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Abstract This papers studies a new notion of difference between Hamiltonian tours in the complete
graph Kn which we call cyclic disjointness: the distance between any two vertices in one tour must be
different from their distance in the other tour. We state some theoretical results on cyclic disjointness and
prove a main result of existence of pairs of cyclic disjoint tours dependent on n. We do this by showing
equivalence to the toroidal n-queens problem. Next, we generalize our problem from pairs of cyclic disjoint
tours to sets of pairwise cyclic disjoint tours. Finally, we provide a simple heuristic algorithm that gives
a solution to the Peripatetic Salesman Problem, but with cyclic disjoint tours instead of edge-disjoint
tours.
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1 Introduction
Optimization problems are an area in mathematics with many applications in real life. Combinatorial
optimization is specifically useful for applications in logistics and planning. One typical example is that
of the Traveling Salesman Problem (the TSP for short), where we want to find a tour visiting all points
in some network exactly once while traveling the least distance. In the abstract version, this network is
a graph consisting of a set of vertices and a set of weighted edges between the vertices, and the goal is to
find the tour with the least total weight of all edges. This abstract version, or simple variants of it, has
many applications and appears even in less obvious problems.

When solving or optimizing a real-world problem, sometimes not every aspect of that problem can be
modeled mathematically. This limits the value of a single mathematically optimal solution. A user of
an algorithm (for the traveling salesman problem) might have some additional practical insights into the
problem and its solutions, and see some disadvantage of the optimal solution. In such a situation it is
preferable to see some alternate solutions to the problem, and then decide which one would be best in
real life.

The algorithm or solver could take the second best solution as an alternative, but, in the case of the TSP,
it is likely that the resulting tour is almost exactly the same as the optimal tour, with only a small part
of the tour being different. For a decision maker, this difference may in practice not be significant, and so
we will want to find another solution that is ‘more different’. It is clear we need some notion of diversity
between tours.

An existing variant of TSP, the Peripatetic Salesman Problem (the PSP), first introduced by Krarup [1]
has the objective to find two Hamiltonian tours with minimal total length or weight. Here the tours have
to be edge disjoint. Two tours are edge disjoint when any edge of the graph is used by at most one of
the two tours.

The purpose of this report is to look into a new notion of distinctness between Hamiltonian tours: cyclic
disjointness. It is different to (and in fact stronger than) edge disjointness. Such a condition can then be
at the basis of any diverse variant of a problem using Hamiltonian tours.

After some preliminaries in Section 2, we introduce the condition of cyclic disjointness in Section 3. There
we study some of its properties and the existence of pairs of cyclic disjoint Hamiltonian tours in graphs
of certain size, both theoretically and computationally. To prove a main result on this existence, we first
show equivalence to another problem, the toroidal n-queens problem.

In Section 4 we extend our problem: from pairs of cyclic disjoint tours to sets of pairwise cyclic disjoint
tours. We study the cardinality of such a set, again depending on the size of the graph. For this we
consider a very special class of Hamiltonian tours, which have a regular structure, to improve the bounds
on this size. Finishing the section, we state the results of a search for our extended problem in the
literature of the toroidal n-queens problem , and state our computational results.

Finally, in Section 5, we state a simple, heuristic, algorithm for a slight variant of the PSP limited to two
cyclic disjoint tours instead of edge disjoint tours.

2 Preliminaries and notation
Given a (simple undirected) graph G with a set of vertices and a set of edges between them. A Hamiltonian
tour in G is a path that goes through each vertex exactly once and begins and ends in the same vertex,
i.e. it is a cycle.

A graph does not necessarily contain a Hamiltonian tour, and the problem of finding out if it does is a
hard problem itself [2]. So, for simplicity, in this report we only consider complete graphs, where every
pair of vertices has an edge connecting them. The graph Kn is the complete graph with n vertices. In
such a graph there always exist Hamiltonian tours. We label the vertices in the graph arbitrarily from 1
to n.

We define Zn = {1, . . . , n}. We consider the bijection σ : Zn → Zn to be a Hamiltonian tour, with the
permutation (σ(1), σ(2), . . . , σ(n)) being the sequence of the cities or vertices in the tour. Since the tour
is a cycle, we consider a rotation of k, σ(i+ k), i ∈ Zn, or a reflection σ(−i), to be equivalent. Since σ is
a bijection, we denote its inverse σ−1, such that for all i, j ∈ Zn we have σ−1(j) = i ⇐⇒ σ(i) = j.
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Let σ and τ be two Hamiltonian tours (or equivalently two arbitrary permutations of Zn). Then the
function composition of σ and τ is σ ◦ τ , where we first apply τ and then apply σ to the result, i.e.
∀i ∈ Zn : (σ ◦ τ)(i) = σ(τ(i)). Then we have that σ ◦ τ also is a permutation, thus also a Hamiltonian
tour.

Finally, we define id to be the trivial tour (1, 2, . . . , n), i.e. the identity function id(x) = x.

id = (1, 2, 3, 4, 5, 6, 7)

σ = (1, 6, 4, 3, 5, 7, 2)

σ2 = (5, 7, 2, 1, 6, 4, 3)

σ3 = (1, 2, 7, 5, 3, 4, 6)

σ4 = (5, 3, 4, 6, 1, 2, 7)

τ = (1, 4, 3, 2, 7, 6, 5)

σ ◦ τ = (1, 3, 4, 6, 2, 7, 5)

Figure 1: Examples of tours in Z7. First the identity tour (id). Secondly a tour (σ), a version of it
rotated by 4, or 3 depending on the direction, (σ2), a reflected version (σ3), and a version that is both
rotated by 4, or 3 depending on direction, and reflected (σ4). Note that these are all equivalent. Finally
a different tour (τ), and the composition of σ and τ are shown.

3 Cyclic disjoint tours
As stated before, we will be looking at a strong sense of difference between two tours, namely that of
cyclic disjointness: that given any two vertices in the graph, the distance between them in the first tour
is different then their distance in the second tour.

Definition 1 (Distance in a tour). Given is a (Hamiltonian) tour σ in a graph of n vertices, and two
vertices v, w. Let i,j be the indices in the tour such that v = σ(i), w = σ(j). Then we define the distance
distσ(v, w) between v and w within tour σ to be the smallest of i − j mod n and −i + j mod n, i.e.
distσ(v, w) = min(i− j mod n, j − i mod n).

Since a tour is a cycle, when determining the distance between vertices with indices i and j, we calculate
i − j modulo n. Secondly, since we can count the distance in one direction of the tour or the reverse
direction, we also count j− i. As an example, consider the σ = (1, 6, 4, 3, 5, 7, 2) from Figure 1. Then the
distance between 1 and 4 clearly is 2, so is the distance between 3 and 7. If we consider 1 and 7, their
distance is not 5, however: since a tour is a cycle, vertex 1 and 2 are also connected, so we go from point
7 to 2 and point 2 to 1 for a distance of 2. In this case, using their indices, their position in the tour, 1
and 6 in this case, we see indeed 1− 6 mod 7 = 2.

Definition 2 (Cyclic disjointness). Given are two Hamiltonian tours σ and τ in a graph G. Then they
are called cyclic disjoint if for any two vertices v, w ∈ G we have that distσ(v, w) 6= distτ (v, w).

Remark. Note that this means that cyclic disjointness is stronger than edge disjointness. Consider we
have two cyclic disjoint tours, then we have that if an edge is in one of the tours, the two vertices it
connects have distance 1. Since these two vertices must have a different distance in the other tour, the
edge between them cannot be in the other tour. Thus the tours are also edge disjoint.

Given the definitions for distance and cyclic disjointness, we can list some basic properties:

Proposition 1. Let σ, τ be two cyclic disjoint tours, let id be the trivial tour (1, 2, . . . , n), let α be an
arbitrary bijection in Zn. Let v, w be vertices in the graphs and i, j ∈ Zn be two indices. Note that σ ◦ τ
is the function composition of σ and τ . Then we have the following:

1. distσ(v, w) = distid
(
σ−1(v), σ−1(w)

)
= min(σ−1(v)− σ−1(w) mod n, σ−1(w)− σ−1(v) mod n)

2. distα◦σ(v, w) = distσ
(
α−1(v), α−1(w)

)
3. Let σ′(i) = σ(p+ qi), with p an integer and q = ±1, so σ′ is σ rotated and/or reflected and thus an

equivalent tour. Then σ′ is cyclic disjoint with τ if and only if σ is cyclic disjoint with τ .
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4. If σ and τ are cyclic disjoint, then also α ◦ σ and α ◦ τ are cyclic disjoint. Note that in this case
σ ◦ α and τ ◦ α are not necessarily cyclic disjoint.

Proof. Properties 1 through 3 can easily be shown using the definitions of distance and cyclic disjointness
and property 4 follows from 2.

3.1 Existence: a first investigation
Since cyclic disjointness is a stronger property than edge disjointness, we might ask the question whether
there even exist two cyclic disjoint tours in a graph? Or even in a complete graph? If there do exist such
tours, then how many different ones are there? For a complete graph of n vertices, there are (n − 1)!/2

possible distinct tours, so there are
(
(n−1)!/2

2

)
possible pairs of tours, is it possible none of these pairs are

cyclic disjoint?

Remark. We do not have to look for two arbitrary tours that are cyclic disjoint. If there are two such
tours, then by Property 4 of Proposition 1 above we can transform them such that one of them is the
identity tour id, effectively relabeling the vertices of the graph. Therefore, for existence, it is sufficient to
look for a tour that is cyclic disjoint with the trivial tour. Using this we can we can try to find a pair in
Kn for some small n.

Note that for n ≤ 4 there is not even an edge disjoint pair of tours, so we consider only n ≥ 5. So we
first try for K5. As the first tour of the pair we take the the trivial tour id. If our second tour is to
be cyclic disjoint, it must also be edge disjoint with id. We can easily see the only edge disjoint tour is
(1, 3, 5, 2, 4), shown in Figure 2. Trying all the pairs of vertices, one indeed sees that these two tours are
truly cyclic disjoint. Therefore, for n = 5 we know cyclic disjoint tours exist in the complete graph.

1

2

34

5

Figure 2: (1,2,3,4,5) and (1,3,5,2,4), two cyclic disjoint tours in K5.

We can try the same for n = 6. Now there is more than one edge disjoint tour, so we can go step by step.
If we start at vertex 1, then the possible next vertices are 3, 4 and 5 to ensure edge-disjointness. If we
choose 3, then the next one can be 5 or 6. Say we choose 6, next we choose 4, 2, 5, and finally back to
1, we get the tour (1, 3, 6, 4, 2, 5). This tour is indeed edge disjoint with the trivial tour, but not cyclic
disjoint. For example, vertices 3 and 5 have distance 2 in this tour, but also in the trivial tour. There
are more tours that can be found, a few of them can be seen in Figure 3, but none of these are cyclic
disjoint with id. Were we to exhaust this trial and error process, we would come to the conclusion that
there does not exist any cyclic disjoint pair in K6.

For larger n, trying tours by hand is less feasible. For 7, 11, 13, one can fairly easily find a cyclic disjoint
example, see Figure 4. For 8, 9, 10, 12, 14, 15, it would seem impossible. An exhaustive search by hand
is out of the question at this point, so a definitive answer of existence is still lacking. Additionally, it is
hard to infer a correct pattern from this sequence for which n there exists a pair of cyclic disjoint tours.
Existence only for odd n is clearly not the case, since we cannot find a cyclic disjoint pair for 9 and 15. A
second possibility would be only prime n, but here n = 25 is the first counterexample where there does
exist a pair.
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(a) Tours id and (1,3,6,4,2,5).
The distance between (for

example) 3 and 5 is the same in
both tours.
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(b) Tours id and (1,4,2,6,3,5).
The distance between (for

example) 1 and 3 is the same in
both tours.

1
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(c) Tours id and (1,4,2,5,3,6).
The distance between (for

example) 4 and 6 is the same in
both tours.

Figure 3: Different possible attempts to find a cyclic disjoint tour in K6. All edge disjoint possibilities
one can find are symmetries of these.

3.2 A computational search
Where trying by hand is not feasible anymore, we can turn to a computer and use it to search for cyclic
disjoint pairs, or give us a guarantee there does not exist any pair for a certain n. Since there are n!
possible tours, a naive search already becomes infeasible for small n, but even with good models and
software the problem quickly grows.

As before, without loss of generality, we can take one of our tours to be the trivial tour, and limit our
search for tours that are cyclic disjoint with that one. Aside from greatly reducing the solution space from
only having to find one tour instead of two, this additionally has the advantage that the trivial tour is easy
to reason about, due to the simplicity of its distance function distid(i, j) = min(i− j mod n, j− i mod n).
Using this, the following lemma holds.

Lemma 1. Let σ be a Hamiltonian tour in Kn. If for any distinct i, j ∈ Zn we have that σ(i)− σ(j) ≡
±(i− j) (mod n), then σ is not cyclic disjoint with the trivial tour id. The reverse is also true.

Proof. Let i, j ∈ Zn be distinct such that σ(i)−σ(j) ≡ i− j (mod n). Let d = i− j. Then σ(i− j+ j) =
σ(j+d), so we get σ(j+d)−σ(j) = d. Now let σ(j) = v and σ(j+d) = w, these are two distinct vertices
with w − v = d and therefore

distid(v, w) = min(v − w mod n,w − v mod n) = min(d mod n,−d mod n) = min(d, n− d).

It is also clear from the indices j and j + d that also distσ(v, w) = min(d, n − d). Thus distid(v, w) =
distσ(v, w), and σ and id are not cyclic disjoint.

Now let i, j ∈ Zn be distinct such that σ(i) − σ(j) ≡ j − i (mod n). Let d = j − i, and we get
σ(i+ d)− σ(i) = d, and the same argument as above holds. This proves the forward implication.

As for the other direction, let σ not be cyclic disjoint with the trivial tour. Then there must be distinct
i, j ∈ Zn with σ(i) = v and σ(j) = w such that distid(v, w) = distσ(v, w). Let d be this distance. Then we
have distσ(v, w) = d and so i−j = min(d, n−d). From distid(v, w) = d we get that v−w = min(d, n−d).
Thus as a result

σ(i)− σ(j) = v − w ≡ ±d ≡ ±(i− j) (mod n).

We can do a computational search using integer programming. The following model describes a tour that
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(a) Two cyclic disjoint tours
in K7: id and (1,3,5,7,2,4,6).
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5

67
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(b) Two cyclic disjoint tours
in K11: id and

(1,4,7,10,2,5,8,11,3,6,9).

1
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78

9
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(c) Two cyclic disjoint tours
in K13: id and

(1,5,9,13,4,8,12,3,7,11,2,6,10).
1

2

3

4

56

7

8

9

(d) These two tours in K9, id and (1,3,5,7,9,2,4,6,8), would seem
cyclic disjoint, but for example vertices 2 and 5 have distance 3 in

both tours.

Figure 4: Some examples of tours that can be found in Kn for larger n. One might first
expect that such a “regular” tour would also work for n = 9, but this is not the case.

is cyclic disjoint with the trivial tour:

pij ∈ {0, 1} ∀i, j ∈ {1, . . . , n} (1)
n∑

j=1

pij = 1 ∀i ∈ {1, . . . , n} (2)

n∑
i=1

pij = 1 ∀j ∈ {1, . . . , n} (3)

pij + pkl ≤ 1 ∀i, j, k, l ∈ {1, . . . , n} : i < k, |i− k| = |j − l| (4)
pij + pkl ≤ 1 ∀i, j, k, l ∈ {1, . . . , n} : i < k, |i− k + n| = |j − l| (5)
p11 = 1 (6)

Here the variable pij represents whether we place vertex j on the ith place of the tour or not, i.e. if
σ(i) = j with σ as the resulting tour. Constraints 2 and 3 make sure each place in the tour gets assigned
exactly one vertex, and each vertex is assigned exactly once. Constraints 4 and 5 are the constraints that
enforce the cyclic disjointness with (1, . . . , n), with each constraint considering distances in one ‘direction’
of the tour. This implicitly uses Lemma 1, namely that if j − l = σ(i)− σ(k) ≡ ±(i− k) (mod n) holds
we then must forbid σ(i) = j and σ(k) = l to simultaneously both be true. Finally, constraint 6 ensures
that the first spot in the tour is vertex 1. This is to remove the symmetry in the starting point of the
tour.

A computational search up to n = 41 gave the following results. For all n where 2 - n and 3 - n there
exists at least one pair of cyclic disjoint tour in Kn. For n ≤ 11 the tours that were found where very
“regular”, such as the tours in Figure 4, with a fixed increment between consecutive vertices of the tour.
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Such tours will be significant later in the report, and are further described in Section 4.2. For n > 11,
however, the search resulted in more ‘random’ tours. One such tour, for n = 13, is shown in Figure 5.

1
2

3

4

5

6
78

9

10

11

12

13

Figure 5: A tour in K13 cyclic disjoint with the trivial tour:
(1, 8, 6, 12, 3, 11, 4, 10, 5, 9, 2, 13, 7)

For n ≤ 26 where 2 | n or 3 | n the solver indicated that the problem was infeasible, i.e. that there does
not exist a pair of cyclic disjoint tours. For larger n > 26 the search was not exhaustive, and stopped
early due to time constraints. Note however, for what its worth, that the running time for different n
when a tour was found, was significantly shorter.

For software we used IBM CPLEX (version 22.1) both from within the AIMMS environment and di-
rectly using Python bindings using DOcplex.MP and IBM ILOG CPLEX Optimization Studio. Setting
the “feasibility pump switch” to emphasize feasible solutions and increasing the “MIP heuristic effort”
somewhat, from its default to 1 to 4 or 5, increased the speed of finding a solution (if one could be find),
but not neccesarily the speed of showing infeasibility.

These results strongly suggest that cyclic disjoint tours only exist when n is not a multiple of 2 or 3. Is
this also the case for larger n? We will find out that this is indeed true, although the result has a perhaps
surprising source.

Theorem 1. There exist no pair of cyclic disjoint tours in Kn if 2 | n or 3 | n.

This result will be proven in the next section, Section 3.3.

3.3 An equivalent problem and existence result
The n-queens problem is a well-known problem where the goal is to place n queens on an n×n chessboard
such that none of the queens can capture another. A variant of this problem is that of the toroidal n-queens
problem, sometimes called the modular n-queens or n-superqueens problem. A definition, introduction,
and large overview of results and research of both the regular n-queens and the toroidal variant can be
found in [3].

Where on a normal chessboard the diagonals stop at the edge of the board, in the toroidal variant we
let them ‘wrap around’ the board, such that diagonals that usually stop at the top edge of the board
continue at the bottom instead (and vice versa), and diagonals that stop at the right edge continue at
the left (and vice versa). This results in exactly 2n diagonals of length n: n diagonals from the top left
to bottom right, and n diagonals from bottom left to top right. By connecting opposing sides of the
chessboard, the board becomes a torus, hence the name. Figure 6 shows an example of how the diagonals
would run.

The goal of the (toroidal) n-queens problem is to place n queens such that they do not capture each
other. Because each queen can reach a lot more squares, placing n of them is harder then the in the
regular n-queens problem.

Remark. One property of this modular board is that, given a square in row i and column j (coordinate
(i, j)), we can find which diagonals it belongs to. The top-left to bottom-right diagonal is uniquely
identified by calculating i − j mod n, and the bottom-left to top-right diagonal by i + j mod n. Note
how the modulo operator appears here, and we indeed get 2n diagonals in total, n for each direction.
Figure 7 clearly shows what this looks like.
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Figure 6: An example of the toroidal chessboard. The lines show where the queen can travel.
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the row index (modulo n).
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(b) The bottom-left to top-right diagonals are all
identified by adding the column index and the row

index (modulo n).

Figure 7: Using the column and row coordinates of a square, we can find to which
diagonals it belongs. Again, note how the modular board ‘wraps around’.

This means that if we have two queens, one on (i1, j1) and the other on (i2, j2), then they can attack
each other if:

• they are on the same row, in that case i1 = i2,

• they are on the same column, then j1 = j2,

• they are on the same top-left to bottom-right diagonal, so i1 − j1 ≡ i2 − j2 (mod n),

• or they are on the same bottom-left to top-right diagonal, so i1 + j1 ≡ i2 + j2 (mod n).

Definition 3 (Solution to the toroidal n-queens problem). Let n ∈ N. The set of n squares (i1, j1)
through (in, jn) on the n × n toroidal chessboard, where i is the row index and j the column index, is
a solution to the toroidal n-queens problem if we can place queens on all these n squares and none can
capture each other.

Let σ : Zn → Zn be a bijection. Then σ is a solution to the toroidal n-queens problem if the set of n
squares (i, σ(i)) for i ∈ Zn is a solution as defined above.

It is clear that a solution must be a bijection, otherwise there would be multiple queens in a column.
Figure 8 shows an example solution for n = 5.
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Figure 8: A solution for the toroidal 5-queens problem.
Queens are on positions (1, 1), (2, 4), (3, 2), (4, 5), (5, 3).

It turns out that the problem of finding a tour that is cyclic disjoint with the trivial tour (1, . . . , n) is
equivalent with finding a solution to the toroidal n-queens problem. Figure 9 has an example for the case
of n = 7.

Theorem 2 (Equivalence of cyclic disjointness and toroidal n-queens). Let σ : Zn → Zn be a bijection.
Then the tour defined by σ is cyclic disjoint with the trivial tour (1, . . . , n) if and only if σ is a solution
to the toroidal n-queens problem.

Proof. We prove that σ is not cyclic disjoint with id if and only if σ is not a solution to the toroidal
n-queens problem.

Suppose σ is not cyclic disjoint with the trivial tour id. Then according to Lemma 1 there exist i, j ∈ Zn

such that σ(i)− σ(j) ≡ ±(i− j) (mod n). Then consider the squares on the n by n chessboard (i, σ(i))
and (j, σ(j)). If σ is a solution to the n-queens problem, then these squares cannot be in the same
diagonals. However, if σ(i) − σ(j) ≡ ±(i − j) (mod n) then σ(i) − i ≡ σ(j) − j (mod n), so they are
in the same top-left to bottom-right diagonal. In the other case, we have σ(i) + i ≡ σ(j) + j (mod n),
and they are on the same bottom-left to top-right diagonal. In any case, σ is not a valid solution to the
toroidal n-queens problem.

Now let σ not be a valid solution to the toroidal n-queens problem, but still a bijection. Then there
are two queens on (i, σ(i)) and (j, σ(j)) that are on the same diagonal. Then either σ(i) − i ≡ σ(j) − j
(mod n) or σ(i) + i ≡ σ(j) + j (mod n), and in either case we have σ(i)− σ(j) ≡ ±(i− j) (mod n) and
by Lemma 1 σ is not cyclic disjoint with the trivial tour.

A known fact in the literature of the toroidal n-queens problem, is that solutions do not exist if n is a
multiple of 2 or 3. If that is the case, we can only place at most n− 1 or n− 2 queens before all squares
on the board can be attacked by the queens, so no new queens can be added at that point [4]. This
result was first shown by Pólya in 1918 [5], with all subsequent direct proofs by different authors being
essentially the same [3]. The proof uses the following property:

Lemma 2. If the bijection σ : Zn → Zn is a solution to the toroidal n-queens problem, then σ + id
(mod n) and σ − id (mod n) are also bijections.

From the toroidal n-queens perspective, this result follows directly from Definition 3, stating when σ is
a solution, and the conditions of when two queens can attack each other. Since σ already is a bijection,
all σ(i) clearly are different for all i, and the queens are all on different rows and columns. Additionally,
since none of the queens can be on the same diagonals, i + σ(i) and i − σ(i) must also all be different
for all i. We can also look at the result from the perspective of cyclic disjointness, and use Lemma 1 to
prove it:

Proof of Lemma 2. Let i, j ∈ Zn be distinct. Since σ is a solution to the toroidal n-queens problem, it is
also cyclic disjoint with the trivial tour (1, . . . , n). Then following Lemma 1:

σ(i)− σ(j) 6≡ j − i (mod n)

σ(i) + i 6≡ σ(j) + j (mod n)

(σ + id)(i) 6≡ (σ + id)(j) (mod n)
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(a) Shift of 2, the red tour:
(1, 3, 5, 7, 2, 4, 6)
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(b) Shift of 3, the blue tour:
(1, 4, 7, 3, 6, 2, 5)
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(c) Shift of 4, the reverse of the
shift of 3: (1, 5, 2, 6, 3, 7, 4)

1

2

3

45

6

7

(d) The shifted tours in K7.

Figure 9: All possible different shifted tours of K7, and their corresponding solution to the
n-queens problem.

So we know σ+id is injective. Since Zn is finite, σ+id must be a bijection. We also know σ(i)−σ(j) 6≡ i−j
(mod n), and the same way we find σ − id is injective and also bijective.

Using this property we continue to the real theorem.

Theorem 3 (Pólya). The toroidal n-queens problem has a solution if and only if 2 - n and 3 - n.

Proof. Suppose there is a solution σ. Let n be even. We know
∑n

i=1 i =
n(n+1)

2 . Since σ and σ + id are
bijections, summing σ(i) or (σ+ id)(i) instead of i results in effectively summing the same numbers, but
in a different order. Therefore

n∑
i=1

σ(i) =

n∑
i=1

(σ + id)(i) =

n∑
i=1

i =
n(n+ 1)

2
.

Furthermore, we know n(n+1)
2 = n2

2 + n
2 . The first term n2

2 has a factor n and is equivalent to 0 modulo n,
so we are left with n

2 . If n were odd, we would have that gcd(n, 2) = 1, so 2 would have a multiplicative
inverse and we would get n

2 ≡ 2−1n ≡ 0 (mod n). If n is even, this is not the case, and therefore

n∑
i=1

σ(i) =

n∑
i=1

(σ + id)(i) =

n∑
i=1

i =
n(n+ 1)

2
≡ n

2
6≡ 0 (mod n).

However, then we have both
n∑

i=1

(σ + id)(i) ≡ n

2
(mod n)

and
n∑

i=1

(σ + id)(i) ≡
n∑

i=1

σ(i) +

n∑
i=1

i ≡ n

2
+

n

2
≡ 0 (mod n).

And we have a contradiction. This finishes the case of 2 | n.
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Now let n be odd and a multiple of 3. We know
∑n

i=1 i
2 = n(n+1)(2n+1)

6 . Then in the same manner, since
σ and σ + id and σ − id all are bijections, we have

n∑
i=1

σ(i)2 =

n∑
i=1

(σ(i) + i)2 =

n∑
i=1

(σ(i)− i)2 =

n∑
i=1

i2 ≡ n(n+ 1)(2n+ 1)

6
≡ n

6
(mod n).

Then we have
n∑

i=1

(σ(i) + i)2 −
n∑

i=1

(σ(i)− i)2 = 0

n∑
i=1

(σ(i)2 + 2σ(i)i+ i2 − σ(i)2 + 2σ(i)i− i2) = 0

2

n∑
i=1

2σ(i)i = 0

n∑
i=1

2σ(i)i = 0

We know n - 2. If also n - 3, then gcd(n, 6) = 1 and n
6 ≡ 6−1n ≡ 0 (mod n). But since n | 3, this is not

the case. Additionally, this means n
3 6≡ 0 (mod n). So we have both

n∑
i=1

(σ(i) + i)2 ≡ n

6
(mod n)

and
n∑

i=1

(σ(i) + i)2 ≡
n∑

i=1

σ(i)2 +

n∑
i=1

2σ(i)i+

n∑
i=1

i2 ≡ n

6
+ 0 +

n

6
≡ n

3
(mod n).

And again, we reach a contradiction. Thus if we have a solution, then 2 - n or 3 - n.

The other implication is easy. If 2 - n or 3 - n, then we take the tour (1, 3, 5, . . . , n− 2, n, 2, 4, 6, . . . , n−
3, n− 1). The distance between vertices i and j in this tour is the minimum of i−j

2 ≡ 2−1(i− j) mod n
and 2−1(j − i) mod n, this is different from the distance in the trivial tour, ±(i− j) mod n. So this tour
is cyclic disjoint with the trivial tour (1, . . . , n) and also a solution for the toroidal n-queens problem.

The proof of Theorem 1, that a pair of cyclic disjoint tours only exist in Kn if 2 - n and 3 - n, directly
follows from Theorem 2 of equivalence of the problems and Theorem 3 of Pólya.

3.4 A constraint programming model
In Section 3.2 we described an integer programming (IP) model where we used binary decision variables
pij to represent whether we put vertex j on the ith spot of the tour. Using the insights of the previous
section, especially Lemma 2, we can make a different model. This second model is stated both for the
sake of completeness and since we will expand on this model and the earlier IP model in Section 4.4 later
in the report.

x(i) ∈ Zn ∀i ∈ Zn (7)
|{x(i) | i ∈ Zn}| = n (8)
|{x(i) + i mod n | i ∈ Zn}| = n (9)
|{x(i)− i mod | i ∈ Zn}| = n (10)

Note that | · | denotes the cardinality of the set in constraints (8) through (10). The variables x(i) in
this model denote the vertex we place on the ith place in the tour (or the column x(i) for row i on
which we place a queen). The three constraints (8) through (10) effectively enforce each of these sets by
their cardinalities to be maximal, i.e. to have no duplicate elements, i.e. that all columns, diagonals in
one directions, and diagonals in the other diagonals are different for all the queens. This is a common
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way to model the n-queens problem, although in the regular, non-toroidal, version this is done without
calculating modulo n in constraint (9) and (10).

Constraint programming (CP) solvers can use AllDifferent constraints to efficiently reason about such a
model. This formulation of the problem is therefore perfect for this, with only three of these constraints
constituting the entire model.

We tried this model both using the IBM ILOG CP Optimizer (version 22.1), again both from within the
AIMMS environment and directly using Python bindings using, this time using DOcplex.CP and IBM
ILOG CPLEX Optimization Studio. In our experience, however, the CP solver is no faster than the IP
solver with the model from earlier in the report.

4 Sets of cyclic disjoint tours
We now have a good view of cyclic disjoint tours, and specifically when they exist. We can extend our
problem to finding triplets or larger sets of cyclic disjoint tours, instead of only pairs. The tours in such
a set would have to be pairwise cyclic disjoint. In our analogy of a decision maker, this also is a natural
next problem. If the decision maker is not satisfied with the two resulting tours for their optimization
problem for whatever reason, he will ask for a third alternative. This third tour would have to be different
from both the first and the second proposed tours, otherwise it would not be of value.

Finding such a set is harder than finding only a pair, so we can ask whether a set of three even exists
for some n? Or a set of four? How large can such a set get for n? In other words, given n, what is the
largest set of pairwise disjoint tours that we can we find?

Definition 4. Let Kn be the complete graph of n vertices, and T the set of Hamiltonian tours in Kn.
Let T ′ ⊆ T be such that any pair of tours in T ′ is cyclic disjoint, and let T ′ be of maximal cardinality.
We define f(n) = |T ′|.

4.1 First bounds for the size
We already have results on pairs of tours, or sets of size two, so we can already make a first statement
on the bounds of f(n) using the results of Theorem 1. If 2 | n or 3 | n then f(n) = 1; we can clearly take
a set of a single tour for the lower bound of 1, and a pair does not exist. Additionally, we know that if
2 - n and 3 - n, pairs of cyclic disjoint tours exist, so f(n) ≥ 2.

An upper bound can also easily be found using the amount of edges in a complete graph of size n.

Proposition 2. For any n ≥ 3 we have 1 ≤ f(n) ≤
⌊
n−1
2

⌋
.

Proof. The lower bound is trivial, any single tour suffices. For the upper bound: there are n(n−1)
2 vertices

in Kn. A single tour takes up n edges, so there are at most n−1
2 pairwise edge-disjoint tours, which is an

upper bound for f(n).

We know, in the case of edge-disjoint tours, the upper bound can truly be reached for any n. A construc-
tion for decomposing Kn into (n − 1)/2 tours for odd n or into n/2 − 1 tours and a 1-factor for even n
is attributed by Walecki, as described in [6]. The question whether this bound can be reached for any n
with cyclic disjoint tours is addressed in the next section.

4.2 The shift construction
In this section we describe a construction of tours which can give us an increased lower bound. For
smaller n, when searching for a tour cyclic disjoint with the the trivial tour, one probably finds that the
resulting tour is very ‘regular’, with a fixed increment between consecutive vertices of the tour. Examples
are shown in Figure 2 and Figure 4. Drawing the tours in this manner gives a graph that is symmetric
under rotation.

Consider the trivial tour id
(1, . . . , n)
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We have that each consecutive number has an increase of 1. We can also increase (or decrease) by a
different number s going to the next point, calculating modulo n:

(1, 1 + s, 1 + 2s, . . . )

If we take n = 5 and s = 2, for example, we get (1, 3, 5, 2, 4). We can also use s = 3, giving us (1, 4, 2, 5, 3).
Note that this tour is actually the reverse of the previous one. We call such a tour with a regular difference
between consecutive numbers a shifted tour, and this difference s is its shift.

Definition 5. Given n, we define the shifted tour σ with shift s to be the tour in Kn given by σ(i) =
(i− 1)s+ 1.

Remark. By this definition, we consider the trivial tour to be a shifted tour with shift 1. Note that all
these shifted tours are transformations of the trivial tour. Any shifted tour σ has σ(i) = id(p+kimod n) =
p+ ki mod n for some integers p and q.

1

2

3

45

6

7

(a) Trivial cycle, shift 1:
(1, 2, 3, 4, 5, 6, 7)

1

2

3

45

6

7

(b) Shift of 2:
(1, 3, 5, 7, 2, 4, 6)

1

2

3

45

6

7

(c) Shift of 3:
(1, 4, 7, 3, 6, 2, 5)

Figure 10: Different shifted tours for K7. Note that these are all the possibilities for
shifted tours in K7.

Proposition 3. Given is n. A shifted tour with shift s only exists when n and s are coprime, i.e. when
gcd(n, s) = 1. The shifted tour of shift s is equivalent to the tour with shift n− s ≡ −s (mod n), namely
the reverse.

Proof. Let s ∈ Zn such that gcd(n, s) = d > 1 and consider the shifted tour σ with shift s. Let k = n
d ,

then σ(1 + k) ≡ (1 + k − 1)s + 1 ≡ ks + 1 ≡ n
d s + 1 ≡ n s

d + 1 ≡ 1 ≡ σ(1) (mod n). Thus σ is not a
bijection and also not a Hamiltonian tour.

Now let s ∈ Zn such that gcd(n, s) = 1, let σ be the shifted tour with shift s, and σ̂ the shifted tour with
shift n− s ≡ −s. Then σ̂(i) ≡ (i− 1)(n− s) + 1 ≡ (1− i)s+ 1 ≡ ((2− i) + 1)s+ 1 ≡ σ(2− i) (mod n).
So indeed σ and σ̂ are each other’s reverse and are equivalent.

As an example of when the shift construction breaks down, take n = 9 and let σ be the shifted tour with
shift s = 3. In this case, gcd(n, s) = 3 and we get have σ = (1, 4, 7, 1, 4, 7, 1, 4, 7), and the construction
breaks down. Additionally, we have that the shifted tour with s = 4, (1, 5, 9, 4, 8, 3, 7, 2, 6), and shift 5,
(1, 6, 2, 7, 3, 8, 4, 9, 5), are indeed equivalent and reverse.

In the next theorem, φ(n) is Euler’s totient function, being the amount of integers 1 ≤ i < n such that
gcd(n, i) = 1. There are various identities and formulas for it, but only two relevant properties are used
in this report. The following definition and identities are taken from [7].

Definition 6 (Euler’s totient function). For n ≥ 1, let φ(n) denote the number of positive integers not
exceeding n that are relatively prime to n.

Proposition 4. For n > 1, φ(n) = n− 1 if and only if n is prime.

Theorem 4. For n > 2, φ(n) is an even integer.

Now we continue to the next theorem. This is the main result on shifted tours, stating the conditions
when two shifted tours are cyclic disjoint.
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Theorem 5. Given is n ≥ 3. Then there exist φ(n)/2 distinct shifted tours in Kn. Two shifted tours
with shifts s and t are cyclic disjoint if and only if gcd(s+ t, n) = 1 and gcd(s− t, n) = 1.

Proof. Shifted tours only exist for shift s ∈ Zn when gcd(s, n) = 1, by Proposition 3, so there are exactly
φ(n) possibilities. Since for any s the equivalent reverse tour with shift n − s is also in this set, the
amount of distinct shifted tours is φ(n)/2.

Let σ, τ be two different shifted tours, with shift s and t respectively. We prove that σ and τ are not
cyclic disjoint if and only if gcd(s+ t, n) 6= 1 or gcd(s− t, n) 6= 1.

Suppose σ and τ are not cyclic disjoint. Then there exists distinct a, b ∈ Zn such that distσ(a, b) =
distτ (a, b). Let i, j, k, l ∈ Zn such that

σ(i) ≡ (i− 1)s+ 1 ≡ a ≡ (k − 1)t+ 1 ≡ τ(k) (mod n)

σ(j) ≡ (j − 1)s+ 1 ≡ b ≡ (l − 1)t+ 1 ≡ τ(l) (mod n)

And consequently, with s−1 and t−1 being the multiplicative inverses of s and t modulo n:

i ≡ (a− 1)s−1 + 1 (mod n)

j ≡ (b− 1)s−1 + 1 (mod n)

k ≡ (a− 1)t−1 + 1 (mod n)

l ≡ (b− 1)t−1 + 1 (mod n)

We have that either for both tours the distance is counted “in the same direction” or both in a different
direction.

distσ(a, b) = distτ (a, b)
i− j ≡ ±(k − l) (mod n)

(a− 1)s−1 + 1− (b− 1)s−1 − 1 ≡ ±((a− 1)t−1 + 1− (b− 1)t−1 − 1) (mod n)

s−1(a− b) ≡ ±t−1(a− b) (mod n)

(s−1 ± t−1)(a− b) ≡ 0 (mod n)

Note that s−1 ± t−1 ≡ 0 (mod n) is equivalent to s ± t ≡ 0 (mod n). So we have n | (s ± t)(a − b). If
either a − b or s ± t is coprime to n, then the other has to be a multiple of n, implying that s = t or
a = b, respectively. This, however, would contradict our assumptions.

So we need gcd(a, b) = d < n and k > 1 such that n = kd. Then k | (s± t). But then gcd(s+ t, n) ≥ k
or gcd(s− t, n) ≥ k which also is a contradiction. This proves that the forward implication.

For the other direction, suppose gcd(s± t, n) = k > 1 and d > 1 such that n = kd. We consider vertices
1 and 1 + d. The index of 1 + d in σ is ds−1 + 1 and in τ it is dt−1 + 1. Since 1 = σ(1) = τ(1), we have

distσ(1, 1 + d) = min(ds−1 + 1− 1 mod n, 1− ds−1 − 1 mod n) = ±ds−1 (mod n)

Similarly, we have
distτ (1, 1 + d) = ±dt−1 (mod n)

Now since k | s ± t, we have d · (s ± t) ≡ n ≡ 0 (mod n). And again, since s−1 ± t−1 ≡ 0 (mod n) is
equivalent to s± t ≡ 0 (mod n), this means ds−1 ≡ ±dt−1. But then distσ(1, 1 + d) ≡ ±ds−1 ≡ ±dt−1 ≡
distτ (1, 1 + d) (mod n), so σ and τ are not cyclic disjoint.

The following result is of course no new result at all, only the special case of Theorem 1 when limited to
only shifted tours. Nevertheless, it is nice to see there is a short and direct proof for it.

Corollary 1. There exist no pair of cyclic disjoint shifted tours for Kn if 2 | n or 3 | n.

Proof. Consider n even. A shifted tour only exists for odd shifts. The sum or difference between two odd
numbers is even, so not coprime with 2. So any pair of possible shifted tours are not cyclic disjoint.
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Now consider 3 | n. Shifted tours exist only if they have a shift of 3k + 1 or 3k + 2. If two tours have
shifts 3k + 1 and 3l + 1 or have shifts 3k + 2 and 3l + 2, then the difference of the two shifts is 3(k − l)
which is a multiple of 3, so they are not cyclic disjoint. If two tours have shifts 3k + 1 and 3l + 2, then
the sum of the shifts is 3(k + l + 1), so they also are not cyclic disjoint.

Corollary 2. For n > 3 prime, all n−1
2 distinct shifted tours are pairwise cyclic disjoint.

Proof. This result is fairly trivial. When gcd(s− t, n) 6= 1, we have s ≡ t, so these would not be distinct.
The other possibility gcd(s + t, n) 6= 1 implies s ≡ −t, which would mean one tour is the reverse of the
other, so also not distinct.

This corollary improves our bounds for f(n) in two ways. Firstly, this means that in the case that n is
prime, the upper bound stated in Proposition 2 is reached. Secondly, in the case of composite numbers,
we know there are still shifted tours that are cyclic disjoint with each other, and we can create a pairwise
cyclic disjoint set with these.

Consider n = 25, then we know the shifted tours with shifts 1 and 2 are cyclic disjoint, but a third shift
is impossible, having either s ± 1 ≡ 5 or s ± 2 ≡ 5. The same is the case for any n with 5 as smallest
prime factor. In the case the smallest factor is 7, we can for example take shifts of 1,2 and 3, and these
are pairwise cyclic disjoint. A fourth shifted tour can not be cyclic disjoint anymore, in the same way as
with n = 5. In general, if m is the smallest prime factor of n, then taking the shifted tours with shifts of
1, 2, . . . , m−1

2 gives us a set of pairwise cyclic disjoint tours. This gives us a new lower bound.

Proposition 5. Let n ≥ 3 with m as smallest prime factor. Then we have 1 ≤
⌈
m−1
2

⌉
≤ f(n) ≤

⌊
n−1
2

⌋
.

These bounds are tight when 2 | n, 3 | n or n is prime.

In conclusion, the shift-construction has to potential to be very useful, but are also very limited. They
can easily be reasoned about and always give us a set of pairwise cyclic disjoint tours, especially for prime
n. However, for composite n we do not know if there might be a larger such set. Additionally, they give
us an easy construction to find cyclic disjoint tours for any given tour and use them in real applications,
as we will do in Section 5. But there are only very few shifted tours, only φ(n)/2, limiting the usability.

4.3 Non-shifted tours
To make a more general statement about f(n) and its bounds, we probably need to look at tours that
do not follow the shift-construction and when these are cyclic disjoint. If we want to find a set of
three pairwise cyclic disjoint tours we can of course take the trivial tour as one of the tours. We have
the results from previous sections for finding two other tours σ and τ that are cyclic disjoint with id.
However, ensuring these σ and τ are also cyclic disjoint with each other has not been covered in depth.

All our previous results in Section 3 focus on cyclic disjointness with the trivial tour, not between two
arbitrary tours. Results we used such as Lemma 1 and Lemma 2 can only be used by using σ−1 ◦ τ and
τ−1 ◦ σ, since these are both cyclic disjoint to id. We were not able to find any other results for cyclic
disjointness between any two tours, nor did we find any properties for, or structures of, non-shifted tours
we could use.

These non-shifted tours also exist as solutions for the toroidal n-queens problem, so we can search in its
literature for these solutions. In the toroidal n-queens literature, the shifted tours are known as linear
or regular solutions, and other tours are known as nonlinear or irregular solutions [3]. As described in
Section 3.2, our computational results only returned such non-shifted tours for n ≥ 13. Chandra [8]
states that, indeed, non-linear solutions only exist for n ≥ 13, and for n = 5, 7, 11 only linear solutions,
i.e. shifted tours, exist.

That means that for these small n, only the very few distinct shifted tours exist. For larger n, the number
of tours that are cyclic disjoint with id grows rapidly, with consequently almost all of the tours being non-
shifted tours. At n = 13, this is only 174 distinct tours, but at n = 23 this already is 2801088, see Table 1.
These values come from relevant sequences on OEIS.org1 A007705 (“Number of ways of arranging 2n+1
nonattacking queens on a 2n + 1 × 2n + 1 toroidal board.”), where for each tour the ‘rotated’ tours,
with a different starting vertex, and their reverses are all counted separately, and equivalently A071607
(“Number of strong complete mappings of the cyclic group Z2n+1”), where the reverses of tours are

1The On-Line Encyclopedia of Integer Sequences, http://oeis.org
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counted separately. A strong complete mapping is also equivalent to a solution of the toroidal n-queens
problem [9].

5 7 11 13 17 19 23 25 29
1 2 4 174 4138 21592 2801088 39154500 10446845782
1 2 4 5 7 8 10 9 13

Table 1: Given n in the top row, the middle row is the amount of distinct tours that are cyclic disjoint
with the trivial tour in Kn, and the bottom row is how many of these tours are shifted tours.

As for any structure of these non-shifted tours, both Bruen and Dixon [10] and Kløve [11] state theorems to
construct non-linear solutions, but neither of these theorems completely describe all non-linear solutions,
i.e. there are non-linear solutions that cannot be created in one of these ways. There are articles making
statements about non-linear solutions, such as Bell and Stevens [12], but these are limited to the classes
of non-linear solutions constructed by the aforementioned theorems.

The equivalence between the toroidal n-queens problem and our problem breaks down when we consider
cyclic disjointness between any two tours, in contrast to where one of the tours is the trivial tour. In the
queens problem, disjointness between solutions as we require has no meaning. It is therefore unsurprising
that we have found nothing in existing literature on that problem. The closest articles we have found that
discusses anything about ‘difference’ between solutions are on orthogonal Latin squares (Latin squares are
equivalent to n-queens solutions), specifically one from Shapiro [13], but the orthogonality here is quite
different from our cyclic disjointness. The other is by Chandra [8], which describes sets of ‘independent
permutations’ and tries to find the largest possible independent set of permutations of Zn. He also uses
these to prove Pólya’s theorem. He is able to state tight bounds for such sets, but again, his notion of
independence is somewhat different than cyclic disjointness, so not directly applicable to our case.

4.4 Computational results
Considering the obstacles identified in the previous sections for improving the bounds of f(n) for general
n, we turn to computational experiments. The goal here is computationally finding the maximal size of
pairwise cyclic disjoint sets for the n where the bounds are not tight yet. The smallest such n are 25, 35
and 49, being composite numbers having smallest prime factor 5, 5 and 7, respectively. We know that
using shifted tours, we can find a set of two pairwise cyclic disjoint tours for 25 and 35, and a set of three
tours for 49. We either want to find a larger set including non-shifted tours, or want to know if that is
infeasible.

We make models for finding a set of three pairwise cyclic disjoint tours, {id, σ, τ}. As before, without
loss of generality, we assume one of our tours to be the trivial tour. To create models for this we adapted
our earlier models: the IP model from Section 3.2 and the CP model from Section 3.4.

For the IP model, we essentially duplicate the entire model, with qij to mirror the pij . Where pij is the
binary decision variable to decide whether σ(i) = j, qij is the same but for the τ . All the constraints to
ensure σ is cyclic disjoint with id are also added for τ . Finally, we add the following constraint to ensure
σ and τ are cyclic disjoint:

piv + pjw + qkv + qlw ≤ 3, ∀i, j, k, l, v, w ∈ Zn : v < w, i− j ≡ ±(k − l) (mod n)

For all pairs of vertices v and w, if the distance between them in the one tour, i− j, would be the same
as their distance in the other tour, k− l, we forbid assigning the cities in such a way in both of the tours
at the same time.

For the CP model, we also duplicate the previous model. This time we have both an x(i) denoting the
vertex we place on spot i of the second tour, and an y(i) being the same for the third tour. Again, we
add the same constraints for yi to ensure y being cyclic disjoint with id. Lastly, we add the following
constraints to make x and y cyclic disjoint:

|{x−1(y(i)) | i ∈ Zn}| = n

|{x−1(y(i)) + i mod n | i ∈ Zn}| = n

|{x−1(y(i))− i mod | i ∈ Zn}| = n
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Here we define x−1(i) to be the inverse of x(i), i.e. for all i, j ∈ Zn we have x−1(j) = i ⇐⇒ x(i) = j.
The CP solver we used had special constraints available for such an inverse relation, so the performance
impact should not be too big. The new constraints above use the fact that x−1 ◦ y is cyclic disjoint with
the trivial tour if x and y are cyclic disjoint, and consequently the result from Lemma 2 that x−1 ◦ y,
(x−1 ◦ y) + id, and (x−1 ◦ y)− id are all bijections.

We use the same software as before: IBM CPLEX as MIP solver and IBM ILOG CP Optimizer as CP
solver. Unlike with the models from earlier in the report, with these models the CP solver is faster than
the IP solver. Unfortunately, it seems that already for the smallest value that is relevant, n = 25, the
problem is already too large for the solver to finish in reasonable time and resources on the available
computer. For other values of n, where a set of size three is known to exist, the solver was able to find a
solution fairly quickly. We let the solver run significantly longer for n = 25, so we do suspect f(25) = 2,
meaning that the lower bound of 5−1

2 = 2 provided by the shift-construction also is the true upper bound.

With no true guarantee that finding a third tour is infeasible, the final thing to test is whether there
exists a set of three tours when we fix the first tour to be id and the second tour to be one of the shifted
tours. Since this reduces the complexity of the problem, we tried this for all the shifted tours for both
n = 25 and n = 35, and the problem always turned out to be infeasible. This means that if it is possible
to find a set of three pairwise disjoint tours for n = 25 or n = 35 and we fix one of the tours to be the
trivial tour, then the other two tours are both non-shifted tours.

Since n = 25 already proves too hard for the computer, and due to time-limits, we have made no attempts
for n = 49.

In conclusion, given the computational results, we have the following conjectures. These are stated in
decreasing order of certainty.

Conjecture 1. f(25) = 2.

It would be very surprising if this turns out to be false.

Conjecture 2. f(n) = 2 if 5 is the smallest prime factor of n.

Given the results for n = 35, this would still be expected. However, since 25 only has factors of 5, but
35 has a factor 7, there is a difference. Additionally, 35 has a much larger amount of possible tours, so
there might be some combination where three tours are pairwise cyclic disjoint.

Conjecture 3. f(n) = m−1
2 , with m being the smallest prime factor of n.

The only results this is based on is for when m = 5, with larger values of m resulting in a problem
that is too big to really study by computational results. Were this to be true, it would imply that the
construction of shifted tours is both easy and effective, however, it does also mean that the property of
cyclic disjointness might be too strong for applications, except in the case that n is prime.

5 An algorithm for the PSP with cyclic disjointness
As stated in the introduction, the Paripatetic Salesman Problem is a variant of the Traveling Salesman
Problem, first stated by Krarup [1]. The objective is, given a weighted graph, to find two edge-disjoint
Hamiltonian tours with minimal total length. In the literature there exist many approximation algorithms
for it, such as [14] or [15], and also variants such as [16] or [17], but to the best of our knowledge, non
considering cyclic disjointness.

We consider a slight variant to the PSP, limited to cyclic disjoint tours instead of edge-disjoint tours.
Additionally, we require the graph to be the complete graph with n vertices Kn, where n is of course
not a multiple of 2 or 3. A solution to our variant is also a solution to the regular PSP, with two cyclic
disjoint tours also being edge-disjoint. Such a solution is also likely not close to optimal in the regular
PSP.

We state a simple greedy algorithm for finding a solution to this variant of the PSP. For the algorithm,
we do not make any statements about the quality of the solution, but we do consider its running time.

Note that the distance we consider for the cyclic disjointness is not be the weights or costs of the edges,
but the order of the vertices in the tour, so the same as we have been considering in the report up to now.
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The cyclic disjointness of two tours therefore is completely independent from the weights of the edges or
the total costs of the tours.

The algorithm uses shifted tours to find cyclic disjoint tours, since we know when these are cyclic disjoint
and the structure of these tours are known

Remark. Shifted tours as described in Section 4.2 are defined and used as shifted ‘versions’ of the trivial
tour, where the difference between subsequent vertices in the tour is a fixed shift. Another way to look
at it is that not the vertices are incremented by a fixed amount, but the indices instead. For example,
for a shift of 2, the vertex at index i + 1 in the shifted tours is the same as the vertex at i + 2 in the
trivial tour. For shifted tour σ with shift s, we have σ(i+ 1) = id(i+ s).

We can generalise this structure to any tour, regardless of the vertices in the original tour.

Definition 7. Let σ be a tour in Kn. Then we define the shifted variant σs of σ with shift s by
σs(i) = σ((i− 1)s+ 1) for all i ∈ Zn.

Remark. If we take σ = id then we get the original definition of shifted tours as in Definition 5. Also
note that, just as id was the shifted tour with shift 1, we get that σ1 = σ, i.e. the shifted variant of a
tour with shift 1 is simply the tour itself.

An example of a shifted variants of a tour is shown in Figure 11.

id = σ = (1, 2, 3, 4, 5, 6, 7)

τ = (1, 6, 5, 2, 4, 7, 3)

σ2 = (1, 3, 5, 7, 2, 4, 6)

τ2 = (1, 5, 4, 3, 6, 2, 7)

σ3 = (1, 4, 7, 3, 6, 2, 5)

τ3 = (1, 2, 3, 5, 7, 6, 4)

Figure 11: Examples of shifted variants in Z7. We take σ = id, and we show shifted variants with shifts
2 and 3, σ2 and σ3, equivalently being the shifted tours with shifts 2 and 3. We take τ = (1, 6, 5, 2, 4, 7, 3)
as an arbitrary other cycle, and similarly show τ2 and τ3. Notice how the structures of the shifts are the
same.

Remark. Another way to view shifted variants is as follows. Given the trivial tour and a shifted tour
σ with shift s that is cyclic disjoint with id, we can ‘relabel’ the vertices, i.e. permute them with a
permutation α. Because id and σ are cyclic disjoint, then we get by Property 4 of Proposition 1 that
α ◦ id = α and α ◦ σ are also cyclic disjoint. Then we have (α ◦ σ)(i) = α(σ(i)) = α((i− 1)s+ 1) = αs,
so by the definition above, α ◦ σ is the shifted variant of shift s of alpha. This again emphasises how the
structure of shifted tours and shifted variants really is the same.

As a consequence we can state an equivalent theorem of Theorem 5 for shifted variants.

Theorem 6. Given is n ≥ 3 and a tour σ in Kn. Then there exist φ(n)/2 distinct shifted variants
of σ. Two shifted variants with shifts s and t are cyclic disjoint if and only if gcd(s + t, n) = 1 and
gcd(s− t, n) = 1.

Proof. Let σs and σt be two shifted variants of σ with shifts s and t, respectively, such that gcd(s+t, n) = 1
and gcd(s−t, n) = 1. Consider the tours σ−1◦σs and σ−1◦σt. Then (σ−1◦σs)(i) = σ−1(σ((i−1)s+1)) =
id((i− 1)s+1) = (i− 1)s+1, so σ−1 ◦σs is the shifted tour with shift s. Similarly σ−1 ◦σt is the shifted
tour with shift t. By Theorem 5 we know σ−1 ◦ σt and σ−1 ◦ σt are cyclic disjoint. Then by Property 4
of Proposition 1 we know σs and σt are also cyclic disjoint.

5.1 The idea
The idea of the algorithm is to choose a fixed shift such that id and the shifted tour with that shift
are cyclic disjoint, and then stick to finding a tour x = (x1, x2, . . . , xn) and its shifted variant with that
shift. We start with both tours ‘empty’, i.e. no xi having an assigned vertex yet. Then, step by step,
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we choose a spot on the tour, xi, and fill it with one of the remaining vertices. When placing a new
vertex somewhere on one of the tours, we then also know where to place that vertex on the other tour,
because we work with a known shifted variant of a fixed shift. Additionally, we know that regardless of
what the resulting tours are, they are cyclic disjoint, since they are shifted variants. Every step placing a
new vertex, there are two choices to make (which we do greedily): which empty spot to pick, and which
number to place there.

For example, suppose we have n = 7 and choose the shift of 2. We have to choose at least one starting
vertex, so for simplicity, we put vertex 1 on the first spot. Then we get the following situation of our two
tours:

(1, a, b, c, d, e, f)

(1, b, d, f , a, c, e)

All the variables a through f are vertices that we can still choose. At this point we have to choose one of
them and give it a value. This brings us at the first (greedy) choice. When one of the variables is given a
value, we can not say anything yet about the length the final tours will get, except when an adjacent spot
in one of the tours already has a value. In this case, only a, f , b and e are such vertices, and only if we
choose one of these, we can consider the costs of edges (that is (1, a), (1, f), (1, b) or (1, e), respectively)
for the total length of our two tours and consequently we can choose a vertex to minimize the objective
value.

Our algorithm does the following: firstly, we consider all remaining open spots, and count for each of
them how many adjacent spots already have a value in both tours. This value is between 0 and 4. We
then choose any spot where this value is maximal. If there are multiple possibilities we choose the first.
In this manner we maximize at each step the number of edges that we know will surely be in the final
tours and we therefore can minimize the cost for. For example, in the following situation, the next choice
is either b or f , both having two adjacent values. The spots of c and e both have 1 adjacent value, and
d would add no new edges.

(1, 4, b, c, d, e, f)

(1, b, d, f , 4, c, e)

Secondly, after we have chosen a spot and we know which edges will be added to the solution, we simply
choose the remaining vertex to minimize the cost of these new edges. In the situation above, we choose
the first option b. The remaining vertices that can be placed are S = {2, 3, 5, 6, 7}, and the edges in that
will be added are (4, b) and (1, b). Then for b we choose argmini∈S [c(4, i) + c(1, i)] where c(·) is the cost
of an edge.

The choices we make here in these steps are not heuristic in nature, so there might be better options.
Additionally, we separate the step for choosing a spot and choosing the vertex for that spot for simplicity,
but these might also be combined in a way.

5.2 The algorithm
Our algorithm is described in pseudocode as Algorithm 1. As input it requires the size of the graph n,
where 2 - n and 3 - n, otherwise no pair of cyclic disjoint tours exist. It also needs a valid shift s for the
second tour, i.e. gcd(s+ 1, n) = gcd(s− 1, n) = gcd(s, n) = 1. Since we take shifted variants 1 and s of
the resulting tour, and 2 or 3 cannot be a factor of n, a shift of s = 2 is always a valid shift. Finally, we
require a cost function for the edges c(·).

In the first lines we initialize a few variables. Firstly, x is the first tour that we will be returning, we
directly set x(1) = 1. Next, c keeps track of the cost, S contains the vertices that are not used in the tour
yet, so still have to be used. Finally, I contains the indices where x has already been assigned a vertex,
in this case only index 1.

Next we come into the main loop, which we repeat until all vertices are in the tour, i.e. S = ∅. In line 6
we define i to be the index of which the most neighbouring spots have been filled, j − 1 and j +1 for the
first tour, j− s and j+ s for the shifted tour. We then add i to I. In line 8, we define A, which is the set
of adjacent vertices that are assigned in the neighbouring spots of i. We use these vertices to calculate
the cost of the edges that would be added if we put vertex w on spot i. We choose v to be the smallest
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Algorithm 1 PSP with cyclic disjoint tours
Require: n ≥ 5, with 2 - n and 3 - n
Require: shift s ∈ Zn such that gcd(s+ 1, n) = gcd(s− 1, n) = gcd(s, n) = 1
Require: edge cost function c(v, w), for vertices v, w ∈ Zn

1: x(1)← 1
2: c← 0
3: S ← {2, . . . , n}
4: I ← {1}
5: while S 6= ∅ do
6: i← argmaxj∈Zn\I |I ∩ {j − 1 j + 1, j − s, j + s}| . calculation of indices is modulo n
7: I ← I ∪ {i}
8: A← {x(j) | j ∈ {i− 1, i+ 1, i− s, i+ s}} . calculation of indices is modulo n
9: v ← argminw∈S

(∑
u∈A c(u,w)

)
10: S ← S \ {v}
11: x(i)← v
12: c← c+

∑
u∈A c(u, v)

13: end while
14: for i ∈ Zn do
15: y(i)← x((i− 1)s+ 1 mod n)
16: end for
17: return x, y, and c

such w on line 9, and remove it from the set of available vertices S. Finally, on line 11, we assign x(i) to
be v, and increase c to keep track of the cost up to now.

Finally, after all vertices have been assigned and the tour is chosen, we create the shifted variant y of x
on lines 14 and 15, and return the tours and the total cost.

Claim 1. Algorithm 1 runs in O(n2) time.

Proof. Lines 1 through 4 are all O(1). The main loop runs n − 1 times. On line 6, we need to check
whether 4 indices are in I, and need to do that |S| times to find the maximal argument i. Lines 7
and 8 are O(1). In line 9 we have to sum up to four weights |S| times to find the maximal argument
v. Finally, lines 10 through 12 are O(1) again. That means that for the total loop we have at most∑n

i=1 (4|S|+O(1) + 4|S|+O(1)) = O(n) + 8n(n+1)
2 = O(n2). After the loop it is O(n) to create y. The

entire algorithm therefore runs in O(n2) time.

Remark. In the current algorithm we calculate the amount of filled neighbouring spots per spot (line 6
in Algorithm 1) again every time the loop runs. It is likely faster to keep track of this count throughout
the entire loop instead, and only updating it when we place new vertices. If we keep track of the count
per spot in something like a heap, the extraction of the optimal i on line 6 would be O(1). We need
to update the heap as soon as we choose the i, but that is 4 neighbours at a cost of O(log n) each (at
least for simple heaps). This would not change the running time of O(n2) for the entire algorithm, but
in practice it would probably be faster for large n.

The algorithm can easily be extended to the m-Peripatetic Salesman Problem, where we want to find m
disjoint tours with minimal total cost instead of only two tours. Then we simply use m different shifted
tours.

In conclusion, this above algorithm showcases how the shifted tours are easy to reason about, and how
it could be used in a diverse optimization problem. The algorithm is very simple, however, so the results
will probably be far from optimal.

6 Discussion
Cyclic disjointness is at first sight not applicable to any real-world problems, and we have not found a
direct application of it. There are situations where one can imagine that two edge-disjoint tours might
not be distinct enough to be used as diverse solutions for TSP in real life, for example in large and dense
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graphs edge. But whether cyclic disjoint tours would be significantly better in such a case is hard to
say. What effect the condition of different distances in such tours really has in large graphs is difficult to
imagine.

Even when we want two Hamiltonian tours to have globally different orders, a relaxed variant of cyclic
disjointness would probably be better in practice. Due to the theoretical results this is also necessary.
The fact that cyclic disjoint tours only exist for (relatively) few n greatly limits applications. The result
for sets of pairwise cyclic disjoint tours only aggravates this.

As for further research, it would be interesting to see how a relaxation of cyclic disjointness would look
like, and whether it would be usable in applications. Allowing a limited number of breaches of the
condition, i.e. a maximum number of pairs of vertices for which the distance is equal in both tours, may
change the existence conditions. How many of these breaches would we need to allow for pairs of disjoint
tours to exist for all n?

Other research can of course be on the open problem of the bounds of f(n), especially for composite n.
It seems Pólya’s argument with these sum identities in Theorem 3 is not (easily) generalizable to higher
n or prime factors of n bigger than 3. Other directions for research that may lead to new insights are
the structure of, or new results on, non-shifted cyclic tours or equivalently non-linear solutions of the
toroidal n-queens problem. There already exists literature for the latter problem, and it is equivalent to
surprisingly many other problems. A more thorough search might yield some results.

Finally, there can be improvements in the form of computational results. A better solver can perhaps
give us full results for f(n) for n = 25, 35, 49 or even larger n with larger smallest prime factors. Using
such result one can strengthen or disprove our final conjectures in Section 4.4. A large survey on existing
literature of n-queens [3] has a section on computation, and also in the context of equivalent problems
there is work on it, such as [9].
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