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Abstract

This bachelor thesis explores the possibility of a new proximity measure for tree-basedness of
rooted binary phylogenetic networks. The main research question addressed in this study is how
to make such proximity measure using rooted Nearest Neighbour Interchange (rNNI) moves.
Moreover, we show interesting upper bounds for such proximity measure, we construct a method
that transforms an arbitrary rooted binary phylogenetic network into a tree-based network using
rNNI moves and we discuss the applicability of this field’s research in biology.

To this end, a comprehensive literature review was conducted to gather existing knowledge
on the topic of rooted binary phylogenetic networks, their characterisations for tree-basedness,
already existing proximity measures and rNNI moves.

The methodology employed in this study involved analysing the rNNI induced metric on the
set of rooted binary phylogenetic networks, how to formally define a proximity measure, prov-
ing that an rNNI proximity measure is well-defined, providing an upper bound for this proxim-
ity measure using the existing knowledge on characterisations for tree-basedness and proximity
measures, and giving a short review on the applicability in biology.

The results of this thesis revealed that an rNNI-based proximity measure is indeed well-
defined. Furthermore, we show insights on connections to other proximity measures; an upper
bound is proved related to the proximity measure p, as introduced in A. Francis et al. (2018).
Furthermore, as the scope of the literature review in this thesis is broad, the thesis can be used as
a summary for the existing knowledge on rooted binary phylogenetic networks. More so with a
focus on rNNI, properties for tree-basedness, proximity measures for tree-basedness, and biolog-
ical applicabilities. The results of the thesis also allow for many possibilities in future research,
such as extending the results to the non-binary case, extending the results to the unrooted case,
or researching whether the upper bound related to p is tighter than proved in this thesis.
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1 Introduction

A rooted phylogenetic network is a graphical representation of evolutionary relationships among
species, also called taxa. It is an extension of the traditional phylogenetic tree, which assumes
that every evolutionary event is a speciation event. In contrast, a rooted phylogenetic network
assumes another type of evolutionary event, namely reticulation events. Hybridization and lat-
eral gene transfers are such reticulation events and are common in the evolutionary histories of
a number of species. Moreover, reticulation events may express uncertainty in a species’ evo-
lutionary history. This way, rooted phylogenetic networks provide a more flexible and realistic
representation of evolutionary history. These graphs are commonly used in evolutionary biology
and bio-informatics. Hence studying the mathematical properties of such graphs might aid in
these fields’ further research.

Networks with only speciation events are trees. In contrast, trees containing reticulation
events lead to the formation of taxa with multiple ancestrial lineages. This makes a representa-
tion of such evolutionary processes less clear. We call a rooted phylogenetic network tree-based if
we can remove edges from the network such that every leaf has one single path from root to leaf.
This means, in a tree-based network the underlying evolutionary process is inherently tree-like
with reticulation events seen as uncertainty about the true process. The class of rooted tree-based
phylogenetic networks has first been fully characterised for binary networks by Zhang (2016).
Subsequently, Pons et al. (2019) gave a full characterisation of general rooted tree-based phylo-
genetic networks. As it turns out, some evolutionary processes are not fundamentally tree-like
in nature, like lateral gene transfer among prokaryotes Dagan & Martin (2006). For biologists it
may be significant to know whether a phylogenetic network is tree-based or not; tree-basedness
of rooted phylogenetic processes characterise the importance of reticulation events or speciation
events in an evolutionary process. Since importance of reticulation events or speciation events
in a phylogenetic network is not dichotomous, it is also interesting to mathematically describe
how close a given rooted phylogenetic network is to being tree-based. To quantify how close
a phylogenetic network is to being tree-based, several authors introduced proximity measures.
A. Francis et al. (2018) described five different proximity measures for rooted binary phyloge-
netic networks, of which they proved the first three were equivalent and the last two were left for
further research. Fischer & Francis (2020) introduced several proximity measures for unrooted
phylogenetic networks. In particular, the proximity measure based on the Nearest Neighbour
Interchanges (NNI) moves in this paper was deemed interesting for further research. Fischer &
Francis (2020) also mentioned some issues in lifting proximity measures for unrooted phyloge-
netic networks to the rooted case. Gambette et al. (2017) generalized NNI moves to rooted binary
phylogenetic networks, these are rNNI moves. In this thesis we explore a proximity measure for
rooted binary phylogenetic networks based on the rNNI operator, in the same fashion as Fischer
& Francis (2020) did with the NNI moves for unrooted phylogenetic networks.

In the first part of the thesis we will introduce some preliminaries on rooted phylogenetic
networks and their mathematical properties. Here we also explain the both the NNI and rNNI
operator and relevant properties that have been proven for them. After which we will review the
different ways in which tree-basedness has been characterised. This gives us the tools to intro-
duce the proximity measures defined in A. Francis et al. (2018) and show how their equivalence
was proven. Thereafter we will consider the proximity measure for rooted binary phylogenetic
networks based on rNNI moves and show that it is well-defined. For this new proximity mea-
sure we prove an upper bound with respect to another proximity measure. Using the content of
this proof, we also obtain a method to transform any non-tree-based rooted binary phylogenetic
network into a tree-based one, while using only rNNI-moves in the process. Lastly we will reflect
and give a perspective on the utility of tree-based phylogenetic networks in biology.

1.1 Mathematical preliminaries

Here we discuss some mathematical preliminaries for the thesis. We first formally define phy-
logenetic networks and the property of tree-basedness. After that we will discuss the moves
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Nearest Neighbour Interchange and rooted Nearest Neighbour Interchange, and show how the
latter induces a metric for the set of rooted binary phylogenetic networks.

1.1.1 Phylogenetic networks

We begin with the definition of a rooted phylogenetic network:

Definition 1. A rooted phylogenetic network N = (V, E) on a non-empty finite set X ⊆ V is an
acyclic weakly connected simple directed graph which contains the following types of vertices:

• a single vertex with indegree 0 and outdegree 2, called the root;

• vertices with indegree 1 and outdegree 0, called leaves. Every leaf is labelled with an element of X;

and may contain the following types of vertices:

• vertices with indegree greater than or equal to 2 and outdegree 1, called reticulation vertices;

• vertices with indegree 1 and outdegree greater than or equal to 2, called tree vertices.

If the vertices of N contain only vertices of summed in- and outdegree at most three, then we call N
binary. If N contains no reticulation vertices, we call N a phylogenetic tree.

We call X the leaf set or the set of taxa, edges directed into reticulation vertices are called retic-
ulation edges and all other edges are called tree edges.
Rooted binary phylogenetic networks are generally easier to characterise and were first charac-
terised by Zhang (2016). In this thesis, rooted binary phylogenetic networks will be our primary
subject of study.

For the following definition we need to refresh our knowledge on some notions from graph
theory. Recall that a tree is a connected acyclic directed graph. A spanning tree of a directed graph
G = (V, E) is a tree T = (V, E′), where E′ ⊆ E.

Definition 2. A phylogenetic network N = (V, E) on leaf set X ⊆ V is called tree-based if and only if
there exists a spanning tree T = (V, E′) with E′ ⊆ E on the same leaf set X. If N is tree-based, we call
such T a base tree of N .

To illustrate Definition 2, consider Figure 1.

Figure 1: (Zhang, 2016) (left) A tree-based phylogenetic network. (middle) A base tree of the
left phylogenetic network. The base tree is a subtree of the network that can be obtained by the
removal of the edges e1 and e2. (right) A phylogenetic tree can be obtained by removing the
reticulation vertices from the base tree and connecting vertices that were initially connected via
a path consisting of only reticulation vertices (except for the endpoints of the path). Reticulation
nodes in the network are represented by shaded circles.

Furthermore, to discuss Nearest Neighbour Interchanges in the next subsection we need the
following definition on unrooted phylogenetic networks:
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Definition 3. An unrooted phylogenetic network N = (V, E) on a non-empty finite set X ⊆ V is a
connected simple undirected graph where vertices in X have degree 1. If the vertices of N contains only
vertices of degree 1 or 3, then we call N binary.

An example of an unrooted phylogenetic network can be seen in Figure 2.

Figure 2: (Fischer & Francis, 2020) An unrooted phylogenetic network on leaf set X = {x, y}.

An edge of a phylogenetic tree incident with a leaf is a pendant edge, any other edge is called
an internal edge.

1.1.2 Subtree Transfer Operations and their induced metric

Both rooted and unrooted binary phylogenetic networks can have edges to which we can apply
Subtree Transfer Operations. Such operations take a sub-tree of a network and swaps it with
another sub-tree. We discuss the Subtree Transfer Operations Nearest Neighbour Interchange
and rooted Nearest Neighbour Interchange.

Definition 4. Any internal edge of a unrooted binary phylogenetic tree has four subtrees attached to it. A
nearest neighbour interchange (NNI) is an operation that takes one subtree on one side of an internal
edge and swaps it with a subtree on the other side of the edge, as illustrated in Figure 3.

Figure 3: an NNI move on an edge of T1, producing either T2 or T3

We can generalize NNI to rooted binary phylogenetic networks, which yields the rooted Near-
est Neighbour Interchange (rNNI) operation:

Definition 5. Any internal edge of a rooted binary phylogenetic network has four subtrees attached to it.
A rooted Nearest Neighbour Interchange (rNNI) is an operation that takes one subtree on one side of
an internal edge and swaps it with a subtree on the other side of the edge and may or may not change the
direction of the internal edge, as illustrated in Figure 4.
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Figure 4: (Gambette et al., 2017) Phylogenetic network showing hypothetical evolutionary sce-
narios relating modern human populations and their closest relatives. The edge to which rNNI
is applied is marked red. The edge is not flipped in this case.

Gambette et al. (2017) generalized NNI for rooted binary phylogenetic networks as follows:

Definition 6. Let N be a rooted binary phylogenetic network on X with edges on vertex pairs {s, u},
{u, v} and {v, t} but not on {u, t} and {s, v}. The rNNI operation on these edges respectively replaces
them by edges on {u, t}, {u, v} and {s, v} with the following rules:

1. the in- and outdegrees of s and t are not affected by the move;

2. N remains a rooted binary phylogenetic network. That is, the in- and outdegrees of u and v remain
at most 2 and the obtained network is acyclic.

An rNNI move replacing edges a1, a2, a3 by edges a4, a5, a6 is denoted by (a1, a2, a3 → a4, a5 , a6 ).

Observe that rNNI moves are reversible: if (a1, a2, a3 → a4, a5, a6) is an rNNI move turning
N1 into N2, then (a4, a5, a6 → a1, a2, a3) is an rNNI move turning N2 into N1. We say the latter’s
move is the first move’s inverse. Gambette et al. (2017) derived the following conditions for each
possible rNNI move:

Lemma 1. Each rNNI move on rooted binary phylogenetic network N is of one of the following types.

(1) (us, uv, vt→ ut, uv, vs) and there is no s-v path in N ;

(1*) (us, uv, vt→ ut, vu, vs), there is no s-v path and v is a reticulation in N ;

(2) (su, uv, tv→ sv, uv, tu) and there is no u-t path in N ;

(2*) (su, uv, tv→ sv, vu, tu), there is no u-t path and u is a tree vertex in N ;

(3) (su, uv, vt→ sv, uv, ut), u is a reticulation and v a tree vertex in N ;

(3*) (su, uv, vt→ sv, vu, ut) and there is no u-v path besides uv in N ;

(4) (us, uv, tv→ vs, uv, tu) and there is no s-t path in N .

These moves are illustrated in Figure 5.
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Proof. (Gambette et al., 2017)
An rNNI move assumes the existence of three edges: one on {s, u}, one on {u, v} and one on
{v, t}. We consider the four possible edge directions for {s, u} and {v, t}, while without loss of
generality the third edge is fixed as uv. For each of these combinations, we consider two possible
moves: one leaving the direction of uv unchanged, which gives cases (1)-(4), and one reversing
its direction, which gives cases (1∗)− (3∗). Note that a (4∗) move (us, uv, tv → vs, vu, tu ) is not
an rNNI move, as v would have indegree 0. For each of the seven resulting cases, restrictions are
also provided that ensure that the conditions given in Definition 6 are satisfied (e.g., u has to be
a reticulation in (3)). It can be easily verified that the associated restrictions on every move are
correct. See Figure 5. ■

Figure 5: All possible rNNI moves on a rooted binary phylogenetic network. Dashed edges
indicate that there is no edge between those vertices. Gray edges are those that change with the
move. If vertices have additional incident edges that are not drawn, then these may be oriented
either way.

For ease of notation, we will say ’rNNI applied to N ’ to refer to applying an rNNI move to
any of the edges of rooted binary phylogenetic network N . rNNI is a generalization of the NNI
move. NNI could be restricted to rooted phylogenetic networks by taking operations (1) to (4).
Instead, with rNNI we have the possibility to flip the direction of the internal edge on which
rNNI is applied, visualised by the additional operations (1*) to (3*).

Apart from defining the rNNI move, Gambette et al. (2017) also explored the space of rooted
binary phylogenetic networks that are mutually reachable by rNNI moves.

Definition 7. Let N1 and N2 be rooted binary phylogenetic networks on X.
We say N2 is (rNNI-)reachable from N1 if there exists a finite sequence of rNNI moves that transforms
N1 to N2.

Note that if N2 is reachable from N1, then N1 is reachable from N2 by reversibility of rNNI
moves. To explore the space of reachable rooted binary phylogenetic networks further, let us
introduce the concept of the reticulation number of a network.

Definition 8. LetN = (V, E) be a phylogenetic network on X. The reticulation number ofN is defined
asR(N ) = |E| − |V|+ 1.

Recall that a tree-based network is merely a tree with additional horizontal edges. The in-
tuition behind the reticulation number is that it equals the number of horizontal edges that are
missing from a base tree. However, we know that not every phylogenetic network has a base
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tree. Hence such definition would not be sufficient in the extension to non-tree-based phyloge-
netic networks.

Proposition 1. Let N1 and N2 be two rooted binary phylogenetic networks on X. Then the following are
equivalent:

1. N1 and N2 have the same number of reticulation vertices r;

2. N1 and N2 have the same number of vertices n;

3. N1 and N2 have the same number of edges m;

Proof. Let N be a rooted binary phylogenetic network on X. Let t be the number of tree vertices
of N . Let r be the number of reticulation vertices of N . Let n be the total number of vertices of
N . Let m be the total number of edges of N .
We first show equivalence between 1 and 2:
Let I be the sum of indegrees of the vertices of N and let O be the sum of the outdegrees of the
vertices of N . We know that the sum of the outdegrees of vertices of a directed graph equals
the sum of indegrees of the vertices of a directed graph. Hence, writing I = t + 2r + |X| and
O = 2 + 2t + r, we see that t + 2r + |X| = 2 + 2t + r, where rewriting yields t = r + |X| − 2.
Furthermore, notice we can write n as n = 1 + t + r + |X|. Substituting t into the formula for n
we get

n = 2(r + |X|)− 1.

This shows that two networks on the same leaf set X have the same number of reticulation ver-
tices if and only if they have the same number of vertices.
We now show equivalence between 1 and 3:
Note that the number of edges in a directed graph is equal to the sum of the indegrees of its
vertices, which we have already derived above. By substituting the expression above for t in that
for I, we see

m = 3r + 2|X| − 2.

This shows that two networks on X have the same number of reticulations if and only if they
have the same number of edges.

By transitivity, these two cases prove equivalence of the three statements. ■

Corollary 1. Let N = (V, E) be a rooted binary phylogenetic network on X. Then R(N ) equals the
number of reticulation vertices r.

Proof. Let N = (V, E) be a rooted binary phylogenetic network on X. Using the results in the
proof of Proposition 1 we see that |V| = 2(r + |X|)− 1 and that |E| = 3r + 2|X| − 2. Now, using
R(N ) = |E| − |V|+ 1 from Definition 8 and substituting for |E| and |V|, we see

R(N ) = |E| − |V|+ 1 = 3r + 2|X| − 2− (2(r + |X|)− 1) + 1 = r.

SoR(N ) = r. ■

Proposition 2. Let N be a rooted binary phylogenetic network on X. Applying an rNNI move to N
preserves the network’s reticulation number.

Proof. Let N1 be a rooted binary phylogenetic network on X with r reticulation vertices. Let N2
be the rooted binary phylogenetic network on X after applying an rNNI move to N1. Since an
rNNI move does not add or remove any vertices, it follows from Proposition 1 that an rNNI
does not change the number of reticulation vertices. In other words, N2 contains r reticulation
vertices. ■
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These results imply that for some arbitrary rooted binary phylogenetic network N on X the
set of rNNI-reachable networks is a subset of the set of networks with the same reticulation num-
ber. In fact, these sets are equal. The proof that the set of networks with the same reticulation
number is a subset of rNNI-reachable networks relies on results on the topic of unrooted phylo-
genetic networks, hence we will omit the proof in this thesis and refer to (Gambette et al., 2017).
This result allows us to derive the following theorem:

Theorem 1. Let N1 be a rooted binary phylogenetic network on X with reticulation numberR(N1). Let
N2 be a rooted binary phylogenetic network on X with reticulation numberR(N2) = R(N1). Then, N2
is rNNI-reachable from N1.

Theorem 1 implies that rNNI moves induce a natural metric over the sets of the rooted binary
networks of fixed reticulation number. We will show how rNNI moves induce a natural metric
by constructing a metric space.

Definition 9. Kreyszig (1989) A metric space is a pair (X, d), where X is a set and d is a metric on X
(or distance function on X), that is, a function defined on X× X such that for all x, y, x ∈ X we have:

(M1) d is real-valued, finite and non-negative;

(M2) d(x, y) = 0⇔ x = y;

(M3) d(x, y) = d(y, x);

(M4) d(x, z) ≤ d(x, y) + d(y, z).

For ease of notation, we formally define the following sets:

Definition 10. We define Ω(X) as the set of rooted binary phylogenetic networks on leaf set X. Fur-
thermore we define Ω(X; r) as the set of rooted binary phylogenetic networks on leaf set X with fixed
reticulation number r. We define TBN(X) as the set of rooted binary phylogenetic networks on X that are
tree-based. Finally, we define TBN(X; r) as the set of rooted binary phylogenetic networks on X with fixed
reticulation number r that are tree-based.

And we introduce the following function based on rNNI-moves:

Definition 11. We define drNNI : Ω(X; r)×Ω(X; r)→N∪{0} as a function describing the minimum
number of rNNI moves required to transform N1 ∈ Ω(X; r) into N2 ∈ Ω(X; r).

We prove that, in fact, drNNI is a metric on Ω(X; r). To prove the points of Definition 9, we
first need to define a notion of equality on elements of the sets introduced in Definition 10.

Definition 12. Let G = (V, E), G′ = (V′, E′) be two graphs. We say G′ and G are isomorphic if there
exists a bijection f : V → V′ such that (u, v) ∈ E if and only if ( f (u), f (v)) ∈ E′. Then f is called a
graph isomorphism.

Definition 13. Let N1 = (V1, E1) ∈ Ω(X). Let N2 = (V2, E2) ∈ Ω(X). We say N1 = N2 if there
exists a graph isomorphism f , where additionally f (x) = x, for all x ∈ X.

We define equality like this, since we only consider the leaves as labelled vertices, as per
Definition 1. So all internal vertices may be relabeled in any way for two phylogenetic networks
to be considered equal.

Theorem 2. (Ω(X; r), drNNI) is a metric space.

Proof.

(M1) Let N1,N2 ∈ Ω(X; r). Since drNNI counts the number of operations applied to a network
in Ω(r; X) to reach another network in Ω(r; X) it follows that drNNI is integral and non-
negative. Moreover, Theorem 1 implies that drNNI(N1,N2) < ∞.

Page 9 of 48



Niek Bongaerts TU/e

(M2) Let N1,N2 ∈ Ω(X; r). Suppose drNNI(N1,N2) = 0. Then there exists a sequence of zero
rNNI moves to transform N1 into N2, but then N1 = N2.
Now suppose N1 = N2. To transform N1 into N2, we can use zero rNNI-moves to turn N1
into N2. Moreover since drNNI is non-negative, we get that drNNI(N1,N2) = 0.

(M3) LetN1,N2 ∈ Ω(X; r). Suppose drNNI(N1,N2) < drNNI(N2,N1). Then drNNI(N2,N1) does
not describe the minimum number of rNNI moves required to transform N2 into N1. We
can construct a shorter sequence of rNNI moves transforming N2 to N1 as follows. Take a
sequence of rNNI moves transformingN1 toN2 of length drNNI(N1,N2). Of this sequence,
take each individual move’s inverse and reverse the order of the moves in the sequence
to obtain a sequence of rNNI moves transforming N2 to N1. This sequence has length
drNNI(N1,N2), which we assumed to be smaller than drNNI(N2,N1). We reach a contra-
diction. It follows that drNNI(N1,N2) ≮ drNNI(N2,N1) (In a similar manner, one can prove
that drNNI(N1,N2) ≯ drNNI(N2,N1)). It follows that drNNI(N1,N2) = drNNI(N2,N1).

(M4) LetN1,N2,N3 ∈ Ω(X; r). Take a sequence of rNNI moves transformingN1 toN2 of length
drNNI(N1,N2). Append to this sequence another sequence of rNNI moves transformingN2
to N3 of length drNNI(N2,N3) to obtain a sequence of rNNI moves transforming N1 to N3.
This sequence has length drNNI(N1,N2) + drNNI(N2,N3). It follows that drNNI(N1,N3) ≤
drNNI(N1,N2) + drNNI(N2,N3).

■
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2 On the combinatorial properties of tree-based phylogenetic
networks

In this section we discuss several characterisations of the class of tree-basedness. We discuss the
characterisations introduced by Zhang (2016) and A. Francis et al. (2018) in particular. Zhang
(2016) was the first to fully characterise tree-based binary networks, A. Francis et al. (2018) in-
troduced several characterisations. Mapping out these alternative characterisations help in un-
derstanding tree-based rooted binary phylogenetic networks better. Moreover, it also helps in
understanding and developing proximity measures, making this chapter a toolbox for the next
chapter about proximity measures. Many characterisations rely on a matching in a bipartite graph.

Definition 14. Let G = (V, E) be a simple graph. A matching is a subset M of pairwise non-adjacent
edges.

Definition 15. A bipartite graph is a graph G = (V, E) whose vertices can be partitioned into two
disjoint sets V1 and V2 such that for all e ∈ E: |e ∪V1| = |e ∪V2| = 1.

In this thesis, we will write G = (U ∪ V, E) to denote a bipartite graph with edge set E and
bipartition of the vertex set U ∪V.

2.1 Matching characterisation

Zhang (2016) characterised rooted binary phylogenetic networks using bipartite graphs.

Definition 16. Let N ∈ Ω(X). Let T be the set of tree vertices in N that are parents of a reticulation.
Here we consider the root as a tree vertex. Let R be the set of reticulations in N . Let E′ = {{t, r} : t ∈
T, r ∈ R, (t, r) ∈ E}. We then define ZN = (T ∪ R, E′) as a bipartite graph on T and R.

Furthermore we note that a path is maximal if one cannot append any vertices to the path to
make it longer. Zhang (2016) established the following characterisations.

Theorem 3. Let N be a rooted binary phylogenetic network. Then the following are equivalent:

1. N is tree-based;

2. ZN has a matching such that each reticulation vertex is matched;

3. ZN has no maximal path that starts and ends with reticulations.

Before we prove this Theorem, we need to introduce a classic result in combinatorics: Hall’s
marriage Theorem (Hall, 1935) in its graph theory context:

Theorem 4. Let G = (V1 ∪V2, E) be a bipartite graph. Then, there exists a matching M such that each
vertex in V1 is matched if and only if for all W ⊆ V1 the number of vertices in G adjacent to vertices in W
is at least |W|.

We omit the proof as we would digress too much from the topic of the thesis. We can now
prove Theorem 3.

Proof. Let N ∈ Ω(X).
First, we show that 1 and 2 are equivalent. AssumeN is tree-based. Then, we can remove a set of
reticulation edges E fromN to obtain a base tree S. Observe that no pair of edges in E is adjacent
because N is binary and S is a tree. Hence, E is a matching in ZN . Conversely, assume ZN has
a matching M such that each reticulation vertex is matched. Since N = (V, E) is binary, exactly
one reticulation edge per reticulation vertex is not in M. Thus, (V, E\M) is a base tree of N , i.e.,
N is tree-based.

Next, we show that 2 and 3 are equivalent. Without loss of generality, ZN = (T ∪ R, E′) is
connected. Otherwise, we consider the connected components of ZN .
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Assume ZN has a matching such that each reticulation vertex is matched and suppose by
contradiction that v1, v2 ∈ R define a maximal path P in ZN which starts in v1 and ends in v2.
Then, Hall’s theorem tells us that the number of vertices in ZN adjacent to vertices in U ⊆ R is at
least |U|. In particular, |T| ≥ |R|. However, reticulation vertices and tree vertices alternate in P.
This means, if P = ZN , then |T| = |R| − 1 because v1, v2 ∈ R. Moreover, if P ̸= ZN , i.e., ZN is a
cycle, then we have to remove more tree vertices than reticulation vertices from ZN to obtain P.
Thus, we arrive at a contradiction.

Conversely, assume ZN has no matching such that each reticulation vertex is matched. Then,
by Hall’s theorem, there exists a subset of reticulation vertices U ⊆ R such that the number of
vertices in ZN adjacent to vertices in U is less than |U|. Since ZN is connected and N is binary,
each vertex adjacent to vertices in U has exactly two adjacent vertices in U. This means, U induces
a path P = (W, E′′) in ZN starting and ending in a reticulation vertex such that |W\U| = |U| − 1.
Thus, P is a maximal path containing U. ■

To illustrate the matching characterisation, consider Figure 6. Notice here that ZN does not
have a matching such that each reticulation is matched and hence N is not tree-based.

Figure 6: (Zhang, 2016) (left) A rooted binary phylogenetic network N on taxa {ℓ1, ℓ2, ℓ3, ℓ4} in
which reticulation vertices are indicated by shaded circles and labeled by rn, n ∈ {1, 2, 3, 4, 5}.
(right) The bipartite graph ZN where R = rn and T ⊃ yn. tree vertices that have no edge to a
reticulation vertex are left out of this figure.

2.2 Antichain characterisation

We will now discuss the antichain characterisation, as first introduced in A. Francis et al. (2018).
Let us introduce definitions on posets, chains and antichains before showing the characterisation
itself.

Definition 17. A partially ordered set (poset) is an ordered pair P := (A,⪯), where A is a set and ⪯
is a partial order on A. I.e. a binary relation that is reflexive, anti-symmetric and transitive.

Definition 18. A strict poset is an ordered pair P := (A,≺), where A is a set and ≺ is a strict partial
order on A, i.e. a binary relation that is irreflexive, asymmetric and transitive.

Definition 19. Let P = (A,≺) be a strict poset. A chain of length n is a sequence a1 ≺ a2 ≺ ... ≺ an
for ai ∈ A, i ∈ {1, ..., n}.

Definition 20. Let P = (A,⪯) be a poset. An antichain is a set A ⊆ A with the property that for all
distinct u, v ∈ A: u ̸⪯ v and v ̸⪯ u.

We can view a rooted phylogenetic network as a poset, as shown in the next Lemma.
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Lemma 2. Let N = (V, E) ∈ Ω(X). We define a partial order (⪯) on V as follows:
For any two vertices u, v ∈ V, u ⪯ v if and only if there exists a directed path from v to u.

Proof. We prove reflexivity, anti-symmetry and transitivity of ⪯ on an arbitrary rooted phyloge-
netic network. Let N = (V, E) ∈ Ω(X). Let u, v ∈ V.

• Reflexivity: By taking the trivial path {v}, it follows that v ⪯ v.

• Anti-symmetry: Assume u ⪯ v, then v ⪯ u would be cycle-creating, which is not allowed
in a rooted binary phylogenetic network. Hence v ̸⪯ u.

• Transitivity: Concatenating the directed paths from v to u and w to v yields a directed path
from w to u, hence u ⪯ w.

■

We also define a strict partial order (≺) on V if for u, v ∈ V we have u ⪯ v, but u ̸= v.

Any tree-based network N satisfies the antichain-to-leaf property (A. Francis et al., 2018).

Definition 21. Let N = (V, E) ∈ Ω(X).
We say N satisfies the antichain-to-leaf property if for every antichain A ⊆ V of size k, there exist k
vertex disjoint paths from the elements of the antichain to the leaves of N .

Lemma 3. Let N ∈ Ω(X). If, in fact, N ∈ TBN(X), then N satisfies the antichain-to-leaf property.

Proof. LetN ∈ Ω(X). Assume that, in fact,N ∈ TBN(X). SinceN has a base tree, the size of any
antichain is clearly bounded above by the number of leaves by the definition of a tree. But then
also for any antichain ofN there exists a vertex disjoint path from every element of the antichain
to the leaves of N . These paths can be formed by following for each element in the antichain the
subsequent outgoing edge in the base tree until a leaf is encountered. ■

The antichain-to-leaf property alone is not sufficient to show that an arbitrary rooted binary
phylogenetic network is tree-based. See Figure 7.

Figure 7: This rooted binary phylogenetic network on the leaf set {x, y, z} is not tree-based: r1
and r2 are two reticulation vertices that both cannot be matched to a tree vertex parent. However,
this network satisfies the antichain-to-leaf property.

A. Francis et al. (2018) characterized tree-based rooted binary phylogenetic networks by strength-
ening the antichain-to-leaf property and by introducing another bipartite graph.
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Definition 22. Let N = (V, E) ∈ Ω(X). Let V1, V2 be copies of V. Let E′ = {{u, v} : u ∈ V1, v ∈
V2, (u, v) ∈ E}. We then define GN = (V1 ∪V2, E′) as a bipartite graph on V1 and V2.

Theorem 5. Let N ∈ Ω(X). Then the following are equivalent:

1. N is tree-based;

2. N has an antichain A ⊆ V, and a partition Π of V into |A| chains each of which forms a path in
N ending at a leaf in X;

3. For all U ⊆ V, there exists a set of vertex disjoint paths in N each ending at a leaf in X such that
each element of U is on exactly one path;

4. There is no pair of subsets U1, U2 ⊆ V such that |U1| > |U2| and (i) every path from a vertex in U1
to a vertex in X traverses a vertex in U2, and (ii) for {i, j} = {1, 2}, if there is a path from a vertex
in Ui to a vertex in Ui, then this path traverses a vertex in Uj;

5. The vertex set of N can be partitioned into a set of vertex disjoint paths, each of which ends at a leaf
in X;

6. GN has a matching of size |V| − |X|.

Here, 2 to 5 strengthen the antichain-to-leaf property and 6 characterises tree-based rooted bi-
nary phylogenetic networks in terms of bipartite graphs. A visualization of this characterisation
for properties 5 and 6 can be seen in Figure 8.

Figure 8: (A. Francis et al., 2018) (i) A rooted binary phylogenetic network N on taxon {g} that
is not tree-based. The author of this figure left out edge directions as they are implied by the
positioning of the vertices. (ii) The bipartite graph GN and a maximum-sized matching of GN
indicated by the bold edges. (iii) Two corresponding vertex disjoint paths forN , partitioning the
vertex set of N .

Before we prove Theorem 5, we need to introduce some operations.
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Definition 23. Let G be a digraph. Let e ∈ E(G). To subdivide e is the operation of deleting e, adding a
new vertex v, and joining v to both endpoints of e, where the new edges are directed in the original direction
of e. Any directed graph obtained from G by a sequence of edge subdivisions is called a subdivision of G.

Definition 24. Let N ∈ Ω(X). Let e ∈ E(N ). Consider subdividing e, which creates a new vertex v1.
Create another vertex v2 and add the edge (v1, v2). Notice that v1 is a tree vertex and that v2 is a leaf. This
operation is referred to as attaching a leaf to e (or to N , when speaking more generally).

We also introduce a Lemma on subdivisions in rooted binary phylogenetic networks.

Lemma 4. Let N ∈ Ω(X). Let T be a subdivision of N . Then, for any non-empty subset U of V(T)
there exists a set of vertex disjoint directed paths in T, each of which ends at a leaf of T and each vertex in
U lies on exactly one path.

Proof. (A. Francis et al., 2018)
We apply strong induction on the number of vertices n of T. Base case n = 1 trivially holds. Now
assume n ≥ 2 and assume Lemma 4 holds for all subdivisions of a rooted binary tree with at
most n − 1 vertices. Let U ⊆ V(T), with U non-empty. Since n ≥ 2, T has exactly one of the
following vertices:

(1) A leaf x ∈ X, whose parent u has degree 2; or

(2) A vertex v that is a parent of two leaves, say x and y.

In each case, we establish the induction hypothesis, starting with (1).
For (1), let T′ be the subdivision of a rooted binary tree obtained from T by deleting x and its

incident edge, so that u is now a leaf of T′. Define

U′ :=


U, if U does not contain x;
U − {x}, if U contains x and also contains u;
(U − {x}) ∪ {u}, if U contains x but not u.

Observe that U′ ⊆ V(T′). Therefore, since T′ contain n− 1 vertices, it follows by induction that
Lemma 4 holds and so there is a set of disjoint paths in T′, each of which ends at a leaf of T′ and
each vertex in U lies on exactly one path. Now one of these paths ends at u. Replacing this path
with the one that extends it to end at x gives a set of vertex disjoint paths in T, each of which ends
at a leaf of T and each vertex in U lies on exactly one path. Thus Lemma 4 holds for (1).

Now consider (2). Let T′ be the subdivision of a rooted binary phylogenetic tree obtained
from T by deleting y and its incident edge. Note that T′ has n− 1 vertices. If U does not contain
y, then let U′ := U. By induction, there is a set of vertex disjoint paths in T′, each of which ends
at a leaf of T′ and each vertex in U′ lies on exactly one path. This set of paths also works for U
in T. On the other hand, if U does contain y, then let U′ := U \ {y}. By induction, there is a set
of at most |U′| = |U| − 1 vertex disjoint paths in T′, each of which ends at a leaf of T′ and each
vertex in U′ lies on exactly one path. Adding the trivial path consisting of y to this set of paths,
we obtain a set of vertex disjoint paths in T, each ending at a leaf of T and each vertex in U lying
on exactly one path. This completes the proof for (2). ■

We are now ready to prove the majority of Theorem 5. We prove equivalence of points 1 to 5.
Equivalence between 1 to 5 and 6 is proven independently as Corollary 2 in Chapter 3.

Proof. Let N = (V, E) ∈ Ω(X).
We first show that 1 implies 2.
Assume that N is tree-based. Let T be a base tree for N . Let U = V − X. Then by Lemma 4
it follows that there is a collection of vertex disjoint paths in T each ending at a vertex in X and
each vertex in N lying on exactly one path. Choose A = X; the vertex sets of these paths form
the blocks of the required partition Π of V.
We now show that 2 implies 3.
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Assume Π is a partition of V with the property that each block in Π is the vertex set of a path in
N ending at a leaf in X. Let U ⊆ V. Then Π provides a set of vertex disjoint paths each ending
at a leaf in X and with each vertex in U on exactly one path.
We now show that 3 implies 4. We prove the contrapositive.
Suppose 4 is false. Then there exist subsets U1 and U2 of V with |U1| > |U2| that satisfy the two
traversal conditions (i) and (ii). We show U = U1 fails to satisfy property 3. First observe that if
P is a path in N ending at X, then P contains at least as many vertices of U2 as U1. To see this,
observe that because of traversal conditions (i) and (ii), moving along P, we alternate between
vertices in U1 and vertices in U2. That is, for {i, j} = {1, 2}, if we traverse a vertex in Ui, then the
next vertex we traverse in Ui ∪Uj is a vertex in Uj. Moreover, for each vertex in U1 on P, there is
a subsequent vertex in U2 on P. Hence there are at least as many vertices of U2 as U1 in P. Thus
any set of vertex disjoint paths in N each ending at a leaf in X collectively contains at least as
many vertices in U2 as U1. But then it is not possible for such a set of paths to collectively collect
all vertices in U1 since |U2| < |U1|. So U = U1 violates property 3.
We now show that 4 implies 1. We prove the contrapositive.
Suppose N is not tree-based. Then by Theorem 3 there is a maximal path in ZN that starts and
ends in R. Denote such path as r1t1r2, ..., tk−1, rk for some k ∈ N. Let y be the parent of r1, that is
not t1, and let y′ be the parent of rk that is not tk−1. Since the path is maximal, both y and y′ must
be reticulations of N . Let U1 = {y, t1, t2, ..., tk−1, y′} and let U2 = {r1, r2, ..., rk}. These sets have
the following properties:

(1) |U1| > |U2|

(2) U1 is the set of all parents of all vertices in U2, and

(3) U2 is the set of all children of all vertices in U1.

Now (2) implies that every path from a vertex in U1 to a vertex in X traverses a vertex in U2.
Furthermore, (2) and (3) imply that, if there is a path from a vertex in U1 to another vertex in U1,
then this path traverse a vertex in U2. Similarly, if there is a path from a vertex in U2 to another
vertex in U2, then this path traverses a vertex in U1. It follows that U1 and U2 provide an instance
for which property 4 fails.
We now show that 3 implies 5.
Taking U = V in property 3 immediately gives a path system satisfying property 5.
Lastly, we show that 5 implies 2. Assume P is a set of paths satisfying property 5. Taking A = X
and Π = P gives an antichain and partition of V into |A| chains that satisfies property 2.

These implications are sufficient for the proof of equivalence between 1 to 5. ■

Theorem 5.2 is closely related to a classical result in combinatorics, namely Dilworth’s Theo-
rem (Dilworth, 1950). We show how Dilworth’s Theorem relates to this property. Recall that we
can view a rooted binary phylogenetic N as a poset. Let us first begin with a definition.

Definition 25. Let G = (V, E) be a graph. A stable set is a set S ⊆ V for which no vertices in S are
adjacent to other vertices in S.

We can now state Dilworth’s Theorem.

Theorem 6. Let P be a finite poset. The minimum number of chains into which the elements of P can be
partitioned is equal to the maximum number of elements in an antichain of P.

Part of the proof of Dilworth’s Theorem relies on a result in Gallai & Milgram (1960).The proof
of this result will be omitted as we would digress too much from the topic of the thesis.

Proof. (Bondy & Murty, 2008) Let P := (V,≺), and denote by D := D(P) the digraph whose
vertex set is V and whose edges are the ordered pairs (u, v) such that u ≺ v in P. Let α denote
the number of vertices in a largest stable set. Let π be the minimum number of disjoint directed
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paths that is needed to cover the vertex set of D. Chains and antichains in P correspond in D
to directed paths and stable sets, respectively. Because no two elements in an antichain of P can
belong to a common chain, the minimum number of chains in a chain partition is at least as large
as the maximum number of elements in an antichain; that is, π ≥ α. Gallai & Milgram (1960)
showed π ≤ α. Therefore π = α. ■

Hence, if we regard a rooted binary phylogenetic network as a poset as in Lemma 2, we see
that Theorem 5.2 is exactly Dilworth’s Theorem with the additional requirement that chains must
form directed paths, i.e. we cannot use the transitivity of a poset to ’jump’ from one vertex from
another. Figure 9 visualizes how Dilworth’s Theorem relates to tree-basedness in rooted binary
phylogenetic networks.

Figure 9: (left) A phylogenetic network N on taxa {x, y, z} that is not tree-based: reticulation
vertices r1 and r2 cannot both be matched with a tree vertex parent. (middle) N has an antichain
of size 3 ({x, y, z}). The vertices of N are partitioned into three chains denoted by red dashed
lines. (right) N can be divided into 4 vertex disjoint paths, denoted by the red dashed lines, but
not 3.

2.3 Other characterisations

Next to the matching characterisation and the antichain characterisation, there exist other char-
acterisations for tree-basedness of rooted phylogenetic networks. These other characterisations
will not be of focus in the remainder of the thesis. Hence, these characterisations will be given
less attention compared to the matching and antichain characterisation. Still, it is good practice to
list them here as they help us in getting a stronger understanding of the combinatorial properties
of tree-based rooted binary phylogenetic networks.

The anti-chain-to-leaf property property is sufficient to show that an arbitrary rooted binary phy-
logenetic network is tree-based in the class of temporal networks, introduced by Baroni et al. (2006).

Definition 26. Let N = (V, E) be a rooted binary phylogenetic network. Let u, v ∈ V. N is temporal
if there exists a map λ : V → R such that λ(u) < λ(v) for all tree edges (u, v), and λ(u) = λ(v) for all
reticulation edges (u, v). Then λ is said to be a temporal map for N .

Theorem 7. Let N be a temporal network. Then the following are equivalent:

1. N is tree-based;

2. N satisfies the antichain-to-leaf property.

Proof. (A. Francis et al., 2018) Let N ∈ Ω(X). Furthermore, let N be temporal.
Assume N is tree-based. Then N satisfies the antichain-to-leaf property as proven in Lemma 3.
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Now, assume N is not tree-based. We will prove that it then cannot satisfy the antichain-to-leaf
property. Since N is not tree-based, it follows by Theorem 3.3 that ZN = (T ∪ R, E) contains a
maximal path

r1t1r2 · · · tk−1rk

that starts and ends in R. If k = 1, then both parents, q and q′ say, of r1 are reticulations, in
which case U = {q, q′} is an antichain in N that violates the antichain-to-leaf property. Thus
we may assume that k ≥ 2. Let q be the parent of r1 that is not t1 and let q′ be the parent of
rk that is not tk−1. Since the path is maximal, both q and q′ are reticulations in N . Let U =
{q, t1, t2, . . . , tk−1, q′}. Since N is temporal, there is a temporal map λ for N which necessarily
gives

λ(q) = λ (r1) = λ (t1) = λ (r2) = · · · = λ (tk−1) = λ (rk) = λ
(
q′
)

,

and so λ is constant on U. If U is an antichain, then U violates the antichain-to-leaf property,
since any set of paths that connects the k + 1 vertices in U to the leafs in X need to pass through
the k vertices in {r1, r2 . . . , rk} and so these paths cannot be disjoint. Therefore, suppose that U
is not an antichain. Then there is a directed path P in N from a vertex u ∈ U to another vertex
u′ ∈ U. Moreover, every edge in P must be a reticulation edge of N . Otherwise, if P contains
a tree edge, then λ (u′) > λ(u), contradicting the constancy of λ on U. In particular, the only
possible tree vertex of N in P is the first vertex. Thus P must include q or q′. If q (respectively
q′ ) can be reached by a directed path from a vertex in {r1, r2, . . . , rk}, denote this vertex by rq
(respectively rq′ ). It is easily checked that rq ̸= rq′ . Now let

U′ =


U − {q}, if rq exists;
U − {q′} , if rq′ exists;
U − {q, q′} , if rq and rq′ exist.

The set U′ is an antichain of size k or k− 1. Now any path in N that connects a vertex in U′ with
a vertex in X must traverse a vertex in {r1, r2, . . . , rk}. But if rq exists, then any path traversing rq
must also traverse r1. Similarly, if rq′ exists, then any path traversing rq′ must also traverse rk−1.
In all possibilities for U′, it follows that U′ does not satisfy the antichain-to-leaf property.

■

Jetten & Van Iersel (2018) introduced another characterisation for tree-based rooted binary
phylogenetic networks based on a matching in some bipartite graph.

Definition 27. Let N ∈ Ω(X). Let O denote the set of vertices whose only children are reticulations.
Let R denote the set of reticulations in N . Let E′ = {{o, r}, o ∈ O, r ∈ R, (o, r) ∈ E}. We then define
BN = (O ∪ R, E′) as a bipartite graph on O and R.

Vertices whose only children are reticulations are referred to as omnians.

Theorem 8. Let N be a rooted binary phylogenetic network. Then the following are equivalent:

1. N is tree-based;

2. There exists a matching M in BN with |M| = |O|.

Proof. (Jetten & Van Iersel, 2018)
Let N ∈ Ω(X).
Assume that N is tree-based with base tree T. Colour every edge of BN that corresponds to
an edge in T. When an omnian has outdegree 2 and both outgoing edges are contained in T,
decolourize one of the two corresponding edges of BN , arbitrarily. Hence, each vertex of O is
incident to at most one coloured edge. Since T is a rooted tree, it contains at most one incoming
edge of each reticulation vertex. Hence, also each vertex of R is incident to at most one coloured
edge. So the coloured edges of BN form a matching M. Because T is a base tree, we are on the
same leaf set as N , and so all omnians are covered by M.
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Now, assume there exists a matching M in BN with |M| = |O|, i.e., all omnians are covered by M.
Construct a set E′ of edges as follows: add the outgoing edge of every reticulation vertex and the
incoming edge of all tree vertices to E′. Additionally, for each edge of M, add the corresponding
edge of N to E′, if it has not yet been added. For every reticulation vertex that has not yet been
covered, add one of its incoming edges to E′, arbitrarily. The tree T, consisting of all vertices of
N and the set of edges E′, is a rooted spanning tree, because there is precisely one incoming edge
of every vertex contained in T. Moreover, T has the same leaf set as N , because O is covered by
M. Hence, it follows that N is tree-based. ■

A. R. Francis & Steel (2015) also introduced characterisations for tree-based rooted binary
phylogenetic networks based on admissible sets.

Definition 28. Let N = (V, E) ∈ Ω(X). Let S1 denote the subset of edges whose tail has out-degree 1
or whose head has in-degree 1. Let v ∈ V. A subset S ⊆ E is admissible if

• S1 ⊆ S; and

(C1) if v has in-degree 2, then exactly one of its incoming edges is in S; and

(C2) if v has out-degree 2, then exactly one of its outgoing edges is in S.

Theorem 9. Let N = (V, E) ∈ Ω(X). Then the following are equivalent:

1. N is tree-based;

2. There exists an admissible subset of the edges of N ;

3. there exists an independent subset of edges E′ of E for which T′ = (V, E− E′) is a base tree of N .

A. R. Francis & Steel (2015) used a different, and frankly cumbersome, definition for tree-
based phylogenetic networks. We introduce them for the sake of the proof of Theorem 9, but it
will play no further role in this thesis.

Definition 29. Let N ∈ Ω(X). We say that N is tree-based with sparse base tree T if N can be
obtained from the following procedure. First, subdivide each edge of T some number na ∈ N of times and
call the resulting degree-2 vertices attachment points. The resulting tree is a base tree T′ for N derived
from T. Next, sequentially place additional edges between any two attachment points, provided that the
network remains binary and acyclic, until N is recovered. We call these additional edges linking edges.

The procedure described in Definition 29 can be seen in Figure 1 when reading the Figure
from right to left. Here, the graph on the right is the so-called sparse base tree.

Proof. (A. R. Francis & Steel, 2015)
We first show equivalence between 1 and 2. Assume that N is tree-based, and let T′ be a base
tree forN . Then the set S of edges of T′ contains S1, and S also satisfies conditions (C1) and (C2)
for every vertex v ∈ V of in-degree or out-degree 2 , respectively. Thus S is admissible.
Now, assume that S is an admissible subset of the edges ofN . Consider the networkN ′ = (V, S)
consisting of all the vertices in N and just the edges in S. We claim that this is a base tree, with
root ρ (the root of N ) and leaf set X (the leaf set of N ). First, notice that T′ has no vertex of in-
degree 2, by condition (C1). Second, every edge e that is incoming to a leaf x ∈ X ofN is present
in S′, and so e is also an edge of T′ and so the leaf set of T′ contains X. It remains to check that (1)
T′ contains no other leaves, and (2) the only vertex of in-degree 0 in T′ is ρ. For (1), suppose v is
vertex of T′ that is not in X. Then inN , v has strictly positive out-degree. If v has out-degree 1 in
N , then the outgoing edge from v is present in S1 and thereby in S, while if v has out-degree 2,
at least one of the two outgoing edges is present in S by condition (C2). Thus, v cannot be a leaf
of T′.
We now show equivalence between 1 and 3. Let N ∈ Ω(X).
Assume that N is tree-based. Then no two linking edges can share the same vertex. Moreover, a
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linking edge is never incoming to an in-degree 1 vertex, or outgoing from an out-degree 1 vertex,
and so deleting linking edges will not disconnect the network. Thus if we take E′ to be the linking
edges for N then T′ = (V, E− E′) is an associated base tree for N . So T′ is a base tree for N
Now assume 2 holds for some set E′. Since T′ is connected it has leaf set X, and so T′ is a
subdivision of some sparse base tree T. Now if we regard each edge in E′ as a linking edge then
we recoverN (since E′ is independent, and T′ is connected, these arcs are all placed validly). ■
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3 Proximity measures for tree-basedness

Proximity measures were introduced by A. Francis et al. (2018) to determine how close rooted bi-
nary phylogenetic networks were to being tree-based. Later, several proximity measures were
extended to non-binary rooted phylogenetic networks and unrooted phylogenetic networks,
though a proximity measure for a specific type of phylogenetic network might not translate di-
rectly to a phylogenetic network of another type. This can be seen in the open problems from
Fischer & Francis (2020). For a proximity measure we require some sort of measurement on a
topological property of a phylogenetic network, that relates it to being tree-based. Because there
are different ways to characterise tree-based networks as we have seen in previous chapters,
there exist many different ways to measure proximity to tree-basedness. Practically, the topo-
logical property that defines the proximity measure should be some property that is useful to
measuring closeness to tree-based in biological applications. Moreover, to prove that a measure
is well-defined usually requires knowledge on different characterisations of tree-based networks.
It is important that a measure is well-defined, else it may not always return a value for some net-
works, or, it may not return a consistent value for tree-basedness.

3.1 Definition of a proximity measure

Informally put, we would like for a proximity measure for tree-basedness of rooted binary phy-
logenetic networks to be a function that maps a rooted binary phylogenetic network on taxa X
to a natural number n, where n indicates proximity to tree-basedness of N . From this follows
that closeness to being tree-based cannot be determined for some N ∈ Ω(X) by the proximity
measure µ if µ(N ) does not return a value, i.e. ∀N ∈ Ω(X) : µ(N ) /∈ N ∪ {0}. We would also
like for µ(N ) to attain its minimum value if and only if N is tree-based for the sake of consis-
tency of the proximity measure. These two requirements for proximity measures were implied
(informally) for all proximity measures in A. Francis et al. (2018). We form the following formal
requirements for a proximity measure:

Definition 30. A proximity measure is a function µ on the metric space Ω(X) such that

1. ∀N ∈ Ω(X) : µ(N ) ∈N∪ {0};

2. ∀N ∈ Ω(X) : µ(N ) is minimal if and only if N ∈ TBN(X).

In this thesis, as well as in other research papers, the convention is used that a function will
be introduced as a proximity measure, after which it is claimed that the proximity measure is
well-defined if it meets the criteria of Definition 30.

3.2 Review of known proximity measures

In this subsection we will review several proximity measures that have been introduced in A. Fran-
cis et al. (2018).

3.2.1 Definitions of the known proximity measures

A. Francis et al. (2018) defined the following proximity measures:

Definition 31. Let N ∈ Ω(X)

1. Let l(N ) be the minimum number of leaves in V(N ) \ X that must be present as leaves in a rooted
spanning tree of N .

2. Let p(N ) = d(N )− |X|, where d(N ) is the smallest number of vertex disjoint paths that partition
the vertices of N .
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3. Let t(N ) be the minimum number of leaves that need to be attached to N so the resulting network
is tree-based on a different set of taxa.

Notice that in Figure 8.(iii) we have d(N ) = 2 and |X| = 1, implying p(N ) = 2− 1 = 1.

Proposition 3. The proximity measures l, p, t are well-defined.

Proof. Let N ∈ Ω(X).
We show for each measure that Definition 30.1 and Definition 30.2 hold
First consider measure l.

1. V(N ) \X is a finite set. Moreover, l(N ) is clearly non-negative and integral. Hence l(N ) ∈
N∪ {0}.

2. Clearly 0 is the minimal value for l(N ). We claim l(N ) = 0 if and only if N ∈ TBN(X).
Assume l(N ) = 0, i.e. a rooted spanning tree of N requires zero leaves in V(N ) \ X, then
this rooted spanning tree is a base tree of N , so N ∈ TBN(X).
Now, assume N ∈ TBN(X), then N has a base tree, which is a rooted spanning tree with
leaves that of leaf set X. So, there exists a rooted spanning tree of N that requires zero
leaves in V(N ) \ X.

So l is well-defined.
Now consider measure p.

1. The number of vertex disjoint paths that partition V(N )is bounded from above by |V(N )|,
which is a finite set. Moreover, p(N ) is non-negative since we need d(N ) = |X| vertex
disjoint paths to cover every leaf x ∈ X alone. Lastly, p(N ) is clearly integral. Hence
p(N ) ∈N∪ {0}.

2. The result follows from equivalence between Theorem 5.1 and Theorem 5.2.

So p is well defined.
Now consider measure t.

1. We propose a procedure which proves that t(N ) attains a value. Attach a new leaf to every
reticulation edge of N . The operation of attaching a new leaf to every reticulation edge
includes subdividing every reticulation edge by Definition 24. The vertex that is created in
the process of subdivision is a tree vertex, since one of its children is the reticulation vertex
on which the reticulation edge is directed to, and the other child is the newly created leaf by
Definition 24. After having done this, we can match every reticulation vertex to each of their
newly created tree vertex parents. It follows from Theorem 3 that the resulting network is
tree-based on taxa X unionized with all newly created leaves. From this procedure follows
that t(N ) ≤ E(N ). Moreover, t(N ) is clearly non-negative and integral. Hence t(N ) ∈
N∪ {0}.

2. Clearly 0 is the minimal value for t(N ). We claim t(N ) = 0 if and only if N ∈ TBN(X).
Assume t(N ) = 0, i.e. zero leaves need to be attached toN so that the resulting network is
tree-based. Then by definition, N ∈ TBN(X).
Now, assume N ∈ TBN(X). Then zero leaves need to be attached so that the resulting
network is tree-based.

■

In fact, A. Francis et al. (2018) proved the following Theorem.

Theorem 10. Let N ∈ Ω(X). Then

l(N ) = p(N ) = t(N ).
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Proof. (A. Francis et al., 2018)
Let N ∈ Ω(X).

We first show l(N ) ≤ p(N ). Assume that Π is the partition of the vertex set V of N induced
by a set of d(N ) = p(N ) + |X| vertex disjoint paths of N . Due to the minimality of d(N ),
there are |X| paths ending at a leaf; p(N ) of these are not. Let p = p(N ). Consider the paths
π1, π2, . . . , πp not ending at an element in X. Since the paths in Π are vertex disjoint and partition
V, the paths Π forms a spanning sub-forest of N . So, by adding, for each path in Π, one edge of
N directed into the starting vertex, except for the root, we construct a rooted spanning tree T of
N . Note that such edge is guaranteed to exist since every vertex that is not the root has a positive
indegree. Also, the ingoing edge of the starting vertex must originate from a vertex in different
path of Π. The leaves of T not in X are precisely the last vertices of the paths π1, π2, . . . , πp. Since
there are p(N ) of these paths, it follows that l(N ) ≤ p(N ).

We next show that p(N ) ≤ t(N ). Let N ′ be a tree-based network that is obtained from N
by attaching t(N ) leaves. Let T be a base tree for N ′, and let U denote the leaf set of T. If we
now apply Lemma 4 with the same choice of U and T, then T can be partitioned into at most
|U| = t(N) + |X| paths each of which ends at an element in U, of which d(N ) paths partition
V(N ). Thus d(N ) ≤ t(N ) + |X|, implying p(N ) ≤ t(N )

Lastly, we show that t(N ) ≤ l(N ). Let T be a rooted spanning tree of N that realises l(N ).
For each leaf ℓ of T that is not in X, attach a new leaf to an edge directed out of ℓ. If ℓ is a tree
vertex of N , then choose arbitrarily one of the outgoing edges to attach the new leaf. Let N ′
denote the resulting phylogenetic network. Since T is a rooted spanning tree of N , it is easily
seen that we can extend T to give a rooted spanning tree of N ′ whose leaf set coincides with the
leaf set ofN ′. HenceN ′ is tree-based, and it follows that t(N ) ≤ l(N ). This completes the proof
of the theorem. ■

A. Francis et al. (2018) introduced two proximity measures at the end of their paper, for which
they did not prove any bounds like they did for their first three measures.

Definition 32. Let N = (V, E) ∈ Ω(X). We say that N ′ = (V′, E′) is embedded in N if N ′ is a
subgraph of N up to edge subdivisions.

Definition 33. Let N ∈ Ω(X), A. Francis et al. (2018) defined the following proximity measures:

1. Let a(N ) be the minimum value of |V(N ) \V(T)|, where T is a rooted tree embedded in N on the
same leafset as N .

2. Let b(N ) be the minimum number n of rooted trees Ti, i ∈ {1, ..., n}, embedded in N on the same
leaf set as N such that

⋃n
i=1 V(Ti) = V(N ).

Proposition 4. The proximity measures a, b are well-defined.

Proof. Let N ∈ Ω(X).
We show for each measure that Definition 30.1 and Definition 30.2 hold
First consider measure a.

1. Clearly, a(N ) ≤ |V(N )|. Moreover, a(N ) is integral and non-negative. Hence a(N ) ∈
N∪ {0}.

2. Clearly 0 is the minimal value for a(N ). We claim a(N ) = 0 if and only if N ∈ TBN(X).
Assume a(N ) = 0, i.e. |V(N ) \V(T)| for some rooted tree T embedded in N on the same
leaf set as N . Then the rooted tree that attains this is a rooted spanning tree; a base tree for
N . So N ∈ TBN(X).
Now, assume N ∈ TBN(X), then N has a base tree, which by definition, is a rooted span-
ning tree with vertex set V(N ). We get a(N ) = |V(N ) \V(N )| = 0.

Now consider measure b.
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1. One can see that b(N ) ≤ |V(N )| since we can take |V(N )| rooted trees, each of which
aimed to cover a certain vertex in N . Moreover, b(N ) is non-negative and integral, hence
b(N ) ∈N∪ {0}.

2. Clearly 1 is the minimal value for b(N ). We claim b(N ) = 1 if and only if N ∈ TBN(X).
Assume b(N ) = 1, i.e. there exists a rooted tree T embedded in N with the same leaf set
as N such that V(T) = V(N ). Such tree is a rooted spanning tree; a base tree for N . So
N ∈ TBN(X)
Now, assume N ∈ TBN(X). Then N has a base tree T. This is a rooted tree with the same
leaf set as N where V(T) = V(N ). So b(N ) ≤ 1. Moreover, since clearly b(N ) ≥ 1, we get
b(N ) = 1.

■

3.2.2 Complexity of the known proximity measures

A. Francis et al. (2018) proposed a polynomial time algorithm for measures l, p and t. Davidov
et al. (2020) gave a polynomial time algorithm for a. By Theorem 10, it suffices to construct a
polynomial time algorithm for one of the measures of l, p or t to get a polynomial time algorithm
for every other measure l, p or t. Let us first relate p to the size of a maximum-sized matching in
bipartite graphs.

Corollary 2. LetN ∈ Ω(X). Let u(GN ) denote the number of unmatched vertices of V1 in a maximum-
sized matching of GN . Then

p(N ) = u(GN )− |X|.

Proof. (A. Francis et al., 2018)
Let N ∈ Ω(X). We first show that p(N ) ≤ u(GN )− |X|. Let M be a maximum-sized matching
of GN . Let U2 denote the set of unmatched vertices in V2. For each vertex u ∈ U2, we recursively
construct a directed path Pu in N as follows. Set u = u0 and initially set Pu = u0. If u0 is
unmatched in V1, then terminate the process and set Pu = u0; otherwise, u0 is matched in V1,
in which case set Pu = u0u1, where (u0, u1) ∈ M. If u1 is unmatched in V1, then terminate the
process and set Pu = u0u1. Otherwise, u1 is matched in V1, in which case set Pu = u0u1u2,
where (u1, u2) ∈ M. Since N is acyclic, this process eventually terminates with the last vertex,
uk say, added to Pu being unmatched in V1. Repeating this construction for each vertex in U2, we
eventually obtain a collection P = {Pu : u ∈ U2} of directed paths in N . Since every edge in a
path of P corresponds to an edge of the matching M in GN , the paths in P are vertex disjoint.
Furthermore, every vertex inN is on some path in P . To see this, suppose there is a vertex v ∈ V
not on a path in P . Clearly, v is matched in V2. But then, by reversing the above construction
starting at v in V2, it is easily seen that v is on such a path. Since each vertex in X is unmatched in
V1, and noting that the number of paths in P equals the number of unmatched vertices in V2, and
therefore the number of unmatched vertices in V1, it follows from the fact that M is of maximum
size that

p(N ) ≤ |P| − |X| = u (GN )− |X|

We next show that p(N ) ≥ u (GN ) − |X|. Now let P be a minimum sized collection of vertex
disjoint paths that partitions the vertices of N . Let M be the matching of GN obtained from P
as follows. The edge (u, v) ∈ M precisely if u and v are consecutive vertices on some path in P .
Since the paths in P are vertex disjoint, M is certainly a matching. As every vertex in N is on
some path in P , the number u1 of unmatched vertices in V1 is at least the number of paths in P ,
as the last vertex of each path in P is unmatched in V1. Thus, it follows from the fact that P is of
minimum size that

p(N ) = |P| − |X| = u1 − |X| ≥ u (GN )− |X|

This completes the proof of the Corollary. ■
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Notice in Figure 8.(ii) that u(GN ) = 2 and |X| = 1, implying p(N ) = 2− 1 = 1.
We can find a maximum-sized matching in a bipartite graph inO(n5/2) (Hopcroft & Karp, 2006),
where n is the size of the vertex set of said graph. Furthermore we can construct GN in polyno-
mial time.

Algorithm 1 constructG
Input: N ∈ Ω(X)
Output: GN

V1 ← V(N )
V2 ← V(N )
E← {}
for v1 ∈ V1 do

for v2 ∈ V2 do
if (v1, v2) ∈ E(N ) then

E ∪ {(v1, v2)}
return (V1 ∪V2, E)

Proposition 5. Let N ∈ Ω(X), where n = |V(N )|. Then constructG(N ) runs in O(n2).

Proof. Let N ∈ Ω(X) with n = |V(N )|. Iteration over two copies of V runs in O(n2). What is
left is copying, unionizing and every other operation, which each do not exceed O(n2). ■

If we now find a maximum-sized matching M in GN and return the number of unmatched
vertices of V1, we can compute p(N ), for all N ∈ Ω(X):

Algorithm 2 getP
Input: N ∈ Ω(X), X
Output: p(N )

G ← constructG(N )
M← match(G)
for (u, v) ∈ M do

V1 \ {u}
return |V1| − |X|

Here we assume match as a black box O(n5/2) algorithm with parameters a tuple of a vertex
set and an edge set, returning a maximum sized matching as an edge set.

Proposition 6. Let N ∈ Ω(X). running getP(N ) returns a value equal to p(N ).

Proof. First we construct GN using constructG(N ). This algorithm is correct since we define V1,
V2 to be equal to a copy of the original vertex set, furthermore we iterate over every vertex pair
v1 ∈ V1, v2 ∈ V2 to check if there is an edge between them and append such edges to E.
Now, we assumed that match(G) returns a maximum sized matching in G. By taking u, for all
(u, v) ∈ M and removing them from V1, we remove every vertex in V1 that is matched in M. This
leaves V1 as the number of unmatched vertices in V1. We return the size of this final set V1 and
subtract the size of the leaf set. But then we return u(GN )− |X| = p(N ). ■

Proposition 7. Let N ∈ Ω(X), where n = |V(N )|. Then getP(N ) runs in O(n5/2).

Proof. As shown by Proposition 5, constructG(N ) runs in O(n2). Furthermore match(G) can run
in O(n5/2) (Hopcroft & Karp, 2006). Iterating over every edge in a matching between V1 and V2
runs in O(n). Taking the setminus runs in O)(1). Hence getP(N ) runs in O(n5/2). ■

In conclusion,

Page 25 of 48



Niek Bongaerts TU/e

Proposition 8. Let N ∈ Ω(X), where n = |V(N )|. Then l(N ), p(N ) and t(N ) can be computed in
O(n5/2).

Proof. Let N ∈ Ω(X). Run getP(N ). This can be done in O(n5/2) by Proposition 7. The return
value of getP(N ) equals p(N ) by Proposition 6. It follows from Theorem 10 that l(N ) = p(N ) =
t(N ). ■

Proposition 9. Let N ∈ Ω(X). Then a(N ) can be computed in polynomial time.

The proof is the content of Davidov et al. (2020); it is too lengthy to cover here. Instead we
show a sketch of the proof.
Let N ∈ Ω(X). Notice that N without a minimal set of a(N ) vertices forms a maximal covering
subtree: a phylogenetic tree covering the maximum number of vertices in a phylogenetic net-
work. Davidov et al. (2020) provided a polynomial time algorithm to find the maximal covering
subtree. First they showed a transformation of N ∈ Ω(X) into a flow network F such that the
minimum-cost flow in F induces a maximal-covering subtree ofN . This transformation and find-
ing a minimum-cost flow can be done in polynomial time. From the resulting maximal-covering
subtree a(N ) can be found in polynomial time by counting the vertices ofN that are not present
in F.
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4 A new proximity measure for tree-basedness

Fischer & Francis (2020) defined several proximity measures for unrooted phylogenetic networks.
One open question from that paper regarded lifting the proximity measures from the unrooted
case to the rooted case. One proximity measure in particular concerned NNI-moves. Note that
we did not formally define sets and proximity measures for unrooted networks; we can omit
those since the ideas are very similar to the rooted case and we will not use unrooted networks
in any proofs.

Definition 34. Let N be an unrooted phylogenetic network on X, then an unrooted proximity measure
based on a minimum number of NNI moves is formally defined as

δNNI(N ) = min
{

dNNI
(
N ,N ′

)
| N ′ is tree-based

}
Where dNNI is the NNI equivalent of drNNI as in Definition 11. It would be interesting if we

were able to lift this proximity measure to the rooted case and if we could generalize to rNNI
moves. Moreover, one might ask an inverse question. How tree-based is a given tree-based
network - What is the number of moves required to make a tree-based network not tree-based
(Fischer & Francis, 2020)? This question may allow us to define a "reverse" proximity measure of
sorts. We define it for rooted binary phylogenetic networks.

Definition 35. A reverse proximity measure is a function µ on the metric space Ω(X) such that

1. ∀N ∈ Ω(X) : µ(N ) ∈N∪ {0};

2. ∀N ∈ Ω(X) : µ(N ) is minimal if and only if N /∈ TBN(X).

Definition 36. Let N be an unrooted phylogenetic network on X, then we can define a reverse unrooted
proximity measure based on a minimum number of NNI moves as

δ−1
NNI(N ) = min

{
dNNI

(
N ,N ′

)
| N ′ is not tree-based

}
.

If we now combine Definition 34 and Definition 36, we can define a novel measure that for
any phylogenetic network describes the shortest NNI distance to the boundary of the class of
tree-based networks, i.e. a tree-based network that can become non-tree-based with one single
NNI move. Fischer & Francis (2020) described this for NNI moves in unrooted networks:

Definition 37. LetN be an unrooted phylogenetic network on X. A novel measure for unrooted networks
associated to tree-basedness with NNI moves is formally defined as

||N ||TB =

{
δrNNI(N ) if N is not tree-based,
δ−1

rNNI(N )− 1 if N is tree-based.

4.1 The rNNI proximity measure

We define our own proximity measure for rooted binary phylogenetic networks based on rNNI
moves.

Definition 38. Let N ∈ Ω(X), then a proximity measure based on a minimum number of rNNI moves
is formally defined as

δrNNI(N ) = min
{

drNNI
(
N ,N ′

)
| N ′ ∈ TBN(X)

}
Proposition 10. The proximity measure δrNNI is well-defined.

Proof. Let N ∈ Ω(X). We show that Definition 30.1 and Definition 30.2 hold.
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1. We show how to construct N ′ ∈ TBN(X; r) for every value of |X| and r. We then claim
δrNNI(N ) ∈N∪ {0} by Theorem 1.

First consider the case where |X| = 1.
Note that r ≥ 2: if r = 0, then n = 1 by the formula for n in Proposition 1, but a single
vertex is not considered a rooted binary phylogenetic network by Definition 1. If r = 1,
then n = 3: one reticulation vertex, one root and one leaf. These three vertices cannot form
a rooted binary phylogenetic network together.
We construct Nbasis1 ∈ TBN(X; 2) with |X| = 1, which serves as a basis for constructing
N ′ ∈ TBN(X; r) with |X| = 1 for every fixed value r ≥ 2.
Define Nbasis1 = (V, E) ∈ TBN(X; 2) by

Nbasis1 = ({root, t1, r1, r2, x}, {(root, t1), (root, r1), (t1, r1), (t1, r2), (r1, r2), (r2, x)}),

where root is the root of Nbasis1, ti are tree vertices, ri are reticulation vertices and x ∈ X.
Note that |X| = 1. (root, t1, r1, r2, x) is a path that traverses all vertices of Nbasis1 and ends
in x. It follows from Theorem 5 that Nbasis1 is tree-based.
We now show a procedure on how to construct N ′ ∈ TBN(X; r), with |X| = 1 for every
fixed value r ≥ 2 from Nbasis1. Let r ≥ 0. Take Nbasis1 and subdivide both outgoing edges
of the root. This creates two new vertices v1, v2, where initially v1 is the parent of t1 and v2
is the parent of r1. Add the edge (v2, v1). Then v1 is a reticulation vertex and v2 is a tree
vertex. Execute the process of subdividing both outgoing edges of the root a total number
of r − 2 times, where each execution we alternate between adding the edge (v2, v1) or the
edge (v1, v2), initially (v2, v1). Define N ′ to be the resulting network of this procedure.
Notice that N ′ has r reticulation vertices. The vertices that are created by subdivisions
form a path by our construction of alternating edges. Furthermore we can append the path
(t1, r1, r2, x) since the initial vertex v1 after subdivision is the parent of t1. Lastly we can
prepend the root since we always subdivide on edges connected to the root. The resulting
path traverses all vertices of N ′ and ends in x. It follows that N ′ is tree-based by Theorem
5, i.e. N ′ ∈ TBN(X, r) with |X| = 1. A visualization of this process on Nbasis1 can be seen
in Figure 10.

Now consider the case where |X| ≥ 2.
We construct Nbasis2 ∈ TBN(X; 0) with |X| = 2, which serves as a basis for constructing
N ′ ∈ TBN(X; r) for every fixed value |X| ≥ 2, r ≥ 0.
Define Nbasis2 = (V, E) ∈ TBN(X; 0) by

Nbasis2 = ({root, x1, x2}, {(root, x1), (root, x2)}),

where root is the root of Nbasis2 and x1, x2 ∈ X. Note that |X| = 2. Nbasis2 is a tree, hence it
is tree-based.
We now show a procedure on how to construct N ′ ∈ TBN(X; r) with |X| ≥ 2, r ≥ 0 from
Nbasis2. Let r ≥ 0. Let |X| ≥ 2. Take Nbasis2 and subdivide both outgoing edges of the
root. This creates two new vertices v1, v2. Add the edge (v1, v2). v1 is then a tree vertex,
while v2 is a reticulation vertex. Execute this process of subdivision and adding edges a
total number of r times. Now arbitrary select one outgoing edge of the root. Repeatedly
attach a new leaf to this edge |X| − 2 times. Define N ′ to be the resulting network of this
procedure. Notice that N ′ has r reticulation vertices and |X| leaves. For every reticulation
vertex v1 that we add to the network, we add and connect a new tree vertex parent v2 to it.
So every reticulation vertex can be matched to a tree vertex parent. It follows from Theorem
3 that N ′ is tree-based, i.e. N ′ ∈ TBN(X; r) with |X| ≥ 2. A visualization of this process
on Nbasis2 can be seen in Figure 11.

Since there exists N ′ ∈ TBN(X; r) for every fixed value of |X| and r, it follows from The-
orem 1 that such N ′ is reachable in a finite number of rNNI moves starting from N ∈
Ω(X; r). Furthermore, since drNNI is a metric on Ω(X; r), it follows that δrNNI(N ) ∈
N∪ {0}.
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2. Because drNNI is a metric, δrNNI(N ) ≥ 0. We claim that δrNNI(N ) = 0 if and only if
N ∈ TBN(X).
Assume δrNNI(N ) = 0. Then by Definition 38, min {drNNI (N ,N ′) | N ′ ∈ TBN(X)} = 0,
implying drNNI(N ,N ′) = 0 for some N ′ ∈ TBN(X). But then by Definition 9.(M2), N =
N ′, implying N ∈ TBN(X).
Now, assume N ∈ TBN(X). Then by Definition 9.(M2), drNNI(N ,N )=0, implying
min {drNNI (N ,N ′) | N ′ ∈ TBN(X)} = δrNNI(N ) ≤ 0. But since also δrNNI(N ) ≥ 0, we
conclude that δrNNI(N ) = 0.

■

Figure 10: (left) The networkNbasis1. The vertex disjoint path partitioning the vertices ofNbasis1 is
colored red. (middle) The network after one execution step of increasing the reticulation number
r. (right) The network after two execution steps of increasing r. Notice that we alternate between
adding edge (v2, v1) and (v1, v2), else we cannot form a vertex disjoint path partitioning the
vertices of the resulting network. We could endlessly increase r by doing more execution steps in
this manner.

Figure 11: (left) The network Nbasis2 which is a phylogenetic tree. (middle) The network after
one execution step to increase the reticulation number r. This process can clearly be repeated
endlessly, where the resulting network is tree-based due to reticulation vertex v2 being able to be
matched to v1. (right) The network after one execution step to increase r and one execution step
to increase |X|. We could endlessly attach more leaves to increase |X|, with the resulting network
being tree-based after every execution step.

Similarly, we define a reverse proximity measure for rooted binary phylogenetic networks
based on rNNI moves.
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Definition 39. Let N ∈ Ω(X), then we can define a reverse proximity measure based on a minimum
number of rNNI moves as

δ−1
rNNI(N ) = min

{
drNNI

(
N ,N ′

)
| N ′ /∈ TBN(X)

}
.

Proposition 11. The reverse proximity measure δ−1
rNNI is well-defined for N ∈ Ω(X; r) with r ≥ 3

Proof. We show that Definition 35.1 and Definition 35.2 hold for all N ∈ Ω(X; r) with r ≥ 3. We
also show why Definition 35.2 does not hold for N ∈ Ω(X; r) with r < 3.

1. LetN0 ∈ Ω(X; 0), then trivially ZN0 always has a matching such that each reticulation ver-
tex is matched. So the space Ω(X; 0) contains no networks that are not tree-based, making
δ−1

rNNI(N0) ill-defined.

Now letN1 ∈ Ω(X; 1). N1 has one reticulation vertex. This reticulation vertex must have at
least one tree vertex as parent, hence ZN1 has a matching such that each reticulation vertex
is matched. So the space Ω(X; 1) contains no networks that are not tree-based, making
δ−1

rNNI(N1) ill-defined.

Now let N2 ∈ Ω(X; 2). Suppose for sake of contradiction that N2 is not tree-based. N2
by definition has two reticulation vertices. Since N2 is not tree-based, ZN2 does not have a
matching such that every reticulation vertex is matched. Assume w.l.o.g reticulation vertex
r1 cannot be matched. r1 must then have reticulation vertex r2 as parent. The second parent
of r1 is a tree-vertex or the root, say t1. Since r1 cannot be matched, t1 must also be a parent
of r2. r2 has another parent, say t2, which must either be a tree-vertex or the root. The
matching M = {(t2, r2), (t1, r1)} is a matching in ZN2 such that every reticulation vertex
is matched, contradicting our assumption that N2 is not tree-based. Now, assume both r1
and r2 cannot be matched in ZN2 , then r1, r2 both have only reticulation vertices as parents.
This is clearly not possible, contradicting our assumption that N2 is not tree-based. So the
space Ω(X; 2) contains no networks that are not tree-based, making δ−1

rNNI(N2) ill-defined.

Now, similarly to the proof of Proposition 10.2, we show how to construct a non-tree-based
networkN ′ for every fixed value of |X| and r ≥ 3. We first constructNbasis ∈ Ω(X; 3), with
|X| = 1, which serves as a basis for constructing non-tree-based N ∈ Ω(X; r) for every
fixed value |X| ≥ 1, r ≥ 3.
Define Nbasis = (V, E) ∈ Ω(X; 3) by

Nbasis = ({root, t1, t2, r1, r2, r3, x},
{(root, t1), (root, t2), (t1, r1), (t1, r2), (t2, r1), (t2, r2), (r1, r3), (r2, r3), (r3, x))}),

where x is the single leaf, root is the root, ti are tree vertices and ri are reticulation vertices.
Note that |X| = 1. Since r3 has two reticulation vertices as parents, it follows from Theorem
3 that Nbasis is not tree-based. We now show a procedure on how to construct non-tree-
based N ′ ∈ Ω(X; r) with |X| ≥ 1, r ≥ 3 from Nbasis2. Let r ≥ 3. Let |X| ≥ 1. Consider the
following procedure on Nbasis: Subdivide both outgoing edges of the root, resulting in two
new vertices v1, v2. Add the edge (v1, v2). Execute this process a total number of r− 3 times.
Now, attach a leaf to the ingoing edge of x a total number of |X| − 1 times. Define N ′ to be
the resulting network of this process. Notice that N ′ has r reticulation vertices and leaf set
size |X|, but is non-tree-based because r3 still has two reticulation vertex parents. It follows
from Theorem 1 that N ′ is reachable in a finite number of rNNI moves from N ∈ Ω(X; r).
Furthermore, since drNNI is a metric on Ω(X; r), it follows that δ−1

rNNI(N ) ∈ N ∪ {0}. A
visualization of the process on Nbasis1 can be seen in Figure 12.

2. Let N ∈ Ω(X; r) with r ≥ 3. Because drNNI is a metric, δ−1
rNNI(N ) ≥ 0. We claim that

δ−1
rNNI(N ) = 0 if and only if N /∈ TBN(X).

Assume δ−1
rNNI(N ) = 0. Then by Definition 39, min {drNNI (N ,N ′) | N ′ /∈ TBN(X)} = 0,
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implying drNNI(N ,N ′) = 0 for some N ′ /∈ TBN(X). But then by Definition 9.(M2), N =
N ′, implying N /∈ TBN(X).
Now, assume N /∈ TBN(X). Then by Definition 9.(M2), drNNI(N ,N )=0, implying
min {drNNI (N ,N ′) | N ′ /∈ TBN(X)} = δ−1

rNNI(N ) ≤ 0. But since also δ−1
rNNI(N ) ≥ 0, we

conclude that δ−1
rNNI(N ) = 0.

■

Figure 12: (left) The network Nbasis. The network is not tree-based due to r3 having two reticu-
lation vertices as parents. (middle) The network after one execution step of increasing the retic-
ulation number r. This step can clearly be executed endlessly to increase r. (right) The network
after one execution step to increase r and one execution step to increase |X|. We could endlessly
attach more leaves to increase |X|. Notice that in the resulting network, r3 still has two reticula-
tion vertices as parents, making the resulting network non-tree-based.

Lastly, combining Definition 38 and Definition 39 We can also define the novel measure asso-
ciated to the boundary of tree-basedness with rNNI moves, similar to Definition 37.

Definition 40. Let N ∈ Ω(X). A novel measure associated to tree-basedness with rNNI moves is
formally defined as

||N ||rTB =

{
δrNNI(N ) if N /∈ TBN(X),
δ−1

rNNI(N )− 1 if N ∈ TBN(X).

Proposition 12. Let N ∈ Ω(X; r) with r ≥ 3. Then ||N ||rTB ∈N∪ {0}.

Proof. Assume N ∈ Ω(X; r) with r < 3. Then by the result in Proposition 11 we see that we
must have that N ∈ TBN(X). So we are in the second case of Definition 40, i.e. δrNNI(N )− 1.
However, it also follows from Proposition 11 that δ−1

rNNI(N ) is then ill-defined.
Now assume N ∈ Ω(X; r) with r ≥ 3. Then we can either be in the first case of Definition 40 or
the second case. In any case, δrNNI(N ) and δ−1

rNNI(N ) are both well-defined by Proposition 10
and Proposition 11 respectively.
All in all, ||N ||rTB ∈N∪ {0} for N ∈ Ω(X; r) with r ≥ 3. ■

4.2 An upper bound related to proximity measure p

In this subsection we will provide an upper bound for δrNNI . We do this by relating δrNNI to the
proximity measure p.
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4.2.1 Edge flips

To connect the measures p and δrNNI , we first introduce a useful result from Gambette et al.
(2017), which states that we can flip the direction of certain edges in a rooted binary phylogenetic
network in exactly two rNNI-moves.

Definition 41. Let N ∈ Ω(X). Let u ∈ V(N ) be a tree vertex and let v ∈ V(N ) be a reticulation
vertex. Assume (u, v) ∈ E(N ) and there exists no other directed path from u to v. We say that N allows
an edge flip on (u, v), which replaces the edge (u, v) by (v, u).

We call a path u− v that does not consist of only the edge (u, v) a non-elementary path.
Note that the conditions imposed on the edge flip guarantee that the resulting network is in
Ω(X).

Lemma 5. Let N = (V, E) ∈ Ω(X) such that it allows an edge flip on (u, v) ∈ E, let N ′ ∈ Ω(X) be
the network after applying an edge flip to (u, v). ThenN can be transformed intoN ′ in exactly two rNNI
moves, except if N = N ′.

Proof. (Gambette et al., 2017) Let (u, v) be the edge being flipped in N . First assume that the
parent s of u and the parent t ̸= u of v are distinct vertices. Then we apply a type-(2) rNNI move
(su, uv, tv → sv, uv, tu). This is an allowed move because if there were a u− t path, there would
be a non-elementary u− v path inN , which is not the case by the assumption that edge (u, v) can
be flipped. Now we can apply a type-(2*) move (sv, uv, tu → su, vu, tv). This is allowed because
no u− s path can exist in N , else (u, v) would have been an edge before the initial type-(2) rNNI
move, which is not possible as it would have been a parallel edge. Also, u is a tree-vertex since
we assume (u, v) can be flipped. The net effect of these two moves is that edge (u, v) is reversed
to (v, u), see Figure 13.

Figure 13: Reversing an edge (u, v) when u and v have different parents.

Now assume that u and v have a common parent p but the child ŝ ̸= v of u and the child
t̂ of v are distinct vertices. Then we apply a type-(1) rNNI move (uŝ, uv, vt̂ → ut̂, uv, vŝ). This
is allowed because if there were an ŝ − v path in N , this path would need to pass through p,
and hence imply the existence of a directed cycle in N . Now we can apply a type-(1*) move
(ut̂, uv, vŝ → uŝ, vu, vŝ). This is allowed because no t̂− v path can exist in N , else it would have
been a parallel edge before the first type-(1) rNNI move. Also, v is a reticulation vertex, as it has
indegree 2. The net effect of these two moves is that edge (u, v) is reversed to (v, u), see Figure
14.

Figure 14: Reversing an edge (u, v) when u and v have a common parent but different children.
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If we are in neither of the previous cases, u and v have a common parent p and a common
child c. But then it is easy to see that that N = N ′. ■

4.2.2 A conjecture of a strong upper bound

Using the result of Lemma 5, we believe that we can flip edges in a non-tree-based rooted bi-
nary phylogenetic network N ∈ Ω(X) until we have d(N ) vertex disjoint paths partitioning the
vertices of N .

Conjecture 1. Let N ∈ Ω(X), then

δrNNI(N ) ≤ 2p(N ).

We show using several illustrations why we believe this result to be true. First consider Figure
15.

Figure 15: (left) A non-tree-based phylogenetic network N on taxa {x1, x2, x3}. (right) A parti-
tioning of the vertex set of N into four vertex disjoint paths.

Notice that N is non-tree-based since the parent of x2 has two reticulation vertex parents.
Since we can partition the vertices of N into four vertex disjoint paths ending in leaves, we see
that p(N ) = 1. Now, consider the network N without directed edges in Figure 16. We try to
construct d(N ) vertex disjoint paths ending in leaves.

Figure 16: (left) The networkN when replacing all directed edges with undirected edges. (right)
A partitioning of the vertex set into three vertex disjoint paths.

Now, we take the paths constructed in the right graph of Figure 16 and use that path in the
network of Figure 15 and we look for conflicts, i.e. edges that would not allow the path to form.
Such conflicting edges are marked in red in Figure 17.
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Figure 17: (left) The network N , with conflicting edges marked in red. (right) The network after
applying an edge flip to all edges marked in red. The resulting network N ′ is tree-based.

Using the path constructed in Figure 16, we see that the final network of Figure 17 is tree-
based, since p(N ′) = 0. Since we used one edge flip in the process to reduce p(N ) and one edge
flip consists of two rNNI moves, we argue that δrNNI(N ) ≤ 2p(N ).

The problem in proving this upper bound for all N ∈ Ω(X), is that the partitioning of the
vertices of N into d(N ) vertex disjoint paths of Figure 16 cannot be arbitrary. We would need
a set of paths that limit the number of conflicting edges and the conflicting edges should be
allowed to sequentially get flipped. Moreover, we have to argue that the resulting network is then
always tree-based. Our knowledge on the combinatorial properties of phylogenetic networks is
too limited to prove Conjecture 1.

4.2.3 The proof of a weaker upper bound

In this section we prove a weaker upper bound for δrNNI than that of Conjecture 1.

Proposition 13. Let N ∈ Ω(X) with n = V(N ), then

δrNNI(N ) ≤
⌊n

2

⌋
p(N ).

Proof. Assume N ∈ TBN(X). Then clearly δrNNI(N ) ≤
⌊ n

2
⌋

p(N ).
Assume N ̸∈ TBN(X). For all x ∈ X, define a connected subgraph Hx of N having a maximum
number of vertices such that there exists a directed path from v to x for all v ∈ V(Hx). Let Gx be
defined as Hx \ {Hy : y ∈ X \ {x}}. Then, for x, y ∈ X, Gx ∩ Gy = ∅. Let G =

⋃
x∈X Gx and let

Y ⊂ V such that y ∈ Y if either (y, x) ∈ E(G) for x ∈ X and Gx is not a directed path or y ∈ X
and Gy is a directed path. Then, Y is an antichain in G. Suppose Y contains a tree vertex u. This
means, for (u, v) ∈ E(G) with u ∈ Y, v ∈ X, there exists a vertex w with (u, w) ∈ E(G). Then, by
definition of Gv, there exists a directed path from w to v which leads to a contradiction because
v is a leaf and (u, v) ∈ E(G). Hence, all vertices in Y are either reticulation vertices or leaves.
Observe, if no vertex in Y is a reticulation vertex, then Gx is a directed path for all x ∈ X. This
means, by definition of G, that N is a tree with leaf set X and therefore tree-based, contradicting
our assumption that N /∈ TBN(X). Thus, there exists a reticulation vertex v ∈ Y with parents u1
and u2. Replace Y by Y \ {v} ∪ {u1, u2} until there exists no reticulation vertex v ∈ Y such that
(v, w) ∈ E(G) for some w ∈ X. Observe that after all replacements Y is still an antichain in G.

Next, assume there still exists a reticulation vertex v ∈ Y with parents u1 and u2. For i = 1, 2,
if there exists no path from ui to a vertex in Y \ {v}, then add ui to Y and remove v from Y .
Repeat this argument until we are unable to remove any more elements from Y . Clearly, Y is a
maximal antichain in the subnetwork of G induced by all vertices processed in the construction of
Y . Now, suppose by contradiction there exists a parent u of a vertex v ∈ Y which is a reticulation
vertex or has indegree and outdegree 1. Then, there exists no path from u to a vertex in Y \ {v},
contradicting the termination of our construction process for Y . Therefore, the parents of vertices
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in Y are tree vertices. First, assume Gx has a root. Then, for x ∈ X, let Gx,Y be the subnetwork
of Gx with the same root as Gx and Y as leaf set. If the directed path from the root of Gx,Y to
Y is unique for all y ∈ Y, then Gx,Y is a binary tree. Hence, Y constrained to Gx is a maximal
antichain in Gx. Otherwise there exists y ∈ Y such that the directed path from the root of Gx,Y to y
is not unique. Recursively reapply our construction of the graph G and vertexset Y for Gx,Y and
Y constrained to Gx instead of N and X. Thus, we conclude that the final transformation of Y
yields a maximal antichain of G. Now, if Gx has no root, consider instead Hx,Y as the subnetwork
of Hx with Y as leaf set. If Hx,Y contains a rooted binary tree T up to edge subdivisons such that
V(Gx) ⊆ V(T), then Y is a maximal antichain in Gx. Otherwise follow the same recursion for
Gx,Y as in the case where Gx has a root. Again, we can conclude that the final transformation of
Y yields a maximal antichain of G.

Now, for all x ∈ X, consider Gx. Let Y(Gx) denote the vertex set Y constrained to Gx. Since
N is not tree-based there exists at least one x ∈ X such that Y(Gx) contains at least two elements.
Choose v1 ∈ Y(Gx) at maximum distance from x among all elements in Y(Gx). By construction,
v1 has at least one parent vertex u and all parents of v1 are tree vertices. Let (u, v2) ∈ E(Gx),
v2 ̸= v1. Suppose by contradiction that for every choice for v1 we have v2 /∈ Y(Gx). Then, there
exists a path from v2 to vertices w1, . . . , wp ∈ Y(Gx), p ≥ 2. Otherwise we can remove w1 from
Y(Gx) and add v2 to Y(Gx) without violating the antichain property of Y(Gx), contradicting
our choice of v1. Recursively, consider w1, . . . , wp instead of v1 until reaching a contradiction.
This recursion terminates because Y(Gx) is a maximal antichain. Thus, we can always find two
vertices v1, v2 ∈ Y(Gx) with a shared parent u. Let D1 and D2 be the shortest directed paths
starting in v1 and v2, respectively, and ending in x such that |D1 ∩ D2| is minimum. Assume
D2 \ D1 is a shorter path than D1 \ D2 and replace D2 by D2 \ D1. Append vertex u to path D1 to
obtain path D′1. We show that Gx can be transformed into a directed graph G′x (which is a rooted
binary phylogenetic network up to edge subdivisions) in κ = |V(D2 \ D1)| many rNNI moves
such that a maximum antichain of G′x has strictly smaller cardinality than a maximum antichain
in Gx.

First, consider the edge (u, v2) and apply rNNI move (3*) by attaching the parent of u (u is a
tree vertex) to v2, the child of v2 in D2 to u and replacing (u, v2) by (v2, u). Then, replace D2 by
D2 \ {v2}, replace D′1 by D1 ∪ {v2} and observe that u is the parent of the first vertex of paths D1
and D2. Next, process the first vertex b1 in D2.

Case 1: b1 has at least one parent and no children in D′1. Among them, choose the parent a1
which appears second in D′1 and apply rNNI move (3*) to edge (a1, b1) by reversing its
direction and reattaching the child s of b1 and the parent t of a1.

Case 2: b1 is a tree vertex with one parent a1 and one child c1 in D′1 such that a1 appears before
c1 in D′1.

Case 2.1: (a1, c1) /∈ E(D′1). Then, apply rNNI move (3*) to edge (a1, b1) by reversing its
direction and reattaching c1 and the parent of t of a1.

Case 2.2: (a1, c1) ∈ E(D′1). Then, apply the same rNNI move as in Case 1 by choose the
child of b1 different from c1.

Case 3: b1 has at least one child and no parents in D′1. By construction, this case can not occur,
even after applying Cases 1 or 2 any number of times.

Accordingly, we replace D′1 by concatenating the subpath of D′1 from u to t, (t, b1), (b1, a1) and
the subpath of D′1 from a1 to x. Moreover, we replace D2 by D2 \ {b1}. Clearly, V(D′1) ∪ V(D2)
partition the same vertexset as in the original graph Gx and both D′1 and D2 are directed paths
while D′1 ends in x. Repeatedly process the first vertex b1 of D2 until D2 = ∅. This is possible
because the size of D2 strictly decreases. Thus, we arrive at a graph G′x which only has x as a
leaf and the vertexset V(D′1)∪V(D2) = V(D′1) induces a directed path from u (the parent of two
elements of a maximum antichain in Gx to x. This means, a maximum antichain of G′x has strictly
smaller cardinality than a maximum antichain in Gx and we constructed G′x from Gx in κ rNNI
moves.
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Now, we can replace Gx in G by G′x to obtain a directed graph G′ in which every connected
component is a rooted binary phylogenetic network up to edge subdivisions. G′ differs from G
by κ rNNI moves and G′ has a strictly smaller maximum antichain than G. In the construction of
G′ the order of vertices in the intermediate directed paths D′1 and D2 who are adjacent to vertices
outside of V(D′1) ∪ V(D2) never changed. Hence, adding all edges that were removed from N
to construct G back to G′ we obtain a rooted binary phylogenetic network N ′ on taxa X.

Finally, we check ifN ′ is tree-based. If not, then we restart our whole procedure forN ′ instead
ofN . For each new rooted binary phylogenetic network we construct on taxa X the cardinality of
the maximum antichain decreases and we require κ rNNI moves. Clearly κ ≤ ⌊n/2⌋. Moreover,
the cardinality of the maximum antichain in a rooted binary tree-based phylogeneitc network is
|X|. Thus, our claim follows. ■

4.2.4 A first illustration of the upper bound construction

We dedicate this section to illustrate how a non-tree-based rooted binary phylogenetic network
can be transformed into a tree-based one using rNNI moves, as the proof of Proposition 13 de-
scribes. First we define a rooted binary phylogenetic network N on taxa X. We then create the
subgraphs Hx. This is illustrated in Figure 18.

Figure 18: (left) A non-tree-based rooted binary phylogenetic networkN on taxa X = {x1, x2, x3}.
(right) Subgraphs Hx, x ∈ X.

Notice that N is non-tree-based because the parent vertex of x2 is a reticulation vertex with
two reticulation vertex parents. We now turn Hx into Gx, for all x ∈ X, resulting in the graph in
Figure 19. We do this by removing overlapping vertices and removing the edges of connected to
removed vertices. We also define the set Y for Gx.

Figure 19: Subgraphs Gx, x ∈ X. Simultaneously, the entire graph is the graph G by definition.
The elements of Y are denoted by the red-colored vertices. Notice that the red-colored vertices in
Gx2 are reticulation vertices in N . Also notice that Gx1 and Gx2 form directed paths.

After this, we take any reticulation vertex v ∈ Y and we replace Y by Y \ {v} ∪ {u1, u2} until
there exists no v ∈ Y such that (v, w) ∈ E(G) for some w ∈ X. In this example, we do not need
to replace Y . For all x ∈ X we construct Gx,Y . These graphs have Y constrained to Gx as leaf set
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and prove a maximum antichain when forming binary trees. It can be seen from Figure 20 that
this is indeed the case for all x ∈ X

Figure 20: (left) G with recursively defined Y marked in red. (right) The graphs Gx,Y .

We then consider Gx again. Y(Gx2) contains two elements, so we choose v1 ∈ Y(Gx2) at
maximum distance from x, which has a shared parent u with the other vertex in Y(Gx2). We then
construct paths D′1 and D2, as illustrated in Figure 21.

Figure 21: The graph Gx2 with paths D′1 marked in red, D2 marked in blue.

We can now start applying rNNI-moves. We first apply rNNI move (3*) to (u, v2), as illus-
trated in Figure 22. We also replace D2 by D2 \ {v2} and D′1 by D′1 ∪ {v2}.

Figure 22: The graph Gx2 after applying rNNI move (3*) to (u, v2), resulting in G′x2
. The dotted

line represents an outgoing edge from a vertex not in Gx2 .

Now, D2 is empty and D′1 forms a directed path from u to x. Replacing Gx2 in G by G′x2
yields a

directed graph G′ in which every connected component is a rooted binary phylogenetic network
up to edge subdivisions. We defineN ′ by reconstructingN using G′, resulting in the network of
Figure 23.
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Figure 23: The resulting network N ′ after merging back G′. It is tree-based, since we can form
three vertex disjoint paths (marked in red), partitioning the vertices of N ′.

4.2.5 Further illustrations of the upper bound construction

In the previous example, some steps included in the proof of Proposition 13 were able to be
skipped. We dedicate this section to showing some edge cases of the method such that these
steps are not skipped.

Let us first consider the case where we need to reapply the construction of Gx. In Figure 20,
the directed paths from the root of Gx2,Y to Y(Gx2) are unique. In Figure 24, one can see an
example of a similar network, where the directed paths from the root of Gx2,Y to Y(Gx2) are not
unique.
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Figure 24: (left) A non-tree-based phylogenetic network. Similar to that of Figure 18. (right) The
graph Gx2 . Notice that all directed paths from the root of Gx2 to y ∈ Y(Gx2), marked red, are
not unique. Moreover, the vertices marked red are not a maximal antichain in Gx2 . The vertices
marked in blue are.

Hence, it is required to recursively reapply the construction of Gx and Y for Gx,Y and Y(Gx)
instead of N and X. This way, the blue vertices in Figure 24 are fetched. These cases specifically
occur whenever Gx is ’bottle-shaped’, like in Figure 24.

Now, we consider an example where we have to recursively replace Y by Y \ {v} ∪ {u1, u2}
and have to consider Hx,Y . Consider Figure 25 for a phylogenetic network where this is the case.

Figure 25: Non-tree-based rooted binary phylogenetic network N on taxa {x1, x2, x2}.
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Consider Figure 26 for construction of Gx2 and Y(Gx2).

Figure 26: (left) Initial configuration of Y (constrained to Gx2 ) marked in red. The parent of x2 is
a tree vertex, Y is set to include the parents of this tree vertex. There exists a vertex v ∈ Y with
parent u1 such that there exists no path from u1 to a vertex in Y \ {v}. (middle) We replace Y by
Y ∪ {u1} \ {v}. Again, there exists v ∈ Y with parent u1 such that there exists no path from u1 to
a vertex in Y \ {v}. (right) We replace Y by Y ∪ {u1} \ {v}.

Since Gx has two vertices that can be considered as root, we take Hx,Y as subnetwork of Hx
with Y as leaf set. This can be seen in Figure 27.

Figure 27: The graph Hx2,Y .

Hx2,Y is a binary tree up to one edge, which is parallel up to one edge subdivision, hence we
could continue with the method by considering Gx again.

Lastly, we consider an example where paths D1 and D2 are longer than the example in Figure
21, subsequently requiring more rNNI-moves until D2 is empty. Consider Figure 28, which is a
subgraph of some phylogenetic network where we have already taken the courtesy to form paths
D′1, D2.
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Figure 28: (left) Some graph Gx with paths D′1, D2 colored red and blue respectively. (middle)
We apply rNNI move (3*) on the edge marked red and bold, resulting in the graph on the right.
(right) Vertex b1 has one parent in D′1 and no children in D′1. Hence we are in case 1 and apply
rNNI move (3*) on the edge marked red and bold. We replace D2, D′1 accordingly.

We continue in Figure 29.

Figure 29: (left) Vertex b1 is a tree vertex, hence we are in case 2. The parent of b1 has an edge
connected to the child of b1 in D′1, hence we are in case 2.2 and apply rNNI move (3*) to the edge
marked in red and bold. (middle) Similarly, we are in case 2.2 here and apply rNNI move (3*) to
the edge marked in red and bold. (right) Looking at b1, we are in case 1 and apply rNNI move
(3*) marked in red and bold.

All in all, the sequence of rNNI moves results in the graph of Figure 30.
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Figure 30: Graph Gx after applying rNNI moves until D2 is empty. The order of vertices in the
intermediate directed paths D′1 and D2 who are adjacent to vertices outside of V(D′1) ∪ V(D2)
never changed. Hence this subgraph can be merged back into its original network.

4.3 Complexity of the rNNI proximity measure

Since we have not provided an explicit calculation for δrNNI , we cannot argue for its complexity.
However, to get a lead on the complexity, we can consider results from Janssen (2021). These
results state that finding the minimum number of rNNI moves to transform one arbitrary rooted
binary phylogenetic network into another is conjectured to be NP-hard. Since we are not inter-
ested in finding this minimum number of moves between two networks, but between two classes
of networks, we cannot use this result to conclude that an explicit calculation of δrNNI is NP-hard.
However, the result may be useful in further research.

What can definitely be argued for, is that the transformation of a non-tree-based rooted binary
phylogenetic network into a tree-based one using only rNNI moves in Proposition 13 can be
done in polynomial time. Clearly, no steps in this transformation are of non-polynomial time
complexity.
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5 Significance

In this section we will reflect on the mathematical and biological significance of what we have
discussed thus far using the content of Kong et al. (2022). In the next subsections, we begin with
a refresher on phylogenetic networks and its origins from a more biologic perspective. Next, we
will discuss the significance of different classes of phylogenetic networks, e.g. tree-based net-
works, as well as how to explore a network space of phylogenetic networks and its significance,
e.g. with rNNI moves. We finish with a reflection of these applications in combination with the
results from this thesis.

5.1 Origins from biology

Reconstructing and analyzing the evolutionary relationships among organisms is a central goal
in evolutionary biology. Traditionally, rooted phylogenetic trees have been used to represent
the evolutionary history for a set of species. Here, the leaves, or X in this thesis, represent the
sampled extant taxa. The root represents the most recent common ancestor of all taxa X. All
other vertices (tree vertices) represent speciation events. One can easily verify that in the case of
a rooted phylogenetic tree, so a rooted phylogenetic network with just speciation events, every
pair of leaves in X has a unique most recent common ancestor. In particular, rooted phyloge-
netic trees assume vertical inheritance, where genomic material is transmitted from an ancestral
species to a descendant species. However, nowadays it is widely accepted that organisms do not
always evolve by just vertical inheritance; many organisms experience horizontal inheritance as
well. In biology, such events include hybridization: The process in which two complementary
single-stranded DNA and/or RNA molecules bond together to form a double-stranded molecule
(Hybridization, 2023).
Such events also include lateral gene transfer, or LGT: An all-encompassing term for the move-
ment of DNA between diverse organisms (Sieber et al., 2017).
And finally such events also include recombination: A process by which pieces of DNA are bro-
ken and recombined to produce new combinations of alleles. This recombination process creates
genetic diversity at the level of genes that reflects differences in the DNA sequences of different
organisms (recombination, 2014). Because phylogenetic trees are not adequate to represent non-
treelike evolutionary histories such as those described above, rooted phylogenetic networks have
been proposed as a generalization of rooted phylogenetic trees in the literature (Kong et al., 2022).

5.2 Classes of phylogenetic networks

Certain various classes of rooted binary phylogenetic networks have been linked to evolutionary
processes in literature and are thought to be biologically significant. Though only mentioned
once in this thesis, the class of temporal or time-consistent networks are such example of a bi-
ologically significant class. Temporal networks provide a framework to explore evolutionary
processes and phylogenetic relationships. By integrating temporal information into phyloge-
netic analyses, researchers can track evolutionary changes, infer ancestral states and reconstruct
the evolutionary history of species or genes. More specifically, for a hybdridization event to have
occured the two species involved (along with the hybrid they formed) must have been extant at
the same time, which is denoted by an equivalent time-labeling.

Another biologically significant class of phylogenetic networks is the one that has been the
main topic of this thesis: tree-based networks. Tree-based networks were introduced by A. R. Fran-
cis & Steel (2015) as a way to approach the question of whether a phylogenetic network is merely
a phylogenetic tree with some additional horizontal edges, or whether a phylogenetic network
has little resemblance to a tree and the concept of an underlying tree should be discarded (Kong et
al., 2022). In the field of phylogenetics, there is an ongoing debate on whether evolutionary pro-
cesses are inherently tree-based, or network-based. This ongoing debate has implications for our
understanding of biodiversity, species relationships, and the mechanisms driving evolutionary
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change. It highlights the need for more sophisticated models and analytical tools that can accom-
modate reticulation and network-like patterns. Classifying evolutionary processes as ’tree-based’
or ’not tree-based’ is a rather unfair binary classification of complex evolutionary networks. Here
the concept of proximity measures is one way to quantify the notion of tree-basedness of a given
rooted phylogenetic network. For biologists, having access to such quantitative methods, could
be a useful tool in their analysis of evolutionary processes regarding tree-basedness. Especially
when such results can be computed in polynomial time. Also, having access to a diverse number
of proximity measures allow biologists to test their evolutionary processes on different metrics.
In the process of developing these proximity measures, it may occur that we get a better under-
standing of evolutionary processes in general, like the result of Theorem 10 from A. Francis et
al. (2018). We get that older results from mathematics, like Dilworth’s Theorem, can be linked to
ongoing debates in biology, which is a very intriguing idea.

Note that with temporal networks and tree-based networks we are just scraping the surface of
network classes. Kong et al. (2022) also discuss classes such as tree-child networks, normal and
regular networks, tree-sibling networks, stack-free networks, LGT networks and species graphs,
orchard or cherry-picking networks, galled trees, galled networks, and level-k networks. Each
with their own biological and mathematical implications. Also note that this only just covers
classes of phylogenetic networks in the rooted (!) case.

5.3 Exploring the network space

Another topic of this thesis has been the subtree transfer move rNNI. Generalised subtree transfer
moves are called rearrangement moves. The rearrangement move rNNI is just one of an arsenal
of moves for phylogenetic networks that allow us to explore the space of phylogenetic networks.
To sketch a significant application of these moves we introduce a challenge in phylogenetics that
has not been the topic of discussion in this thesis so far: reconstruction. we consider the task of
estimating a phylogenetic network given data for a collection of taxa. This leads to two distinct
challenges related to scalability. First, we must evaluate the fit of a specified network to a given
data set under a chosen model or optimality criterion. Second, we must search the space of pos-
sible networks for those that are optimal under the selected model or criterion (Kong et al., 2022).
Omitting the details of this first challenge, we get that for a given rooted phylogenetic network,
we have some objective function that we need to optimize. Optimizing such network can be
done using heuristics that make use of re-arrangement moves to traverse the space of phyloge-
netic networks. Roughly speaking, if we consider proximity to tree-basedness as an optimality
criterion, then the process of turning an arbitrary phylogenetic network into a tree-based phy-
logenetic network using rNNI moves is a challenge in this thesis that is similar to the challenge
posed here.

Extending on the topic of rearrangement moves, rearrangement moves are defined as moves
that take one edge of a network and move one or both endpoints to other locations in the network.
Several of such moves in the rooted cases include tail moves, head moves, rNNI moves and rSPR
moves. Some of these moves can be seen as ’localized’ version of the others. This is visualized in
Figure 31.
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Figure 31: Diagram that shows some inclusions of move types. Figure from Janssen (2021)

As it turns out, finding the minimum number of rearrangement moves to move from one
arbitrary rooted phylogenetic network to another is conjectured to be NP-hard (Janssen, 2021).
Janssen (2021) has proven that this is NP-hard for some, but not all of the rearrangement moves.
Such topics also give some mathematical significance to the topic of phylogenetic networks.

5.4 Connection to this thesis

In this thesis we have seen the likes of both classes of phylogenetic networks and rearrange-
ment moves. While searching numerous amounts of papers, there were little instances where
the intersection between rearrangement moves and network classes were explored. The only in-
stance found was in Fischer & Francis (2020), which defined a proximity measure based on NNI-
moves for unrooted phylogenetic networks. Since finding the minimum number of rearrange-
ment moves between two arbitrary phylogenetic networks is conjectured to be NP-hard, finding
the minimum number of moves between several network classes and researching whether it can
be found in polynomial time would be an interesting topic for future research work. This thesis
explored the number of rNNI moves required to go from a non-tree-based rooted phylogenetic
network to a tree-based phylogenetic network. This work could be extended to different rear-
rangement moves and network classes.
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6 Conclusion

In this section we will reflect on our findings and discuss the feasibility of some leads to future
research.

6.1 Findings in this thesis

In this thesis we have done a thorough review of the current literature on rooted binary phy-
logenetic networks, characterisations for tree-basedness, proximity measures and rNNI-moves.
In particular, we thoroughly discussed the matching characterisation, first introduced in Zhang
(2016), and the the antichain characterisation, first introduced in A. Francis et al. (2018). We were
able to distill the definition of a proximity measure as first introduced in A. Francis et al. (2018)
and give it a more rigorous definition. With this knowledge at hand we were then able to define
our own proximity measure δrNNI . We proved that δrNNI is a well-defined proximity measure.
We also gave an upper bound for δrNNI , as shown in Proposition 13. Simultaneously, the proof of
Proposition 13 provides a method to transform an arbitrary rooted binary phylogenetic network
into a tree-based network with a quality guarantee. At the end of the thesis, we researched the
applicability of the results in this thesis and the more general subject of phylogenetic networks.
We found that this research is interesting for mathematical purposes, while it is unclear whether
this also the case for biological purposes.

6.2 Topics of future research

In future research, one could look at the extension of this thesis’ work to non-binary rooted phylo-
genetic networks, i.e. rooted phylogenetic networks where tree vertices and reticulation vertices
are allowed to have summed in- and outdegree greater than 3. There appear some challenges
when considering such extension. For one, the matching characterisation does not apply for
non-binary rooted phylogenetic networks (Janisse, 2018). Furthermore it is unclear whether the
antichain characterisation holds up in the non-binary generalization. A lot of proofs in this the-
sis depend on these characterisations. Another challenge in extending this thesis’ work to the
non-binary case is that rNNI is a defined for operations on edges in rooted binary phylogenetic
networks. In the non-binary case, one would need to research how to extend the rNNI operation.

One could also look at the extension of this thesis’ research to unrooted phylogenetic net-
works. In particular, one could research the δNNI proximity measure for unrooted phylogenetic
networks, which appeared as an open question in Fischer & Francis (2020). The challenge with
the extension to the unrooted case, is that unrooted phylogenetic networks are characterised in
different ways than rooted phylogenetic networks; this is partially due to edges being undirected
in unrooted phylogenetic networks.

Additionally, one could look at the rNNI reverse proximity measures and the rNNI novel
measure in future research, respectively defined in Definition 39 and Definition 40. One could
analyse the combinatorial properties of tree-based phylogenetic networks to make these net-
works non-tree-based using only rNNI moves. Analysing such reverse and novel measures
would introduce quantitative tools to argue how ’strongly’ tree-based an arbitrary rooted binary
phylogenetic network is.

Lastly, one could look at an explicit calculation for δrNNI . One could start by researching the
tightness of the upper bound in Proposition 13, by for example proving or disproving Conjecture
1. Explictly calculating δrNNI or researching Conjecture 1 requires more advanced knowledge
on the combinatorial properties of phylogenetic networks. Additionally, when researching the
complexity of a calculation for δrNNI , one could consider the results on the complexity of rear-
rangement moves in Janssen (2021).
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