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Abstract

In this thesis we look at clustering in Block Markov Chains (BMCs). A
Block Markov Chain is a Markov Chain with the property that the transition
matrix consists of K clusters. For any pair of states within the same cluster,
the distribution that they move to any other state within the state space should
be the same for the pair. Now suppose that we are given a sample path of
some BMC. In this paper we will present an algorithm to extract the number of
clusters (which is an unknown) to the algorithm. Furthermore, this algorithm
also clusters the states according to their original groups. We will outline a
proof that this algorithm does this in an asymptotically accurate way. Firstly,
we take inspiration from different papers [13], [14], [19] which allow us to
create an algorithm which can both estimate K and create clusters from a
BMC. Secondly, we will test our algorithm on both synthetic and real data to
get an idea of the real world capabilities of our algorithm.
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1 Introduction

In recent times much research has been conducted in the field of the Stochastic Block Model
(SBM). The Stochastic Block Model first introduced in [7] and then expanded in [16] can
best be seen as a random graph with n vertices in which one observes if there is an edge
between vertices x and y and with the added property that each state belongs to a group of
similar behaving states. This group is called a cluster and if two states belong to the same
cluster they have the same probability distribution to move to any other state in the state
space. Furthermore, the amount of clusters in a SBM will be denoted by K ≤ n.

As an example one can think of the case when the set of n vertices denoted by V is
split in two different sets V1 and V2 implying K = 2, such that each state can only be in
one of the two sets. This example is visualized in Figure 1.

Assume we have two states x, y ∈ V , then x, y belong to the same group (i.e., there
is an edge between vertices x and y) with probability p ∈ (0, 1). The probability that they
do not belong to the same group (i.e., there is no edge between vertices x and y) is given
by 1 − p ∈ (0, 1). A property of this model is that the probability that one observes an
edge between two vertices is independent of observing an edge between any other pair of
vertices.

We study the SBM because it lends itself as a good test for clustering algorithms. The
reason for studying clustering algorithms is that if we detect certain group structures within
a random graph, we can reduce the dimensionality of a graph which often allows for an
easier analysis.

Now the SBM is quite restrictive and people have researched other models while relaxing
some of the conditions of a SBM. For example, in a SBM one looks at observing an edge
between vertices i and j. However, one can also introduce the property that this edge needs
to have a certain value called a label. Thus, now one looks at observing an edge with label
l ∈ {0, . . . , L} between vertices i and j. This model is called the Labeled Stochastic Block
Model (LSBM) [19]. Notice that if L = 1, then one recovers the original SBM. The reason
for studying this model is that it has some overlap with the model we will study in this
bachelor thesis and we can use some of the results found in the setting of a LSBM and
transfer them over to our setting.

The setting of this bachelor thesis considers a sample path of a Markov Chain with a
set of n vertices with a group structure in its transition matrix. This model is known in the
literature as a Block Markov Chain (BMC) [13]. A Block Markov Chain can be seen as a
random graph consisting of n vertices in which the probability of moving between vertices i
and j is given by p(i, j). The goal of this bachelor thesis is to detect the number of clusters
within a BMC when we are given a sample path of length T denoted by X0, . . . , XT . Each
state in a cluster is assumed to have the same transition probability to move to any other
cluster as any other state within the same cluster. An important observation to make is that
the Markov property tells us that the observations one has from a BMC are dependent on
the previous state. Hence, the probability of moving between vertices i and j is dependent
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Figure 1: Example of a random graph of a SBM with K = 2 clusters.

on which group vertex i belongs to.

An example of a BMC can be the movement of a cow in a field [17]. Suppose we have
three general areas in this field; a barn, a pond, and a field. Now it is easy to imagine
that when looking at accurate GPS data from this cow, the probability of moving from
somewhere next to the pond to somewhere in the field would be somewhat the same for all
possible positions in the pond and the field. Hence this process could be seen as a BMC
where we assume that the next movement of the cow is only based on the previous position
of the cow. This example of a BMC can be visualized in Figure 2 in which the open circles
denote possible positions for the cow to be in, and the arrows denote the probability of
moving from a state to another state. Now with dashed arrows we have drawn a sample
path of states X0, X1, . . . , XT in this BMC.

Clustering in a BMC is different compared to clustering in a SBM because in a BMC
consecutive samples of the sample path are dependent while in a SBM they are independent.
However, the reason for studying clustering algorithms for BMCs, is that they are useful
in various scientific fields like biology, machine learning and sociology. Some examples
of applications of the clustering methods are: ”detecting patterns in the stock market”,
”recognizing words in text”, and ”detecting codon pairing in human DNA” [17]. The
detecting of codon pairing in human DNA is an example we will work out in detail in this
bachelor thesis as well.

Besides SBMs, there are many more variants random graphs that have been researched.
An example of a variant of the SBM would be the degree corrected SBM [8], [12], which
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Figure 2: Example of a sample path denoted by X0, X1, X2, . . . , XT in a BMC with K = 3
clusters and transition probabilities

(pi,j)i,j∈{1,2,3} =

p1,1 p1,2 p1,3
p2,1 p2,2 p2,3
p3,1 p3,2 p3,3


like the SBM preserves the expected value of their underlying matrix; but unlike the SBM
they also preserve the degree of the edges of the random graph. Another variant of the
SBM which allows for clusters to be overlapping, meaning that states can belong to more
than one cluster, is known as the overlapping SBM which is studied [9], [10].

1.1 Focus of this bachelor thesis

In [13] two algorithms are presented. A so-called Spectral Clustering Algorithm that gen-
erates a estimate cluster assignment from a given sample path of a BMC, and a so-called
Cluster Improvement Algorithm which improves any initial cluster assignment element-wise
by maximizing a log-likelihood function. This specific Spectral Clustering Algorithm depends
on the knowledge of knowing K up front, and we observe that in [19] a Spectral Algorithm
which does not rely on the knowledge of K is given in the context of LSBMs.

Hence, in this thesis we focus our attention on the missing part of [13] which is the
ability to estimate the amount of clusters K in the setting of a BMC. In order to estimate
the number of clusters in a BMC, a great deal of inspiration was taken from the spectral
algorithm given in [19] in the setting of a LSBM. This led to the following questions:
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• How can we estimate the number of clusters K in a BMC from a given path?

• How long would the sample path of the BMC need to be, to have enough information
to estimate K?

In order to convert some of the stopping criteria given in the algorithm in the context of a
LSBM into a BMC some more sources were needed. [14] was helpful in giving insight into
these bounds. This paper gives us bounds on the size of the singular values of a random
counting matrix in the context of a BMC. These bounds will also provide our first estimator
for K denoted by K̂pre. However, as we will see in the results, K̂pre is not a very accurate
estimator ofK. Thus we use [19] to determine another estimator ofK denoted by K̂post. As
the results will show, K̂post is a consistent and accurate estimator of K under the conditions
that the sample path is long enough and that the sample path comes from a BMC. We will
also explore situations in which the sample path does not come from a true BMC which
shows us that if the path is long enough that both K̂pre and K̂post do not converge to K
but to the amount of states n. Furthermore, if the length of the sample path is not long
enough we will see that our ability to cluster states correctly is severely impaired.

1.2 Methodology

In order to answer the question if the number of clusters can be estimated from a BMC,
assume that a sample path of a Block Markov Chain of length Tn is given. We will consider
the behavior of our algorithm in the three different regimes Tn = ω(n lnn), Tn = o(n lnn),
Tn = Θ(n lnn), which will be referred to as the dense, sparse, and critical regime. Our
algorithm will identify two estimators of K referred to as K̂pre and K̂post. As one might
now expect from the notation, K̂post is dependent on K̂pre but not the other way around.
Thus K̂post can be seen as an improved version of K̂pre; however, the concepts on which
K̂post are built are fundamentally different than K̂pre.

The first thing which will be discussed in this bachelor thesis, is when it is possible to
detect clusters using a given sample path of a BMC. This is done by referring to [13] which
has used information theory to study the possibility of detecting clusters. Next, we will
analyze a lower bound on the number of misclassified states for a specific set of clustering
algorithms in a BMC. After this, we will present an algorithm which will be constructed in
such a way that this algorithm approaches this fundamental limit as n grows large. Hence,
our algorithm which will be called the Spectral Clustering Algorithm with unknown K works
well in the cases when n → ∞. The Spectral Clustering Algorithm with unknown K will
consist of a couple of steps.

Firstly, one calculates the empirical transition matrix denoted by N̂ consisting of the
amount of transitions between any pair of states from a given sample path of a BMC.
Secondly, if Tn is in a sparse regime and sometimes in the critical regime, we have to trim
N̂ in order to reduce the noise this empirical transition matrix suffers from which results in
the matrix N̂Γ. After we obtain the trimmed the matrix, we make a rank-K approximation
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of N̂Γ. This is done using a concept called singular values thresholding and was first used in
[4]. Using singular value thresholding we obtain our first estimator which we introduced as
K̂pre. This allows us to create a rank-K̂pre approximation of the trimmed empirical transition
matrix N̂Γ. Now our estimator K̂post is calculated using an adapted K-means algorithm
which accounts for the fact that K is unknown to create the clusters of the underlying
BMC. This adapted K-means algorithm accounts for the unknown K by providing an lower
bound on the size of a new cluster which is based on Algorithm 2 of [19].

The idea of the singular value thresholding and the adapted K-means algorithm stems
from [19]. Here it is done in the context of a LSBM. However, one has to be careful when
adapting results obtained in the context of a LSBM and transferring them to the context
of a BMC. For example, the empirical transition matrix in a LSBM is symmetric. Since if
the label between two states x and y is known, then the label between the states y and x is
the same and hence the edge has the same label. Now in the case of the BMC, the number
of transitions from a state x to y is in general not the same as the number of transitions
from y to x. Hence, in the context of a BMC one has to be careful when dealing with this
empirical transition matrix since it is not symmetric.

In [13], the researchers provide two algorithms. The first being the Spectral Clustering
Algorithm and the second being the Cluster Improvement Algorithm. The Spectral Cluster-
ing Algorithm with unknown K is as the name suggest similar to the Spectral Clustering
Algorithm in [13], however, it does not rely on knowing K. The Cluster Improvement Al-
gorithm takes the initial cluster assignment and assigns states elementwise to their optimal
cluster. Now this Cluster Improvement Algorithm has not been adapted to account for the
knowledge that K is unknown since using our Spectral Clustering Algorithm with unknown
K we obtain an estimate for K which can be fed in to the Cluster Improvement Algorithm.
However, in the results we will still analyze the performance increase gained from using the
Cluster Improvement Algorithm after the Spectral Clustering Algorithm with unknown K.

1.3 Related work

1.3.1 Clustering in SBMs

As previously mentioned, clustering in SBMs has been researched in various papers. In [1],
[3], the authors look at clustering in the setting of a SBM. [1] looks at how to retrieve
exact clusters and provides an algorithm which can retrieve these clusters. However, this
algorithm assumes that there are two clusters with a probability p that two states belong to
the same group and probability 1 − p that these states do not belong to the same group.
This algorithm has been build on the research done in [6] in which SBMs consisting of
two groups known as the binary symmetric Stochastic Block Model is studied. They show
using the semidefinite programming relaxation of the maximum-likelihood estimator that
their algorithm is optimal. The problem of how to deal with unknown parameters of the
SBM was dealt with in [3]. Here an optimal algorithm was proposed in which the number
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of clusters is not needed.
For the optimality of these algorithms it is important to look at the research conducted

in [2]. This paper ([2]) identified an important information gap in SBMs leading to a
lower bound on the optimality of any clustering algorithm for a SBM. When one comes
up with a new clustering algorithm in the setting of a SBM, it is important to prove that
the algorithm is optimal. This is the reason why the lower bound on the optimality of
any clustering algorithm for a SBM is an important result. It allows for the verification of
optimality of any given clustering algorithm in the setting of a SBM, by only showing that
an upper bound on the optimality of a clustering algorithm coincides with the lower bound
identified in [2].

1.3.2 Clustering in BMCs

In [13] and [17] the researchers looked at recovering clusters from a Block Markov Chain
with a known number of clusters K. The difference between clustering in a BMC compared
to a SBM is that in the case of a BMC the samples are dependent, while in a SBM the
observations one has consists of the edges of a random graph which are independent of each
other.

[13] presents two algorithms in which the first algorithm is known as the Spectral Clus-
tering Algorithm and the second algorithm is known as the Cluster Improvement Algorithm.
The Spectral Clustering Algorithm consists of two steps. The first step is making a rank-K
approximation of a random matrix in which each element in the i, jth position denotes the
number of times the path jumped from state i to state j. After this a K-means algorithm is
applied to assign each state to each of the K clusters. The Cluster Improvement Algorithm
improves these initial estimated clusters by using a local maximization of a log-likelihood
ratio.

Furthermore, [13] provides a proof that both the Spectral Clustering Algorithm and the
Cluster Improvement Algorithm are optimal. This is done in a similar fashion as in the setting
of the SBM. Firstly, a lower bound on the error is given which every clustering algorithm
in the setting of a BMC will satisfy. Secondly, for both algorithms an upper bound is given
on their performance which asymptotically matches this lower bound. These algorithms are
then tested in real-life data which is done in [17]. We will use one of these real-life dataset
to test our own model.

1.3.3 Clustering in the LSBM

Recall that in the introduction we introduced a property known as a label on the edges of a
random graph of a SBM, which led us to the setting of the Labeled Stochastic Block Model
(LSBM). [19] provides an optimal clustering algorithm in the setting of a LSBM which
does not depend on the knowledge of the amount of clusters K. This algorithm is based
on the authors previous research [18] which provides conditions for the ability to recover
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clusters and a fundamental lower bound on the performance of any clustering algorithm in
the setting of a LSBM. The algorithm povided in [19] gives two estimators for the number
of clusters K, which are denoted by K̃ and K̂. We do have to note that [19] uses K̂ as
the only estimator of K.

The presented algorithm is a spectral algorithm comprised of a couple of steps. The
first step in the spectral algorithm, makes a K̃-rank approximation by using singular value
thresholding based on theory from [4]. After this step, K̂ clusters are formed using a
greedy K-means algorithm and stopping the process when the cluster size is below a certain
threshold. After the K-means algorithm has made the initial K̂ clusters, the remaining
elements are assigned to their best fitting cluster.

1.3.4 Singular values of random matrices with dependencies

Studying the singular values of random graphs is done in many different papers. In [5] the
researchers look at the eigenvalues of random matrices in a sparse regime of a SBM. They
study the gap between the eigenvalues. This same concept of looking at a gap between sin-
gular values will also be needed in our case. The paper which describes this gap in singular
values is [14]. This paper studies the behaviour of a random matrix in the setting of a BMC.
The results of this paper are vital to our research which is why in an upcoming section we
will discuss this gap in the singular values and the results of [14] in more detail. In [15] they
look at the limiting distribution of the singular values in the setting of a BMC. Further-
more, [15] also looks at the limiting distributions of the empirical transition matrix of a BMC.

1.4 Notation

Let 1 be a vector consisting of all ones and let ∆n denote the n dimensional probabil-
ity simplex such that if β ∈ ∆n we have that ∀x∈β|x| ≤ 1, β ∈ Rn+1 and 1Tβ = 1.
Furthermore, the set of left-stochastic matrices are denoted by ∆K×K in which a matrix
X ∈ Rn×n with rows x⃗i = (xi,1, . . . , xi,n) is in ∆K×K if all rows x⃗i of X satisfy for all
i = 1, . . . , n (x⃗i)

T ∈ [0, 1]n and
∑n

j=1 xi,j = 1. Secondly, we give our definition of a lp
norm: let x⃗ = (x1, . . . , xn)

T ∈ Rn, then

∥x⃗∥p =

(
n∑

i=1

|xi|p
)1/p

where p ∈ [1,∞). (1)

Now for any m × n matrix A ∈ Rm×n, we will indicate the rows of this matrix by Ai for
i ∈ {1, . . . ,m} and its columns by A·,j for j ∈ {1, . . . , n}. Furthermore, if we have an
m × n matrix A ∈ Rm×n then we define A0 = [A,AT ]. Now the Frobenius norm and the
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spectral norm of a matrix A ∈ Rm×n are defined as

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

A2
i,j, ∥A∥ = sup

b∈Sn−1

{∥Ab∥2} (2)

there Sn−1 denotes the n-dimensional unit sphere, i.e., Sn−1 = {x⃗ ∈ (0, 1)n : ∥x⃗∥2 = 1}.
In this paper we mainly look at the asymptotic behavior of certain processes and func-

tions. Therefore we introduce some notation to capture this asymptotic behavior.

• f(n) ∼ g(n) if limn→∞
f(n)
g(n)

= 1;

• f(n) = o(g(n)) if limn→∞
f(n)
g(n)

= 0;

• f(n) = O(g(n)) if lim supn→∞
f(n)
g(n)

<∞.

Now we will introduce similar notation for random variables. Let {Xn}n≥1 be a sequence
of real-valued random variables and let {an}n≥1 be a deterministic sequence. We define

• Xn = oP (an) ⇐⇒ P
[
Xn

an
≥ δ
]
→ 0 ∀δ>0 ⇐⇒ ∀ϵ,δ>0∃Nϵ,δ∈NP

[
Xn

an
≥ δ
]
≤

ϵ∀n≥Nϵ,δ

• Xn = OP (an) ⇐⇒ ∀ϵ>0∃δϵ>0,Nϵ∈NP
[
Xn

an
≥ δ
]
≤ ϵ∀n≥Nϵ

• Xn = ΩP (an) ⇐⇒ ∀ϵ>0∃δϵ>0,Nϵ∈NP
[
Xn

an
≤ δ
]
≤ ϵ∀n≥Nϵ

Properties on these sequences have been proven in SM6.5 of [13].

2 State of the art

Inspiration for this thesis has been obtained from [13]. In this paper the researchers propose
an algorithm for detecting clusters within a BMC. They also prove that this algorithm is
asymptotically optimal under certain criteria. The proposed algorithm consists of two parts
which will be referred to as the Spectral Clustering Algorithm and the Cluster Improvement
Algorithm. Before we can analyze these two parts we have to delve a bit deeper in to when
it is possible to cluster.
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2.1 Block Markov Chains

Assume that one has been given a BMC consisting of K clusters and with the state space
{1, . . . , n} = V . Each state x ∈ V belongs to a cluster Vk; and we assume that there

exists α ∈ ∆K−1 such that limn→∞
|Vk|
n

= αk for k ∈ {1, . . . , K}. Furthermore, let the
map σ : {1, . . . , n} → {1, . . . , K} which maps each state x ∈ V to the kth cluster Vk such
that x ∈ Vk. It is important to note that a state x ∈ V can only belong to one of the
K clusters. Hence Vk ∩ Vl = ∅ for all k ̸= l. Now any BMC can be characterized by n,
α ∈ ∆K−1 and p ∈ ∆K×(K−1). We suppose that K,α, p are fixed but not known to our
algorithm. Specifically a BMC with a path {Xt}t≥0 has a transition matrix P ∈ ∆n×(n−1)

given by

Px,y =
pσ(x),σ(y)
|Vσ(y)|

for all x, y ∈ V. (3)

One can understand that we require some restrictions on these constants α ∈ ∆K−1 and

p ∈ ∆K×(K−1). Indeed, we require that the smallest cluster size αmin
∆
= mink∈{1,...,K} αk

grows at the same rate as n. Thus as n → ∞, we have that αmin > 0. Furthermore, p
must satisfy that

∃η>1 : max
i,j,k
{ pj,i
pk,i

,
pi,j
pi,k
} ≤ η.

These conditions on the parameters of a BMC are necessary for the ability to detect the
amount of clusters since they guarantee a minimum level of separability of the parameters.

Assume that the equilibrium distribution of {Xt}t≥0 exists and is denoted by Πx for all
x ∈ V . Note that by symmetry, we have that for any x, y in the same cluster Vk, it holds
that Πx = Πy

∆
= Π̄k. We also introduce the scaled quantity

πk
∆
= lim

n→∞

∑
x∈Vk

Πx = lim
n→∞

|Vk|Π̄k. for all clusters k ∈ {1 . . . , K} (4)

Proposition 1 from [13] guarantees that π satisfies πTp = πT . We recall Definition 1 from
[13], which states that

Definition 1. For α ∈ ∆K−1 and p ∈ ∆(K−1)×K , let

I(α, p)
∆
= min

a,b
Ia,b(α, p) (5)

where Ia,b(α, p)
∆
=
{∑K

k=1
1
αa

(
πapa,k ln

pa,k
pb,k

+ πkpk,a ln
pk,aαb

pk,bαa

)
+
(

πb

αb
− πa

αa

)}
.

I(α, p) denotes an important information measure which tells us how difficult it is to
cluster states in a BMC. For the algorithm which will be provided in this thesis we do not
need the exact definition of I(α, p). However, we will use some of the results from [13] which
contain this information measure which is one of the reasons we have given the definition of
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I(α, p). Another reason for mentioning this information quantity is that it gives us insight
in to why and when we are able to detect clusters in a BMC.

Let the sets V̂1, . . . , V̂K denote an estimated cluster assignment which is the output of
any given clustering algorithm. In this thesis we will look at the set of misclassified states
E given by

E ∆
=

max{K,K̂post}⋃
k=1

V̂γopt(k)\Vk where γopt ∈ argmin
γ∈Perm(K)

∣∣∣∣∣
K⋃
k=1

V̂γ(k)\Vk

∣∣∣∣∣ (6)

in which Vk
∆
= ∅ if k > K.

Assume that we are given a sample path of length Tn = ω(n) depending on the amount
of states n of a BMC. Similar to [13] we introduce that an algorithm is (ϵ, c)-locally good
at (α, p), if it satisfies E [|E|] ≤ ϵ. We can conclude from Theorem 1 of [13] there exists
a finite constant C > 0 independent of n, such that any clustering algorithm constructed
from p and partitions satisfying ||Vk|−αkn| ≤ 1 for all k: is not (ϵ, 1)-locally good at (α, p)
when

ϵ < Cn exp

(
−I(α, p)Tn

n
(1 + o(1))

)
.

This information also allows us to get conditions for when asymptotic detection of the
clusters is possible. We identify two cases: asymptotic accurate detection which implies
EP [|E|] = o(n), and asymptotically exact detection, i.e., EP [|E|] = o(1). For asymptotic
accurate detection we need only that I(α, p) > 0 and Tn = ω(n). The conditions for
asymptotically exact detection are more difficult to derive. However, a necessary condition
for the existence of asymptotically exact algorithms is I(α, p) > 0 and Tn = ω(n lnn).
Another sufficient condition is Tn = Θ(n lnn) and I(α, p) > 1.

2.2 Spectral Clustering Algorithm

Given a sample path of a BMC denoted by X0, X1, . . . , XT , the first part of the Spectral
Clustering Algorithm found in [13] generates a rank-K approximation of the matrix N̂ given
by

N̂
∆
=

(
T−1∑
t=0

1 [Xt = x,Xt+1 = y]

)
x,y∈V

.

Before one generates a rank-K approximation of N̂ , the matrix N̂ is trimmed by setting
both the rows and columns to 0 for the

⌊
n exp−Tn

n
ln Tn

n

⌋
most visited states, which results

in the matrix N̂Γ. The reason for trimming is that when our path is relatively short (Tn =
o (n lnn)) the states which are visited unusually often can skew the spectral analysis. After
generating the trimmed matrix N̂Γ we are going to make a rank-K approximation of it. We
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do this by first calculating the Singular Value Decomposition (SVD) of the matrix N̂Γ. This
gives us the matrices U,Σ, V T ∈ Rn×n such that

N̂Γ = UΣV T .

With the property that Σ = diag(σ1, . . . , σn) for some sequence of singular values
σ1, σ2, . . . , σn ≥ 0. Without loss of generality we assume that the singular values σ1, . . . , σn

are in descending order and sort the rows and columns of U, V T accordingly. After calculating
the SVD we can calculate the rank-K approximation of N̂Γ denoted by R̂ and defined as:

R̂
∆
=

K∑
k=1

σkU ·,kV
T
·,k . (7)

Algorithm 1: Pseudo-code for the Spectral Clustering Algorithm found in [13]

Data: n and a trajectoryX0, . . . , XT

Result: An approximate cluster assignment
1 for x← 1 to n do
2 for y ← 1 to n do

3 N̂x,y ←
∑T−1

t=0 1 [Xt = x,Xt+1 = y] ;
4 end

5 end

6 Calculate the trimmed matrix N̂Γ;

7 Calculate the Singular Value Decomposition (SVD) UΣV T of N̂Γ;
8 Order U,Σ, V T such that the singular value σ1 ≥ . . . ≥ σn ≥ 0 are in descending

order;
9 Construct a rank-K approximation R̂ =

∑K
k=1 σkU·,kV

T
·,k;

10 Apply a K-means algorithm to [R̂, R̂T ] to determine V̂1, . . . , V̂K ;
11 return

(
V̂k
)
k=1,...,K

After this step, the researchers in [13] apply a K-means algorithm to the matrix [R̂, R̂T ]
to get the estimated clusters V̂1, . . . , V̂K . The pseudo-code for the Spectral Clustering
Algorithm can be found in Algorithm 1. Note that the researchers do provide a detailed
K-means algorithm, which will be discussed in Chapter 5. The researchers in [13] proved in
Theorem 2 that when I(α, p) > 0 and Tn = ω(n) this Spectral Clustering Algorithm had
an performance measure of

|E|
n

= OP

(
n

Tn

ln
Tn

n

)
= oP (1) . (8)

Notice that this algorithm achieves asymptotically accurate detection when I(α, p) > 0 and
Tn = ω(n). However, as the researchers in [13] point out, it can not be guaranteed that
asymptotic exact detection is achieved when using this Spectral Clustering Algorithm .
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2.3 Cluster Improvement Algorithm

In order to ensure that the error of the approximate cluster assignments goes to the funda-
mental limit, the researchers proposed a second algorithm known as the Cluster Improvement
Algorithm. This algorithm takes as input, the output of the Spectral Clustering Algorithm
(Algorithm 1) and improves the cluster assignment as by maximizing a log-likelihood func-
tion. The exact specifics of the Cluster Improvement Algorithm are shown in Algorithm 2.
After running the Cluster Improvement Algorithm given by Algorithm 2 t times, the fraction
of misclassified states is bounded by

|E [t]|
n

= OP

(
e−t(ln Tn

n
−ln ln Tn

n
) + e

− α2
min

720η3α2
max

Tn
n

I(α,p)
)

(9)

Notice that if Tn = ω(n), I(α, p) > 0, then as n → ∞, limn→∞
|E [t]|
n

= 0 since
limn→∞ ln Tn

n
− ln ln Tn

n
= ∞. Thus the Cluster Improvement Algorithm achieves asymp-

totically exact detection under the (nearly tight) sufficient condition I(α, p) > 0 and
Tn − n lnn

C·I(α,p) = ω(1).
We have to make an important remark here. In this thesis our focus is mainly on

making the Spectral Clustering Algorithm as given in Algorithm 1 of [13] independent on
the knowledge of K. However, when applying the Spectral Clustering Algorithm and Cluster
Improvement Algorithm to real data as done in [17], the results one sees are by first using
the Spectral Clustering Algorithm and after that the Cluster Improvement Algorithm. Most
of the results which are discussed in this thesis come directly from our Spectral Clustering
Algorithm with unknown K. The reason this observation is important is that the Cluster
Improvement Algorithm can in theory empty one of the clusters estimated by the Spectral
Clustering Algorithm with unknown K. This would mean that our estimate of K can still
decrease by running the Cluster Improvement Algorithm a sufficient number of times.

Thus, next to K̂pre and K̂post, there exists a third estimator of K which we will denote
by K̂CI

t . This estimator is given by counting the number of nonempty clusters after running
the Cluster Improvement Algorithm t times. In theory, this estimator could be lower than
our estimator K̂post. However, when testing on both synthetic data and real data, K̂post and
K̂CI

t tend to coincide which means that we will not focus our attention on K̂CI
t . Later on in

thesis we will analyze the performance increase with respect to the ability to cluster, when
coupling the Spectral Clustering Algorithm with unknown K with the Cluster Improvement
Algorithm over just using the Spectral Clustering Algorithm with unknown K.

2.4 Spectral norm bounds on BMCs

Due to recent advances in creating spectral norm bounds on random matrices associated
with Block Markov Chains, some of the bounds and choices we will make in our Spectral
Clustering Algorithm with unknown K differ slightly from similar bounds in Algorithm 1
in [13]. One of the pieces of research we would like to highlight in this section is paper
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Algorithm 2: Pseudo-code for the Cluster Improvement Algorithm found in [13]

Data: An approximate assignment V̂ [t]
1 , . . . , V̂ [t]

K̂post
, and matrix N̂

Result: A revised assignment V̂ [t+1]
1 , . . . , V̂ [t+1]

K̂post

1 n← dim(N̂), V ← {1, . . . , n}, T ←
∑

x∈V
∑

y∈V N̂x,y;

2 for a← 1 to K do

3 π̂a ← N̂V̂ [t]
a ,V/T , α̂a ←

∣∣∣V̂ [t]
a

∣∣∣ /n, V̂ [t+1]
a ← ∅;

4 for b← 1 to K do

5 p̂a,b ← N̂V̂ [t]
a ,V̂ [t]

b
/N̂V̂ [t]

a ,V ;

6 end

7 end
8 for x← 1 to n do

9 coptx ← argmaxc=1,...,K

{∑K
k=1

(
N̂

x,V̂ [t]
k
ln p̂c,k + N̂V̂ [t]

k ,x
ln

p̂k,c
α̂c

)
− Tn

n
· π̂x

α̂c

}
;

10 V̂ [t]

coptx
← V̂ [t+1]

coptx
∪ {x};

11 end

12 return
(
V̂ [t+1]
k

)
k=1,...,K̂post

[14]. This paper contains a couple of important theorems which will be used throughout
this bachelor thesis.

Firstly, recall the definition of N̂ given in Section 2.2. In [13] this matrix is trimmed

by removing the
⌊
n exp

(
−Tn

n
ln Tn

n

)⌋
states with the highest amount of visits. Assume

instead that we remove the
⌊
n exp

(
−Tn

n

)⌋
states with the most of amount of visits. Then

Corollary 4 of [14] guarantees that when ω(n) = Tn = o(n2), the ith singular value of the
N̂Γ satisfies

σi(N̂Γ) =

ΘP
(
Tn

n

)
i ≤ K,

OP

(√
Tn

n

)
i > K.

(10)

3 Spectral Clustering Algorithm with unknown K

Now when one looks at Section 2.2 we notice that Algorithm 1 depends on knowing the
number of clusters K up front. However, one can argue that this is not a very realistic
assumption. Hence we would like to make Algorithm 1 independent of the knowledge of the
number of clusters K 1.

1We highlight a difference between this current thesis and the algorithms presented in [13]. That is;
our transition matrix allows for self transitions, hence the probability of moving from state i to state i is
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3.1 Trimming and rank-K̂pre approximation

Our Spectral Clustering Algorithm with unknown K will consist of a similar setup as the
Spectral Clustering Algorithm. We will again start by calculating N̂ as defined in Section
2.2. Since we would like to use (10) we will have to trim the matrix identically. So let
Γc ⊂ V = {1, . . . , n} be the set consisting of the

⌊
n exp−Tn

n

⌋
states which have the

highest amount of visits, and define N̂Γ element-wise as

(N̂Γ)x,y =

{
N̂x,y if x, y ∈ Γ,

0 otherwise.
(11)

After trimming N̂ , we make a rank-K approximation of N̂Γ. But because K is unknown
to us, we instead construct some rank-K̂pre approximation of N̂Γ. This is done using singular
value thresholding. Assume that we have our singular value decomposition of N̂Γ given by
the matrices UΣV T , and σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 are the singular values in descreasing
order. Define

K̂pre ∆
= max

{
k : σk ≥

√
Tn

n
ln

Tn

n

}

which implies that K̂pre is the number of singular values greater than
√

Tn

n
ln Tn

n
.

After we have our estimator K̂pre one can make the K̂pre-approximation of N̂Γ. This is
defined as

R̂
∆
=

K̂pre∑
k=1

σkU·,kV
T
·,k (12)

This can be interpreted as keeping the important information of N̂Γ which is attributed
to having a high singular value and removing the noise which is attributed having a low
singular value. One can also raise the fair question as to why we don’t use K̂pre as an
estimator for K. As our results will show, the gap between the Kth and (K +1)th singular
value is difficult to consistently and precisely predict. Hence, in turn, K̂pre is not a very
consistent or precise estimator.

3.2 The K-means algorithm

Algorithm 1 states that one can use an arbitrary K-means algorithm applied to the matrix
R̂0 to determine the estimated clusters V̂1, . . . , V̂K . However, since K is unknown to us,
this will require a different method.

One could propose that since K̂pre is an estimator of K, we could use a K-means
algorithm applied to R̂0 to generate the clusters V̂1, . . . , V̂K̂pre . As mentioned before and

not necessarily 0. In [13] self transitions are not allowed and thus the diagonal of the transition matrix is
always 0. However, this difference is inconsequential to working of the presented algorithms.
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as we will discuss in the results, K̂pre is not a good estimator of K. Hence in turn,
the performance of our Spectral Clustering Algorithm with unknown K would then be
undermined. Therefore, we have come up with a different way to estimate K and to
generate the estimated clusters V̂1, . . . , V̂K̂post , in which K̂post will be our estimator of K.

The first step in clustering the states is by calculating the neighborhood Nx of every
state x ∈ V . This can be interpreted as wanting to find for each state the states that are
”close” to this state. This neighborhood is defined as:

Nx
∆
=

{
y ∈ V

∣∣∣∣∣
√
∥R̂x,· − R̂y,·∥22 + ∥R̂·,x − R̂·,y∥22 ≤

√
T 2

n3 ln Tn

n

}
.

After the neighborhoods for each state x ∈ V have been calculated we can sequen-
tially select the clusters. We do this in the following way: first we determine the centers
z∗1 , z

∗
2 , . . . ∈ V of the clusters, secondly we generate the estimated clusters V̂1, V̂2, . . .. How-

ever, since K is unknown to the algorithm we have to know when to stop this recursive
generation of clusters. Therefore we iterate until the cardinality of the ith cluster denoted

by ρ becomes ”too small”: that is we iterate for as long as ρ ≥ n2 ln Tn
N

Tn
.

V̂k ← Nz∗k
\

{
k−1⋃
l=1

V̂l

}
where z∗k ← argmax

x∈V

{
Nx\

k−1⋃
l=1

V̂l

}
(13)

ρ← |V̂k| (14)

After this we conclude that K̂post = k − 1, and this will be our estimator for K. To
finish the process, the states which have not been assigned to the first K̂post clusters are

now assigned to the cluster closest to it. Hence for all x ∈
{
V \
(⋃K̂post

k=1 V̂k
)}

V̂k∗ ← V̂k∗ ∪ {x} where k∗ ← argmin
k∈1,...,K̂post

{√
∥R̂x,· − R̂z∗k,·∥

2
2 + ∥R̂ ·,x − R̂ ·,z∗k∥

2
2

}
. (15)

From this we obtain our estimated clusters V̂1, . . . , V̂K̂post . For our revised Spectral
Clustering Algorithm for unknown in Algorithm 3, Theorem 1 gives an upper bound on the
number of misclassified states after executing this algorithm.

Theorem 1. Assume that Tn

n
= ω(n) and I(α, p) > 0. Then after running Algorithm 3,

K̂post = K with high probability, and the proportion of misclassified states satisfies:

|E|
n

= OP

(
n

Tn

)
= oP (1) .
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Algorithm 3: Pseudo-code for the Spectral Clustering Algorithm with unknown
K
Data: n and a trajectory X0, . . . , XT

Result: An approximate cluster assignment
1 Perform lines 1− 8 of the Spectral Clustering Algorithm 1 (with

|Γc| =
⌊
n exp

(
−Tn

n

)⌋
);

2 K̂pre ← max
{
k : σk ≥

√
Tn

n
ln Tn

n

}
;

3 Construct a rank-K̂pre approximation;

4 R̂ =
∑K̂pre

k=1 σkÛ·,kV̂
T
·,k;

5 for x← 1 to n do

6 Nx ←
{
y ∈ V

∣∣∣∣√∥R̂x,· − R̂y,·∥22 + ∥R̂·,x − R̂·,y∥22 ≤
√

T 2
n

n3 ln Tn
n

}
;

7 end

8 V̂1 ← ∅, k ← 0, ρ← |Γ|;
9 while ρ ≥ n2 ln Tn

n

Tn
do

10 k ← k + 1, z∗k ← argmaxx∈V {Nx\
⋃k−1

l=1 V̂l};
11 V̂k ← Nz∗k

\
⋃k−1

l=1 V̂l, ρ← |V̂k|;
12 end

13 K̂post ← k − 1;

14 for x ∈ Γ\
⋃K̂post

l=1 V̂l do

15 k∗ ← argmink∈1,...,K̂post

{√
∥R̂x,· − R̂z∗k,·∥

2
2 + ∥R̂ ·,x − R̂ ·,z∗k∥

2
2

}
;

16 V̂k∗ ← V̂k∗ ∪ {x};
17 end

18 return
(
V̂k
)
k=1,...,K̂post

3.3 Perturbed BMCs

Real data often doesn’t perfectly follow a BMC and is often of a higher degree. In order to
study this we look at objects which consist of a large part of a rank-K object mixed with a
rank-n object. Let PBMC be a transition matrix of a BMC of rank K and let Λ with rank
n be a transition matrix of some first order Markov chain. We introduce the concept of
a pertubed BMC which mixes a BMC and a generic first-order Markov chain on the state
space Ω = {1, . . . , n} such that the transition matrix of the pertubed BMC denoted by
PPertubed is given by

PPertubed
∆
= (1− ϵ)PBMC + ϵΛ. (16)

The parameter ϵ ∈ [0, 1] influences how much influence the non-BMC part has on the
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BMC. By mixing a rank-K and a rank-n object we hope to see how robust our algorithm is
against perturbation in the data by taking different values of ϵ.

There are different ways to find a rank n matrix Λ which are laid out in Supplement 12
of [17]. We choose to generate Λ in an uniform stochastic way. This mean that we will
sample each row independently from a Dirichlet(1/n, . . . , 1/n) distribution.

3.4 Sequences of codons

Every cell in the human body has DNA. This DNA encodes all information about a person.
Now DNA is build up by four main ingredients called nucleotides which are:

1. Adenine (A).

2. Cytosine (C).

3. Thymine (T).

4. Guanine (G).

Certain sequences of these ingredients are what we call genes and are subsequences of
your total DNA sequence. A gene might encode what your physical characteristics are.
Think in this case of the color of your hair, color of your eyes or the way your hair curls.
We will focus our attention on the OCA2 gene in the human DNA. It is believed that this
gene plays a part in controlling the skin color variation and the determines if a color of a
person’s eye is brown or blue. We must note that our Spectral Clustering Algorithm with
unknown K should work on any gene and produce similar results.

As mentioned before a string of DNA is a sequence of four ingredients denoted by A,
C, T, G. A sequence of three of these letters together form a codon. A codon encodes a
specific amino acid which used to copy parts of the DNA within our cells. If we have a
sequence of nucleotides say

ATC CGAAAACTGAGT CCT TGAATAAGT . . . et cetera,

we can transform this sequence nucleotide in to a chain of codons such as

X0 = ATC,X1 = CGA,X2 = AAA,X3 = CTG,X4 = AGT . . . et cetera.

Assuming no restrictions on these codons we can see that there are n = 43 = 64 possible
combinations of codons.
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4 Main results

In order to test our algorithm on synthetic data from a BMC we took values for α ∈ ∆K−1

and p ∈ ∆K×(K−1). Based on these two constants the whole transition matrix is defined as
done in (3) and thus a synthetic sample path can be generated. Hence for all these tests we
thus fix these constants and take a path of length Tn. After defining Tn we can generate a
sample path adhering to the transition matrix and path length. After generating this sample
path, our algorithm tries to find K by using the Algorithm 3. The results of the tests will
be discussed in this chapter.

4.1 Verification of Algorithm 3 using singular values

4.1.1 Analysis of the first K singular values

In [14] it is proposed that each kth singular with k ≥ K + 1 value of N̂Γ is of order

OP

(√
Tn

n

)
, and that the first K singular values are of order ΘP

(
Tn

n

)
. Since our algorithm

calculates the singular value decomposition (SVD) of N̂Γ, it gives us a way to test if this
hypothesis seems to align with our implementation of the Spectral Clustering Algorithm
with unknown K. Thus we calculate the SVD of N̂Γ and then divide the singular values by
the order they should belong to as proposed in Corollary 4 of [14]. We will refer to these
singular values divided by their theoretical order as normalized singular values. An important
thing to notice is that the theoretical order depends at which eigenvalue one is looking at.
The first K normalized eigenvalues are defined as σi

Tn/n
while the the rest of the n − K

eigenvalues are defined as σi√
Tn/n

.

Firstly, we will analyze the case for the first K singular values. In Figure 3 one can see
the results of our synthetic data testing. We will analyze the case that Tn is sparse. Recall
that this implies ω(n) = Tn = o(n lnn). This case is tested in Tn = n(lnn)1/2. Notice
that as n grows the normalized singular values also seem to grow. However, by looking at
the distance between the different lines representing the states, it looks like their growth is
slowing down as n grows which could imply asymptotic growth of the singular values. This
is in accordance with the theory covered in Section 2.4 which states that the be of Θ(Tn

n
).

Thus this implies that the normalized eigenvalues should be bounded from above by some
k2 ∈ R such that σi

Tn/n
≤ k2. As one can observe in the case that Tn is sparse in Figure 3,

this seems to be the case since the size of the singular values seems to grow asymptotically.

Next we will analyze the case that Tn is dense. Thus recall that this implies that
ω(n lnn) = Tn. We will try to apply the same theory as we did in the case that Tn is
sparse. For the cases that Tn is dense we look at the cases that Tn = n(lnn)3/2, Tn = n2

lnn

and Tn = n2. We observe as n grows the size of the normalized eigenvalues seems to go
down. However, it looks like this happens in an asymptotic way since the lines representing
different values of n as getting closer together. We conclude that when Tn is dense then
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Figure 3: Singular values of N̂Γ in different regimes of T. Taking α =(
2/10 1/10 5/10 2/10

)
and probabilities of moving between the clusters given by

(pi,j)i,j∈{1,2,3,4} =


0.1 0.2 0.1 0.6
0.4 0.3 0.1 0.2
0.2 0.1 0.4 0.3
0.2 0.5 0.3 0



there exist k1, k2 ∈ R such that k1 ≤ σi

Tn/n
. When combining both regimes of Tn we can

conclude that the theory discussed in Chapter 2.4 is satisfied.

Another thing one can notice is that as Tn = ω(n lnn) and as Tn grows with respect to
n, the convergence of the normalized eigenvalues seem to go faster. This can be observed
by comparing the cases that Tn = n(lnn)3/2, Tn = n2

lnn
and Tn = n2. As Tn gets bigger

with respect to n the lines representing the different states are closer to each other. A
good explanation for this is that as Tn grows with respect to n, the matrix N̂Γ contains less
noise which in turn implies that one would expect that the difference between the first K
singular values and the n−K singular values after those is more pronounced. In turn, the
normalized singular values are close to their theoretical limit if n is not that big. Hence, the
convergence of σi

Tn/n
as n grows happens faster for bigger Tn.
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4.1.2 Analysis of the next n−K singular values

In the previous Section we looked at the first K singular values. Thus we will now look at
the remaining n − K singular values. We know from the theory discussed in Chapter 2.4

that we have that σi = OP

(√
Tn

n

)
. Thus this implies that the normalized singular values

should be bounded from above by some constant M ∈ R as n→∞. Hence if we look at
our results we hope to see that the size of the remaining n −K singular values seems to
convergence to some upper bound. We will do the analysis in a similar fashion as before.
First we analyze the case that Tn is sparse and then the case that Tn is dense. Secondly,
we will study the influence the size of Tn with respect n has on the size of the normalized
singular values.

Figure 4: Singular values of N̂Γ in different regimes of T. Taking α =(
2/10 1/10 5/10 2/10

)
and probabilities of moving between the clusters given by

(pi,j)i,j∈{1,2,3,4} =


0.1 0.2 0.1 0.6
0.4 0.3 0.1 0.2
0.2 0.1 0.4 0.3
0.2 0.5 0.3 0


We analyze the case that Tn is sparse, thus in Figure 4 we look at the case that

Tn = n(lnn)1/2. Now notice that as n grows the size of the normalized singular values
seems to go up. However, the size of the gaps between the different lines seems to decrease.
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Thus this could imply that the size of the normalized eigenvalues is asymptotically increasing.
Hence this would mean that the size of the normalized eigenvalues is bounded from above
by some constant M ∈ R. This would be in accordance with our theory and gives the
results of the simulation some credibility.

Next we will analyze the case that Tn is dense, meaning that in Figure 4 we look at the
cases that Tn = n(lnn)3/2, Tn = n2

lnn
and Tn = n2. We see a similar pattern as in the

case that Tn is sparse. The distance between the lines seems to converge as n grows which
could imply that the size of the normalized eigenvalues is asymptotically increasing. Thus
this implies that the size of the normalized eigenvalues as n → ∞ is bounded from above
which satisfies the theory discussed in Chapter 2.4.

Lastly, we will look at the influence of the size of Tn with respect to the size of n on the
rate of convergence of this asymptotic growth of the size of the normalized eigenvalue. Now
when looking at all four cases of Tn notice that the distance between the lines gets smaller
as Tn gets larger with respect to n. Furthermore, observe that the size of the normalized
eigenvalues is also higher in the case that Tn is large with respect to n. Thus this suggests
that the rate of convergence to the theoretical limit is faster as Tn gets bigger with respect
to n. The explanation for this is similar to the explanation for why the first K singular
values seem to convergence faster to their theoretical limit as Tn gets bigger with respect
to n. If Tn is large with respect to n then N̂Γ contains less noise then if Tn is small with
respect to n. Thus the difference between the first K singular values and the rest of the
n−K singular values should be more pronounced when Tn is large with respect to n. Thus
implying that the singular values convergence faster to their theoretical limit for bigger Tn.

4.2 Estimates for K

We will analyze the performance of our model in estimating the number of clustersK. Recall
that the Spectral Clustering Algorithm with unknown K gives two estimates for K, denoted
by K̂pre and K̂post. We claimed that K̂post was a more consistent and precise estimator forK
and thus we use K̂post as our estimator for K. However, since this algorithm also calculates
K̂pre we can still analyze the behavior of this estimator as well. Similar to the verification of
the singular values we have taken different instances of n and Tn to analyze their influence
on the estimates of K. First we will analyze the performance of our estimator K̂post. After
this analysis, we will analyze the performance of the K̂pre estimator and compare the two.
From this we will also obtain evidence why K̂post is a better estimator of K than K̂post.

4.2.1 Performance of the K̂post estimator

In the left graph of Figure 5 we see that for the performance of K̂post gets better as n
grows. However, we also see that Tn needs to be quite large with respect to n in order for
K̂post to be able to estimate K accurately. This could also mean that for the cases where
Tn is not that big with respect to n (Tn = n(lnn)1/2 and Tn = n(lnn)3/2) we need to run
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Figure 5: Singular values of N̂Γ in different regimes of T. Taking α =(
2/10 1/10 5/10 2/10

)
and probabilities of moving between the clusters given by

(pi,j)i,j∈{1,2,3,4} =


0.1 0.2 0.1 0.6
0.4 0.3 0.1 0.2
0.2 0.1 0.4 0.3
0.2 0.5 0.3 0


the simulation for bigger n. Since for the case that Tn = n2

lnn
it starts off by not being able

to estimate K accurately however, as n grows the performance of the model increases to
the correct number of clusters in the system.

4.2.2 Performance of the K̂pre estimator

One observes by looking at the right graph in Figure 5 that if Tn is sparse that the estimate
for K̂pre grows as n grows large. A possible reason is that in the case that Tn is sparse, the
matrix N̂Γ contains a lot of noise. Most of this noise should be filtered out by the trimming
of this matrix, however our estimate for K̂pre is still not accurate in the case that Tn is
sparse. Furthermore, one observes that if Tn is dense that the estimates for K̂pre are close
to K but quite often still off by 1 or 2. As previously discussed the exact value of the size
of the ith singular value is difficult to predict. However, if Tn and n are very large then
our estimates for the size of the ith singular value are closer to the observed value than in
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the case that either Tn is small with respect to n or n is not that big. This leads us on to
discussion which off the two estimators is a better estimator. From Figure 5 it is quite clear
that K̂post is a better estimator for K than K̂pre. This is because K̂post approaches the real
value of K faster than compared to the K̂pre and if Tn is sparse K̂post does not blow up
while K̂pre does.

4.3 Perturbed BMCs

In Section 3.3 the notion of a perturbed BMC was introduced to see how our algorithm
performs when the data is not a true BMC. In this section we will analyze the bahviour
of the Spectral Clustering Algorithm with unknown K on synthetic data from a perturbed
BMC. We will look at the performance of our estimated number of clusters and the fraction
of misclassified states. The testing of the fraction of misclassified states is split in two cases.
In the first case we assume that K is unknown and thus the pseudocode of Algorithm 3 is
still valid. In the second case we will look at when Algorithm 3 knows K a-priori. Hence
line 2 of Algorithm 3 becomes K̂pre = K and line 7 changes in to a for loop ranging from
k = 1 to k = K + 1.

4.3.1 Estimated number of clusters in a perturbed BMC

Figure 6 suggests that our estimated number of clusters K̂post has a small rise around ϵ = 0.2
before it then goes down to 1. The reason for this is as epsilon increases the noise in the
matrix N̂Γ increases as well. This will lead to states becoming seperated as epsilon increases.
For small perturbation around ϵ = 0.2 the clusters will therefore break in to smaller clusters
which increases K̂post. However, if epsilon gets too large (in this case ϵ > 0.25) then the
states are so far apart from each other that the neighbourhood of each state only contain
the state itself. Thus there is no neighbourhood that satisfies the requirement of being

larger then
n2 ln Tn

n

Tn
. Hence the estimated number of clusters goes down to 1.

Now when looking at the performance of K̂pre, one can observe that as ϵ increases
K̂pre increases as well. The explanation for this is quite straightforward. As ϵ increases the
transition matrix becomes more of a rank n matrix and less of a rank K matrix, implying
that we would expect that N̂Γ becomes more of a rank n matrix. Thus K̂pre which estimates
the rank of N̂Γ will also increase to n. This is also the behavior we see in Figure 6.

4.3.2 Fraction of misclassified states in a parturbed BMC

In Figure 7 we observe the performance of the ability to correctly cluster states in the
Spectral Clustering Algorithm with unknown K. We will first look at the performance when
K is unknown to our model denoted by the Not-fixed label. We notice that there is a spike
is the number of misclassifications around ϵ = 0.2 after which the fraction of misclassified
states decreases to α2. It might be strange to notice that the fraction of the number of
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Figure 6: The performance of our estimations of the underlying amount of clusters K. The
parameters of the BMC with K = 2 are p1,1 = 0.6 = 1− p1,2 and p2,1 = 0.3 = 1− p2,2 and
α = (3/5 2/5). Furthermore, we took n = 250 and Tn = n2.

misclassifications is higher than α2 since if one would estimate that every state was in the
first cluster, then the fraction of misclassifications is α2. However, if we recall that in the
previous section when looking at the performance of K̂post, we observed that the estimated
number of clusters was significantly higher than K around ϵ = 0.2. We can conclude that
in the case around ϵ = 0.2, Algorithm 3 predicts a lot of clusters which are of small size.
If we assume that V̂k are ordered in a descending way based on their cardinality, then the
number of misclassified states satisfies

|E| ≥

∣∣∣∣∣∣
K̂post⋃

i=K+1

V̂i

∣∣∣∣∣∣ .
This explains why our fraction of misclassified states can be worse than saying all states
belong to cluster 1.

When looking at the performance withK known to the algorithm, the algorithm performs
as expected. As the perturbation level increases the noise in the N̂Γ from the rank n
perturbation transition matrix becomes greater. Thus it becomes more and more difficult
to cluster states correctly and thus the fraction of misclassified states also increases. Now
this conclusion was also obtained in Figure 2a of [17]. They derived in a similar fashion that
the performance of their algorithms also worsened as the perturbation level ϵ grew.
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Figure 7: The performance of our algorithm in clustering correctly in the case that the
algorithm does not know K and when the algorithm does know K. The parameters of the
BMC with K = 2 are p1,1 = 06 = 1− p1,2 and p2,1 = 0.3 = 1− p2,2 and α = (3/5 2/5).
Furthermore, we took n = 250 and Tn = n2.

4.4 The influence of the path length on the performance of our
algorithm

In this section we will analyze the behavior of our Spectral Clustering Algorithm with un-
known K in the setting of perturbed BMC. The main goal of this section is to understand
how the path length influences the outcome of the algorithm. Similar to the previous section
we will first try to understand the influence the path length has on the estimators K̂pre and
K̂post. Secondly, we will try to understand how the path length influences the fraction of
misclassified states. In a true BMC we would expect if n is fixed and as Tn grows, that for

any pair of states x, y ∈ V the empirical transition probability N̂x,y∑n
i=1 N̂x,i

approaches the fun-

damental transition probability (PBMC)x,y. Thus we expect that clustering becomes easier

and our estimators K̂pre and K̂post should converge to K and the fraction of misclassified
states should go to zero as our path length increases.

4.4.1 Estimated number of clusters in a perturbed BMC

We start off by looking at the influence the path length has on the estimations of K. We
expect that the longer the sample path of a perturbed BMC with an ϵ > 0 is, the more
the Spectral Clustering Algorithm with unknown K should pick up the signal of the rank n
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transition matrix.

Figure 8: The influence of the length of the path on the accuracy of K̂post to predict K.
The parameters of the BMC is K = 5 and α and the cluster transition matrix p are given
in Appendix 7.1.

First, we analyze the behavior of K̂post. Figure 8 suggests that as ϵ gets larger the
shorter the sample path needs to be for the estimated amount of clusters to go to n = 64.
This makes sense as ϵ determines how much PPerturbed is perturbed. As one would expect,
the greater the part of the rank n matrix is of PPerturbed, the less information should be
required to estimate that the rank is of order n. As a control case it is good to notice
that for ϵ = 0 we have a true BMC and in this case the Spectral Clustering Algorithm with
unknown K goes to K = 5 and seems to plateau there. This is behavior we had hoped
to see as it would be devastating to our model if a too long of a sample path would make
the prediction of K bad. This behavior would also be counter intuative as the longer the
sample path is, the more information one has and the easier it should be to estimate the
number of clusters in a BMC.

Next we will try to understand the behavior of K̂pre in the setting of a perturbed BMC.
From Figure 9 we see that as Tn gets large, the estimator K̂pre goes up. We expect the
estimator of K̂pre to behave similar to K̂post in the regime where Tn is large with respect to
n. However, we can not see from this graph if K̂pre would grow asymptotically to n = 64
like the estimator K̂post does. For this one would need to run bigger simulations in order to
establish a numerical claim. An important observation one can make in the case of a true
BMC meaning ϵ = 0 is that the estimator K̂pre is asymptotically growing to K = 5.
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Figure 9: The influence of the length of the path on the accuracy of K̂pre to predict K.
The parameters of the BMC is K = 5 and α and the cluster transition matrix p are given
in Appendix 7.1.

When one looks again at Figure 9 we observe that for small Tn there is a jump in the
graph for all epsilons. This is most likely because if Tn is small with respect to n we would
expect that the matrix N̂Γ contains quite some noise. Thus the singular values of this matrix
will not have such a clear gap between the Kth and the (K + 1)th singular value as in the
case when Tn is large with respect to n. Thus we expect that less mass is located in the
first K singular values and more mass is located in the next n−K singular values. This in
turn would lead to a high K̂pre which we see in Figure 9.

4.4.2 Fraction of misclassified states in a perturbed BMC

In this section the fraction of misclassified is analyzed in the setting of perturbed BMCs.
In the previous sections we focused our attention on the ability to estimate the number of
clusters K. However, we should not forget that our Spectral Clustering Algorithm with un-
known K should still be able to cluster states correctly. Thus in this section the performance
measure as described in Section 2.1 will be analyzed. It is also important to mention that
one of our research questions we devised in Section 1.1 was how long the sample path of a
BMC needed to be, in order to cluster states correctly. Hence, we will look at the fraction
of misclassified states against the length of the sample path of a perturbed BMC. Similar to
the tests conducted in the previous section we have taken fixed values for K, α and p after
which we tested the performance of the Spectral Clustering Algorithm with unknown K on
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synthetic data from a the performance. Firstly we will look at the ability to cluster states
correctly using only our Spectral Clustering Algorithm with unknown K. Secondly, we will
use the Cluster Improvement Algorithm discussed in Section 2.3 and run it for t = 10 times.
There is no particular reason for choosing t = 10, however in [13] they often achieved good
performances of their Cluster Improvement Algorithm in when taking t ∈ {1, . . . , 5}.

Figure 10: The influence of the path length on the performance of the Spectral Clustering
Algorithm with unknown K. The parameters of the BMC is K = 5 and α and the cluster
transition matrix p are given in the appendix 7.1.

The fraction of misclassified states when using only the Spectral Clustering Algorithm
with unknown K is given in Figure 10. Firstly, we can see that if Tn is small that it does
not matter what the size of ϵ is, since the Spectral Clustering Algorithm with unknown K
will predict K̂post = 1. When looking at the parameters for this BMC we can see that the
size of the biggest cluster is α1 =

27
64

which is why our |E|
n

= 1−α1 ≈ 0.578 if K̂post = 1. If
Tn grows larger, we see that our ability to cluster states correctly first increases for all levels
of perturbation. Now if Tn grows large enough we see that if ϵ > 0 it will mean that the
fraction of misclassified states will go up to 1. This may seem strange as the guess that all
states are in the same cluster is a better guess than the output of the algorithm. However,
we arrive at the same conclusion as we made when looking at the performance of K̂post. If
ϵ > 0 and if Tn is large enough than K̂post = n. Thus each state belong to it’s own cluster
meaning that |E|

n
= 1− 1

n
. Now the size of Tn in order for |E|

n
to be close to zero depends

on the size of ϵ. The bigger ϵ the faster this convergence happens. This is similar behavior
as our estimator K̂post showed in Figure 8.
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Figure 11: The influence of the path length on the performance of the Spectral Clustering
Algorithm with unknown K combined with the Cluster Improvement Algorithm. The pa-
rameters of the BMC is K = 5 and α and the cluster transition matrix p are given in the
appendix 7.1.

Next we will analyze how the Cluster Improvement Algorithm influences the ability to
cluster states correctly. As discussed in Section 2.3 the estimator K̂CI

t will not be shown
since from testing it on synthetic data it always coincided with K̂post. When looking at
Figure 11 we see similar behavior of K̂post as in Figure 10. We again notice that if Tn is

small enough then |E [t]|
n

= 1 − α1 ≈ 0.578. This is logical as if K̂post = 1 then there is
no cluster improving to do as there are no other clusters to move states to. Now again if

Tn grows we see that |E [t]|
n

decreases meaning the performance of the Cluster Improvement
Algorithm is increasing. Now an important observation to make is that this decrease is a lot
faster than in Figure 10. This implies that if Tn is not that large with respect to n combining
the Spectral Clustering Algorithm with unknown K with the Cluster Improvement Algorithm
has a big positive effect on the performance. However, if ϵ > 0 and Tn is large enough
then again ϵ is close to 1 − 1

n
. This is to be expected as if the path is long enough than

K̂pre and K̂post go to n. Thus meaning that the underlying model can be seen as a BMC
with n clusters. Thus the Cluster Improvement Algorithm will not have an affect on the
performance if Tn is large enough.
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4.5 Codon pairing

As discussed in Section 3.4 we will analyze a DNA sample of a gene. The data given by
[11] can be fed in to our implementation of Algorithm 3 which can give us a understanding
of how well the Spectral Clustering Algorithm with unknown K performs on real data. We
will look at the amount of clusters the algorithm estimates this data contains. However,
we will vary the length of the DNA sample which is given to our algorithm. This results in
Figure 12 in which K̂post is the estimated value of K.

Firstly, we will look at the behavior of the estimator K̂pre in Figure 12. Notice that it
first seems to blow up and then it returns to a lower estimate. This is similar behavior that
K̂pre showed in Figure 9 which we explained by looking at the noise in N̂ when the path
length is small. If one looks at when Tn gets very large with respect to n, we notice that
K̂pre seems to go up again. This can be explained using the results we have obtained in
Figure 9. If the sample path is long enough we expect that N̂Γ is also of rank n because
the data is most likely not a real BMC but some object with a transition matrix of rank n.
Thus our K̂pre which depends on the rank of N̂Γ should go up to n.

Figure 12: The estimated number or clusters in DNA gene as a function of the path length.

Secondly, we will look at the performance of the estimator K̂post in Figure 12. A
first observation one can make is that the estimated number of clusters increases as the
sample path increases. Now in [17] they performed a similar experiment fixing K = 5 after
an analysis of the matrix N̂Γ. With the fixing of K = 5 they rediscovered a biological
phenomenon known as codon pair bias. Now note that in our case we see that our estimate
for K̂post does not converge to 5. Now a possible reason for this is most real world data is
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not a BMC. Thus, if the data is an object of order n then as Tn grows large, one expects
estimated number of clusters to grow to n in which each cluster contains only contains one
state. Now notice that we do see this behavior of K̂post in Figure 12.

In order to validate the claim that this data is not a real BMC we have chosen the cluster
transition matrix for Figures 8 and 9 such that they coincide with the empirical transition
matrix obtained from the DNA samples with the clusters given in section 8.1 of [17]. Thus
the results discussed in Section 4.4.1 is synthetic data from a perturbed BMC in which the
transition matrix of the BMC is the same as the empirical transition matrix of the DNA
sample. Thus it is no coincidence that for ϵ > 0 we see that the estimators K̂pre and K̂post

behave similar in Figures 8, 9 and 12. Thus this strongly suggests that the DNA sample
does not follow a true BMC but follows some process which contains some rank n transition
matrix.

5 Proof of the optimality of Algorithm 3

In this section we prove Theorem 1. First, some lemmas are introduced which will help us
in the proof. We will introduce these lemmas by giving the intuition behind the model and
explaining why we made certain choices. After this we will first prove that our algorithm
remains optimal after which we will give a proof of why with high probability K̂post = K.

Let N
∆
= E[N̂ ], α ∈ ∆K−1 and p ∈ ∆(K−1)×K , and introduce similar to [13] the quantity

D(α, p)
∆
= min

a,b;a̸=b

K∑
k=1

((
πapa,k
αkαa

− πbpb,k
αkαb

)2

+

(
πkpk,a
αkαa

− πkpk,a
αkαb

)2
)
. (17)

[13] concludes that when I(α, p) > 0, this implies that D(α, p) > 0. This implication
will be needed in an upcoming proof.

5.1 Trimming and rank-K̂pre approximation

After trimming N̂ as explained in Section 3.1, we want to find a rank K̂pre approximation of

N̂Γ such that K̂pre is close to K. (10) gives the idea to find K such that σK > OP

(√
Tn

n

)
.

Hence, we have to find a function such that our Kth singular value denoted by σK satisfies

σK̂pre ≥
√

Tn

n
fn (18)

Here fn : N → R, may be any sequence that satisfies ω(1) = fn = o
(√

Tn

n

)
. In our

case we will take

fn
∆
= ln

Tn

n
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.
This in turn means that if we obtain singular values of N̂Γ in descending order σ1 ≥

σ2 ≥ . . . ≥ σn ≥ 0, then our K̂pre is given by

K̂pre = max

{
k : σk ≥

√
Tn

n
fn

}
. (19)

From the definition above one also immediately understands why K̂pre is not a very
precise estimator. There are a lot of different ways to choose the function fn which can all
be technically correct. Now when one realises that a choice of a lower fn means one will
receive in general a higher K̂pre which will in turn mean a higher amount of information will
be passed on through. However, this could lead to a rank K̂pre approximation of N̂Γ which
is too noisy since too little information has been removed. On the contrary, if one has the
bound too high, then a lot of information will be lost in the rank K̂pre approximation of N̂Γ.
This leads us on to our first proposition and lemma in which we will use our choice of fn.

Proposition 1. Assume that Tn = ω(n) and fn = o
(√

Tn

n

)
. When using Algorithm 3,

K̂pre ≤ K + 1 with high probability.

Proof. Observe that the singular values are in descending order. This implies that if we
can show that σK̂pre(N̂Γ) ≥ σK+1(N̂Γ) with high probability, then K̂pre ≤ K + 1 with high
probability.

By construction of Algorithm 3, we have that σK̂pre(N̂Γ) ≥
√
Tn/nfn. From Section

2.4 we know that σK+1(N̂Γ) = OP

(√
Tn/n

)
which implies that there exists a C ∈ R such

that σK+1(N̂Γ) ≤ C
√

Tn/n with high probability for sufficiently large n. We conclude that
for sufficiently large n and Tn such that fn > C,

σK̂pre(N̂Γ) ≥
√

Tn/nfn ≥ C
√
Tn/n ≥ σK+1(N̂Γ) with high probability.

Lemma 1. ∥R̂0 −N0∥F ≤
√
8(2K + 1)∥N̂Γ −N∥ with high probability.

Proof. The proof of this lemma is similar to the proof be found in SM 4.3 of [13]. Notice
that for any matrix A ∈ Rn×n that ∥A∥2F =

∑n
i=1 σ

2
i (A) and for the spectral norm ∥A∥ =

maxi=1,...,n{σi(A)}. Because R̂ is of rank K̂pre and N is of rank K. We know with

high probability using Proposition 1 that R̂ − K is at most of rank 2K + 1. Recall that
R̂0 = [R̂, R̂T ], after which we conclude that

∥R̂0 −N0∥2F = 2∥R̂−N∥2F ≤ 2(2K + 1)∥R̂−N∥2.

Using (143)− (145) of [13] we can complete the proof.
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5.2 Bounding the neighborhoods

Before we start selecting the clusters as done in lines 6-15 of Algorithm 3, we calculate the
neighborhood for each state x ∈ V . If we let hn be the function which corresponds to the
size of the neighborhood. Then the neighborhood of each state x ∈ V is given by

Nx
∆
=

{
y ∈ V

∣∣∣∣√∥R̂x,· − R̂y,·∥22 + ∥R̂·,x − R̂·,y∥22 ≤ hn

}
. (20)

In order to make sure that the neighborhood of each state x ∈ V contains the right
states it is important to choose the bound hn right. The same criteria as in the proof of
Lemma 6 in [13] are used, which yields us the equality.

ω

(
f 2
n

n

)
= h2

n = o

(
T 2
n

n3

)
. (21)

Since fn = o
(√

Tn

n

)
, we can conclude that we have to asymptotically let h2

n be between

the functions Tn

n2 and T 2
n

n3 . There are different options to choose for hn; we choose

hn
∆
=

√
T 2
n

n3 ln Tn

n

. (22)

In the following lemma the reason for this choice of hn becomes apparent.

Lemma 2. Let x, y ∈ V . Then if σ(x) ̸= σ(y), then

∥N0
x,· −N0

y,·∥2 = Ω

(
Tn

√
D(α, p)

n3/2

)
Proof. The proof of Lemma 3 can be found in SM4.2 of [13].

5.3 Clustersize bound

In the situation that K is known one can sequentially select K centers and then the K
clusters. However, in the case that K is unknown, a stopping criteria is needed in order
to know when to stop generating new clusters. In our Spectral Clustering Algorithm with
unknown K we therefore determined a lower bound ρ on the size of the ith approximate
cluster V̂i. Thus we select clusters in the same manner as in Algorithm 1, however, once
the cardinality of the ith cluster drops below ρ, the process is stopped and K̂post = i− 1 is
set. K̂post will be our estimator of K, and ρ > 0 is given by

ρ
∆
=

n2 ln Tn

n

Tn

.

The fact that each cluster V̂k ≥ ρ for all k ∈ {1, . . . , K̂post} is used in the proof of the
following lemma.
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Lemma 3. If ∥N̂Γ − N∥ = oP (fn) for some sequence fn = o
(
Tn

n

)
and there exists a

sequence hn such that ω
(

fn√
n

)
= hn = o

(
T
√

D(α,p)

n3/2

)
, then

∥R̂0
x,· −N0

x,·∥2 = ΩP

(
Tn

√
D(α, p)

n3/2

)
for any misclassified state x ∈ E

Proof. The proof of Lemma 3 will be similar to the proof presented in SM4.4 of [13].

Let N̄0
k

∆
= (1/|Vk|)

∑
z∈V N

0
z,· for k = 1, . . . , K. One can think of N̄0

k as the underlying

center of the kth cluster which in an ideal case should be close to R̂0
z∗k

which is found in

(13). Recall the definition of Nx for x ∈ V in (20). We specified a specific function for hn,
however, in this proof we will assume that hn satisfies (21).

The approach of the proof will be similar to the proof given in SM4.4 of [13]. We show
that for any 0 < a < 1/2 the recursive algorithm (13) will (for sufficiently large n, Tn) give
centers z∗1 , . . . , z

∗
K̂post satisfying

∥R̂0
z∗k
− N̄0

γ(k)∥2 < ahn for k = 1, . . . , K̂post (23)

for some permutation γ. Assuming (23) holds, we can finish the proof by checking two
cases. Notice that if x ∈ E then x was not in the neighborhood of its cluster (x /∈ Nz∗

σ(x)
).

We distinguish two cases: either x was in the neighborhood of another cluster and was
misclassified via (13) or x was not in any neighborhood and was misclassified via (15).
Case 1: If x ∈ Nz∗c for some c ̸= σ(x), we have by (13) and (23)

∥R̂0
x,· − N̄0

c ∥2 ≤ ∥R̂0
x,· − R̂0

z∗c ,·∥2 + ∥R̂
0
z∗c ,· − N̄0

c ∥2 ≤ (1 + a)hn. (24)

Notice that for some vectors a, b, c ∈ Rn, we get using the triangle inequality that

∥a− b∥2 ≤ ∥a− c∥2 + ∥c− b∥2 =⇒ ∥a− c∥2 ≥ |∥a− b∥2 − ∥c− b∥2| . (25)

Lemma 2 and (24) give the lower bound

∥R̂0
x,· − N̄0

σ(x)∥2
(25)

≥
∣∣∥N̄0

σ(x) − N̄0
c ∥2 − ∥N̄0

c − N̄0
σ(x)∥2

∣∣ ≥ Tn

√
D(α, p)

n3/2
− (1 + a)hn (26)

Since hn = o( Tn

n3/2 ), Lemma 3 holds.

Case 2: Otherwise x ∈
(⋃K̂post

k=1 Nz∗k

)c
and by (15) there exist a center z∗c ∈ V such that

∥R̂0
z∗c ,· − R̂0

x,·∥2 ≤ ∥R̂0
z∗
σ(x)

,· − R̂0
x,·∥2. Because (23) implies that each center z∗k is ahn close

to its truth N̄0
k , and Lemma 2 implies that N̄0

k and N̄0
l are Ω

(
Tn

n3/2

)
apart for any k ̸= l, we

conclude that ∥R̂0
x,· − N̄0

σ(x)∥2 = Ω
(

Tn

n3/2

)
.
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To prove (23), we will construct K disjoint set C1, . . . , CK such that∣∣∣∣∣Nz\
k−1⋃
l=1

V̂l

∣∣∣∣∣ ≥ mk, ∃z ∈

(
K⋃
k=1

Ck

)
\

(
k−1⋃
l=1

V̂l

)
(27)

With mk being the kth largest value of {|C1|, . . . , |CK |}. The existence of sets C1, . . . , CK

implies that for any one of the centers z∗1 , . . . , z
∗
K̂post provided by (13) it is impossible to be

an outlier when n, Tn are sufficiently large. We define the sets of cores:

Ck
∆
=
{
x ∈ Vk

∣∣∣∥R̂0
x,. − N̄0

k∥ < ahn

}
for k = 1, . . . , K

and conversely the set of outliers O can be introduced

O ∆
=
{
x ∈ Vk

∣∣∣∥R̂0
x,. − N̄0

k∥ ≥ bhn, ∀k = 1, . . . , K
}

In 13 we give a visual representation of how one can interpret these concepts. W.l.o.g. we
assume that the Ck are ordered based on their cardinality. We have to put some restrictions
on a and b: assume that 0 < a < 1

2
and b− a > 1.

N̄0
2

N̄0
1

X

X
bhn

ahn

hn
Nx

Ny

R̂0
x,·

R̂0
y,·

C1 C2

Ω
(

T
n3/2

)

Figure 13: Schematic representation courtesy of [13] of the cores C1 and C2 for a situation
in which K = 2 and for which x ∈ O and y ∈ C2 with their neighborhoods Nx and Ny

respectively.

Notice the following four properties of the cores and outliers:
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1.
∣∣∣(⋃K

k=1Ck

)
∩Nx

∣∣∣ = 0 for all x ∈ O.

Proof. Recall that if y ∈ Nx, ∥R̂0
x,· − R̂0

y,·∥2 ≤ hn. Then by the definition of an
outlier we have that

∥R̂0
y,· − N̄0

k∥2
(25)

≥
∣∣∣∥R̂0

x,· − N̄0
k∥2 − ∥R̂0

x,· − R̂0
y,·∥2

∣∣∣ ≥ (b− 1)hn ≥ ahn. (28)

Thus y ∈ Nx can not be in any of the cores Ck. If y ∈ Ck for some k then

∥R̂0
x,· − R̂0

y,·∥2
(25)

≥
∣∣∣∥R̂0

x,· − N̄0
k∥2 − ∥R̂0

y,· − N̄0
k∥2
∣∣∣ ≥ (b− a)hn > hn. (29)

This implies that y /∈ Nx which concludes the proof.

2.
∣∣∣(⋃K

k=1Ck

)c∣∣∣ = ∥R̂0−N0∥2F
min

x∈(⋃K
k=1

Ck)
c ∥R̂0

x,·−N0
x,·∥2F

=
OP(Tn

n )

ΩP

(
T2
nD(α,p)

n3

) = OP

(
n2

Tn

)
.

Proof. From Lemma 1 we know that

8(2K + 1)∥N̂Γ −N∥2 ≥ ∥R̂0 −N0∥ =
∑
x∈V

∥R̂0
x,· − N̄0

σ(x)∥22. (30)

Since Ck ⊆ Vk by construction we get that∑
x∈V

∥R̂0
x,· − N̄0

σ(x)∥22 ≥

∣∣∣∣∣
(

K⋃
k=1

Ck

)c∣∣∣∣∣ min
x∈(

⋃K
k=1 Ck)

c
{∥R̂0

x,· − N̄0
σ(x)∥22} (31)

Notice that for every x ∈
(⋃K

k=1Ck

)c
, ∥R̂0

x,· − N̄0
σ(x)∥2 ≥ ahn by definition. We

obtain that

8(2K + 1)∥N̂Γ −N∥2 ≥

∣∣∣∣∣
(

K⋃
k=1

Ck

)c∣∣∣∣∣ min
x∈(

⋃K
k=1 Ck)

c
{∥R̂0

x,· − N̄0
σ(x)∥22} (32)

≥

∣∣∣∣∣
(

K⋃
k=1

Ck

)c∣∣∣∣∣ a2h2
n (33)

Rearrange to conclude that
∣∣∣(⋃K

k=1 Ck

)c∣∣∣ = 8(2K+1)
a2

∥N̂Γ−N∥2
h2
n

= OP

(
f2
n

h2
n

)
. By con-

struction of fn and hn we find that
∣∣∣(⋃K

k=1 Ck

)c∣∣∣ = OP

(
n2

Tn

)
. Note that by repeating

(28)−(31) we can conclude that 8(2K+1)∥N̂Γ−N∥2 ≥ a2h2
n |Cc

k ∩ V|, which implies
that

|Cc
k ∩ V| = OP

(
n2

Tn

)
. (34)
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3. Cσ(x) ⊆ Nx for all x ∈
⋃K

k=1 Ck.

Proof. Let x ∈
(⋃K

k=1 Ck

)
. Since the cores Ck are disjoint there exist l ∈ {1, . . . , K}

such that x ∈ Cl. Let y ∈ Cl and recall ∥R̂0
y,· − N̄0

l ∥2 < ahn. Since 2a < 1 by
construction, we conclude

∥R̂0
x,· − R̂0

y,·∥2 ≤ ∥R̂0
x,· − N̄0

l ∥2 + ∥R̂0
y,· − N̄0

l ∥2 < 2ahn < hn.

This proves that y ∈ Nx.

4. If |Nx ∩ Ck| ≥ 1 and n, Tn are sufficiently large, then for any l ̸= k we have that
|Nx ∩ Cl| = 0.

Proof. Notice that it suffices to show that if l ̸= k. Then Cl ∩ Ck = ∅. We will
argue by contradiction. Let x ∈ Cl and x ∈ Ck. Then we have that

∥R̂0
x,· − N̄0

l ∥ < ahn and ∥R̂0
x,· − N̄0

k∥ < ahn

However we know that ∥N̄0
k − N̄0

l ∥ = Ω
(

T
n3/2

)
≥ hn by construction of hn. Using

the triangle inequality we find

∥N̄0
k − N̄0

l ∥ ≤ ∥R̂0
x,· − N̄0

l ∥+ ∥R̂0
x,· − N̄0

k∥
< 2ahn < hn.

This is a contradiction and thus x can’t be in both clusters at the same time thus
Cl ∩ Ck = ∅.

Observe that if x ∈ O and y ∈
⋃K

k=1Ck we have that y /∈ Nx. Hence y ∈
(⋃K

k=1Ck

)c
is necessary for y ∈ Nx. Then from properties 1, 2 and the observation made just now we
have that

|Nx| = OP

(
n2

Tn

)
∀x ∈ O (35)

Properties 2, 3 and 4 show that∣∣∣∣∣Nz\
k−1⋃
l=1

V̂l

∣∣∣∣∣ ≥ mk, ∃z ∈

(
K⋃
k=1

Ck

)
\

(
k−1⋃
l=1

V̂l

)
(36)

We also conclude that by definition of Ck that |Ck| = |Vk| − |Cc
k ∩ Vk|, which implies

that using (34)

|Ck| = |Vk| − |Cc
k ∩ Vk| = nαk −OP

(
n2

Tn

)
= nαk(1− oP (1)). (37)
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From Lemma 3 we conclude that ∥R̂0−N0∥2F ≥
∑

x∈E ∥R̂0
x,·−N0

x,·∥22 = |E|ΩP

(
T 2
nD(α,p)

n3

)
.

Notice that since I(α, p) > 0, D(α, p) > 0 as concluded in [13]. Furthermore, if we
have two families of random variables denoted by ∪∞n=1{Xn}n≥0 and ∪∞n=1{Yn}n≥0 and two
sequences xn, yn such that Xn = OP (xn) and Yn = ΘP (yn). Then, by Lemma 22 from
[13] we conclude that

Xn

Yn

= OP

(
xn

yn

)
. (38)

By (38) and Lemmas 1 and 3 we conclude,

|E|
n

=
OP

(
∥N̂Γ −N∥2

)
ΩP

((
Tn

√
D(α,p)

n3/2

)2
) = OP

(
Tn/n

(Tn/n)2

)
= OP

(
n

Tn

)
= oP (1) .

5.5 Proving that K̂post = K with high probability

Recall (36) and that we assumed the Ci are ordered in a descending way based on their
cardinality, then after the initial cluster assignment

|V̂K | ≥ mK = |CK | = |VK | − |CcK ∩ VK | = nαK(1− oP (1)). (39)

Since the cores are disjoint and using (39) we find

|V̂K+1| ≤ n−
K∑
k=1

|Ck| = n

(
1−

K∑
k=1

αk(1− oP (1))

)
= oP (n) . (40)

Recall after running Algorithm 3 the cluster assignment satisfies

V̂K̂post = Θ

(
n2 ln Tn

n

Tn

)
and V̂K̂post+1 = o

(
n2 ln Tn

n

Tn

)
. (41)

Then from (39), (40) and (41) we can conclude that K̂post = K with high probability.
This concludes Theorem 1.

6 Conclusion

When looking at Chapter 4, we first validated our model using synthetic data. For this
we introduced the concept of normalized singular values of the matrix N̂Γ. We verified



6 Conclusion 41

these normalized singular values by using the theory covered in Section 2.4. The results we
obtained confirmed that the normalized singular values were in accordance with the theory.
This gave some validation that the Spectral Clustering Algorithm with unknown K was
working as expected and that our implementation was also correct. After this we looked
at the estimators of K of Algorithm 3. We noticed that in sparse regimes K̂pre blows
up as n grows and attributed this to the noise in the trimmed empirical transition matrix
N̂Γ. Now when looking at K̂post we noticed that this estimator was a lot more accurate at
detecting the number of clusters K. Furthermore, it did not blow up in a sparse regime of
Tn. However, we did identify that our algorithm should be tested at bigger values of n since
it could be that K̂post in the regimes of Tn = n(lnn)1/2 and Tn = n(lnn)3/2 could still go
to K. However, in general the results gathered from the tests on synthetic data pointed out
that our algorithm is able to estimate the amount of clusters K. However, a requirement
for an accurate estimation is that n is very large and that Tn is relatively big compared to
n, e.g. in the case that Tn is dense.

When looking at the results of testing our algorithm on synthetic data from a perturbed
BMC we obtained interesting results. Firstly, if the perturbation is small enough then there
exists a Tn such that the original K clusters break up into smaller sub clusters which the
algorithm predicts. However, this has a negative influence on the fraction of misclassified
states since a lot of small clusters lead to a big amount of misclassified clusters. Secondly,
we noticed that K̂pre grew large as the perturbation level grew. Our reasoning for this
was that N̂Γ became more of a rank n matrix as ϵ grew, which implies that K̂pre goes up
to n. Thirdly, we noticed that the performance when K is known to the algorithm, the
clustering performance improves significantly in the setting of a perturbed BMC. This is
not a surprising result as it would be counter intuitive if the outcome of the model became
worse when more information about the underlying structure of the BMC was known. A
fourth conclusion we made was, if we have a perturbed BMC with ϵ > 0, then at some
point when Tn is large enough our estimator will converge to n. This was attributed to the
fact that the transition matrix of a perturbed BMC is of rank n. Thus if one feeds enough
information to the algorithm, the algorithm will differentiate each state into its own cluster,
implying that K̂post will go up to n. However, a good verification of our model was that in
the case that ϵ = 0 we saw that the K̂post seemed to converge to K. Thus in the case of
a real BMC, our model seems to benefit from long sample paths. This seems intuitive and
strengthens the robustness of the model. Lastly, we looked at the clustering performance
of the Spectral Clustering Algorithm with unknown K with and without using the Cluster
Improvement Algorithm. We saw that if Tn was not too small and not too large that the
clustering performance of the Spectral Clustering Algorithm with unknown K was better
than putting all states in the first cluster. However, when using the Cluster Improvement
Algorithm in sequence the clustering performance was greatly enhanced. However, if ϵ and
Tn were large enough the Cluster Improvement Algorithm could not stop the fraction of
misclassified states going to 1− 1

n
.

After all the synthetic data testing, we moved on to applying a real world data set. This
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data set consisted of a long sequence of codons of a gene. We observed that the performance
of the model was similar to the case when the underlying model was a perturbed BMC with
ϵ > 0. Therefore, we concluded that one should be careful when applying this model to real
world data. This is because most real world datasets do not follow true BMCs. As seen in
Section 4.4.1, if the underlying transition matrix is of rank n, then the estimators for K will
converge to n when the Tn is very long with respect to n.

In Theorem 1 we gave an upper bound on the fraction of misclassified states. We
noticed that this upperbound is asymptotically equivalent to the lowerbound devised in [13]
and discussed in Section 2.1. This in turn implies that our Spectral Cluster Algorithm
with unknown K achieves asymptotically accurate detection whenever this is possible. A
possible situation in which this is possible is I(α, p) > 0 and Tn = ω(n). This shows that the
Spectral Clustering Algorithm discussed in Section 2.2 remains asymptotically accurate even
when the K is unknown. However, in general the performance of the Spectral Clustering
Algorithm with unknown K is worse when compared to the Spectral Clustering Algorithm.
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7 Appendix

7.1 Parameters of the perturbed BMC

The parameters of the BMC were chosen based on the DNA data covered in Section 3.4.
From [17], we have an idea of how the underlying clusters of this data should look like.
They take K = 5 and determine that the clusters are given by,

V1 = AAA, AAG, TGT, AGT, CCT, TCT, ACT, CAG, ATT, ATG,

CAT, TAT, AAT, TTG, CTT, TGA, CTG, CAA, TGG, ATA,

TTA, AGG, TAA, ACA, TCA, CCA, AGA

V2 = CAC, GCC, CCC, TCC, ACC, GTC, CTC, TTC, ATC, TGC,

AGC, TAC, AAC, GGC, TAG, CTA, GAC

V3 = GTG, GAG, GGT, GCA, GAA, GTA, GGA, GAT, GGG, GTT,

GCT

V4 = CGA, CGC, ACG, TCG, CCG, GCG, CGT, CGG

V5 = TTT

Thus from there we can try to recreate the transition matrix by looking at the data
given in [11]. From this we can determine that the distribution of the K = 5 clusters of
the n = 64 states is given by

α =
(
0.421875 0.265625 0.171875 0.125 0.015625

)
.
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With a cluster probability matrix given by

p =


0.507585391405 0.226065716999 0.203055875860 0.020883008706 0.042410007027
0.621191367533 0.249240761531 0.059312727219 0.031463565194 0.038791578521
0.479504028898 0.231135534197 0.229255588613 0.025038887602 0.035065960687
0.457059595472 0.254847203459 0.216852061118 0.046628320640 0.024612819308
0.542982925813 0.206734487476 0.156225831399 0.011719911951 0.082336843357

 .
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