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Abstract

The goal of this report is to provide a comparison between two state-of-the-art lattice-based encryption
algorithms in terms of efficiency and security. The report is largely self-contained providing all the
background information on understanding the design rationale. The goal is accomplished by examining
a recent proposal submitted to the South Korean competition (SMAUG) and comparing it to the NIST
competition winner (Kyber). The key generation security of both SMAUG and Kyber rely on the
MLWE assumption. However, SMAUG relies on MLWR for the security of its encryption system
while Kyber relies on MLWE. This allows SMAUG to perform faster operations when encrypting and
decrypting data. Moreover, SMAUG decides to use a sparse secret key, which reduces the amount of
storage required for the key. This is also useful for some efficiency gains in polynomial multiplication,
but it is still slower than how Kyber does it. The reason for this is that Kyber can benefit from
using NTT while SMAUG cannot, and this is because of how both schemes choose the parameter
q. However, SMAUG has some other benefits from its choice of q since being a power of two means
that it is friendly with scaling and rounding operations, leading to some efficiency gains over Kyber
in other areas, such as during encryption.
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1 Introduction

The arrival of quantum computing promises to revolutionize many fields and sectors, one of which
is cryptography. Quantum computers have unmatched computational capacity and are capable of
cracking several widely-used encryption algorithms as conventional computing capabilities continue to
hit their limits. This threat has prompted significant concerns over the long-term security of digital
communications, which gave birth to the NIST (National Institute of Standards and Technology)
Post-Quantum Cryptography Standardization Project [24].

The NIST competition marks a pivotal moment in the field of cryptography, as researchers and
cryptographers worldwide join forces designing, evaluating, and standardizing post-quantum crypto-
graphic algorithms. These novel algorithms aim to provide robust security against quantum adver-
saries, ensuring that sensitive information remains safeguarded in a quantum-powered world. As part
of this competition, numerous post-quantum cryptographic candidates from different families were
submitted for evaluation. Researchers presented schemes with different approaches, including lattice-
based, code-based, hash-based, and multivariate polynomial-based, among others. Each candidate
underwent rigorous scrutiny over the last 6 years, with NIST analyzing their security, efficiency, and
practicality to ensure they could be used in real-world applications. Among the notable candidates,
lattice-based cryptographic schemes such as Kyber [5] and Saber [6] offered strong security guarantees
and efficiency.

However, this would not be the only competition considering such schemes, since South Korea
launched their own post-quantum competition in 2022 through the Center for Quantum Resistant
Cryptography [22]. The name of this competition is the Korean post-quantum Competition (KpqC)
and their goal is to develop world-class quantum resistant cryptography by expanding their domestic
technological facilities and enhancing competitiveness. While some candidates were quickly proven
to be insecure, some other candidates show promise, one of which is SMAUG, and this scheme is the
one in which this report is based in.

The goal of this report is to provide a comprehensive understanding of post-quantum cryptography,
with a focus on lattice-based problems. This is accomplished by examining a recent proposal submitted
to the South Korean competition and comparing it to the NIST competition winner. The report
is structured as follows: It starts providing the reader with preliminary information to help them
understand the topics that will be discussed later on. Then, a thorough explanation of SMAUG is
provided, as well as for Kyber, the NIST competition winner. Afterwards, a section dedicated to the
comparison of the differences in the schemes is presented. Finally, the security proofs for the core
element of both schemes are produced, with some common attacks described.
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2 Preliminaries

In this section, the concepts used in the implementation of SMAUG [10] will be explained.

2.1 Rings

A ring is defined by a set R together with two operations, addition (+) and multiplication (·). It
satisfies the following properties:

1. [R; +] is commutative under addition. In other words, for all a, b in R, a+ b = b+ a.

2. Multiplication is associative on R. This means that for all a, b, c in R,
(a · b) · c = a · (b · c) holds.

3. Multiplication is distributive over addition. That is, for all a, b, c ∈ R, a · (b+ c) = a · b+ a · c,
and (b+ c) · a = b · a+ c · a.

In this report, the interest lies in the quotient ring of integer polynomials modulo q. This ring will be
defined incrementally.

First consider the ring of integers, [Z; +, ·], then this ring is infinite since all integers fulfill the
properties above. Next, consider the ring of integers modulo q, [Zq; +q,×q] then this ring only
contains integers in [0, q− 1]. Note that the addition and multiplication operations are done modulo
q, so if an operation results in a number exceeding q, it is subtracted by q until it is in [0, q − 1].

The next ring to consider is the integer polynomial ring [Z[X]; +, ·], where the operators are the
polynomial addition and multiplication operators. This ring can also be defined as an integer poly-
nomial ring modulo q, [Zq[X]; +q,×q]. Then this ring describes all the polynomials with coefficients
in [0, q − 1], with addition and multiplication still being polynomial but the resulting coefficients are
done modulo q.

Finally, the ring of interest can be explained. Let the quotient ring of integer polynomials modulo q
be [Zq[X] \ {xn + 1},+∗,×∗]. Then in this ring, the polynomials are no larger than degree n − 1.
This can be better illustrated with an example. Let q = 3 and n = 2 then the elements are:

0, 1, 2, x, x+ 1, x+ 2.

Larger degree polynomials can be reduced to take this form in the following way: take x3 + x + 1.
Then, this polynomial is reduced with the quotient x2 + 1. Since x2 + 1 ≡ 0 in this ring, then it can
be multiplied with appropriate terms to cancel out larger degrees. For example:

x3 + x+ 1 ≡ x3 + x2 + x+ 3− x · (x2 + 1)

≡ x3 + x2 + x+ 3− x3 − x

≡ x2 + 3

≡ x2 + 3− (x2 + 1)

≡ 2.

Therefore, x3 + x2 + x3 ≡ 2 in this ring. If the addition and multiplication operators are obvious,
rings are usually referred to as the set that defines them.
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2.2 Notation

Matrices are represented with bold and upper case letters A and vectors with bold and lower case
letters b. A polynomial ring R is defined as R = Z[X]/{xn +1}. The quotient ring by Rq = Z[X]/
{q, xn + 1} = Zq[X]/{xn + 1} for a positive integer q. For an integer η, the set of polynomials of
degree less than n with coefficients in [−η, η] ∈ Z is defined as S.

2.3 Lattices

A lattice L is the set of all integer linear combinations of (linearly independent) basis vectors. Basis
vectors are a collection of vectors that can be used to reproduce any point in the lattice. Lattices can
be visualized as a grid or a repeating pattern of points that extend infinitely in all directions. Figure 1
shows a visualization of some example lattices. Another way to define a lattice is as a discrete additive
subgroup of Rn.

Figure 1: Examples of two different lattices with their basis vectors

The distance between points can be calculated using Euclidean distance, even the points that are not
part of the lattice (the points that cannot be reached with the basis vectors). Therefore the distance
between two points x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn is calculated in the following
way:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2

= ∥x− y∥

The most interesting feature of a lattice in cryptography is the shortest vector in it. The shortest
distance between the origin of the lattice and the closest point to it is called the minimum distance
and is defined as:

λ = min
x∈L,x ̸=0

∥x∥

Any vector in lattice L of length λ is a shortest vector. It turns out that finding a shortest vector
for a given lattice is computationally hard and no methods are known that find them efficiently. This
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problem is known as the Shortest Vector Problem (SVP) which is to, given a lattice L(B) with basis
B, find a (nonzero) lattice vector Bx with x ∈ Zk of length at most ∥Bx∥ ≤ λ.

Another special type of lattice is the dual lattice. The dual of a lattice L is the set of all vectors
x ∈ span(L) such that ⟨x, v⟩ ∈ Z for all v ∈ L. They are useful since if the SVP can be solved in
the dual lattice, the vector that is found can be transformed back to the original lattice. Therefore,
with a carefully selected dual lattice, computations can be made easier than if they happened on the
original one.

2.4 Gram-Schmidt Process

The Gram–Schmidt process is a method for orthonormalizing a set of vectors in an inner product
space, the most common choice being Rn. Orthonormalizing is the process of turning a set of vectors
into orthogonal (perpendicular vectors) and normal (vectors of length 1). Let S = {v1, . . . ,vn} be
the set of vectors to be orthonormalized, and define the the projection vectors by

proju(v) =
⟨v,u⟩
⟨u,u⟩

· u

where ⟨v,u⟩ is the inner product of u and v. Then the Gram-Schmidt process is executed in the
following way:

u1 = v1, e1 =
u1

∥u1∥

u2 = v2 − proju1
(v2), e2 =

u2

∥u2∥

u3 = v3 − proju1
(v3)− proju2

(v3), e3 =
u3

∥u3∥
...

...

un = vn −
n−1∑
i=1

projui
(vn), en =

un

∥un∥

This process ensures that each new calculated vector is orthogonal to all the previously calculated
vectors.

2.5 Hash Functions

Hash functions are mathematical algorithms that take an input of any size and produce a fixed-size
string of characters, often referred to as a hash or digest. The primary purpose of hash functions is
to quickly and efficiently map data to a unique output value. A good hash function should have two
important properties: Firstly, for an arbitrary sized input it should provide a fixed output. Secondly,
it should be collision-resistant, this means that it should be computationally infeasible to find two
distinct inputs that produce the same output.

Since (most) hash functions output a set number of characters, if the input is larger than this, it
essentially gives you a way to compress data. During this project the following hash functions are
used:

1. SHA3-256 - Produces a fixed output of 256 bits.

2. SHA3-512 - Produces a fixed output of 512 bits.
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3. SHAKE-128 - Can produce output of different lengths but typically around 128 bits.

4. SHAKE-256 - Can produce output of different lengths but typically around 256 bits.

Note that for the SHAKE functions, SHAKE-256 is better optimized to produce large outputs com-
pared to SHAKE-128, but SHAKE-128 is faster in doing smaller outputs.

2.6 Cryptography

Cryptography is a way of making information secure by using special techniques to turn it into a
secret code. It involves using mathematical algorithms and methods to scramble the information so
that only those who have the special “key” can understand it. It’s like putting your message inside
a locked box that can only be opened with the right key. This helps keep important information,
like passwords or private messages, safe from unauthorized access or tampering. This process is
accomplished by using encryption systems.

There are two important operations that are used in encryption systems: encryption and decryption.
Encryption takes the message that you want to send (sometimes called the plaintext) and scrambles
it so that nobody can unscramble it (usually called the ciphertext) if they do not have the key for
it. Decryption uses the secret key to unscramble the ciphertext so that it can retrieve the plaintext.
There are two main types of cryptography: symmetric key encryption and asymmetric key encryption,
and they differ in how the keys are generated and used.

2.6.1 Symmetric Key Encryption

In symmetric key encryption, only one key is used. Both communicating parties must have the same
key in order for it to work. Figure 2 shows how the key is used in this type of encryption. Imagine
Alice and Bob are trying to communicate with each other, then, if Alice wants to send Bob a message,
she will use the secret key to encrypt the message and send it. When Bob receives the message, he
will also use the secret key to decrypt the message, recovering the original message.

Figure 2: Example of how symmetric key encryption works.

There is one main weakness of this system, namely, how do you ensure both Alice and Bob have the
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same secret key? If they send it without encrypting it, malicious attackers could intercept the key
and use it to decrypt all the messages that are exchanged between Alice and Bob. Asymmetric key
encryption provides an answer to this, and is most commonly known as public key encryption.

2.6.2 Public Key Encryption (PKE)

This scheme was invented by Whitfield Diffie and Martin Hellman in 1976 [11], and in 2015 won the
Turing Award for bridging the world of cryptography from secrecy to the public sphere [15]. In public
key encryption systems, each user has two keys. One is the public key which is known by everyone
that wants to communicate with a user, and the other is the private key which is only known to
the user it belongs to. The special feature of these keys is that they inverse each others operations,
therefore if you encrypt something with a public key, it can only be decrypted by its corresponding
private key. Figure 3 shows how the keys are used in this type of encryption. Suppose again that Alice
and Bob are trying to communicate with each other, then, if Alice wants to send Bob a message, she
will use Bob’s public key to encrypt the message and send it. When Bob receives the message, he
will use his secret key to decrypt the message, recovering the original message. The keys are related
in such a way that it is computationally infeasible to recover the private key from the public key.

Figure 3: Example of how public key encryption works.

Now a formal definition for PKE is provided as given in [10].

Public Key Encryption (PKE). A public key encryption scheme is a set of algorithms (KeyGen,
Enc, Dec) with the following specifications:

• KeyGen: a probabilistic algorithm that outputs a public key pk and a secret key sk.

• Enc: a probabilistic algorithm that takes as input a public key pk and a message µ and outputs
a ciphertext c.

• Dec: a deterministic algorithm that takes as input a secret key sk and a ciphertext c and
outputs a message µ.
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Additionally, let 0 < δ < 1. Then a PKE is (1− δ)-correct if for any (pk, sk) generated from KeyGen
and µ,

P[Dec(sk,Enc(pk, µ)) ̸= µ] ≤ δ,

where the probability is taken over the randomness of the encryption algorithm. We call the above
probability decryption failure probability (DFP). Indeed, this is the probability that, after encrypting
a message µ and later decrypting it, the message retrieved from decryption is not the same as the
original message.

While public key encryption has its security advantages over symmetric encryption, it has some disad-
vantages regarding speed and size. PKE has slower operations and larger ciphertexts as compared to
symmetric encryption, which means that in some applications, such as live communications, symmet-
ric encryption is more efficient and preferable. Hence, a system that is somewhere between symmetric
and asymmetric encryption is needed which has the speed of symmetric encryption and the security
of asymmetric encryption. A hybrid of both can be used to accomplish this, which is aptly referred
to as hybrid encryption.

2.6.3 Key Encapsulation Mechanism (KEM)

In short, a KEM is a public key encryption system that supports hybrid encryption. It generates a
symmetric key that is encrypted using public key encryption to send to another party. The ciphertext
of the actual message is generated using symmetric encryption. The receiver decrypts the symmetric
key using their asymmetric secret key, and then uses the symmetric key to decrypt the message sent.
This can be seen illustrated in the following example.

Suppose once again that Alice and Bob are trying to communicate with each other, then Alice will first
generate a symmetric key Ks and encrypt the message she wants to send to Bob with it, generating
ciphertext cs. This process is called encapsulation. Finally, Alice encrypts Ks with Bob’s public key,
producing ciphertext cpk and sends both ciphertexts to Bob. When Bob receives the ciphertexts, it
first decrypts cpk using his secret key to retrieve Ks, and this process is called decapsulation. Then,
he uses Ks to decrypt cs to retrieve the message that Alice sent her. Figure 4 shows how the keys
are used in this type of encryption.

Figure 4: Example of how a KEM works.
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Now a formal definition for KEM is provided as given in [10].

Key Encapsulation Mechanism (KEM). A key encapsulation mechanism scheme is a set of algo-
rithms (KeyGen, Encap, Decap) with the following specifications:

• KeyGen: a probabilistic algorithm that outputs a public key pk and a secret key sk.

• Encap: a probabilistic algorithm that takes as input a public key pk and outputs a sharing key
K and a ciphertext c.

• Decap: a deterministic algorithm that takes as input a secret key sk and a ciphertext c and
outputs a sharing key K.

The correctness of KEM is defined similarly to that of PKE.

2.7 Security

2.7.1 IND-CPA

IND-CPA (Indistinguishability under Chosen Plaintext Attack) is a desirable property that encryption
schemes should have. It is used to evaluate the security of an encryption algorithm and assess
the vulnerabilities to chosen plaintext attacks. It can be defined as a game between an adversary
(attacker) and a challenger (the system). Let pk be the public key and sk the secret key of the
challenger, then:

1. Challenger: Generates pk and sk, and publishes pk to the adversary and keeps sk.

2. Adversary: May perform some encryptions or other operations. Then, submits two different
plaintexts, m0 and m1, to the challenger.

3. Challenger: Selects a bit b ∈ 0, 1 uniformly at random, and sends the ciphertext c = E(pk, mb)
back to the adversary.

4. Adversary: May perform some encryptions or other operations. Then, guesses which plaintext
was encrypted by guessing the value of b.

A cryptographic scheme is IND-CPA secure if the advantage the adversary has is negligible, i.e. the
attacker has roughly a 50% chance to guess the plaintext correctly. Therefore, attackers aim to find
ways of creating attacks where the success probability is better than 50%. The PKE version of both
SMAUG and Kyber are IND-CPA secure under a set of complexity theoretic security assumptions.
The advantage that an adversary has in a PKE setting is formally described in the next definition.

IND-CPA security of PKE. For a (quantum) adversary A against a public key encryption scheme
PKE = (KeyGen, Enc, Dec), the IND-CPA advantage of A is defined as follows for all messages m0

and m1:

AdvIND-CPA
PKE (A) =

∣∣∣∣P [b′ = b | b← {0, 1}, c← Enc(pk,mb)]−
1

2

∣∣∣∣
It should be noted that the attacker only has access to the encryption method, so they can call the
encryption function as many times as they want but do not have access to either the secret key or
the decryption method.
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2.7.2 IND-CCA

IND-CCA (Indistinguishability under Chosen Ciphertext Attack) uses a definition similar to IND-CPA.
It has two variants, IND-CCA1 and IND-CCA2, both SMAUG and Kyber are IND-CCA2 secure so
that will be the focus of this part. Once again, it can be explained as a game between an adversary
and a challenger. Let pk be the public key and sk the secret key of the challenger, then:

1. Challenger: Generates pk and sk, and publishes pk to the adversary and keeps sk.

2. Adversary: May perform some encryptions, ask decryption queries or other operations. Then,
submits two different plaintexts, m0 and m1, to the challenger.

3. Challenger: Selects a bit b ∈ 0, 1 uniformly at random, and sends the ciphertext c = E(pk, mb)
back to the adversary.

4. Adversary: May perform some encryptions, decryptions or other operations. However, they
may not send c back for decryption. Then, guesses which plaintext was encrypted by guessing
the value of b.

Same as before, a scheme is said to be IND-CCA2 secure if the advantage the adversary has is
negligible. The KEM version of both SMAUG and Kyber are IND-CCA2 secure. The advantage that
an adversary has in a KEM setting is formally described in the next definition.

IND-CCA2 security of KEM. For a (quantum) adversary A against a key encapsulation mechanism
scheme KEM = (KeyGen, Encap, Decap), the IND-CCA2 advantage of A is defined as follows for all
messages m0 and m1:

AdvIND-CCA2
KEM (A) =

∣∣∣∣P [b = b′ | b← {0, 1}, c← Encap(pk,mb),Decap]−
1

2

∣∣∣∣
2.8 Fujisaki-Okamoto Transform

The Fujisaki-Okamoto (FO) transform can be used to build KEMs that are IND-CCA secure from
PKEs that are IND-CPA secure. This is accomplished by performing two transformations: T and U.
In this section these two transformations will be explained.

The simplest way to transform a PKE into a KEM using the FO transform requires that the PKE
is OW-CPA (One-Way against Plaintext Checking Attacks) secure. OW-CPA provides the adversary
with a plaintext checking oracle that returns 1 if and only if the decryption of the ciphertext returns
the original message. Therefore, the first step is to transform the IND-CPA secure schemes into OW-
PCA schemes (OW-CPA schemes are actually the requirement, but IND-CPA is a stronger notion
therefore it also works). This transformation will be transformation T and is defined in the following
manner.

Transformation T. To a public-key encryption scheme PKE = (KeyGen, Enc, Dec) and random
oracle G, associate PKE1 = T[PKE, G]. The algorithms of PKE1 = (KeyGen, Enc1, Dec1) are
defined below.

• KeyGen: a probabilistic algorithm that outputs a public key pk and a secret key sk.

• Enc1: a deterministic algorithm that takes as input a public key pk and a message µ and
outputs a ciphertext c. It is deterministic because it calls Enc with pk, µ and G(m), where
G(m) is used as a seed such that the random oracles in Enc always produce the same value for
the same seed.

12



• Dec: a deterministic algorithm that takes as input a secret key sk and a ciphertext c and
outputs a message µ if decryption is successful, and ⊥ otherwise.

After obtaining PKE1 which is OW-PCA secure, transformation U is applied to transform PKE1 into
a IND-CCA secure KEM. There are four variations to this transformation, however only the two that
are used by SMAUG and Kyber will be discussed. The one SMAUG uses is U̸⊥

m and the one Kyber
uses is U̸⊥, and are defined as follows.

Transformation U̸⊥
m. To a public-key encryption scheme PKE1 = (KeyGen1, Enc1, Dec1) and a

hash function H : {0, 1}∗ → {0, 1}n, associate KEM ̸⊥
m = U ̸⊥

m[PKE1, H]. The algorithms of KEM̸⊥
m

= (KeyGen ̸⊥, Encapm, Decap ̸⊥m) are defined below.

• KeyGen ̸⊥: a probabilistic algorithm that outputs a public key pk and a secret key sk, which is
defined as the secret key sk′ produced by KeyGen1 together with a random secret s.

• Encapm: a probabilistic algorithm that takes as input a public key pk and outputs a sharing
key K, which is the hash H(m) of a random message m, and a ciphertext c.

• Decap ̸⊥m: a deterministic algorithm that takes as input a secret key sk and a ciphertext c and
outputs the sharing key K = H(m) if decryption is successful, and H(s, c) otherwise.

Transformation U̸⊥. To a public-key encryption scheme PKE1 = (KeyGen1, Enc1, Dec1) and a
hash function H : {0, 1}∗ → {0, 1}n, associate KEM̸⊥ = U̸⊥[PKE1, H]. The algorithms of KEM ̸⊥

= (KeyGen ̸⊥, Encap, Decap̸⊥) are defined below.

• KeyGen ̸⊥: a probabilistic algorithm that outputs a public key pk and a secret key sk, which is
defined as the secret key sk′ produced by KeyGen1 together with a random secret s.

• Encap: a probabilistic algorithm that takes as input a public key pk and outputs ciphertext c,
and a sharing key K, which is the hash H(m, c) of a random message m and c.

• Decap ̸⊥: a deterministic algorithm that takes as input a secret key sk and a ciphertext c and
outputs the sharing key K = H(m, c) if decryption is successful, and H(s, c) otherwise.

To finish formally defining the full FO transform on each scheme, the KEM of each PKE scheme is
built in the following manner:

• SMAUG.KEM ̸⊥
m = FO ̸⊥

m[PKE, G, H] = U̸⊥
m[T[SMAUG.PKE, G], H] = (KeyGen̸⊥, Encapm,

Decap ̸⊥m).

• Kyber.KEM̸⊥ = FO̸⊥[PKE, G, H] = U̸⊥[T[Kyber.PKE, G], H] = (KeyGen̸⊥, Encap, Decap̸⊥).

2.9 Learning with Errors/Rounding

Learning with Errors/Rounding (LWE/R) are security assumptions. Public keys and secret keys are
setup via noisy linear operations that use errors from carefully chosen distributions. The LWE/R
assumptions now state that the public keys are indistinguishable from random values. To understand
better how these work and why they are secure, an example of learning without errors/rounding will
be given.

2.9.1 Initial Setup

Let A ∈ Zk×l be an integer matrix of dimensions k × l, s ∈ Zl be an integer l-dimensional vector
and b ∈ Zk be an integer k-dimensional vector. The relationship between these is as follows:

A · s = b. (1)
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Then A and b can be kept as the public key, and s as the secret key. However, this is not a hard
mathematical problem, since if someone has A and b, it is easy to decipher s by using Gaussian
elimination. This can be easily seen in the following example:

A, s and b are defined as follows:

A =

(
1 2 3
3 2 1

)
s =

x
y
z

 b =

(
19
21

)
.

Equation 1 can be rewritten such that it results in the following system of equations:

x+ 2y + 3z = 19

3x+ 2y + z = 21.

And using Gaussian elimination retrieves the solutions:

x = z + 1

y = 9− 2z.

Now, even though a unique solution cannot be found, and therefore the original secret key, it is not
needed to break encryption. In fact, any set of numbers that fulfill the above solutions will work,
therefore, an additional step needs to be introduced to make this more robust.

2.9.2 Learning with Errors (LWE)

To improve on the previous system, LWE introduces some random “noise” that will make it harder
to find the secret key. Additionally it takes the values of A, s and b modulo q, the reason for this is
that it will be used for error correcting as it will discussed later.

Let A ∈ Zk×l
q be an integer matrix of dimensions k × l, s ∈ Zl

q be an integer l-dimensional vector,

e ∈ Zk be an integer k-dimensional error vector and b ∈ Zk
q be an integer k-dimensional vector. The

relationship between these is as follows:

A · s+ e = b. (2)

Similar to before, A and b will be our public key and s will be the secret key. Gaussian elimination
cannot be used to solve this equation, and since the error e is never stored, it generally becomes quite
difficult to break. The error vector should have random small values, such that it only perturbs the
result slightly which is also the reason it does not need to be done modulo q. Moreover, generally it
is desired that there exists a unique secret key for the public key used.

2.9.3 Learning with Rounding (LWR)

There is another way of doing the previous setup, but instead of small random errors, rounding is
used which corresponds to a deterministic error. LWR introduces two integers q ≥ p ≥ 2,which are
used to scale the multiplication A · s.

Let A ∈ Zk×l
q be an integer matrix of dimensions k × l, s ∈ Zl

q be an integer l-dimensional vector

and b ∈ Zk
q be an integer k-dimensional vector. The relationship between these is as follows:⌊

p

q
·A · s

⌉
= b. (3)
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Once again, A and b will be our public key and s will be the secret key. Similarly to the error variant,
Gaussian Elimination cannot be used to solve this equation. Given the conditions on p and q, this
method makes A · s smaller and then rounds every value to the nearest integer. Similarly to LWE,
generally it is desired that there exists a unique secret key for the public key used.

2.10 Module Learning with Errors/Rounding

Based on the same ideas as LWE and LWR, Module Learning with Errors/Rounding (MLWE/R) builds
upon them by making the elements of the matrices go from integers to polynomials in a polynomial
quotient ring. For example, as it is the case in SMAUG, the elements go from being in Zq to Rq.
MLWE/R incorporates a modular structure into the equations. This structure has several advantages
over LWE/R, such as increased efficiency, which is why it is preferred in cryptographic applications.
MLWE/R is actually a predecessor to Ring Learning with Errors/Rounding (R-LWE/R) instead of
LWE/R. An informal definition of R-LWE/R is that it is MLWE/R of module rank 1, and it provides
better efficiency at the cost of security. This is because essentially A, b, s and e are only one
polynomial each, meaning that there are fewer polynomial multiplications. However, this means that
the scheme is less secure so longer polynomials will be needed to achieve the same level of security.
MLWE/R was designed such that it had better security than RLWE/R, but better performance than
LWE/R [1].

To prove the security of such assumptions, reductions from one problem to another are used. For
starters, there exists a reduction from a worst-case lattice problem to an average-case LWE problem,
like the SVP [21][23]. This means solving a random LWE problem is at least as hard as solving the
worst case in the the lattice problem. Another way this can be interpreted is that if LWE is solved,
then the lattice problem is solved too through this reduction. This gives confidence on the security
assumption of LWE. Moreover, there exist reductions from module lattices to MLWE, where problems
in module lattices are proven to be equally hard as the generic counterpart [18]. Further work also
proved there to be a reduction from MLWE to MLWR [8]. Therefore, MLWE could be a problem
that is harder to solve than MLWR. Additionally, so far there are no attacks that specifically target
the module structure of MLWE/R.

The modular structure of MLWE enables the efficient utilization of techniques such as the Number
Theoretic Transform (NTT), leading to faster encryption and decryption operations.

Now an example of how encryption works under the MLWE assumption is presented. This example
is taken from [16], and is based off Kyber. Imagine that Alice is trying to send Bob an encrypted
message using a public key encryption system. Let (A, b) be the public key and s the secret key
of Bob. Then Alice only has access to the values of A and b. Let n = 4 and q = 17 such that
Rq = Z17/{x4 + 1}. Then let A, s, b and e take the following values:

A =

(
6x3 + 16x2 + 16x+ 11 9x3 + 4x2 + 6x+ 3
5x3 + 3x2 + 10x+ 1 6x3 + x2 + 9x+ 15

)
e =

(
x2

x2 − x

)
b =

(
16x3 + 15x2 + 7

10x3 + 12x2 + 11x+ 6

)
s =

(
−x3 − x2 + x
−x3 − x

)
.

For encryption two additional vectors and a polynomial are needed, and these values are freshly
generated every time the encryption process is started. Vector r will be a random polynomial vector,
vector e1 will be a small error polynomial vector and e2 will be a small error polynomial.

r =

(
−x3 + x2

x3 + x2 − 1

)
e1 =

(
x2 + x
x2

)
e2 = −x3 − x2
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Now to encrypt a message in bits, the bits are turned into the coefficients of the polynomials. For
example, say that (11)10 = (1011)2 is what should be sent, then the polynomial representation will
be:

mb = 1x3 + 0x2 + 1x1 + 1x0 = x3 + x+ 1.

The final step before starting to encrypt is to scale up the coefficients by ⌊ q2⌉ = 9, the reason for this
is so that it can correct the error caused by the noise in e. Therefore the message to be sent will be:

m = 9x3 + 9x+ 9.

The process of encryption calculates two values, u and v, and they are calculated in the following
way:

u = A⊺ · r + e1

v = b⊺ · r + e2 +m

Therefore substituting the values:

u = (11x3 + 11x2 + 10x+ 3, 4x3 + 4x2 + 13x+ 11)

v = 7x3 + 6x2 + 8x+ 15.

This is what Alice will send to Bob, the ciphertext. Then to decrypt the message, Bob simply has to
solve this equation:

mn = v − s⊺ · u.

Note that this is a noisy message because of the errors that were introduced. Which means that the
coefficients will not be 0 or 9 exactly. The reason this works is because if the terms are expanded,
the following derivation is obtained:

mn = v − s⊺ · u
= b⊺ · r + e2 +m− s⊺ · (A⊺ · r + e1)

= (A · s+ e)⊺ · r + e2 +m− s⊺ ·A⊺ · r − s⊺ · e1
= s⊺ ·A⊺ · r + e⊺ · r + e2 +m− s⊺ ·A⊺ · r − s⊺ · e1
= e⊺ · r + e2 +m− s⊺ · e1.

Therefore m is a noisy variant of m, however, it perturbs the original m so little that the real message
can be figured out. The result of solving this equation is:

mn = 8x3 + 14x2 + 8x+ 6.

The coefficients that are close to 9 are the coefficients that represented the bit 1, and the ones close
to 0 represented bit 0. Therefore the original message is indeed (1011)2 = (11)10. To encrypt with
MLWR a similar process is used, but instead of adding small errors, the equations are scaled and
rounded.

2.11 Number-Theoretic Transform (NTT)

The Number-Theoretic Transform is an efficient way to perform multiplications in Rq. However, it
needs q to be of a certain form, namely q = p · 2k + 1 where q and p are primes and k ∈ Z. Since
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SMAUG uses q as powers of 2 it cannot benefit from this, nonetheless, Kyber does have q in such a
way. In Kyber, q = 3329 = 13 · 28 + 1 so NTT can be used. The following is an explanation of how
NTT works in Kyber’s case.

Thanks to the special properties of q, the defining polynomial of Rq, X
256 + 1, can be factored into

128 polynomials of degree 2 modulo q:

X256 + 1 =

127∏
i=0

(X2 − 172i+1)

Then the NTT of f ∈ Rq is given by:

(f mod X2 − 172(0)+1, . . . , f mod X2 − 172(127)+1).

So each term in the NTT representation is a degree 1 polynomial. Alternatively, the NTT of f can
be seen as:

NTT(f) = f̂ = (f̂0 + f̂1X, f̂2 + f̂3X, . . . , f̂254 + f̂255X)

where,

f̂2i =

127∑
j=0

f2j · 17(2i+1)j

f̂2i+1 =

127∑
j=0

f2j+1 · 17(2i+1)j .

Therefore multiplication of f · g can be accomplished by NTT−1(NTT(f) ·NTT(g)) where NTT(f) ·
NTT(g) = f̂ · ĝ = ĥ and NTT−1 is the inverse operation. So each term in ĥ takes the form:

ĥ2i + ĥ2i+1X = (f̂2i + f̂2i+1X) · (ĝ2i + ĝ2i+1X) mod X2 − 172i+1.

This means that ĥ is calculated by multiplying many little linear polynomials which is a cheaper
operation that multiplying two big polynomials of higher degrees. Applying NTT−1(ĥ) recovers
the actual result of f · g. Using fast algorithms, the time complexity of NTT-based polynomial
multiplication is O(n log n) [19].
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3 SMAUG

In this section, SMAUG’s algorithms for both its PKE and KEM variants are explored. SMAUG PKE
is IND-CPA secure as proven in Section 6.1 , and SMAUG KEM is IND-CCA2 secure as proven in
[10]. The parameters that are mentioned throughout this section are instantiated in Table 1. The
rings from which the polynomials are taken from are defined in Section 2.2.

3.1 Design Overview

3.1.1 MLWE and MLWR

The security of the key generation relies on the MLWE assumption and the security of the encryption
relies on the MLWR assumption. Since LWE-based problems have been studied for longer, many
schemes choose to use these problems for the security of both their key generation and encryption.
The modular variant of LWE in particular allows for better efficiency and fine-tuning security better
than its ring and standard counterparts. However, MLWR is considered as hard as MLWE unless
the same secret is used to create too many samples [9]. This is because the rounding operations
tend to leak more data about the secret key. Therefore, SMAUG uses it in encryption only, and this
makes the ciphertexts smaller and the encryption/decryption more efficient. The reasons LWE/R and
RLWE/R are not used are described in Section 2.10.

3.1.2 Choice of Moduli

All moduli in SMAUG are in powers of 2. This choice is made since binary information is stored in
base 2, therefore operations such as bit shifting and scaling become easier. Bit shifting is when you
shift all the bits in a number to the left or right. For example, if you have the number 610 = (0110)2
you can shift the bits to the left by multiplying by 2. Indeed, 1210 = (1100)2. Similarly, you can shift
the bits to the right by dividing by 2, since 310 = (0011)2. However, since the moduli are powers
of two, it means that they cannot benefit from using NTT. To combat this, SMAUG introduces a
polynomial multiplication method that leverages the fact that in all multiplications, there is a sparse
polynomial.

3.1.3 Sparse Secret and Ephemeral Key

SMAUG does not use the traditional MLWE problem, and instead makes use of MLWE with a sparse
secret. This means that the secret key ends up taking less space which is an advantage for storage
limited devices. The coefficients only take three different values (−1, 0, 1) and this structure is what
allows SMAUG to take advantage of faster multiplications. For sparse secrets, instead of storing the
coefficients directly, the degrees at which nonzero coefficients exist are stored. First the degrees of
the terms with coefficient 1 are stored, then the ones for coefficient −1 while making note of where
the negative coefficients start. For example, if you had the polynomial x4 + x3 − x then, instead of
storing the polynomial as [0,−1, 0, 1, 1], it is stored [3, 4, 1] with a counter neg start = 2 (note that
it is 2 and not 3 since list positions start at 0 instead of 1).
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Algorithm 1: poly mult add

1 Input: a ∈ Rq, b ∈ Sη
2 For i from 0 to neg start−1 do
3 degree = b[i]
4 For j from 0 to n− 1 do
5 x[degree+ j] += a[j]
6 end for
7 end for
8 For i from neg start to len(b)−1 do
9 degree = b[i]

10 For j from 0 to n− 1 do
11 x[degree+ j] −= a[j]
12 end for
13 end for
14 For i from 0 to n− 1 do
15 y[j] = x[j]− x[n+ j]
16 end for
17 Return: y

Algorithm 1 shows how polynomial multiplication happens in SMAUG. As stated in Section 2.2, for
an integer η, the set of polynomials of degree less than n with coefficients in [−η, η] ∈ Z is defined
as S. In this case, since it describes the coefficients of a sparse polynomial, η = 1 and therefore
the coefficients are in {−1, 0, 1}. Additionally, n takes the value n = 256 in all variants of SMAUG,
with q = 1024 for SMAUG-128 and q = 2028 for the others. This algorithm leverages the fact that
in every matrix or vector multiplication (and corresponding polynomial multiplications), at least one
of the terms will be sparse. As it will be seen in the following sections, this is always the case. It
is easily seen that the time complexity of this algorithm is O(len(b) · (1 + n) + n). This is because
the first two for loops cost the same to run and they happen in total len(b) times. Then the inner
part of the loop runs one operation to retrieve the degree and n operations adding the list elements.
Similarly for the last for loop, one instruction is carried out n times, hence O(len(b) · (1 + n) + n).

3.1.4 Hash Functions

The following hash functions are used:

• H - Is instantiated with SHA3-256 [13].

• G - Is instantiated with SHAKE-256 [13].

• XOF - Is instantiated with SHAKE-128 (XOF stands for eXtendable-Output Function) [13].

3.1.5 Sampling Algorithms

Each variant of SMAUG uses three different sampling algorithms: expandA, HWT and dGaussian.
expandA is used to generate A from a seed and the process can be seen in Algorithm 2. It uses
the seed as input for XOF, which creates further pseudorandomness, and the output is stored in buf.
Then, for each position in A it populates the polynomials by transforming the bytes into coefficients
for the polynomial. Note that i and j are passed as parameters in this function and this is done to
offset the bytes used in buf for each position. For example, in SMAUG-128 a polynomial requires
320 bytes to populate a polynomial, because each coefficient needs 10 bits (since it is mod 1024)
for representation, there are 256 coefficients and each byte has 8 bits ((256 · 10)/8 = 320). Then
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bytes to Rq could take the first 320 + i · offseti + j · offsetj bytes of buf for i, j ∈ [0, 1]. This way it
ensures that different bytes in buf are used for each position. The function expandA is adopted from
Saber which can be found at Algorithm 15 in [6]. The time complexity in terms of instructions in
Algorithm 2 is O(k2). This is due to the for loops, however, this might be larger depending on how
many operations happen in bytes to Rq function. Here k refers to the dimension of A which is 2, 3
and 5 for SMAUG-128, SMAUG-192, SMAUG-256 respectively.

Algorithm 2: expandA: uniform matrix sampler

1 Input: seed ∈ {0, 1}256
2 buf ← XOF(seed)
3 For i from 0 to k − 1 do
4 For j from 0 to k − 1 do
5 A[i][j] = bytes to Rq(buf, i, j)
6 end for
7 end for
8 Return: A

HWTh (Hamming Weight Sampler) is used to generate the secret key s and the ephemeral secret
r used in encryption, and it is illustrated in Algorithm 3. Similar to expandA, it first populates buf
with pseudorandom bytes using the seed passed as input. This function also has a parameter h
which determines how many nonzero coefficients the resulting polynomials will have. It should also
be mentioned that res is a list that has 0 as an initial value for each position, and its length is the
total sum of the number of coefficients between all polynomials in s. In other words, in SMAUG-128
s has two polynomials (since k = 2) each with 256 coefficients, therefore res is a list of length 512.
So in this example n = 512, even though as it can be seen in the parameter sets in Table 1, n = 256.
This is because in this algorithm n is actually n · k. Here h takes the value of hs or hr depending on
its use, with the instantiated values defined in Table 1.

The high level explanation of what happens in this algorithm can be explained as follows. With all
the values of res been set to 0, first pick a random degree that is smaller than i. Variable i essentially
becomes the last h biggest degrees. Putting SMAUG-128 as an example again, then i ∈ [372, 511].
Then, it copies the coefficient at position “degree” into position i. Next, it randomly assigns 1 or
−1 to position “degree”. Finally, after all the nonzero coefficients have been generated, convToIdx
separates res into the amount of polynomials needed and then stores the degrees at which the nonzero
coefficients happen as explained before.

Algorithm 3: HWTh: hamming weight sampler

1 Input: seed ∈ {0, 1}256
2 buf ← XOF(seed)
3 idx ← 0
4 For i from n− h to n− 1 do
5 Repeat
6 degree = buf[idx] ∧ mask
7 idx += 1
8 until degree < i
9 res[i] = res[degree]

10 res[degree] = ((buf[idx-1] ≫ 14) ∧ 0x02)−1
11 end for
12 Return: convToIdx(res)
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In a bit more detail, the mask works as a modulo operator which takes the value q − 1, therefore
ensuring that all values of degree are below q. However, q equals 1024 and 2048 in different variants
of SMAUG, therefore the value of degree could be larger than the totals sum of number of degrees
in a polynomial since the maximum is 511. This is the reason the loop repeats until it finds a smaller
degree. Line 10 is another complicated line, but essentially what it does is bit shift the value of buf
at idx-1 14 places to the right (similar to dividing the number by 214). This value is then used in a
bit AND operation with the number 2, the result of this is that it produces either a 0 or a 2. If a 0
is produced, the −1 makes it so that the coefficient at that degree is −1, and if a 2 is produced, it
makes the coefficient at that degree 1.

The function HWT is adapted from SampleInBall, which can be found in Figure 2 of [12]. The time
complexity of this algorithm is at least O(h), and it could be larger depending on how many times
the repeat loop runs for.

The algorithm dGaussian is a discrete Gaussian sampler which is used to generate the coefficients of
the error polynomial during the key generation. So this algorithm is called for each coefficient of each
polynomial in e. There are two variants of this algorithm, since SMAUG-192 uses a different one
as opposed to the other variants. The two algorithms are distinguished by their standard deviation
and the most remarkable result is that the one with σ = 1.0625 gives coefficients in [−3, 3] and the
one with σ = 1.0625 gives coefficients in [−7, 7]. Algorithms 4 and 5 illustrate how the sampling
happens.

It should be noted that, except for the lines that have the ∈ {0, 1}c, x0x1x2 + x2x3x4 should be
read as (x0 AND x1 AND x2) OR (x2 AND x3 AND (NOT x4)). This algorithm has a constant
time complexity.

Algorithm 4: dGaussian: discrete Gaussian sampler with σ = 1.0625

1 Input: x = x0x1x2x3x4x5x6x7x8x9 ∈ {0, 1}10
2 s0 = x0x1x2x3x4x5x7x8

3 s0 += (x0x3x4x5x6x8) + (x1x3x4x5x6x8) + (x2x3x4x5x6x8)
4 s0 += (x2x3x6x8) + (x1x3x6x8)
5 s0 += (x6x7x8) + (x5x6x8) + (x4x6x8) + (x7x8)
6 s1 = (x1x2x4x5x7x8) + (x3x4x5x7x8) + (x6x7x8)
7 s = s1s0 ∈ {0, 1}2
8 s = (−1)x9 · s
9 Return: s

Algorithm 5: dGaussian: discrete gaussian sampler with σ = 1.453713

1 Input: x = x0x1x2x3x4x5x6x7x8x9x10 ∈ {0, 1}11
2 s0 = (x0x1x2x3x5x7x8) + (x1x2x3x5x6x7x9) + (x1x2x3x6x7x8)
3 s0 += (x1x2x3x5x8x9) + (x0x2x3x5x8x9)
4 s0 += (x4x5x6x7x9) + (x3x4x8x9) + (x5x6x7x8) + (x4x6x7x8) + (x4x5x8x9)
5 s0 += (x5x8x9) + (x6x8x9) + (x6x8x9) + (x7x8x9) + (x7x8x9) + (x6x8x9)
6 s1 = (x0x1x4x5x6x7x9) + (x2x4x5x6x7x9) + (x3x4x5x6x7x9) + (x5x6x7x8x9)
7 s1 += (x1x2x3x8x9) + (x7x8x9) + (x6x8x9) + (x5x8x9) + (x4x8x9)
8 s2 = (x1x4x5x6x7x8x9) + (x2x4x5x6x7x8x9) + (x3x4x5x6x7x8x9)
9 s = s2s1s0 ∈ {0, 1}3

10 s = (−1)x10 · s
11 Return: s
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3.2 Specification of SMAUG.PKE

3.2.1 Key Generation

Algorithm 6: SMAUG.PKE.KeyGen: key generation

1 seed← {0, 1}256
2 (seedA, seedsk)← XOF(seed)

3 A← expandA(seedA) ∈ Rk×k
q

4 s← HWThs(seedsk) ∈ Skη
5 e← dGaussianσ(seedsk) ∈ Rk

6 b← −A⊺ · s+ e ∈ Rk
q

7 Return: pk = (seedA, b), sk = s

Algorithm 6 generates a key-pair of a public and secret key. The public key is composed of seedA
and b while the secret key is only composed of s. The public key contains seedA instead of A to
make the public key smaller, however this means that every time A needs to be used it must be
recomputed. The secret key is s, which is initialized using Algorithm 3 (HWThs). This algorithm
will make sure that there are only hs nonzero coefficients in the polynomials of s. In the case of
SMAUG-128 hs = 140 and k = 2, which means that s will have two polynomials with a combined
total of 140 nonzero coefficients. Additionally, those nonzero coefficients will take either 1 or −1 as
their value. Since the coefficients are small and there are not many nonzero coefficients, this is what
makes the secret sparse.

Moreover, even though the usual format of LWE is that A ·s+e, here they choose to use the negative
transpose of A. While it is never explained explicitly why they chose to do this, it does allow for the
correct encryption and decryption operations to happen. Finally, although the polynomials in e are
not made modulo some number, the coefficients are kept small enough to not perturb the result too
much (as seen before either in [−3, 3] or [−7, 7]), reducing the probability of decryption failure.

The time complexity of this algorithm is O(n · h · k), because of the polynomial multiplication. The
functions expandA and HWThs

have time complexities O(k2) and O(h) respectively. Moreover, there
are k2 polynomial multiplications with time complexity O(len(b) · (1+n)+n). This time complexity
can be reworked so that it no longer has the term len(b), and this is because len(b) is the number
of nonzero coefficients in one polynomial of s. However, the sum of all of these is h. Therefore,
there are k polynomial multiplications with time complexity O(h · (1+n)+n). Introducing k means
that we get the terms kh+ khn+ kn, from which khn is clearly the largest, even against k2 and h.
Therefore, the time complexity of this algorithm is O(n · h · k) as stated before.

3.2.2 Encryption

Algorithm 7: SMAUG.PKE.Enc: encryption

1 Input: pk = (seedA, b), µ ∈ Rt, (optional) seedr
2 A← expandA(seedA) ∈ Rk×k

q

3 If seedr is not given then seedr ← {0, 1}256
4 r ← HWThr (seedr) ∈ Skη
5 c1 ← ⌊p/q ·A · r⌉ ∈ Rk

p

6 c2 ← ⌊p′/q · ⟨b, r⟩+ p′/t · µ⌉ ∈ Rp′

7 Return: c = (c1, c2)
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Algorithm 7 encrypts a message µ and outputs a vector c which contains the ciphertext. The vector
r is used to introduce randomness when encrypting, and is sparse like s to ensure that it perturbs the
result as little as possible. Additionally, it is also scaled using p, p′, q and t, and then it is rounded.
While no explicit reasons were given for the use of p and p′ instead of q, it probably has to do with a
balance on security and storage efficiency. A scheme ideally should produce small ciphertexts, but if
they are too small, they might be less secure since they have to represent a larger set of plaintexts.
Additionally, reducing it too much can increase the decryption failure probability by increasing the
amount of plaintexts mapped to the same ciphertext.

c2 is used to encrypt the message, however c1 is needed so that the secret key can be used to cancel
out b. Note that the message µ is interpreted as a polynomial in Rt, and since t = 2 for every
SMAUG specification, it allows a 256-bit number to be represented in polynomial form. To do this,
set the 0s and 1s in the coefficients of the appropriate degrees.

The time complexity of this algorithm is O(n · h · k), because of the polynomial multiplication for
the same reason as before. The polynomial multiplication in c2 does not contribute to this time
complexity since it only multiplies two vectors together, while in c1 the matrix A ensures there are
multiple multiplications of two vectors together.

3.2.3 Decryption

Algorithm 8: SMAUG.PKE.Dec: decryption

1 Input: sk = s, c = (c1, c2)
2 µ′ ← ⌊t/p · ⟨c1, s⟩+ t/p′ · c2⌉ ∈ Rt

3 Return: µ′

Algorithm 8 decrypts the ciphertext received with the help of the secret key. The time complexity of
this algorithm is O(n · h), because of the polynomial multiplication. It will now be shown that this
does indeed recover the message.

µ′ = ⌊t/p · ⟨c1, s⟩+ t/p′ · c2⌉
= ⌊t/p · ⟨⌊p/q ·A · r⌉, s⟩+ t/p′ · ⌊p′/q · ⟨b, r⟩+ p′/t · µ⌉⌉
= t/p · ⟨p/q ·A · r − ϵ1, s⟩+ t/p′ · (p′/q · ⟨b, r⟩+ p′/t · µ− ϵ2)− ϵ3

Here the rounding operators are removed since for any k,m ∈ Z it holds that

k

m
=

⌊
k

m

⌉
+ ϵ,

where ϵ1 ∈ [−0.5, 0.5)k and ϵ2, ϵ3 ∈ [−0.5, 0.5).

µ′ = t/p · ⟨p/q ·A · r, s⟩ − t/p · ⟨ϵ1, s⟩+ t/q · ⟨b, r⟩+ µ− t/p′ · ϵ2 − ϵ3

= t/q · ⟨A · r, s⟩+ t/q · ⟨−A⊺ · s+ e, r⟩+ µ− t/p · ⟨ϵ1, s⟩ − t/p′ · ϵ2 − ϵ3

= t/q · ⟨A · r, s⟩+ t/q · ⟨−A⊺ · s, r⟩+ µ+ t/q · ⟨e, r⟩ − t/p · ⟨ϵ1, s⟩ − t/p′ · ϵ2 − ϵ3

For now, the error terms will be ignored, therefore proceeding to the following equation:

µ′ = t/q · (⟨A · r, s⟩+ ⟨−A⊺ · s, r⟩) + µ.

Now all that is left to prove is that:

⟨A · r, s⟩ = ⟨A⊺ · s, r⟩. (4)
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First, Ar is calculated:


A1,1 A1,2 . . . A1,k

A2,1 A2,2 . . . A2,k

...
...

. . .
...

Ak,1 Ak,2 . . . Ak,k

 ·

r1
r2
...
rk

 =



k∑
i=1

A1,i · ri
k∑

i=1

A2,i · ri
...

k∑
i=1

Ak,i · ri


.

Therefore ⟨A · r, s⟩ =
k∑

j=1

sj
k∑

i=1

Aj,i · ri =
k∑

j=1

k∑
i=1

sj ·Aj,i · ri.

Next, A⊺s is computed:


A1,1 A2,1 . . . Ak,1

A1,2 A2,2 . . . Ak,2

...
...

. . .
...

A1,k A2,k . . . Ak,n



s1
s2
...
sk

 =



k∑
i=1

Ai,1si

k∑
i=1

Ai,2si

...
k∑

i=1

Ai,ksi


.

Therefore ⟨A⊺ · s, r⟩ =
k∑

j=1

rj
k∑

i=1

Ai,j · si =
k∑

j=1

k∑
i=1

si ·Ai,j · rj .

Indeed, Equation 4 has been proven. So µ′ can be computed as:

µ′ = t/q · (⟨A · r, s⟩ − ⟨A⊺ · s, r⟩) + µ

= t/q · (0) + µ

= µ.

So decryption works as intended if the errors are ignored. The effect of the errors is later discussed
in Section 6.2.1.

3.3 Specification of SMAUG.KEM

3.3.1 Key Generation

Algorithm 9: SMAUG.KEM.KeyGen: key generation

1 (pk, sk′) ← SMAUG.PKE.KeyGen()
2 d← {0, 1}256
3 Return: pk, sk = (sk′, d)

The only difference in this algorithm compared to the PKE version is that a random 256-bit seed is
added to the secret key. It has the same time complexity as the PKE version, which is O(n · h · k).
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3.3.2 Encapsulation

Algorithm 10: SMAUG.KEM.Encap: encapsulation

1 Input: pk = (seedA, b)
2 µ← {0, 1}256
3 (K, seed) ← G(µ,H(pk))
4 c← SMAUG.PKE.Enc(pk, µ; seed)
5 Return: c, K

Algorithm 10 creates a shared secret key K by hashing together a message µ and the hash of the
public key of the recipient. Only the ciphertext corresponding to µ is sent. This will be used later to,
not only recover µ but also, verify the integrity of the shared key. Note that when µ is passed as a
parameter in the encryption function, it is converted to a polynomial in Rt. This algorithm has the
same time complexity as the PKE version, which is O(n · h · k).

3.3.3 Decapsulation

Algorithm 11: SMAUG.KEM.Decap: decapsulation

1 Input: pk = (seedA, b), sk = (sk′, d), c
2 µ′ ← SMAUG.PKE.Dec(sk′, c)
3 (K ′, seed’) ← G(µ′, H(pk))
4 c′ ← SMAUG.PKE.Enc(pk, µ′; seed’)
5 If c ̸= c′ then
6 (K ′, ·) ← G(d,H(c))
7 end if
8 Return: K ′

Algorithm 11 decrypts the ciphertext c to retrieve the message µ′, and then uses it to reconstruct
the shared key K ′. It then does its own computation of the ciphertext c′ and compares it to c.
If they are the same then the shared key is correct, if they are not, then use the seed d from the
secret key to generate a different key. In the case that the latter happens, that key cannot be used
for communication since the sender will have a different key. The reason for returning this fake key
instead of nothing at all is discussed in 5.4, where it is found that this has been proven to be more
secure. This algorithm has the same time complexity as the PKE version, which is O(n · h · k).
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4 Kyber

In this section, Kyber’s algorithms for both its PKE and KEM variants are explored. Kyber PKE is
IND-CPA secure as proven in 6.1, and Kyber KEM is IND-CCA2 secure as proven in [5]. It should be
noted that the notation used is different from the one in the original paper. The notation has been
changed to match SMAUG’s for easier comparison. For further simplicity the Encode and Decode
operations are omitted used in the original paper, since their purpose is to transform polynomials into
bytes. The parameters that are mentioned throughout this section are instantiated in Table 2. The
rings from which the polynomials are taken from are defined in Section 2.2.

4.1 Design Overview

4.1.1 MLWE

Kyber relies on MLWE for all its operations, key generation and encryption. MLWE is used instead of
LWE or R-LWE (Ring-LWE) because of the advantages is has over them. Even though LWE is more
easily scalable it comes at the cost of efficiency, therefore making MLWE an interesting variant since
it provides a trade-off between the two extremes. Moreover, with the parameters that Kyber uses it
achieves a reduced structure and much better scalability than R-LWE, and for encrypting messages
of 256 bits the performance is quite similar.

4.1.2 Choice of Modulo

The only number that is used for modulo operations is q which, as stated before, takes the value 3329.
The reason for this is that it is a prime number which is friendly in NTT computations, meaning that
the multiplications done in NTT gain efficiency, as mentioned in Section 2.11.

4.1.3 Compress/Decompress Functions

Kyber uses a modulo that requires 12 bits to be represented, and subsequently means each coefficient
modulo q takes 12 bits of storage, which is more than the 10 bits SMAUG uses. In order to combat
this extra size, Kyber uses a compress and decompress function which are able to discard some low-
order bits in the ciphertext which do not affect the correctness probability of decryption too much.
The functions are defined below.

Compressq(x, d) = ⌈(2d/q) · x⌋ mod 2d

Decompressq(x, d) = ⌈(q/2d) · x⌋

When the functions are applied to polynomials, they do the operations to each coefficient individually.
These operations contribute to errors when decrypting, and these effects are discussed in Section 6.2.2.

4.1.4 Hash Functions

The following hash functions are used:

• H - Is instantiated with SHA3-256 [13].

• G - Is instantiated with SHA3-512 [13].

• XOF - Is instantiated with SHAKE-128 [13].

• PRF(s, b) - Is instantiated with SHAKE-256(s∥b) [13].

• KDF - Is instantiated with SHAKE-256 [13].

26



4.1.5 Sampling Algorithms

Kyber uses two different sampling algorithms: Parse and CBD. The Parse algorithm is used to generate
the polynomials in A and can be seen in Algorithm 12. The algorithm is built in such a way that
the polynomial that is generated is already in the NTT domain. The reason behind this is that the
output polynomial is statistically close to a uniformly random element if Rq, if the input byte array
is statistically close to a uniformly random byte array [5]. This is the case since the byte stream is
generated by a hash function that is assumed to have close to uniformly random outputs. On average,
the time complexity of this algorithm is O(n) because of the while loop.

Algorithm 12: Parse

1 Input: Byte stream B = b0, b1, b2, · · · ∈ B∗
2 i← 0
3 j ← 0
4 While j < n do
5 d1 = bi + 256 · (bi+1 mod 16)
6 d2 = ⌊bi+1/16⌋+ 16 · bi+2

7 If d1 < q then
8 aj = d1
9 j += 1

10 end if
11 If d2 < q and j < n then
12 aj = d2
13 j += 1
14 end if
15 i += 3
16 end while
17 Return: a0 + a1X + · · ·+ an−1X

n−1

The CBD (Central Binomial Noise) algorithm is used to populate the polynomials in the secret key s
and the error polynomials e and r. For each coefficient it takes a sample (a1, . . . , aη, b1, . . . , bη)←
{0, 1}2η and calculates

∑n
i=1(ai − bi). Since η is either 2 or 3, this means that the coefficients

produced by this function are either in the range [−2, 2] or [−3, 3], respectively. The time complexity
of this algorithm is O(n) because of the for loop runs 256 times, which was chosen to match the
value of n.

Algorithm 13: CBDη: central binomial distribution

1 Input: Byte array B = (b0, b1, b2, . . . , b64η−1) ∈ B64η
2 (β0, . . . , β512η−14)← BytesToBits(B)
3 For i from 0 to 255 do

4 a =
η−1∑
j=0

β2iη+j

5 b =
η−1∑
j=0

β2iη+η+j

6 fi = a− b
7 end for
8 Return: f0 + f1X + · · ·+ f255X

255
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4.2 Specification of Kyber.CPAPKE

4.2.1 Key Generation

Algorithm 14: Kyber.CPAPKE.KeyGen: key generation

1 seed← {0, 1}256
2 (seedA, seedsk)← G(seed)
3 N ← 0
4 For i from 0 to k − 1 do
5 For j from 0 to k − 1 do
6 A[i][j]← Parse(XOF(seedA, j, i)) ∈ Rq

7 end for
8 end for
9 For i from 0 to k − 1 do

10 s′[i]← CBDη1
(PRF(seedsk, N)) ∈ Rq

11 N ← N + 1
12 end for
13 For i from 0 to k − 1 do
14 e′[i]← CBDη1

(PRF(seedsk, N)) ∈ Rq

15 N ← N + 1
16 end for

17 s← NTT(s′) ∈ Rk
q

18 e← NTT(e′) ∈ Rk
q

19 b← A · s+ e ∈ Rk
q

20 Return: pk = (seedA, b), sk = s

Algorithm 14 generates a key-pair of a public and secret key. The public key is composed of seedA
and b while the secret key is only composed of s. The public key contains seedA instead of A to
make the public key smaller, however this means that every time A needs to be used it must be
recomputed. The function Parse samples A from an NTT domain. This means that any matrices
or vectors that are used in computations with A must be transformed using NTT. The secret key
is s, which is initialized with CBDη1

. CBD is a function that samples polynomials in Rq from a
centered binomial distribution. η1 takes the value 3 in Kyber-512 and 2 in the other variants. This
determines the range of coefficients of the polynomial which are in [−η1, η1]. This also applies for
CBD instantiated with η2, which equals 2 for all versions of Kyber.

NTT is applied to both s and e to make computations with A possible. Note that because of the
NTT operations on A, s and e; b is also in the NTT domain. The time complexity of this algorithm
is O(k2 · n log n) because of the k2 polynomial multiplications in b. The time complexities of the
sampling algorithms are smaller than this, so they are ignored.
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4.2.2 Encryption

Algorithm 15: Kyber.CPAPKE.Enc: encryption

1 Input: pk = (seedA, b), µ ∈ R2, seedr
2 N ← 0
3 For i from 0 to k − 1 do
4 For j from 0 to k − 1 do

5 A⊺[i][j]← Parse(XOF(seedA, j, i)) ∈ Rk×k
q

6 end for
7 end for
8 For i from 0 to k − 1 do

9 r′[i]← CBDη1
(PRF(seedr, N)) ∈ Rk

q

10 N ← N + 1
11 end for
12 For i from 0 to k − 1 do

13 e1[i]← CBDη2(PRF(seedr, N)) ∈ Rk
q

14 N ← N + 1
15 end for
16 e2 ← CBDη2(PRF(seedr, N)) ∈ Rq

17 r ← NTT(r′)

18 u← NTT−1(A⊺ · r) + e1
19 v ← NTT−1(b⊺ · r) + e2 + Decompressq(µ, 1)

20 c1 ← Compressq(u, du)

21 c2 ← Compressq(v, dv)

22 Return: c = (c1, c2)

Algorithm 15 above encrypts a message µ and outputs a vector c which contains the ciphertext.
The vector r is used to introduce randomness when encrypting, and uses the vector together with a
small error vector e1 to produce u. v is used to encrypt the message, however c1 is needed so that
the secret key can be used to cancel out b. Here µ is compressed to scale the polynomial as it was
explained in the MLWE example in Section 2.10. Finally, u and v are compressed to reduce the size
of the ciphertext.

The parameters du and dv take the values 10 or 11 and 4 or 5 respectively for different variants of
Kyber. This means that c1 is compressed to a 10 or 11 bit number, while c2 is compressed to a 4 or 5
bit number. The time complexity of this algorithm is O(k2 ·n log n) because there are k2 polynomial
multiplications in u.

4.2.3 Decryption

Algorithm 16: Kyber.CPAPKE.Dec: decryption

1 Input: sk = s, c = (c1, c2)
2 u← Decompressq(c1, du)

3 v ← Decompressq(c2, dv)

4 µ′ ← Compressq(v − NTT−1(s⊺ · NTT(u)), 1)
5 Return: µ′
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Algorithm 16 above decrypts the ciphertext received with the help of the secret key. The time
complexity of this algorithm is O(n log n) because of the single polynomial multiplication. It will now
be shown that this algorithm does indeed recover the message when the errors are ignored. Cq and
Dq are used as shorthand notation of Compressq and Decompressq respectively.

µ′ =Cq(v − NTT−1(s⊺ · NTT(u)), 1)
=Cq(Dq(Cq(NTT

−1(b⊺ · r) + e2 +Dq(µ, 1), dv), dv)

− NTT−1(s⊺ · NTT(Dq(Cq(NTT
−1(A⊺ · r) + e1, du), du))), 1)

The compress and decompress operations are ignored for now, but they introduce some errors in
decryption.

µ′ = NTT−1(b⊺ · r) + e2 + µ− NTT−1(s⊺ · NTT(NTT−1(A⊺ · r) + e1))

= NTT−1(b⊺ · r) + µ− NTT−1(s⊺ ·A⊺ · r)− NTT−1(s⊺ · e1) + e2

= NTT−1(b⊺ · r − s⊺ ·A⊺ · r) + µ− s′⊺ · NTT−1(e1) + e2

= NTT−1(NTT(b′⊺ · r′)− NTT(s′⊺ ·A′⊺ · r′)) + µ− s′⊺ · NTT−1(e1) + e2

Note that there were no A′ and b′ in the key generation process, however since both A and b were
by definition in the NTT domain, A′ and b′ are created to demonstrate that these are the non-NTT
versions of A and b respectively. Therefore A′ = NTT−1(A) and b′ = NTT−1(b) = A′ · s′ + e′.

µ′ = b′⊺ · r′ − s′⊺ ·A′⊺ · r′ + µ− s′⊺ · NTT−1(e1) + e2

= (A′ · s′ + e′)⊺ · r′ − s′⊺ ·A′⊺ · r′ + µ− s′⊺ · NTT−1(e1) + e2

= s′⊺ ·A′⊺ · r′ + e′⊺ · r′ − s′⊺ ·A′⊺ · r′ + µ− s′⊺ · NTT−1(e1) + e2

= µ+ e′⊺ · r′ − s′⊺ · NTT−1(e1) + e2

Note that the remaining terms except for the message are small by definition, therefore perturbing
slightly the message. A method like the one from Section 2.10 can be used to retrieve the original
µ′, so decryption works as intended. The effect of these little errors and the errors introduced in the
compress and decompress functions are discussed in Section 6.2.2.

4.3 Specification of Kyber.CCAKEM

4.3.1 Key Generation

Algorithm 17: Kyber.CCAKEM.KeyGen: key generation

1 (pk, sk′)← Kyber.CPAPKE.KeyGen()
2 d← {0, 1}256
3 Return: pk, sk = (sk′, pk,H(pk), d)

The only difference in this algorithm compared to the PKE version is what is stored in the private key.
Aside from the original value of the secret key, it now stores the public key, the hash of the public
key and the random 256-bit seed d. The reason for this will be discussed later. The time complexity
of this algorithm is the same as its PKE version, therefore it is O(k2 · n log n).
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4.3.2 Encapsulation

Algorithm 18: Kyber.CCAKEM.Encap: encapsulation

1 Input: pk = (seedA, b)
2 µ← {0, 1}256
3 µ← H(µ)
4 (K, seed) ← G(µ,H(pk))
5 c← Kyber.CPAPKE.Enc(pk, µ; seed)
6 K ← KDF(K,H(c))
7 Return: c, K

Algorithm 18 creates a provisional shared secret key K by hashing together the hash of a message µ
and the hash of the public key of the recipient. Only the ciphertext corresponding to µ is sent. The
ciphertext serves multiple purposes, its used to recover the message µ by the receiver, used to create
the final shared secret key K and to verify the integrity of the shared key by the receiver. Note that
when µ is passed as a parameter in the encryption function, it is converted to a polynomial in Rt.
The time complexity of this algorithm is the same as its PKE version, therefore it is O(k2 · n log n).

4.3.3 Decapsulation

Algorithm 19: Kyber.CCAKEM.Decap: decapsulation

1 Input: sk = (sk′, pk,H(pk), d), c
2 µ′ ← Kyber.CPAPKE.Dec(sk′, c)
3 (K ′, seed’) ← G(µ′, H(pk))
4 c′ ← Kyber.CPAPKE.Enc(pk, µ′; seed’)
5 If c = c′ then
6 (K ′, ·) ← KDF(K,H(c))
7 else
8 (K ′, ·) ← KDF(d,H(c))
9 end if

10 Return: K ′

Algorithm 19 decrypts the ciphertext c to retrieve the message µ′, and then uses it to reconstruct
the provisional shared key K ′. It then does its own computation of the ciphertext c′ and compares
it to c. If they are the same then it computes the final shared key, if they are not, then it uses the
seed d from the secret key to generate a different key. In the case that the latter happens, that key
cannot be used for communication since the sender will have a different key. The time complexity of
this algorithm is the same as its PKE version, therefore it is O(n log n).
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5 SMAUG vs. Kyber

In this section, the differences between SMAUG and Kyber will be studied. The design rationale
behind their differences will also be explained. A comparison between the algorithms from the previous
sections will be performed, as well as a comparison on the parameter sets of both systems.

5.1 Parameters Sets

Tables 1 and 2 show the parameter sets of SMAUG and Kyber as well as other interesting information.
Their different approaches might make it seem that comparison may be futile, however there are some
interesting insights that can be obtained regardless.

Firstly, the focus will be in parameter q which is common to both schemes. In Kyber, it is used
throughout the entire PKE scheme, however in SMAUG it has more relevance in the key generation.
The value of q is bigger in Kyber than in SMAUG, which means more storage must be dedicated for
Kyber. In order to represent numbers in [0, 3328] 12 bits are needed as opposed to SMAUG’s 10 and
11 bits for [0, 1023] and [0, 2047] respectively.

Secondly, a comparison between parameters q, p and p′ is made. Their importance lies in the en-
cryption process and the subsequent sizes of the ciphertext. Even though both p and p′ are much
smaller than q, the ciphertext size is not that different. The reason for this is that Kyber uses a
compress function with parameters du and dv, and this function essentially turns each coefficient into
an integer in [0, 2d − 1]. For example, c1 in SMAUG has coefficients each with 8-bit numbers given
the value of p. For Kyber-512 and Kyber-768, it would have been a 12-bit number given the value
of q, however because of the compress function with parameter du the coefficient will be in [0, 1023].
This means that the coefficients can be represented with a 10-bit number. A similar argument holds
for p′ and dv for c2, however, in this case Kyber has the smaller size since it only requires 4 bits for
Kyber-512 and Kyber-768 and 5 bits for Kyber-1024. This is opposed to SMAUG’s need for 5, 8 and
6 bits of storage for c2 in SMAUG-128, SMAUG-192 and SMAUG-256 respectively.

Finally, the decryption failure probabilities (DFP) are higher in SMAUG than in Kyber. When decryp-
tion fails, it suggests a correlation between the secret key and the randomness used for encryption,
which inadvertently discloses information about the key. This is because the secret key is part of the
errors in decryption and the secret key is accompanied by the random noise, like e, as seen in Section
6.2.1 and 6.2.2. In other words, decryption failure may leak sensitive details about the secret key or
the encryption randomness, compromising the security of the encryption scheme [3]. However the
main problem is the secret key, since the encryption randomness is sampled freshly each time, while
the secret key is fixed and knowledge about it accumulates. The results in the table are presented with
a log base 2, so in reality the probabilities are 2DFP and all probabilities can be considered practically
insignificant. There are multiple factors that explain why the DFPs of SMAUG are higher. The main
one is that, as it is seen in Section 6.2, Kyber’s scaling of µ using the compress and decompress
functions allows for more flexibility and erases some errors. However, in SMAUG this is not the case
so all the error terms affect the DFP.
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Parameter sets SMAUG-128 SMAUG-192 SMAUG-256
Security level I III V

n 256 256 256
k 2 3 5
q 1024 2048 2048
p 256 256 256
p′ 32 256 64
t 2 2 2
hs 140 198 176
hr 132 151 160
σ 1.0625 1.453713 1.0625

DFP −119.6 −136.1 −167.2
Secret key 176 236 218
Public key 672 1088 1792
Ciphertext 672 1024 1472

Table 1: Parameter sets and other information from SMAUG

Parameter sets Kyber-512 Kyber-768 Kyber-1024
Security level I III V

n 256 256 256
k 2 3 4
q 3329 3329 3329
η1 3 2 2
η2 2 2 2
du 10 10 11
dv 4 4 5
DFP −139 −164 −174

Secret key 1632 2400 3168
Public key 800 1184 1568
Ciphertext 768 1088 1568

Table 2: Parameter sets and other information from Kyber

5.2 Key Generation (PKE)

To see the related algorithms please refer to 3.2.1 and 4.2.1.
The first difference that can be seen is in how A is generated. While both SMAUG and Kyber use
algorithms that sample from a uniformly random distribution over Rk×k

q , Kyber’s algorithm Parse
does so in a way that the elements of A are in NTT representation. Kyber uses NTT to benefit from
faster polynomial multiplication as explained in Section 2.11, and can do so because of how they
choose q. SMAUG however, given how they chose q, cannot benefit from NTT, since their moduli
are in powers of two. Therefore, SMAUG ideally should use a multiplication system which is of similar
efficiency. A closer comparison of these techniques is studied in Section 5.5, where it was found that
SMAUG’s polynomial multiplication is much slower than Kyber’s.

The next difference is how their secret keys are generated. SMAUG uses a sparse secret instead of a
traditional secret like Kyber does. This means that SMAUG’s private keys are considerably smaller
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than Kyber’s. This is very beneficial storage wise, however it may compromise its security as it
was pointed out by Daniel Bernstein in [7]. The paper that he makes reference to, and the attack it
contains is explained in Section 6.4. Sparse-LWE is a less studied problem than LWE (and its modular
counterparts), therefore more research must be made in order to verify its long term security.

Errors are also sampled differently, with SMAUG using a discrete gaussian distribution and Kyber
using a centered binomial distribution. The exact distribution that is used for sampling noise is not
important for attacks, but the standard deviation is. This is because the standard deviation of the
noise distribution determines the amount of uncertainty that an attacker has about the original data.
Therefore it should be chosen appropriately to maximize this uncertainty, while still being efficient.
There is no specific mention in SMAUG in the reason for the values for the standard deviation they
use, but they are probably chosen taking the considerations above.

5.3 Encryption and Decryption (PKE)

To see the related algorithms please refer to 3.2.2 and 4.2.2 for encryption and, 3.2.3 and 4.2.3 for
decryption.
The main change between Kyber and SMAUG in the encryption process is that Kyber uses MLWE
and SMAUG MLWR. SMAUG claims that using MLWR for encryption allows for faster operations
than MLWE. For both MLWE and MLWR, a vector r is created to be multiplied by A and used in
the inner product with b. However, in MLWE an additional vector e1 and polynomial e2 have to be
created to use in the encryption and then added. On the other hand, MLWR only needs to do one
scalar multiplication and rounding operation.

Furthermore, SMAUG uses powers-of-two moduli, which means that the scalar multiplication can
be accomplished by bit shifting operations. In SMAUG-128 p = 256 and q = 1024, therefore the
scalar multiplication is with 1

4 which means shifting the bits two places to the right. Additionally, the
coefficients of the polynomials can be easily computed by using bit AND operations. For example,
imagine a coefficient is 77710 = (1100001001)2, then to do this mod p = 256, the binary repre-
sentation of 777 needs to be used with the AND bitwise operator with the binary representation of
25510 = (11111111)2:

1100001001

AND 0011111111

0000001001

which is (1001)2 = 910 and indeed 777 mod 256 is 9. Therefore, not only is MLWR typically faster
than MLWE, but SMAUG’s choice of parameters make it particularly more efficient. Not much can
be said about the decryption processes in terms of differences since they are entirely dependent on
how the encryption process were constructed.

5.4 KEM Algorithms

To see the related algorithms please refer to 3.3.1 and 4.3.1 for key generation, 3.3.2 and 4.3.2 for
encapsulation, and 3.3.3 and 4.3.3 for decapsulation.
Both SMAUG and Kyber use an almost identical Fujisaki Okamoto transform [14] to turn their PKE
schemes into KEMs. During key generation, Kyber chooses to store the public key and its hash in the
secret key. The reason for this is to save computation time and additional calls to improve efficiency.
The downside of this is that it takes more space but it means that in this aspect Kyber is more
efficient than SMAUG in terms of speed.
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SMAUG uses a special type of FO transform U ̸⊥
m which has implicit rejection ( ̸⊥) and does not use

ciphertext in generating the symmetric key (m). Kyber uses FO transform U ̸⊥ which also has implicit
rejection, but does use ciphertext in generating the symmetric key. Implicit rejection means that when
the ciphertext comparison fails, instead of returning a failure symbol (⊥), a fake symmetric key is
returned using the extra bits appended to the secret key during key generation. This has allowed for
higher security in the past [17]. One of the differences between these two transforms is that SMAUG’s
FO transform allows for faster operations, since the ciphertext is not computed into the shared key.

Additionally, Kyber does an additional hash to the shared secret key K and hashes together the
previous value of K with the hash of the ciphertext. Doing this still means that both SMAUG and
Kyber are IND-CCA2 secure, however it could make Kyber more secure. This is because the shared
secret key is built upon a full “view” of the protocol, which means that it uses all the data that
was created or sent during this process. The disadvantage to this is loss in efficiency, therefore even
though Kyber’s KEM might be more secure, SMAUG’s KEM is more efficient.

There is another difference in the encapsulation and decapsulation processes. When Kyber creates
the secret message that is going to be sent, it first hashes it before encrypting it. While it is never
explicitly explained why they chose to do that, it might add robustness by adding more randomness.
SMAUG not doing this is not a concern since the actual value of the secret is not what is important.
What is important is that the value of the secret changes sufficiently between encapsulations.

5.5 Polynomial Multiplication

Both systems have different approaches to polynomial multiplication, Kyber takes advantage of its
modulo choice to use NTT while SMAUG takes advantage of its sparse secret structure. In previous
sections, it was stated that the time complexity for each polynomial multiplication is O(len(b) · (1 +
n)+n) for SMAUG and O(n log n) for Kyber. However, this makes it challenging for comparison since
len(b) changes depending on how many nonzero coefficients each polynomial has. Since it is known
how many nonzero coefficients an entire vector has, the entire multiplication of vectors and matrices
will be considered for comparison. For simplicity, SMAUG-128 and Kyber-512 are considered.

A · s. This multiplication performs 4 polynomial multiplications, making Kyber’s running time 4 ·
n log n. The SMAUG multiplications can be seen in groups of 2: A11 · s1 +A12 · s2 and A21 · s1 +
A22 · s2. For each group, h can be used instead of len(b) since the lengths of both b′s in each si will
add up to h. Therefore, the running time for SMAUG would be 2 · (h · (1 + n) + 2 · n). Substituting
in h = 140 and n = 256 give the results below.

SMAUG: = 2 · (140 · (1 + 256) + 2 · 256)
= 72984

Kyber: = 24 · 256 · log(256)
= 5678.26 . . .

Therefore, Kyber is more than one order of magnitude faster than SMAUG.

A · r. A similar methodology is used, however in this case h = 132, so the results change but not in
a significant way.

SMAUG: = 2 · (132 · (1 + 256) + 2 · 256)
= 68872

Kyber: = 4 · 256 · log(256)
= 5678.26 . . .
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Even though it is faster than before, there is still an order of magnitude of difference.

⟨b, r⟩ or b⊺ · r. Both describe the same operation, and it includes two polynomial multiplications.
In SMAUG this means it is one polynomial multiplication, but using h instead of len(b) as explained
before with h = 132. Then, the resulting running times are as follows.

SMAUG: = (132 · (1 + 256) + 2 · 256)
= 34436

Kyber: = 256 · log(256)
= 1419.57 . . .

Once again, even though this is much faster than previous examples, there is still an order of magnitude
of difference. This is a puzzling result since SMAUG claims to be much faster than Kyber. A few
reasons can explain this disparity. The first one is that this is based in theoretical time complexities
from the multiplication algorithm. It could be that the practical implementation of the algorithm is
faster than what the pseudo-code of the algorithm suggests. Another reason is that all the other
changes that SMAUG has compensate for this lack of efficiency. However, right now it is unclear
what operations exactly provide this efficiency gain over Kyber.
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6 Security

In this section, the proofs for the IND-CPA security of both SMAUG and Kyber are provided. Then,
attacks that target the SVP are stated in a lattice and its dual. Finally, a combinatorial attack that
aims to find the secret vector s and its developments are explained.

6.1 IND-CPA Security Proof

The proofs of the IND-CPA security of SMAUG.PKE and Kyber.PKE are the only provided proofs of
security, since the proofs for KEMs constructed from FO transforms are essentially the same for all of
them. Additionally, the security of such a proof relies on the security of its underlying PKE scheme.
The following proof for SMAUG.PKE can be found as Theorem 4 in Section 4.3 in [10].

IND-CPA security of SMAUG.PKE. Assuming pseudorandomness of the underlying sampling al-
gorithms, the IND-CPA security of SMAUG.PKE can be tightly reduced to the decisional MLWE and
MLWR problems. Specifically, for any IND-CPA-adversary A of SMAUG.PKE, there exist adversaries
B0,B1,B2, and B3 attacking the pseudorandomness of XOF and the sampling algorithms, MLWE,
and MLWR problems, such that,

AdvIND-CPA
SMAUG.PKE(A) ≤Adv

PR
XOF(B0) + AdvPRexpandA,HWT,dGaussian(B1)

+ AdvMLWE
n,q,k,k,HWThs ,dGaussian

(B2) + AdvMLWR
n,p,q,k+1,k,HWThr

(B3)

Proof. Define a sequence of hybrid games from G0 to G4 as follows:

• G0: the genuine IND-CPA game,

• G1: identical to G0, except that the public key is changed into (A, b),

• G2: identical to G1, except that the sampling algorithms are changed into truly random sam-
plings,

• G3: identical to G2, except that b is randomly chosen from Rk
q ,

• G4: identical to G3, except that the ciphertext is randomly chosen from Rk
p×Rp′ . As a result,

the public key and the ciphertexts are truly random.

Furthermore, define the advantage of the adversary on each game Gi as Advi, where Adv0 =
AdvIND-CPA

SMAUG.PKE(A) and Adv4 = 0. Then, it holds that

|Adv0 − Adv1| ≤ AdvPRXOF(B0)

for some adversary B0 against some pseudorandomness (PR) of the hash function (XOF). The reason
for this is that since the difference between G0 and G1 is how the public key is defined, the focus is
the function XOF that initializes the seed of A, the secret s and the error e, which are subsequently
used to define b. Next, it also holds that

|Adv1 − Adv2| ≤ AdvPRexpandA,HWT,dGaussian(B1)

for some adversary, B1 attacking the pseudorandomness of at least one of the samplers. This is because
the only difference between G1 and G2 is that instead of using the SMAUG sampling algorithms,
truly random sampling algorithms are used. The next statement also holds,

|Adv2 − Adv3| ≤ AdvMLWE
n,q,k,k,HWThs ,dGaussian

(B2)
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where B2 is an adversary against the decisional MLWE problem, distinguishing the MLWE samples
from random. Indeed, this holds since the difference from G2 and G3 is that b is sampled as an
MLWE sample in G2 and randomly in G3. Finally, it holds that

|Adv3 − Adv4| ≤ AdvMLWR
n,p,q,k+1,k,HWThr

(B3)

where B3 is an adversary distinguishing the MLWR sample from random. This comes from the
difference in G3 and G4 being how the ciphertexts are generated; as (c1, ⌊p′/p · c2⌉) in G3 versus
randomly over Rk

p ×Rp′ in G4, where[
c1
c2

]
=

⌊
p

q
·
(
A
b⊺

)
· r

⌉
+

p

t
·
[
0
µ

]
.

Using all the definitions above the original statement can be proven as:

Adv0 = Adv0 − Adv4

≤ |Adv0 − Adv4|
≤ |Adv0 − Adv1 + Adv1 − Adv2 + Adv2 − Adv3 + Adv3 − Adv4|
≤ |Adv0 − Adv1|+ |Adv1 − Adv2|+ |Adv2 − Adv3|+ |Adv3 − Adv4|

AdvIND-CPA
SMAUG.PKE(A) ≤ AdvPRXOF(B0) + AdvPRexpandA,HWT,dGaussian(B1)

+ AdvMLWE
n,q,k,k,HWThs ,dGaussian

(B2) + AdvMLWR
n,p,q,k+1,k,HWThr

(B3)

This concludes the proof.

Next, the proof for Kyber.PKE is provided, however this proof is not provided in [5] but can be
constructed in a similar way as SMAUG did.

IND-CPA security of Kyber.PKE. Suppose XOF and G are random oracles. For any adversary A,
there exists adversaries B and C with roughly the same running time as that of A such that,

AdvIND-CPA
Kyber.CPAPKE(A) ≤ 2 · AdvMLWE

k+1,k,η(B) + AdvPRPRF(C)

Proof. Define a sequence of hybrid games from G0 to G3 as follows:

• G0: the genuine IND-CPA game,

• G1: identical to G0, except that the public key is changed into (A, b),

• G2: identical to G1, except that b is randomly chosen from Rk
q ,

• G3: identical to G2, except that the ciphertext is randomly chosen from Rk
p×Rp′ . As a result,

the public key and the ciphertexts are truly random.

Furthermore, define the advantage of the adversary on each game Gi as Advi, where Adv0 =
AdvIND-CPA

Kyber.CPAPKE(A) and Adv3 = 0. Then, it holds that

|Adv0 − Adv1| ≤ AdvPRprf (C)

for some adversary C against some pseudorandomness of the hash function (PRF). The reason for
this is that since the difference between G0 and G1 is how the public key is defined, the focus is
the function PRF that initializes the seed of the secret s and error e, which is subsequently used to
define b. Next, it also holds that

|Adv1 − Adv2| ≤ AdvMLWE
k+1,k,η(B)
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where B is an adversary against the decisional MLWE problem, distinguishing the MLWE samples
from random. Indeed, this holds since the difference from G1 and G2 is that b is sampled as an
MLWE sample in G1 and randomly in G2. Finally, it holds that

|Adv2 − Adv3| ≤ AdvMLWE
k+1,k,η(B)

where again B is an adversary distinguishing the MLWE sample from random. This comes from the
difference in G2 and G3 being how the ciphertexts are generated; as (c1, c2) in G2 versus randomly
over Rk

q ×Rq in G3, where[
c1
c2

]
= NTT−1

((
A⊺

b⊺

)
· r

)
+

[
e1
e2

]
+

[
0
µ

]
.

Using all the definitions above the original statement can be proven as:

Adv0 = Adv0 − Adv3

≤ |Adv0 − Adv3|
≤ |Adv0 − Adv1 + Adv1 − Adv2 + Adv2 − Adv3|
≤ |Adv0 − Adv1|+ |Adv1 − Adv2|+ |Adv2 − Adv3|
≤ AdvPRprf (C) + AdvMLWE

k+1,k,η(B) + AdvMLWE
k+1,k,η(B)

AdvIND-CPA
Kyber.CPAPKE(A) ≤ 2 · AdvMLWE

k+1,k,η(B) + AdvPRprf (C)

This concludes the proof.

There are only two differences in the approach of this proof compared to SMAUG. Firstly, there is
one game less to consider since the sampling algorithms in Kyber are all based on the hash functions.
Secondly, PRF is the only hash function considered in the proof since, even though XOF is used in
the generation of A, it is assumed in the statement as a random oracle, so it is not pseudorandom.

6.2 Decryption Failure Probability

The encryption and decryption processes carry inherent errors in their operations, which means that
in “unlucky” situations decryption will fail. The errors for both SMAUG and Kyber are revisited now,
while giving a bound for those errors.

6.2.1 SMAUG

The error in decryption for SMAUG is majorly determined by the errors mentioned in Section 3.2.3
which are shown below.

ES = t/q · ⟨e, r⟩ − t/p · ⟨ϵ1, s⟩ − t/p′ · ϵ2 − ϵ3

where ϵ1 ∈ [−0.5, 0.5)k and ϵ2, ϵ3 ∈ [−0.5, 0.5). An attempt was made to calculate the individual
bounds of each term, but that would require calculating what would be the worst case for the
coefficients in polynomial multiplication which is a lengthy task. Due to the time constraints of this
project, this was not completed. Whatever the result of this bound would have been, it would define
how much the message would get distorted in decryption. If the message sent was 45, this error
could be small enough to decrypt to 44 which, even though it is a small difference, is still incorrect.
Therefore, in order to avoid a decryption failure, ES should be the zero polynomial or the coefficients
should be very close to 0.
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6.2.2 Kyber

Determining the bound for the error introduced in decryption for Kyber is even more complicated
than in SMAUG. This is because aside from the error terms, the compress and decompress functions
introduce further errors. The equation below describes the errors in Kyber without the compress and
decompress functions, as seen in Section 4.2.3.

EK = e′⊺ · r′ − s′⊺ · NTT−1(e1) + e2

As in SMAUG, it is very challenging to get numerical bounds from this equation, however, the loss
in the compress and decompress functions can be discussed.

The compress and decompress functions allow a number to have a representation using fewer numbers.
The fewer numbers used in this representation, the less precise the retrieval of the original number.
For example, if a 12 bit number is mapped to a 10 bit number, then the accuracy loss will be little.
However, if a 12 bit number is mapped to a 4 bit number, the accuracy loss is great.

Take for example 2979. Then compressing it to a 10 bit number returns 916, and decompressing it
again returns 2978. However, if it is compressed to a 4 bit number, the compress function returns
14 and decompressing it back returns 2913. So it can be seen that there is a big loss of accuracy.
For smaller cases like the first one, this will not result in a decryption failure like in SMAUG. This
is because the compress and decompress function that are used on the message µ ensure that small
variations like those are not noticeable, but it cannot solve big alterations. Therefore the shrinking
parameters have to be chosen carefully to reduce the decryption failure probability.

6.3 Core-SVP Methodology

The core-SVP methodology evaluates the core-SVP hardness of mathematical problems that are based
around the SVP problem, such as LWE (and its variants). The core-SVP hardness is defined as the
cost of one call to an SVP oracle in dimension β [4], where an SVP oracle allows an attacker to
efficiently solve the SVP on a given lattice. The dimension β refers to the block size used in the BKZ
algorithm, which is an algorithm used as the SVP oracle for core-SVP hardness measurements. The
next subsections provide descriptions on some common attacks considered in the context of lattices.

6.3.1 Primal Attack - BKZ variant

Consider an LWE instance (A, b) ∈ Zk×k
q ×Zk

q and define the lattice as Lm = {v ∈ Zk+m+1 : Bv = 0

mod q}, where B = (A[m] | Im | b[m]) ∈ Zm×k+m+1
q , where A[m] is the uppermost m × k sub-

matrix of A, Im the identity matrix of dimension m and b[m] is the uppermost length m sub-vector
of b for m ≤ k. The BKZ (Blockwise Korkine-Zolotarev) algorithm can be used with this setup to
try and find a short vector for the lattice L. This algorithm is a blockwise generalization of the LLL
(Lenstra-Lenstra-Lovász) algorithm, which calculates a short and nearly orthogonal lattice basis with
the Gram-Schmidt process in polynomial time fulfilling certain conditions.

The LLL algorithm begins with a basis B. The first step applies the Gram-Schmidt process to produce
an orthogonal basis B′. In the second step, it reduces each basis vector with respect to the preceding
ones and applies transformations to satisfy the LLL condition. The LLL condition ensures that each
vector in the basis is not much longer than the previous vector and, if it is, reduces the longer vector.
The third step checks the Lovász condition, which checks that each basis vector is not much shorter
than the previous vector and, if it is, swaps the vectors. The algorithm repeats the second and third
steps until no more swaps are needed, resulting in the reduced basis B′.
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The BKZ algorithm does essentially the same thing, the main difference being the dimension of the
basis B. Instead of considering the whole basis, it considers a reduced view of B of size β. It then
runs the LLL algorithm a number of times, increasing the block size β each time. The algorithm ends
when the termination criteria is met, which can be that a reduced lattice of a desired quality is found
or β has reached the size of the original basis B.

Tables 3 and 4 show what are the costs of this attack in each security assumption. Interestingly,
it can be seen that, in general, the attack costs are higher for SMAUG in the classical setting, but
higher for Kyber in the quantum setting. Therefore, for this types of attacks it would seem that
Kyber is stronger since the main interest is the quantum setting. Note that the quantum attack cost
for SMAUG-512 is the highest in the quantum setting and considerably larger than SMAUG-256. The
reason is probably due to SMAUG having very aggressive parameters at this level compared to Kyber.
For example, SMAUG has matrices of dimension 5, while Kyber’s are of size 4.

Parameter sets Classical core-SVP Quantum core-SVP
SMAUG-128 120.0 105.6
SMAUG-192 182.8 160.9
SMAUG-256 300.5 264.5
Kyber-512 118 107
Kyber-768 182 165
Kyber-1024 256 232

Table 3: Core-SVP security of SMAUG and Kyber in primal (BKZ) attacks for MLWE

Parameter sets Classical core-SVP Quantum core-SVP
SMAUG-128 120.0 105.6
SMAUG-192 188.9 160.9
SMAUG-256 322.7 264.5

Table 4: Core-SVP security of SMAUG in primal (BKZ) attacks for MLWR

6.3.2 Primal Attack - BDD variant

Given a lattice L with basis B, a vector t, and a parameter α > 0 such that the Euclidean distance
between t and the lattice (or in other words, the shortest distance between t and any other vector in
the lattice) is

d(t,B) < α · λ1(L(B)),

where λ1 is the norm of a shortest vector in L, find the lattice vector v ∈ L(B) which is closest to
t. Therefore, instead of aiming to find the shortest vector, the BDD (Bounded Distance Decoding)
variant aims to find a short vector within a bounded distance from the origin. The bound is carefully
selected such that both s and e are within the search radius. For a unique solution to be guaranteed,
α should be smaller than 0.5. However, when α ∈ [0.5, 1) a unique solution is expected with high
probability [2].

Tables 5 and 6 show what are the costs of this attack in each security assumption. No comparison can
be made with Kyber since they did not calculate the costs of this attack. However, from these results
it can be seen why they may have chosen to do so. For SMAUG, the attack costs in every instance
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are higher than in the BKZ variant, therefore the BDD variant attack would never be preferable over
the BKZ variant attack.

Parameter sets Classical core-SVP Quantum core-SVP
SMAUG-128 120.9 106.5
SMAUG-192 184.4 162.4
SMAUG-256 302.4 265.9

Table 5: Core-SVP security of SMAUG in primal (BDD) attacks for MLWE

Parameter sets Classical core-SVP Quantum core-SVP
SMAUG-128 121.5 107.0
SMAUG-192 191.9 168.9
SMAUG-256 329.5 290.0

Table 6: Core-SVP security of SMAUG in primal (BDD) attacks for MLWR

6.3.3 Dual Attack

Consider an LWE instance (A, b) ∈ Zk×k
q ×Zk

q and define the lattice as L′
m = {(u,v) ∈ Zm ×Zk :

A⊺
[m]u + v = 0 mod q}, where A[m] is the uppermost m × k sub-matrix of A for m ≤ k. Then,

the aim is to find the shortest vector in this lattice, and transform it back to the original lattice. The
BKZ algorithm can be used again with this setup to try and find a short vector for the lattice L′.

While dual attacks are considered in both SMAUG and Kyber, there are results only for SMAUG.
Kyber decided to omit their results since they found that the cost of dual attacks is much larger than
primal attacks, therefore not worth mentioning. Tables 7 and 8 show the attack costs of the dual
attack.

Parameter sets Classical core-SVP Quantum core-SVP
SMAUG-128 125.9 110.8
SMAUG-192 190.4 167.6
SMAUG-256 311.0 273.7

Table 7: Core-SVP security of SMAUG in dual attacks for MLWE

Parameter sets Classical core-SVP Quantum core-SVP
SMAUG-128 125.9 110.8
SMAUG-192 197.1 173.5
SMAUG-256 334.9 294.8

Table 8: Core-SVP security of SMAUG in dual attacks for MLWR

6.3.4 Core-SVP Security

Table 9 shows what the core-SVP security for each scheme is. These represent the lowest attack cost
of any attack on the SVP, hence a lower number means that it is less difficult to break. From the
results in the table, it can be seen that Kyber is slightly more robust than SMAUG for security levels
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1 and 3. In level 5, SMAUG has a higher attack cost, but once again this is probably due to SMAUG
having very aggressive parameters at this level.

Parameter sets Classical core-SVP Quantum core-SVP
SMAUG-128 120.0 105.6
SMAUG-192 181.7 160.9
SMAUG-256 264.5 245.2
Kyber-512 118 107
Kyber-768 182 165
Kyber-1024 256 232

Table 9: Core-SVP security of SMAUG and Kyber

It should be noted that some of the values of this table do not show up in the previous tables. The
values 181.7, 264.5 and 245.2 do not show up in the other tables since they correspond to attack
costs of hybrid dual attacks. A hybrid dual attack is an attack that uses a dual attack together with
another type of attack, such as a combinatorial or algebraic attack. These need a closer inspection
which is not done in this report due to time restraints.

6.4 Beyond Core-SVP Methodology

There are more attacks that target weaknesses in systems that do not necessarily target the SVP,
combinatorial attacks are also a threat for systems with certain characteristics, like SMAUG with its
sparse secret. There are no known practical algorithms that can take advantage of the sparse-LWE
structure of SMAUG. However, work is progressing in the field and more efficient algorithms are
being developed. The simplest algorithm to break sparse-LWE is brute force which is executed in the
following way:

Algorithm 20: Brute-Force s-LWE

1 Input: A ∈ Zn×n
q , b ∈ Zn

q

2 For all s ∈ {0,±1}n
3 If As− b ∈ {0,±1}n
4 Return: s
5 end if
6 end for

Note that this only returns potential candidates for s and not a unique solution, unless it only returns
a single candidate. This works if e is in {0,±1}n, which, even though it is not the case for SMAUG
or Kyber, it can be adapted to the range that e takes. The search space is S = 3n since it tries all
possible combinations of arranging 3 different numbers in n spots.

A refinement can be accomplished using the Meet-in-the-Middle technique, which splits s in two to
probe smaller search spaces. Instead of using the traditional As + e = b equation, this method
breaks up A and s to give the following equation:

A1s1 = −A2s2 + b− e

which can be also approximated as

A1s1 ≈ −A2s2 + b.
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Then Algorithm 21 can be used to improve efficiency when searching for s.

Algorithm 21: Meet-in-the-Middle

1 Input: A = (A1|A2) ∈ Zn×n
q , b ∈ Zn

q

2 For all s1 ∈ {0,±1}
n
2

3 Construct L1 with entries (s1, h(A1s1))
4 end for

5 For all s2 ∈ {0,±1}
n
2

6 Construct L2 with entries (s2, h(−A2s2 + b))
7 end for
8 Return: (s1∥s2) with h(A1s1) = h(−A2s2 + b)

The reason this works is because h is a Locality-Sensitive Hash (LSH) function. This means that
inputs which are, in this case, numerically close produce the same output with high probability, which
allows for the flexibility of not considering e. Moreover, because of the split of s, the search space
is reduced to half of its original size which means that the running time is S 1

2 = 3
n
2 . In reality, the

actual time complexity (ignoring linear and polynomial terms) is 2 · 3n
2 , because the reduced search

space is explored twice. However, as n becomes larger, this scalar factor is of very little significance.

Further refinements were suggested by Alexander May [20], and can be implemented by changing the
representation of vectors using the REP-0, 1, 2 representations. REP-0 represents 1 as 1 = 1+0 = 0+1
and −1 as −1 = (−1) + 0 = 0 + (−1), REP-1 represents 0 as 0 = 1 + (−1) = (−1) + 1 and REP-2
uses the number 2 to rewrite some numbers, such as in the following examples:

REP-0→ (1, 0,−1, 1,−1) = (1, 0,−1, 0, 0) + (0, 0, 0, 1,−1)
REP-1→ (1, 0,−1, 1,−1) = (1, 1,−1, 0, 0) + (0,−1, 0, 1,−1)
REP-2→ (1, 0,−1, 1,−1) = (2, 1,−1, 0, 0) + (−1,−1, 0, 1,−1).

Using these representations, Algorithm 22 illustrates how the Meet-LWE algorithm works. The idea is
similar to the Meet-in-the-Middle algorithm, however instead of approximating the whole equation, it
tries to find an exact solution by guessing r coordinates of e and an approximation for the remaining
n− r coordinates.

Algorithm 22: Meet-LWE

1 Input: A ∈ Zn×n
q , b ∈ Zn

q

2 Choose representation REP-0, 1, 2
3 Guess r coordinates of e, denoted er.
4 For all s1: Construct L1 with entries (s1, h(As1))
5 For all s2: Construct L2 with entries (s2, h(−As2 + b))
6 Return: s1 + s2 if:
7 As1 = −As2 + b+ er on r coordinates
8 h(As1) = h(−As2 + b) on n− r coordinates

As the number of representations of the secret vector s increases, the trade-off between the number of
guessed coordinates r and the size of the complement set Sc becomes more pronounced. Opting for
a larger value of r in this trade-off proves beneficial, as key guessing exhibits slightly sub-exponential
complexity, making it more feasible compared to the fully exponential growth of the set S in terms of
the vector dimension n [20]. May’s paper [20] determines that this brings down an attack complexity

from S 1
2 to S 1

4 .
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In SMAUG-128, the sparse secret key s has two polynomials where 140 coefficients out of 512 are
nonzero, and the nonzero coefficients can take either 1 or −1 as a value. Therefore, the amount of
different ways those values can happen in 140 coefficients are 2140. Moreover, the amount of different
ways nonzero coefficients can be arranged in 512 coefficients is

(
512
140

)
. Therefore, the total amount

of different possibilities for s are

S = 2140 ·
(
512

140

)
≈ 2568.

Even if S0.25 is assumed, that means that S0.25 ≈ 2142. Fugaku, which is one of the most potent
supercomputers can do 442 petaFLOPS, which if each FLOP corresponds to 1 secret key try then it
tries roughly 258 per second, this means that the time spent to break this is 4 million times longer
that the current lifespan of the universe. Therefore, it can be assumed that, with the developments
at the time of writing of this report, this is not feasible, and therefore using a sparse secret is secure
as SMAUG claims.
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7 Conclusion

In conclusion, this report has provided a detailed exploration of the current state of post-quantum
cryptography - analysing both the winner of the NIST competition, as well as SMAUG, a challenger
to the throne. The report has covered a wide range of topics, including the basics of encryption
and decryption, the differences between symmetric key encryption and public key encryption, and
the advantages of the Learning with Errors/Rounding technique in cryptography. Additionally, the
paper has provided a comprehensive comparison of two cryptographic systems, SMAUG and Kyber,
highlighting their strengths and weaknesses. The report has also explored the security of each scheme
and given some of the most common attacks. The main findings of this report are summarized in
the following paragraphs.

Firstly, instead of relying on the security assumption MLWE for the encryption system like Kyber,
SMAUG relies on MLWR. SMAUG claims that using MLWR for encryption allows for faster operations
than MLWE. For both MLWE and MLWR, a vector r is created to be multiplied by A and used in
the inner product with b. However, in MLWE an additional vector e1 and polynomial e2 have to
be created to use in the encryption and then added. On the other hand, MLWR only needs to do
one scalar multiplication and rounding operation. Therefore, SMAUG should be faster in encryption,
however this is not the case because of the different approaches in polynomial multiplication, rather
than because of the nature of MLWE and MLWR themselves.

Secondly, SMAUG chooses to use sparse secrets in both its key generation and encryption systems,
while Kyber has a more conventional key. This means that SMAUG’s secret keys take less storage
than Kyber’s, at the cost of reducing the key space for the secret key. The sparse structure also
allows SMAUG to perform polynomial multiplication in a faster manner than regular multiplication
by leveraging the amount of nonzero coefficients present in each sparse polynomial. Specific attacks
on the sparse secret, such as MEET-LWE, are still not efficient enough to be a concern practically,
but further study is needed to ensure the long-term security of it.

Lastly, the modulo value with which most operations happened was q, and both schemes chose distinct
values with different rationale. Kyber’s q = 3329 is larger than SMAUG’s q = 1024, which means
Kyber needs two additional bits to represent numbers. However, Kyber uses a compress function
that discards lower order bits, meaning that both schemes store the same amount of bits. However,
because of how the q’s are chosen, Kyber can benefit from NTT while SMAUG cannot. SMAUG
implements their own polynomial multiplication algorithm, nonetheless NTT is considerably faster
than it. Therefore, Kyber has an advantage in running time when it comes to multiplication.

Overall, the report accomplished the goal set in the introduction. A comprehensive understanding of
post-quantum cryptography, with a focus on lattice-based problems was effectively provided. However,
more work can still be done which is outlined in the next section.
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8 Future Work

Even though the report successfully gave an overview of MLWE/R-based post-quantum cryptography,
more work can be done in regards to comparing SMAUG and Kyber. As it was demonstrated in Sec-
tion 5.5, the polynomial multiplication in Kyber is much faster than in SMAUG. However, SMAUG
claims that it runs 100% faster than Kyber, so this claim requires further analysis. The code imple-
mentation should be studied, since perhaps the efficiency comes from there, given how the modular
arithmetic was done in powers of 2 and its relationship to bit shifting. The speed increase should also
be noticed in the MLWR operations compared to the MLWE ones in the encryption system. Other
areas where SMAUG is faster is in their KEM, where it gains some efficiency by not computing the
shared key with the ciphertext.

More attacks could be studied, and more in-depth explanations of how those attacks work. Currently,
only Meet-LWE has an in-depth explanation, but the BKZ algorithm could be further explained. It
was not done in this report due to its complexity and the time constraint on this project. The hybrid
dual attacks could be explored further too, since they gave the lowest attack costs for some variants
of SMAUG. Additionally, the sampling algorithms could be studied more to ensure that they do not
introduce any security issues.

Finally, more research can be done into the errors affecting the decryption failure probability. In
Section 6.2.1 and 6.2.2, the general error term was given for each scheme, however each one was
defined differently and had different characteristics. Therefore, calculations could be run to estimate
how much the general error terms perturb the original message.
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Own Contributions

The original report had quite a few typos that made understanding some sections challenging. There-
fore, the SMAUG authors were emailed a couple of times for clarifications on those matters. In this
section, the typos that were corrected in the report and the communication with the SMAUG authors
are provided.

Firstly, in line 2 of algorithm 6, XOF is used to initialise the seeds in the algorithm. However, in the
actual paper H is used which is defined as SHA3-256 in page 20 Section 6.1 in [10]. This function
outputs a fixed length 256-bit output, and since seedA is 256-bits it means that either seedsk is
not populated properly, or they are both populated with the same value which would be incredibly
dangerous. Since seedA is made public, it would effectively make seedsk public, allowing anyone to
reconstruct the secret key.

Secondly, the polynomial multiplication algorithm 1 has a few typos in the original paper too. The
most important one is that the variables x and y were also named a, therefore it had only one variable
name when 3 were being used. Algorithm 23 below shows the original algorithm, with the changed
sections highlighted in red.

Algorithm 23: poly mult add: Original

1 Input: a ∈ Rq, b ∈ Sη
2 For i from 0 to neg start−1 do
3 degree = b[i]
4 For j from 0 to n do
5 a[degree+ j] += a[j]
6 end for
7 end for
8 For i from neg start to len(b) do
9 degree = b[i]

10 For j from 0 to n do
11 a[degree+ j] −= a[j]
12 end for
13 end for
14 For i from 0 to n do
15 a[j] = a[j]− a[n+ j]
16 end for
17 Return: a

Below the original messages exchanged with the SMAUG authors can be seen.
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