonstrate a link between STDP-based rules and the rate-based rules
mentioned in Remark 4.1.

We consider update functions F±(w,∆t) whose only time-dependence is a factor e−λ∆t. For large
enough λ > 0 such a rule should be able to satisfy Assumption 4.2 due to the exponential decay in
time. If appropriately rescaled, we can reduce the “memory” of this rule by taking λ → ∞. The effect
this has on the mean-field equation for ∂tw is that the time-integral from t0 to t disappears, leaving
us with a form analogous to rate-based learning rules.
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Corollary 4.1.1. Suppose the spike-timing-dependent update functions are of the form

Fλ
±(w,∆t) = λF±(w)e

−λ∆t, (4.6)

where λ > 0 with F± continuous functions.
Let wλ and Aλ be the λ-dependent weight density and population activity density. Assume that wλ con-

verges pointwise to a continuous function ŵ : I×Ω2 for λ→ ∞, which is differentiable in time. Also suppose
that ∂twλ converges pointwise to ∂tŵ. For Aλ we assume that it converges uniformly in time and pointwise
in space to a continuous function Â : I×Ω → R+ in the limit of λ→ ∞. Then the equation for ∂tŵ becomes

∂tŵ(t, y, x) = Â(t, y)Â(t, x)F (ŵ(t, y, x)) + Â(t, y)χ(x)G+(ŵ(t, y, x)) + Â(t, x)χ(y)G−(ŵ(t, y, x)), (4.7)

where F := F+ + F−.

Proof. For fixed λ > 0 we know from Theorem 4.1 that the mean-field equation for ∂twλ is

∂twλ(t, y, x) = Aλ(t, y)

(∫ t

t0

λF+(wλ(t, y, x))e
−λ(t−σ)Aλ(σ, x)dσ + χ(x)G+(wλ(t, y, x))

)
+Aλ(t, x)

(∫ t

t0

λF−(wλ(t, y, x))e
−λ(t−σ)Aλ(σ, y)dσ + χ(y)G−(wλ(t, y, x))

)
,

= Aλ(t, y)

(
F+(wλ(t, y, x))

∫ t

t0

λe−λ(t−σ)Aλ(σ, x)dσ + χ(x)G+(wλ(t, y, x))

)
+Aλ(t, x)

(
F−(wλ(t, y, x))

∫ t

t0

λe−λ(t−σ)Aλ(σ, y)dσ + χ(y)G−(wλ(t, y, x))

)
.

Note that for any family of continuous functions {gλ}λ>0 : R → R that converges uniformly to some
function g : R → R, we have for any t > t0 that

lim
λ→∞

∫ t

t0

λgλ(σ)e
−λ(t−σ) dσ = g(t).

Because of the continuity of F± and G±, and our convergence assumptions on wλ and Aλ, we thus
obtain

∂tŵ(t, y, x) = lim
λ→∞

∂twλ(t, y, x),

= Â(t, y)
(
Â(t, x)F+(ŵ(t, y, x)) + χ(x)G+(ŵ(t, y, x))

)
+ Â(t, x)

(
Â(t, y)F−(ŵ(t, y, x)) + χ(y)G−(ŵ(t, y, x))

)
,

= Â(t, y)Â(t, x)F (ŵ(t, y, x))

+ Â(t, y)χ(x)G+(ŵ(t, y, x)) + Â(t, x)χ(y)G−(ŵ(t, y, x)).

■

An interesting consequence of the reduction of the memory of the learning rule is that the indi-
vidual update functions F+ and F− no longer matter. Only their sum F appears in (4.7).
Remark 4.7. Note that we are taking the limit λ → ∞ on the mean-field equation for w. The result
could be different if we take this limit before taking the mean-field limit itself.

We are making a few strong convergence assumptions to do this, which could be weakened, be-
cause this corollary merely serves as an example of what is possible.
Remark 4.8. A simpler way to achieve the effect of Corollary 4.1.1 would be a learning rule with a time-
window, e.g., F±(w,∆t) = λF̄±(w)1{∆t < 1

λ}. The reason the form used in Corollary 4.1.1 is preferred
is that it is continuous in ∆t.
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Example 4.1. The simplest Hebbian STDP learning rule arises from

F (w) := cw,

and G± ≡ 0, where c > 0 is some constant. Then the short-memory limit according to Corollary 4.1.1
of the mean-field equation is

∂tŵ(t, y, x) = cŵ(t, y, x)Â(t, x)Â(t, y). (4.8)

This equation shows why this is called a Hebbian learning rule. Namely, when both the pre- and
postsynaptic neurons are active we should have Â(t, x)Â(t, y) > 0, which enables the synaptic weight
between them to grow (or decrease if it starts out inhibitory). So indeed, “neurons that fire together,
wire together”.

Remark 4.9. The simplest rate-based Hebbian rule mentioned in [8, p. 497] is

d

dt
wij = cwijνiνi.

Note that this equation is entirely analogous to (4.8) if we interpret the short-memory, mean-field
population activity density Â as a firing rate. In fact, all rate-based rules that have at most first-order
factors νi and νj can be obtained from short-memory limits of mean-field limits of suitably chosen
STDP rules.

A downside of the simple Hebbian rule covered in Example 4.1 is that its differential equation for
w exhibits blow-up behavior, which would violate Assumption 4.2 and, more importantly, not lead to
a stable connectivity pattern. This makes sense, as the only nonzero update function F is unbounded
on [−w0, w0].

The next example contains a more realistic learning rule that takes into account that the synaptic
weight between two neurons can not grow unbounded. This is done by limiting the synaptic weight
by the activity of the presynaptic neuron.

Example 4.2. Consider the learning rule based on

F (w) := c, G+(w) := −cw/L(Ω), and G−(w) := 0,

where again c > 0 is a constant, and suppose the neurons are distributed uniformly over Ω such that
χ(x) = 1

L(Ω) for all x ∈ Ω. Here L(Ω) is the Lebesgue measure of Ω. The short-memory limit of this rule
then becomes

∂tŵ(t, y, x) = cÂ(t, y)
[
Â(t, x)− ŵ(t, y, x)

]
.

This equation has two stationary solutions for w, namely Â(t, y) = 0 and ŵ(t, y, x) = Â(t, x). The
interpretation of this is that a synaptic weight only updates when there is postsynaptic activity, in
which case it starts to converge towards the presynaptic activity.

Thus, under this learning rule, it is theoretically possible for a stable connectivity pattern to arise,
which would mean that the population learned. The weights could function as long-term storage of
past presynaptic activity, which would only be erased when postsynaptic activity returned.

Note that again this equation has a rate-based counterpart, which is discussed in [8, pp. 506–507].
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Chapter 5

Conclusions

5.1 Summary

Throughout Chapter 2, Chapter 3 and Chapter 4 we developed a model for learning neuronal popu-
lations, which uses the integrate-and-fire model for individual neurons. In Chapter 2, we started by
demonstrating the existence of local solutions to the potential equation of an individual neuron, after
which we constructed global solutions that take into account the resets inherent to the integrate-and-
fire model. At the end of that chapter, we derived the gain function for a neuron undergoing repetitive
firing.

We extended the model in Chapter 3, where we considered a population of interacting neurons.
Here we encountered synchronization as a possible property of excitatory populations with a driving
force that is decreasing in u, such as the leaky model. This was confirmed numerically. We went on to
determine the mean-field limit for both homogeneous and spatial populations with a fixed connectiv-
ity pattern. This yielded a system of partial differential equations, for which we determined (implicit)
stationary solutions. For fully connected homogeneous inhibitory populations, numerical simulations
corroborated the validity of these results. Furthermore, we confirmed a link between these stationary
solutions and the gain function of an individual neuron of the population.

Finally, in Chapter 4, we added a learning rule to our model that updates the synaptic weights
between the neurons based on spike-timing-dependent plasticity (STDP), with the intent of modeling
Hebbian learning. We again derived the mean-field limit, which resulted in an additional differential
equation for the change in the synaptic weight function. We discovered that when the memory of an
STDP rule is decreased by shortening its time-window, the mean-field equation for the synaptic weight
function becomes analogous to the equation found in rate-based models of synaptic plasticity.

5.2 Discussion

In the construction of our population model, we had to make several modeling choices, many of which
were based on the existing literature. One exception is the way of ordering simultaneous spikes, which
we presented in Section 3.1. This method was designed to achieve consistency with both the expo-
nential integrate-and-fire model and biophysical models. In the end, this modeling choice mattered
little for the focus of this thesis, which was deriving mean-field limits, because we assumed that the
number of simultaneous spikes was negligible. However, this framework could still be valuable for
other applications.

To derive our mean-field results we had to make a significant number of assumptions, which are
unlikely to hold under all possible conditions. Still, some of our mean-field-based predictions did
match simulation outcomes, and the short-memory limit of the mean-field equation of our STDP rule
agreed with the rate-based approach. This suggests that the derived equations do capture important
aspects of the behavior of large neuronal populations, and are (partially) valid.

Provided that this is the case, the mean-field equations we obtained relate the external (sensory)
input neurons receive, their activity, and the changes in the synaptic weights between them, at least
for large populations. This could be useful in a biological context, but might also have applications in
artificial neural networks that are very similar to biological neuronal systems.
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5.3 Future research
There is an abundance of opportunities for further research on this topic. We present some of the
most interesting options here, in no particular order:

• The most obvious direction for future research would be a translation of the various (conver-
gence) assumptions into conditions on the model parameters. This would tell us to which kind
of neuronal populations the mean-field results apply. Many assumptions could likely also be
weakened, or maybe even removed entirely by generalizing the results. For instance, Assump-
tion 4.7 is a prime candidate for refinement.

• A particularly desirable generalization of our mean-field findings would be a weak formulation of
the system of partial differential equations we derived, in which the assumption of absolute con-
tinuity of the measures is dropped. This could potentially enable the inclusion of synchronized
solutions in the form of Dirac measures.

• Another possible continuation would be solving the derived partial differential equations. As
noted in Section 3.3.3, they are more complicated than they seem due to the nonlinear depen-
dence of the activity on the potential density. In fact, for the spatial model it is not even clear
when and if the implicit population activity equation in Theorem 3.4 has a (unique) solution.

• Related to the previous item, the stability of solutions to these equations would also be interest-
ing. This applies in particular to the learning rule examples of Section 4.4, and other examples,
because a stationary solution for w would suggest that the network learned something in the
long term.

• It could also be interesting to increase the realism of the used neuron models, for instance by
adding an absolute refractory period or incorporating adaptation in accordance with what we
discussed in Section 2.1.

• More numerical verifications of the results would be desirable. For example, for the model with
a learning rule it could be investigated whether or not a stationary weight pattern arises for
certain external input.

• The model we considered in this thesis was entirely deterministic. In contrast, most of the liter-
ature includes a stochastic term in the differential equation for the membrane potential of the
integrate-and-fire model (which is (2.6)). This makes sense from a modeling perspective since
the input neurons receive from other parts of the brain is often noisy. Such a stochastic compo-
nent could also be added to the update functions from Chapter 4 to see what the effect would
be on the learning process.
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Appendix A

Background material

Theorem A.1 (Picard-Lindelöf). Let (X, | · |) be a finite-dimensional Banach space with U ⊂ X and I ⊂ R
both open and nonempty. Suppose f ∈ C0,1−(I×U,X). Then for every (t0, x0) ∈ I×U there exists an open
interval J ⊂ I such that t0 ∈ J and the initial value problem{

ẋ = f(t, x),
x(t0) = x0,

(A.1)

has a unique solution u ∈ C(J, U).

Proof. See for instance [13, p. 23]. ■

Theorem A.2 (Banach Fixed Point Theorem). Let (X, d) be a complete metric space, with a contraction
T : X → X with Lipschitz constant K < 1. Then T has a unique fixed point in x∗ ∈ X , and for every x ∈ X
the sequence {T nx}n∈N converges to x∗.

Proof. See for instance [2]. ■

Theorem A.3 (Taylor’s Theorem with Lagrange remainder in one variable). Let f : R → R be (n + 1)-
times differentiable on some open interval I , and let a ∈ I be fixed. Then for all x ∈ I there exists an s
between a and x such that

f(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(s)

(n+ 1)!
(x− a)n+1.

Proof. See for instance [1, p. 278]. ■

Theorem A.4 (Dominated Convergence Theorem). Let (X ,F , µ) be a measure space, and let (fn)n∈N :
X → R be a sequence of F -measurable functions that converges pointwise to a function f : X → R.
Furthermore, assume that there exists a µ-integrable function g : X → [0,∞] such that |fn| ≤ g µ-a.e. Then
f is µ-integrable and

lim
n→∞

∫
X
fn dµ =

∫
X
f dµ.

Proof. See for instance [3, p. 130]. ■
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Appendix B

Supporting lemmas

Lemma B.1. For fixed u ∈ D, the map T u defined in (2.11) is càdlàg.

Proof. Recall that

(T u)(t) := x0 +

∫ t

t0

(
f(τ, u(τ)) dτ +

N∑
i=1

ωiµi(dτ)

)
, t ∈ J.

Let t∗ ∈ J . By Definition 2.1 it suffices to show that limt↓t∗(T u)(t) = (T u)(t∗) and that limt↑t∗(T u)(t)
exists.

1. Since τ 7→ f(τ, u(τ)) is bounded on J , the Dominated Convergence Theorem A.4 implies that

lim
t↓t∗

∫ t

t0

f(τ, u(τ)) dτ =

∫ t∗

t0

f(τ, u(τ)) dτ.

Furthermore,

lim
t↓t∗

∫ t

t0

N∑
i=1

ωiµi(dτ) = lim
t↓t∗

N∑
i=1

ωiµi((t0, t]) =

N∑
i=1

ωiµi((t0, t
∗]),

by Notation 2.4 and the fact that measures are continuous from above (and µ1, . . . , µN are finite).
Thus,

lim
t↓t∗

(T u)(t) = lim
t↓t∗

(
x0 +

∫ t

t0

(
f(τ, u(τ)) dτ +

N∑
i=1

ωiµi(dτ)

))
,

= x0 +

∫ t∗

t0

(
f(τ, u(τ)) dτ +

N∑
i=1

ωiµi(dτ)

)
,

= (T u)(t∗).

2. As τ 7→ f(τ, u(τ)) is bounded on J and L({t∗}) = 0, the Dominated Convergence Theorem A.4
implies that

lim
t↑t∗

∫ t

t0

f(τ, u(τ)) dτ =

∫ t∗

t0

f(τ, u(τ)) dτ.

Also,

lim
t↑t∗

∫ t

t0

N∑
i=1

ωiµi(dτ) = lim
t↑t∗

N∑
i=1

ωiµi((t0, t]) =

N∑
i=1

ωiµi((t0, t
∗)),

by Notation 2.4 and the fact that measures are continuous from below. Since both of these limits
exist, clearly limt↑t∗(T u)(t) also exists.

Since both properties hold, we conclude that T u is càdlàg. ■
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Lemma B.2. Let (X, ∥ · ∥) be a Banach space, and J ⊂ R non-empty and open. The Skorokhod space
Db(J,X) of bounded càdlàg functions from J to X is complete w.r.t. the supremum norm ∥ · ∥∞.
Proof. Consider the space of bounded functions B(J,X) which is complete w.r.t. the sup-norm. We
will show that Db(J,X) ⊂ B(J,X) is closed, which immediately implies that it is complete.

To do so, let {hn}n∈N ⊂ Db(J,X) be a sequence that converges to some h ∈ B(J,X). It suffices to
show that h ∈ Db(J,X).

Let t∗ ∈ J . We will show that the two properties required for h to be càdlàg hold in t∗.

1. We claim that h is right-continuous in t∗. Proving this is very similar to showing that uniform con-
vergence of a sequence of functions implies continuity of the limiting function, but we demon-
strate it for completeness. We have to show the following:

∀ ε > 0 : ∃ δ > 0 : ∀ t ∈ (t∗, t∗ + δ) : ∥h(t)− h(t∗)∥ < ε
3 . (B.1)

Let ε > 0. Since limn→∞ hn = h, we can choose N ∈ N such that ∥h − hN∥∞ < ε. Now using that
hN is right-continuous in t∗ (because hN ∈ Db(J,X)), we can choose δ > 0 such that

∀ t ∈ (t∗, t∗ + δ) : ∥hN (t)− hN (t∗)∥ < ε
3 .

Therefore we get for t ∈ (t∗, t∗ + δ) that

∥h(t)− h(t∗)∥ ≤ ∥h(t)− hN (t∗)∥+ ∥hN (t)− hN (t∗)∥+ ∥hN (t∗)− h(t∗)∥ < ε
3 + ε

3 + ε
3 = ε.

Having shown (B.1), we conclude that h is right-continuous in t∗.

2. We claim that the one-sided limit limt↑t∗ h(t) exists. To show this, we first construct a candidate
limit. Define the sequence {xn}n∈N by

xn := lim
t↑t∗

hn(t), n ∈ N. (B.2)

This sequence is well-defined because hn is càdlàg for all n ∈ N. We claim that {xn}n∈N is a
Cauchy sequence. To this end, we will show

∀ ε > 0 : ∃N ∈ N : ∀m,n ≥ N : ∥xm − xn∥ < ε.

Let ε > 0. As {hn}n∈N converges (to h), it is a Cauchy sequence. Choose N ∈ N such that

∀m,n ≥ N : ∥hm − hn∥∞ < ε
3 .

Now let m,n ≥ N . Because

lim
t↑t∗

hm(t) = xm and lim
t↑t∗

hn(t) = xn,

we can choose a t̂ ∈ J with the property

∥xm − hm(t̂)∥ < ε
3 and ∥xn − hn(t̂)∥ < ε

3 .

We now find that

∥xm − xn∥ ≤ ∥xm − hm(t̂)∥+ ∥hm(t̂)− hn(t̂)∥+ ∥xn − hn(t̂)∥ < ε
3 + ε

3 + ε
3 = ε.

Therefore {xn}n∈N is a Cauchy sequence. Since (X, ∥ · ∥) is complete, {xn}n∈N converges to some
x∗ ∈ X. We now claim that limt↑t∗ h(t) = x∗. Thus, we show that

∀ ε > 0 : ∃ δ > 0 : ∀ t ∈ (t∗ − δ, t∗) : ∥h(t)− x∗∥ < ε. (B.3)

Let ε > 0. Choose N ∈ N such that

∥h− hN∥∞ < ε
3 and ∥x∗ − xN∥ < ε

3 ,

by using that {hn}n∈N converges to h and {xn}n∈N converges to x∗. By (B.2) we can choose δ > 0
such that

∀ t ∈ (t∗ − δ, t∗) : ∥hN (t)− xN∥ < ε
3 .

It follows that for all t ∈ (t∗ − δ, t∗),

∥h(t)− x∗∥ ≤ ∥h− hN∥∞ + ∥hN (t)− xN∥+ ∥xN − x∗∥ < ε
3 + ε

3 + ε
3 = ε.

Thus (B.3) holds, so limt↑t∗ h(t) = x∗. In particular, this limit exists.
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From both of these properties we conclude that h is càdlàg, i.e., h ∈ Db(J,X). This implies that
Db(J,X) ⊂ B(J,X) is closed, and thus also complete. ■

Lemma B.3. The exponential norm ∥·∥λ as defined in Definition 2.5 is equivalent to the standard supremum
norm ∥ · ∥∞ on B([t0, s], X) for all λ > 0.

Proof. For all u ∈ B([t0, s], X) we have

∥u∥λ = sup
t∈[t0,s]

e−λ(t−t0)∥u∥ ≤ sup
t∈[t0,s]

∥u∥ = ∥u∥∞,

and

∥u∥∞ = sup
t∈[t0,s]

∥u∥ = sup
t∈[t0,s]

(
eλ(t−t0)e−λ(t−t0)∥u∥

)
≤ eλ(s−t0) · sup

t∈[t0,s]

e−λ(t−t0)∥u∥ = eλ(s−t0)∥u∥λ,

where eλ(s−t0) is a positive constant.
Thus,

∥u∥λ ≤ ∥u∥∞ ≤ eλ(s−t0)∥u∥λ,

meaning that the two norms are indeed equivalent on B([t0, s], X).
■

Lemma B.4. Let X be a finite-dimensional Banach space with Borel σ-algebra F . Suppose a sequence of
finite measures (µn)n∈N : F → [0,∞) converges narrowly to some finite measure µ : F → [0,∞). Moreover,
let (fn)n∈N : X → R be a sequence of F -measurable functions that converges uniformly on suppµn to some
(F -measurable) function f ∈ Cb(X), i.e.,

lim
n→∞

sup
x∈suppµn

|f(x)− fn(x)| = 0. (B.4)

Then we have
lim
n→∞

∫
X

fn dµn =

∫
X

f dµ.

Proof. We have∣∣∣∣∫
X

f dµ−
∫
X

fn dµn

∣∣∣∣ = ∣∣∣∣∫
X

(f − fn) dµn −
∫
X

f(dµn − dµ)

∣∣∣∣ ,
≤
∣∣∣∣∫

X

(f − fn) dµn

∣∣∣∣+ ∣∣∣∣∫
X

f(dµ− dµn)

∣∣∣∣ ,
≤ sup

x∈suppµn

|f(x)− fn(x)|µn(X) +

∣∣∣∣∫
X

f(dµ− dµn)

∣∣∣∣ ,
→ 0, as n→ ∞.

Here the convergence of the first term follows by (B.4) and the fact that µn(X) converges to µ(X) <∞
by narrow convergence (follows by taking the unit test function). The second term vanishes by the
narrow convergence of µ to µn and the fact that f ∈ Cb(X). Thus indeed

lim
n→∞

∫
X

fn dµn =

∫
X

f dµ.

■
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