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Abstract

A Neumaier graph is a non-complete graph that is edge-regular and has a regular clique. Moreover, if

a Neumaier graph is not strongly regular, it is called a strictly Neumaier graph. Determining whether

a strictly Neumaier graph exists is a challenging problem. In this thesis, we propose new methods for

finding these strictly Neumaier graphs. In particular, we formulate the problem as an integer linear

program and as a boolean satisfiability problem. Although these methods work, they lose efficiency

for graphs with a lot of vertices. Our findings serve as an initial exploration that paves the way for

further development of this approach.
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Chapter 1

Introduction

Neumaier graphs form a parameterized family of graphs that have certain properties after the sem-

inal work by Neumaier in the 1980s who studied edge-regular graphs with a regular clique. The

study of these graphs started after he posed the question ’Is every edge-regular graph with a regu-

lar clique strongly regular?’ [18]. We provide a detailed definition of a Neumaier graph in Chapter 2.

For some specifications of parameters, infinite families of Neumaier graphs are known to exist, but

in general the problem is still wide open. In this thesis, we explore new methods to decide whether

a Neumaier graph with certain specifications exists. In particular we wish to find new classes of

Neumaier graphs. The two approaches we look into are formulating the problem of finding a Neu-

maier graph as an integer linear program and as a boolean satisfiability problem. To the best of our

knowledge, these methods have not been previously applied to the study of Neumaier graphs. We

analyze these methods and provide computational results on various test cases.

Note that integer programming is a well-known NP-complete problem [10]. However, there are

several algorithms that have proven successful in solving integer programs, such as the branch-

and-bound algorithm. This method decomposes the problem into smaller sub-problems and uses

a bounding function to remove sub-problems that cannot contain the optimal solution [4]. Likewise,

boolean satisfiability (SAT) is a well-known NP-complete problem [5]. However there are a number

of algorithms that have been developed to solve SAT problems efficiently. One such algorithm is the

Davis-Putnam-Logemann-Loveland (DPLL) algorithm that uses the unit-class-rule. This algorithm

iteratively chooses a literal and checks whether the SAT problem is satisfiable both when this literal

is true and when it is false. The algorithm takes advantage of unit clauses, which are clauses with

only one literal and uses that these literals can only take one value [2].

We are aiming to find graph structures with certain properties by transforming the problem into

an integer linear program and a SAT problem. For other problem this has been done before. For

example in [17] linear programming is used to find flows and matchings in graphs. Another example

is [7] where linear programming is used to find regular graphs with a shortest cycle of 7. Moreover,

in [15] the problem of finding a maximum independent set is reduced to a SAT problem.

The remainder of this thesis is organized as follows. In Chapter 2, we provide background and

related work on Neumaier graphs and their properties. In Chapter 3, we describe our integer linear

program that finds Neumaier graphs for given parameters and we go over the results. In Chapter 4,
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we describe how we formulated the problem as a boolean satisfiability problem and we go over the

results. In Chapter 5, we define what it means for a graph to be close to a Neumaier graph and look

for such graphs. Finally, in Chapter 6 we conclude our research.
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Chapter 2

Neumaier graphs

As previously stated, Neumaier graphs are a graph class named after the work of A. Neumaier,

who studied edge-regular graphs with a regular clique [18]. We start by giving the definition of a

Neumaier graph. Later in this chapter we provide an overview of the known results on Neumaier

graphs.

2.1 Definitions

To explain what it means for a graph to be a Neumaier graph, we show some examples. We only

consider undirected graphs with a finite number of vertices without loops or multiple edges. We say

a vertex is a neighbor of another vertex if they are connected by an edge. A graph is k-regular if

each vertex has exactly k neighbors. We say a graph is regular if it is k-regular for some integer

k. A graph is λ-edge-regular if it is a non-empty regular graph in which any two adjacent vertices

have exactly λ common neighbors. A graph is said to be non-empty if it has at least one edge.

Moreover, two vertices are said to be adjacent if they are connected by an edge. We say a graph is

edge-regular if it is λ-edge-regular for some integer λ. An example of a 3-edge-regular graph can

be seen below, this means that the graph is non-empty, it is regular and every two adjacent vertices

have 3 common neighbors. For example, vertices 1 and 2 share common neighbors 3, 4, and 5.

Note that the graph is 4-regular as all vertices have exactly 4 neighbors. For example, vertex 1 has

4 neighbors which are vertices 2, 3, 4, and 5. We can see that this graph is actually complete, this

means that any two vertices are connected by an edge.

1

2 3

4 5

A graph is µ-co-edge-regular if it is a non-complete regular graph in which any two non-adjacent

vertices have exactly µ common neighbors. A graph is said to be non-complete if it has at least

one missing edge. Moreover, two vertices are said to be non-adjacent if they are not connected
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by an edge. We say a graph is co-edge-regular if it is µ-co-edge-regular for some integer µ. An

example of a co-edge-regular graph is the Petersen graph which is illustrated below. This graph

is 1-co-edge-regular, which means that the graph is non-complete, it is regular and any two non-

adjacent vertices share 1 common neighbor. For example, vertices 1 and 2 share common neighbor

5. Note that the graph is 3-regular as all vertices have exactly 3 neighbors. Furthermore, a graph is

strongly regular if it is both edge-regular and co-edge-regular. Note that actually the Petersen graph

is strongly regular because it is moreover 0-edge-regular, as it is non-empty, regular, and any two

adjacent vertices share 0 common neighbors.

1

2 3

4 5

6

7 8

9 10

A graph has an s-clique if there is a subset of its vertices of size s such that every two distinct

vertices in the subset are adjacent. We say a graph has a clique if it has an s-clique for some integer

s. A graph has an e-regular clique if it has a clique such that any vertex outside the clique has e

neighbors in the clique. We say a graph has a regular clique if it has an e-regular clique for some

integer e. An example of a graph with a 1-regular clique can be seen below. Namely the vertices 1,

2, 3, and 4 are all pairwise adjacent and so they form a clique of size 4 and all vertices outside the

clique are connected to 1 vertex in the clique. For example vertex 5 is connected to vertices 1, 6,

and 7 of which only vertex 1 is in the clique.

1 2

3 4

5 6

7 8

Now we can define what it means for a graph to be a Neumaier graph. A Neumaier graph is a

non-complete graph that is edge-regular and has a regular clique. We let NG(v, k, λ, e, s) denote

the collection of Neumaier graphs with v vertices, that are k-regular, λ-edge-regular and contain an

e-regular s-clique. An example of a graph in NG(6, 4, 2, 2, 3) can be seen below. This graph has

6 vertices. It is 4-regular as all vertices have exactly 4 neighbors. It is 2-edge-regular as it is a
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non-empty regular graph in which any two adjacent vertices have 2 common neighbors. Moreover,

the vertices 1, 2, and 4 form a 2-regular clique of size 3, since they are all connected and all vertices

outside the clique are connected to 2 vertices in the clique.

1 2

4

65

3

Note that also the above graph is 4-co-edge-regular, namely any two non-adjacent vertices have

exactly 4 common neighbors. So it is strongly regular as it is co-edge-regular and edge-regular. A

strictly Neumaier graph is a Neumaier graph that is not strongly regular. So the above graph is not

a strictly Neumaier graph. Actually, the smallest strictly Neumaier graph has 16 vertices and can be

seen below. This graph is an example of a graph in NG(16, 9, 4, 2, 4). This graph was mentioned in

[9]. One can check that this graph is not strongly regular, it is 9-regular and 4-edge-regular, and the

vertices 1, 2, 3, and 4 form a 2-regular clique of size 4.

1 2

3 4

5

6

7

8

9 10

11

12

13

14

15

16

2.2 Previous work

After Neumaier posed the question regarding the existence of edge-regular graphs with a regular

clique in [18], the study of Neumaier graphs began. In [12], Greaves and Koolen present the first

infinite families of strictly Neumaier graphs, providing an answer to Neumaier’s question. In [8],

Evans, Goryainov, and Panasenko present significant results on parameters of strictly Neumaier

8



graphs. Using these results, they found the smallest strictly Neumaier graph. In [1], Abiad, De

Boeck, Castryck, Koolen, and Zeijlemaker present infinitely many new strictly Neumaier graphs.

Furthermore, Table 1 of [1] provides an overview of parameters of strictly Neumaier graphs up to 64

vertices and whether it is known if a strictly Neumaier graph exists. We repeat this table below, it

is shown in Table 2.1. For graphs for which it is known whether they exist, a reference is provided

indicating where the proof of the result can be found. Note that for many of the parameters, it is

not known whether a strictly Neumaier graph exists or not. Hence, our goal is to find new strictly

Neumaier graphs with these parameters.
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v k λ e s Exists?

16 9 4 2 4 Yes, [8]
21 14 9 4 7 No, [1]
22 12 5 2 4 No, [8]
24 8 2 1 4 Yes, [8, 11, 13]
25 12 5 2 5

16 9 3 5
26 15 8 3 6
27 18 12 5 9 No, [1]
28 9 2 1 4 Yes, [8, 12]

15 6 2 4
8 3 7

18 11 4 7
33 22 15 6 11 No, [1]

24 17 6 9
34 18 7 2 4
35 10 3 1 5

16 6 2 5
18 9 3 7
22 12 3 5

36 11 2 1 4
15 6 2 6
20 10 3 6
21 12 4 8
25 16 4 6

39 26 18 7 13 No, [1]
30 23 9 13 No, [1]

40 12 2 1 4 Yes, [8]
21 8 2 4

12 4 10
27 18 6 10
30 22 7 10

42 11 4 1 6
21 10 3 7
26 15 4 7

44 28 18 6 11
45 12 3 1 5

20 7 2 5
10 3 9

24 13 4 9
28 15 3 5

17 5 9
30 21 8 15 No, [1]
32 22 6 9

46 24 9 2 4
25 12 3 6
27 16 5 10

48 12 4 1 6
14 2 1 4
35 26 10 16 No, [1]

v k λ e s Exists?

49 18 7 2 7
24 11 3 7
30 17 4 7
36 25 5 7

50 28 15 4 8
51 20 7 2 6

34 24 9 17 No, [1]
52 15 2 1 4 Yes, [12]

27 10 2 4
16 5 13

36 25 8 13
54 13 4 1 6
55 14 3 1 5

24 8 2 5
30 17 5 11

18 3 5
34 21 6 11
36 23 6 10

56 27 12 3 7
30 14 3 6
33 20 6 12
45 36 12 16 No, [1]

57 24 11 3 9
38 27 10 19 No, [1]
40 27 6 9
42 31 10 15

58 30 11 2 4
60 14 4 1 6 Yes, [13]

17 2 1 4
35 22 7 15
38 25 8 15

63 14 5 1 7
30 13 3 7
32 16 4 9
38 21 4 7

22 5 9
42 30 11 21 No, [1]
50 40 15 21 No, [1]
52 43 16 21 No, [1]

64 18 2 1 4
21 8 2 8
28 12 3 8
33 12 2 4

20 6 16
35 18 4 8 Yes, [8]
36 20 5 10
42 26 5 8
45 32 10 16
48 36 11 16
49 36 6 8

Table 2.1: Feasible parameters for strictly Neumaier graphs up to 64 vertices.
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Chapter 3

Integer linear programming approach

As explained, we want to use linear programming to find new Neumaier graphs. Feasible parame-

ters for strictly Neumaier graphs up to 64 vertices can be found in Table 2.1. We consider only these

parameters. We want to find graphs with v vertices, that are k-regular, λ-edge-regular and contain

an e-regular s-clique and are not strongly regular for given parameters v, k, λ, e and s that can be

found in this table.

To find such graphs we develop an integer linear program. We focus on linearizing all constraints

in our program. According to [14], there is no efficient all-purpose algorithm for solving nonlinear

programming problems, and some problems cannot be satisfactorily solved by any method. We

can use well-known linear programming techniques by linearizing every constraint in our program.

Furthermore, all constraints in our problem are straightforward to linearize, allowing us to avoid

the computational complexity of nonlinear constraints. Note that we are only interested in whether

strictly Neumaier graphs with given parameters exist and we are not interested in optimizing an ob-

jective function. This is a feasibility problem. As objective we can use the zero function that has to

be minimized.

Similar as in [7], [15], and [17] we can define variables for every possible edge in the graph since

we only consider graphs with a finite number of vertices in which there are no multiple edges. We

label the vertices of the Neumaier graph from 1 up to v. We define binary variables xi,j ∈ {0, 1} for

i, j ∈ {1, . . . , v} to represent whether there is an edge in the resulting graph between vertices i and

j. If there is such an edge, xi,j = 1, otherwise xi,j = 0. We then define a graph G = (V,E) with

vertices V = {1, . . . , v} and edges E = {{i, j} | i, j ∈ {1, . . . , v} and xi,j = 1}. We now introduce

constraints on these variables x to make sure the resulting graph is a strictly Neumaier graph.

3.1 Constraints

3.1.1 Preliminary constraints

We first introduce constraints on these variables to make sure they represent edges in a graph. We

do not allow self loops in the graph. So there should be no edges between vertices that are the

same. For any vertex i, xi,i represents whether the vertex is connected to itself, so this should equal
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0. We get the following constraints

xi,i = 0 for i ∈ {1, . . . , v}. (3.1)

Edges are symmetric, meaning there is an edge between vertices i and j for two vertices i, j ∈
{1, . . . , v} if and only if there is also an edge between j and i. So xi,j should equal xj,i for any two

vertices i, j ∈ {1, . . . , v}. We get the following constraints

xi,j = xj,i for i, j ∈ {1, . . . , v}. (3.2)

With these constraints we have made sure that the binary variables indeed represent edges in an

undirected graph with no self loops. We now introduce constraints on these variables to make sure

the resulting graph is a strictly Neumaier graph.

3.1.2 s-clique

The graph needs to have a clique of size s. Without loss of generality, we let the first s vertices,

which are vertices 1 up to s, form such a clique. This assumption is valid because the vertices are

indistinguishable and relabeling them does not change the underlying graph structure. This means

there is an edge between every two distinct vertices in the first s vertices. So xi,j should equal 1 for

any two distinct vertices i, j ∈ {1, . . . , s}. We get the following constraints

xi,j = 1 for i, j ∈ {1, . . . , s} s.t. i ̸= j. (3.3)

Note that assuming the first s vertices form this clique makes the constraint relatively easy, this will

also be convenient when adding the constraints to ensure this is an e-regular clique.

3.1.3 e-regular clique

There should be an e-regular s-clique in the graph, meaning that every vertex outside the clique is

adjacent to e vertices in the clique. Note that for this constraint we can use that the first s vertices,

1 up to s, form a clique of size s. We will ensure this is an e-regular clique. We can use that the

number of neighbors a vertex i ∈ {s + 1, . . . , v} outside the clique has in the clique is equal to the

number of incident edges to vertices in the clique. This is the sum of all xi,j over j ranging from 1 to

s. This sum has to equal e. We get the following constraints

s∑
j=1

xi,j = e for i ∈ {s+ 1, . . . , v}. (3.4)

We used the assumption that the first s vertices form a clique. By satisfying these constraints, we

guarantee that the resulting clique becomes e-regular.

3.1.4 k-regular

The graph should be k-regular, meaning each vertex in the graph is adjacent to k other vertices. We

can use that the number of neighbors a vertex i ∈ {1, . . . , v} has is equal to the number of incident

edges. The number of incident edges is equal to the sum of all xi,j over j ranging from 1 to v. This

12



sum has to equal k. We get the following constraints

v∑
j=1

xi,j = k for i ∈ {1, . . . , v}. (3.5)

These constraints ensure that the sum of incident edges from each vertex in the graph is equal to k,

thereby guaranteeing the graph is k-regular.

3.1.5 λ-edge-regular

The graph should moreover be λ-edge-regular, meaning the graph is regular and all adjacent ver-

tices have λ common neighbors. We already ensured the graph is k-regular with constraints (3.5).

So we only need that any two adjacent vertices i, j ∈ {1, . . . , v} have λ common neighbors. For

vertices i and j to share a neighbor m ∈ {1, ..., v}, both xi,m and xj,m must be equal to 1. The

product xi,mxj,m equals 1 if and only if both xi,m and xj,m are equal to 1, indicating the presence

of a common neighbor. The number of common neighbors between vertices i and j is the sum of

the products xi,mxj,m over all m ranging from 1 to v. This sum should equal λ for any two adjacent

vertices i, j ∈ {1, . . . , v}, so for which xi,j = 1. We get the following constraints

v∑
m=1

xi,mxj,m = λ for i, j ∈ {1, . . . , v} if xi,j = 1.

Note that these constraints are not linear constraints. Instead we introduce new binary variables y

to represent the products in the summation.

yi,j,m ∈ {0, 1} for i, j,m ∈ {1, . . . , v} (3.6)

So we should have yi,j,m = xi,mxj,m. In order to ensure that these y variables accurately represent

the products within the summation, we can introduce additional linear constraints that ensure this

equivalence for all vertices i, j,m ∈ {1, . . . , v}. We use the same methods as in [4] to linearize

products of binary variables. We get the following constraints

yi,j,m ≥ xi,m + xj,m − 1 for i, j,m ∈ {1, . . . , v} (3.7)

yi,j,m ≤ xi,m for i, j,m ∈ {1, . . . , v} (3.8)

yi,j,m ≤ xj,m for i, j,m ∈ {1, . . . , v}. (3.9)

Now, yi,j,m represents whether m is a common neighbor of i and j for vertices i, j,m ∈ {1, . . . , v}.

So the number of common neighbors between two vertices i, j ∈ {1, . . . , v} is exactly the sum of all

yi,j,m over m ranging from 1 to v. We introduce the integer M that is large enough to indicate the

constraint only has to be satisfied when i and j are adjacent, i.e. for xi,j = 1. We get the following

constraints that replace the non-linear constraint we mentioned above

v∑
m=1

yi,j,m ≤ λ+M(1− xi,j) for i, j ∈ {1, . . . , v} (3.10)

v∑
m=1

yi,j,m ≥ λ−M(1− xi,j) for i, j ∈ {1, . . . , v}. (3.11)
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We can for example use M = v such that these constraints are always satisfied for two vertices

i, j ∈ {1, . . . , v} if xi,j = 0. Note that if xi,j = 1 for two vertices i, j ∈ {1, . . . , v}, constraint (3.10)

says that i and j cannot have more than λ common neighbors and constraint (3.11) says that i and j

cannot have less than λ common neighbors. Together this implies that vertices i and j have exactly

λ common neighbors.

3.1.6 Strictly Neumaier graph

We now have all constraints to ensure the resulting graph of the integer linear program is a Neumaier

graph. We are however looking for strictly Neumaier graphs. For the graph to be a strictly Neumaier

graph, it should not be co-edge-regular. This means that not all pairs of non-adjacent vertices have

the same number of common neighbors. So there should at least be two pairs of non-adjacent

vertices in the graph such that they have a different number of common neighbors. Note that we

introduced new binary variables y such that yi,j,m = 1 if and only if vertex m is a common neighbor of

vertices i and j. We again use these variables to ensure the resulting graph is not co-edge-regular.

We get the following constraint

v∑
m=1

ya,b,m ̸=
v∑

m=1

yc,d,m for some a, b, c, d ∈ {1, . . . , v} such that a ̸= b, c ̸= d, xa,b = 0 and xc,d = 0.

This constraint says that there should exist two pairs of non-adjacent vertices a, b and c, d such that

they have a different number of common neighbors. Note that this is again not a linear constraint.

Instead, without loss of generality, we can make assumptions on which vertices a, b, c, d satisfy this

constraint. So far we only assumed which vertices form the s-clique. All vertices in the clique are

indistinguishable and relabeling them does not change the underlying graph structure. Also, all ver-

tices outside the clique are indistinguishable and relabeling them does not change the underlying

graph structure. Since a ̸= b and xa,b = 0, not both a and b can be in the clique. Namely for two dis-

tinct vertices in the clique, they always have an edge between them. Similarly not both c and d can

be in the clique. So for both a, b and c, d, either one of the vertices is in the clique and the other is

outside the clique or both vertices are outside the clique. Note that we may assume they satisfy the

constraint as
∑v

m=1 ya,b,m <
∑v

m=1 yc,d,m, which is equivalent to
∑v

m=1 ya,b,m ≤
∑v

m=1 yc,d,m − 1,

i.e. the number of common neighbors of the vertices a and b is smaller than the number of common

neighbors of the vertices c and d. Namely, the constraint
∑v

m=1 ya,b,m >
∑v

m=1 yc,d,m is the same

for a, b and c, d swapped and therefore redundant. We now explain the different cases.

Both a, b and c, d have one vertex in the clique and one vertex outside the clique:

We assume without loss of generality a = 1, b = s+ 1, i.e. a is the first vertex of the clique and b is

the first vertex outside the clique. Then, either c and d are two different vertices from a and b, or one

of them is the same. We may assume without loss of generality c = 2, d = s+ 2 or c = 1, d = s+ 2

or c = 2, d = s+ 1. So we find case 1 with values a1 = 1, b1 = s+ 1, c1 = 2, d1 = s+ 2 and case 2

with values a2 = 1, b2 = s + 1, c2 = 1, d2 = s + 2 and case 3 with values a3 = 1, b3 = s + 1, c3 =

2, d3 = s+ 1.

One vertex of a, b is in the clique and the other is outside the clique and c, d are both out-

side the clique:
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We again assume without loss of generality a = 1, b = s+ 1. Then, either c and d have one vertex

the same as a and b outside the clique or they are two different vertices. We may assume without

loss of generality c = s + 2, d = s + 3 or c = s + 1, d = s + 2. So we find case 4 with values a4 =

1, b4 = s+1, c4 = s+2, d4 = s+3 and case 5 with values a5 = 1, b5 = s+1, c5 = s+1, d5 = s+2.

One vertex of c, d is in the clique and the other is outside the clique and a, b are both out-

side the clique:

We again assume without loss of generality c = 1, d = s+ 1. Then, either a and b have one vertex

the same as c and d outside the clique or they are two different vertices. We may assume without

loss of generality a = s + 2, b = s + 3 or a = s + 1, b = s + 2. Note that these cases are similar

to the previous cases where a, b and c, d are switched. We need this case as we assumed the

inequality is satisfied as
∑v

m=1 ya,b,m <
∑v

m=1 yc,d,m where the number of common neighbors of

the vertices a and b is smaller than the number of common neighbors of the vertices c and d. So

we find case 6 with values a6 = s + 2, b6 = s + 3, c6 = 1, d6 = s + 1 and case 7 with values

a7 = s+ 1, b7 = s+ 2, c7 = 1, d7 = s+ 1.

All vertices a, b, c, d are outside the clique:

We assume without loss of generality a = s+ 1, b = s+ 2, i.e. a is the first vertex outside the clique

and b is the second vertex outside the clique. Then, either c and d have one vertex the same as a

and b outside the clique or they are two different vertices. We may assume without loss of generality

c = s+3, d = s+4 or c = s+2, d = s+3. So we find case 8 with values a8 = s+1, b8 = s+2, c8 =

s+ 3, d8 = s+ 4 and case 9 with values a9 = s+ 1, b9 = s+ 2, c9 = s+ 2, d9 = s+ 3.

We find a total of 9 different cases of which at least one needs to hold. We can linearize this by

introducing binary variables that represent whether a case holds. We also introduce a new con-

straint that says that the sum of these binary variables is at least 1, so at least one of these cases

should hold. We introduce new binary variables z.

zn ∈ {0, 1} for n ∈ {1, . . . , 9} (3.12)

We again make use of the integer M that is large enough to indicate the corresponding constraints

only have to be satisfied when the case holds. We now add the constraints to make sure these z

variables represent whether a case holds. We add the following constraints for all cases mentioned

above where n is the case number

xan,bn ≤ 1− zn (3.13)

xcn,dn ≤ 1− zn (3.14)
v∑

m=1

yan,bn,m ≤
v∑

m=1

ycn,dn,m +M(1− zn)− 1. (3.15)

Again, M = v is large enough such that these constraints are always satisfied if zn = 0. If zn = 1,

constraint (3.13) says that xan,bn ≤ 0 and constraint (3.14) says that xcn,dn ≤ 0, implying xan,bn = 0

and xcn,dn = 0 since these variables are binary. Constraint (3.15) says that the number of common

neighbors between vertices an and bn is at least one less than the number of common neighbors

between vertices cn and dn. We moreover add the following constraint to make sure at least one of
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the cases is satisfied
9∑

n=1

zn ≥ 1. (3.16)

We have successfully established all the necessary constraints to ensure that the resulting graph

from our integer linear program G = (V,E) is a strictly Neumaier graph with parameters v, k, λ, e,

and s. Here V = {1, . . . , v} and E = {{i, j} | i, j ∈ {1, . . . , v} and xi,j = 1}. This graph consists

of v vertices. It is non-complete as this follows from the parameters given in Table 2.1. It is edge

regular as it is non-empty, k-regular, and any two adjacent vertices have λ common neighbors. Ad-

ditionally, there exists a clique of size s, namely {1, . . . , s}, that is e-regular. Moreover, the resulting

graph is not strongly regular.

We now know that a strictly Neumaier graph exists for the given parameters v, k, λ, e, s if and only

if the corresponding integer linear program is feasible because we have not imposed any additional

assumptions on these graphs, aside from the usual ’without loss of generality’.

3.2 Implementation

We implement the integer linear program in Python (version 3.7.6) using the Gurobi optimization

library (version 10.0.1). It is important to note that we can represent the variables in a more compact

way to solve the linear program more efficiently. Instead of defining xi,j for all pairs of vertices, we

only need to define xi,j for j > i, since xi,i = 0 and xj,i = xi,j for all i, j ∈ {1, . . . , v}. This allows us

to transform all the constraints accordingly. For instance, we can replace the k-regularity constraint

(3.5) with the following constraint

i−1∑
j=1

xj,i +

v∑
j=i+1

xi,j = k for i ∈ {1, . . . , v}.

This way we only use variables xi,j for which j > i. Similarly, all other constraints can be replaced.

We can also represent the y variables in a more compact way. We only need to define yi,j,m for j > i

since yi,i,m = xi,mxi,m = xi,m and yj,i,m = xj,mxi,m = xi,mxj,m = yi,j,m for all i, j,m ∈ {1, . . . , v}.

We also do not need to define yi,j,m for m = i or m = j, since we know that yi,j,i = xi,ixj,i = 0

and similarly yi,j,j = xi,jxj,j = 0 for i, j ∈ {1, . . . , v}. Again, we can transform all our constraints

as explained before. We do not go into too much detail. So for our implementation we use this

more compact way to describe the variables instead. The full integer linear program with constraints

can be found below. Here, constraints (3.34), (3.35) and (3.36) ensure the x variables, y variables

and z variables are binary. Constraint (3.18) corresponds to constraint (3.3) and ensures the first

s vertices form a clique. Constraint (3.19) corresponds to constraint (3.4) and ensures the clique

formed by the first s vertices is e-regular. Constraint (3.20) corresponds to constraint (3.5) and

ensures the graph is k-regular. Constraints (3.21) and (3.22) correspond to constraints (3.10) and

(3.11) respectively and ensure that the graph is λ-edge-regular. Constraints (3.23), (3.24), (3.25),

and (3.26) correspond to constraints (3.13), (3.14), (3.15), and (3.16) respectively and ensure the

graph is not strongly regular. Constraints (3.27), (3.28), (3.29), (3.30), (3.31), (3.32), and (3.33)

correspond to constraints (3.7), (3.8), and (3.9) and ensure the y variables represent products of the

x variables. These constraints are divided into multiple cases depending on the value of m since we
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only have variables xi,m for m > i and xm,i for m < i and similarly for xj,m and xm,j . The Python

code for the integer linear program to find strictly Neumaier graphs with variables and constraints as

described can be found in Appendix B.

min 0 (3.17)

xi,j = 1 for i, j ∈ {1, . . . , s} s.t. j > i (3.18)
s∑

j=1

xj,i = e for i ∈ {s+ 1, . . . , v} (3.19)

i−1∑
j=1

xj,i +
v∑

j=i+1

xi,j = k for i ∈ {1, . . . , v} (3.20)

∑
m∈{1,...,v}\{i,j}

yi,j,m ≤ λ+M(1− xi,j) for i, j ∈ {1, . . . , v} s.t. j > i (3.21)

∑
m∈{1,...,v}\{i,j}

yi,j,m ≥ λ−M(1− xi,j) for i, j ∈ {1, . . . , v} s.t. j > i (3.22)

xan,bn ≤ 1− zn for n ∈ {1, . . . , 9} (3.23)

xcn,dn ≤ 1− zn for n ∈ {1, . . . , 9} (3.24)∑
m∈{1,...,v}\{an,bn}

yan,bn,m ≤
∑

m∈{1,...,v}\{cn,dn}

ycn,dn,m +M(1− zn)− 1

for n ∈ {1, . . . , 9}
(3.25)

9∑
n=1

zn ≥ 1 (3.26)

yi,j,m ≥ xi,m + xj,m − 1 for i, j,m ∈ {1, . . . , v} s.t. m > j > i (3.27)

yi,j,m ≥ xi,m + xm,j − 1 for i, j,m ∈ {1, . . . , v} s.t. j > m > i (3.28)

yi,j,m ≥ xm,i + xm,j − 1 for i, j,m ∈ {1, . . . , v} s.t. j > i > m (3.29)

yi,j,m ≤ xi,m for i, j,m ∈ {1, . . . , v} s.t. j > i,m > i,m ̸= j (3.30)

yi,j,m ≤ xm,i for i, j,m ∈ {1, . . . , v} s.t. j > i > m (3.31)

yi,j,m ≤ xj,m for i, j,m ∈ {1, . . . , v} s.t. m > j > i (3.32)

yi,j,m ≤ xm,j for i, j,m ∈ {1, . . . , v} s.t. j > i, j > m,m ̸= i (3.33)

xi,j ∈ {0, 1} for i, j ∈ {1, . . . , v} s.t. j > i (3.34)

yi,j,m ∈ {0, 1} for i, j,m ∈ {1, . . . , v} s.t. j > i,m ̸= i,m ̸= j (3.35)

zn ∈ {0, 1} for n ∈ {1, . . . , 9} (3.36)

3.3 Results

For all results in this thesis the computations are conducted on a computer with an Intel Core i7-

9750H processor, equipped with 16 GB of RAM. The time limit for all computations was 5 hours per

instance. We were able to solve the linear program only for the smallest parameters that can be

found in Table 2.1, namely v = 16, k = 9, λ = 4, e = 2, s = 4. Using these parameters, we obtained
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the strictly Neumaier graph shown in Figure 3.1, and its corresponding adjacency matrix A1, which

is presented below.

Figure 3.1: Strictly Neumaier graph with parameters v = 16, k = 9, λ = 4, e = 2, s = 4 found after
solving linear program with adjacency matrix A1.

A1 =



0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 1

1 0 1 1 1 1 0 1 0 1 0 1 0 0 1 0

1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 0

1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1

0 1 0 1 0 0 0 0 1 1 0 1 1 1 1 1

0 1 1 0 0 0 1 0 0 1 1 1 0 1 1 1

0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1

0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0

1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1

0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1

1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1

1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0

1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0

0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0

1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0


This graph was found in 31.6 seconds. We hereby confirmed the existence of a strictly Neumaier

graph with parameters v = 16, k = 9, λ = 4, e = 2, s = 4. This existence was previously established

in literature. Specifically, we found a graph that is isomorphic to the strictly Neumaier graph men-

tioned in [9] with the same parameters. We say two graphs are isomorphic if they have the same

underlying structure. For the next three parameter sets in Table 2.1, the program did not solve within

the given time limit. We expect that the program would also not solve within the time limit for any

higher parameters because the number of variables increases cubically with the number of vertices

v.
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3.4 Further constraints

The program only runs for the smallest parameters. We could instead solve the LP relaxation of

our program. However, since we are not interested in determining the optimal value of the objective

function, solving the LP relaxation of our program is not relevant in this situation. Instead we are

looking for edges that make up a strictly Neumaier graph. We cannot conclude this from the solution

to the LP relaxation as this has fractional values. We consider further techniques to improve the

integer program. We introduce new constraints, known as cuts, which do not remove any feasible

solutions from the original program. A valid cut is one that does not remove any integer solutions.

We want to identify cuts that eliminate portions of the feasible region that contain fractional solutions.

If the removed area includes the fractional solution obtained from the LP relaxation of the integer

program, the cut is useful. However, determining in advance which cuts are definitely useful is

challenging without knowledge of the LP relaxation solution [16]. We will add constraints to the

integer linear program to exclude more non-integer solutions as we search for useful cuts. By doing

so, we expect that the integer linear program will become easier to solve, enabling us to find whether

larger Neumaier graphs exist and if so, find examples. It is worth noting that we only add constraints

that eliminate non-integer solutions. Therefore, we still know that a strictly Neumaier graph exists for

the given parameters v, k, λ, e, s if and only if the integer linear program is feasible.

3.4.1 Maximum clique size

As mentioned, we will try to add constraints that reduce the feasible region of the LP relaxation of

the integer linear program as specified in Section 3.2. We find the following result on cliques in

non-complete edge-regular graphs with an e-regular clique of size s. This is Theorem 1.1(ii) from

[18].

Lemma 3.4.1. Let G be an edge-regular graph which is not complete. If G has an e-regular clique

of size s then every clique has size at most s.

Since a strictly Neumaier graph with parameters v, k, λ, e, s is a non-complete edge-regular graph

with an e-regular clique of size s, we know from Lemma 3.4.1 that every clique has size at most s. We

now explain how we model this result as a constraint in our integer linear program. Since this result

is satisfied for all strictly Neumaier graphs, and all feasible solutions to our integer linear program

represent strictly Neumaier graphs, the constraint that models the result is valid. To model this result,

we consider all subsets S ⊆ {1, . . . , v} of s + 1 vertices. For any such subset S, we require that

there exists at least two vertices in S such that they are not connected in the graph. Note that if there

is an edge between every two vertices in S, there are exactly s(s+1)
2 edges between all vertices in

S. By enforcing at least one missing edge within each such subset, we ensure that the graph does

not have a clique of size s+ 1 or larger. We get the following constraint for every subset S of s+ 1

vertices ∑
i,j∈S s.t. i<j

xi,j ≤
s(s+ 1)

2
− 1. (3.37)

A question that now arises is whether the feasible region of the LP relaxation of our program is

indeed reduced by adding constraint (3.37) for every set S, i.e. if this is a useful cut. We did some

testing to see whether adding this constraint cuts of non-integer solutions found when running the LP

relaxation of the linear program. To do this, we solve the LP relaxation of the integer linear program
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with variables and constraints as described in Section 3.2 and we check whether there is a subset S

of size s+1 such that (3.37) is not satisfied. Namely, then this solution does not satisfy the constraint

(3.37) and so it is cut off when adding this to the integer program. The corresponding Python code

can be found in Appendix B. We have only tested this for some of the smaller parameters. We find

that for the smaller parameters this constraint does not cut off any solutions found after running the

LP relaxation. Also, by adding this constraint to the integer linear program, we still cannot solve it

for higher parameters. Because iterating over all subsets S of size s+1 is not desirable, we choose

not to use this constraint any further.

3.4.2 Constraints for v = 3(k − λ) + 1

Since adding the above constraints still does not help solving the problem for higher parameters, we

try to add other constraints that reduce the feasible region of the LP relaxation of the integer linear

program as described in Section 3.2. We find the following result on λ-edge-regular graphs with v

vertices that are k-regular with parameters that satisfy v = 3(k − λ) + 1. This is Lemma 1 from [6].

Lemma 3.4.2. Let G be a λ-edge-regular graph with v vertices that is k-regular for some v, k, λ.

Then, if v = 3(k − λ) + 1, every triangle belongs to at most one K4.

Note that there are several open cases for strictly Neumaier graphs with parameters that satisfy

v = 3(k − λ) + 1 that can be found in Table 2.1. All feasible parameters for Neumaier graphs up to

64 vertices that satisfy v = 3(k − λ) + 1 can be seen in Table 3.1.

v k λ e s Exists?

16 9 4 2 4 Yes, [8]

22 12 5 2 4 No, [8]

28 15 6 2 4

34 18 7 2 4

40 21 8 2 4

46 24 9 2 4

52 27 10 2 4

58 30 11 2 4

64 33 12 2 4

Table 3.1: Feasible parameters for strictly Neumaier graphs up to 64 vertices that satisfy v = 3(k −
λ) + 1.

Therefore, it is relevant to see whether we can add a useful cut only for this parameter class. It

is worth noting that strictly Neumaier graphs are edge-regular, so from Lemma 3.4.2 we know that

for strictly Neumaier graphs with parameters listed in Table 3.1, each triangle belongs to at most

one complete subgraph K4. Note that every triangle belonging to at most one K4 is equivalent to

every triangle having at most one vertex outside the triangle connected to all vertices in the triangle.

Specifically, for any three distinct vertices i, j,m ∈ {1, . . . , v}, if they are all connected, there can

be at most one vertex that is connected to all three vertices i, j,m. All other v − 4 vertices within

the graph can be connected to at most two of the vertices i, j,m. To include this result within

our integer linear program, we can introduce the following constraint for every set of three distinct
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vertices i, j,m ∈ {1, . . . , v}∑
t̸=i,j,m

(xt,j + xt,i + xt,m) ≤ 2(v − 4) + 3 if xi,j = xi,m = xj,m = 1.

This is not a linear constraint. We again make use of the integer M that is large enough to indicate

the corresponding constraints only have to be satisfied when the vertices form a triangle. So we can

add the following constraints for all three distinct vertices i, j,m ∈ {1, . . . , v} that is always satisfied

if not all vertices i, j,m are connected∑
t̸=i,j,m

(xt,j + xt,i + xt,m) ≤ 2(v − 4) + 3 +M(1− xi,j) +M(1− xi,m) +M(1− xj,m). (3.38)

Note that again M = v is big enough. Now, as mentioned, it is interesting to see whether adding

constraint (3.38) for any three distinct vertices i, j,m ∈ {1, . . . , v} will cut off any non-integer so-

lutions found after running the LP relaxation of the linear program, i.e. if this is a useful cut. To

do this, we solve the LP relaxation of the integer linear program with variables and constraints as

described in Section 3.2 and we check whether there are three distinct vertices i, j,m ∈ {1, . . . , v}
such that (3.38) is not satisfied. Namely, then this solution does not satisfy the constraint (3.38) and

so it is cut off when adding this to the integer program. The corresponding Python code can be

found in Appendix B. After some testing, we again find that for the parameters in Table 3.1, adding

this constraint does not cut off any solutions found after running the LP relaxation of the linear pro-

gram. Also, by adding this constraint to the integer linear program, we still cannot solve it for higher

parameters. Because iterating over all triangles i, j,m is not desirable, we choose not to use this

constraint any further. Instead, we can model the result of the lemma as a stronger constraint by

introducing new variables w to represent whether a vertex outside the triangle is connected to all

vertices in the triangle.

wi,j,m,t ∈ {0, 1} for i, j,m, t ∈ {1, . . . , v}

For any i, j,m, t ∈ {1, . . . , v}, wi,j,m,t should represent whether t is connected to all vertices

i, j,m. For t to be connected to all vertices i, j,m, xi,t, xj,t and xm,t must be equal to 1. The

product xi,txj,txm,t equals 1 if and only if xi,t, xj,t and xm,t are equal to 1. So we should have

wi,j,m,t = xi,txj,txm,t such that this variable represents whether t is connected to all i, j,m. In order

to ensure that these w variables accurately represent these products, we can introduce additional

linear constraints for all vertices i, j,m, t ∈ {1, . . . , v}. We again use the same methods as in [4] to

linearize products of binary variables. We get the following constraints

wi,j,m,t ≤ xi,t, wi,j,m,t ≤ xj,t, wi,j,m,t ≤ xm,t, wi,j,m,t ≥ xi,t + xj,t + xm,t − 2. (3.39)

So wi,j,m,t represents whether t is a common neighbor of i, j and m for vertices i, j,m, t ∈
{1, . . . , v}. Now, if i, j,m are all connected, there should be at most one vertex outside the tri-

angle connected to all i, j,m. We get the following constraints for every three distinct vertices

i, j,m ∈ {1, . . . v} ∑
t̸=i,j,m

wi,j,m,t ≤ 1 if xi,j = xi,m = xj,m = 1.

This is not a linear constraint. Instead, again for M big enough, we can add the following constraints

for all three distinct vertices i, j,m ∈ {1, . . . , v} that is always satisfied if not all vertices i, j,m are
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connected ∑
t̸=i,j,m

wi,j,m,t ≤ 1 +M(1− xi,j) +M(1− xi,m) +M(1− xj,m). (3.40)

Also for this constraint, M = v is big enough. We now prove that this is indeed a stronger constraint.

Lemma 3.4.3. If the constraints (3.39) and (3.40) are satisfied for all three distinct vertices i, j,m ∈
{1, . . . , v}, then also the constraint (3.38) is satisfied for all three distinct vertices i, j,m ∈ {1, . . . , v}.

Proof. We prove Lemma 3.4.3. We assume the constraints (3.39) and (3.40) are satisfied for all

three distinct vertices i, j,m. Let i, j,m ∈ {1, . . . , v} be three distinct vertices. Then∑
t̸=i,j,m

(xt,j + xt,i + xt,m) ≤
∑

t̸=i,j,m

(wi,j,m,t + 2) =
∑

t̸=i,j,m

wi,j,m,t +
∑

t̸=i,j,m

2

≤ 1 +M(1− xi,j) +M(1− xi,m) +M(1− xj,m) + 2(v − 3)

= 2(v − 4) + 3 +M(1− xi,j) +M(1− xi,m) +M(1− xj,m).

We find that also the constraints (3.38) are satisfied for all three distinct vertices i, j,m.

Again, for this stronger constraint (3.40) it is interesting to see whether adding this constraint will cut

off any non-integer solutions, i.e. if this is a useful cut. To do this, we add the w variables and we

add the new constraints (3.39) to the integer linear program as explained in Section 3.2. We again

use that we can represent w variables in a more compact way. Then we solve the LP relaxation

of the linear program and we check whether there are three distinct vertices i, j,m such that (3.40)

is not satisfied. The corresponding Python code can be found in Appendix B. We again did some

testing and find that after solving for the parameters in Table 3.1, there are two parameter sets for

which the found solution violates the constraint for some i, j,m. Specifically for v = 34, k = 18, λ =

7, e = 2, s = 4 and v = 40, k = 21, λ = 8, e = 2, s = 4. However, we also observe that the LP

relaxation runs significantly slower as we are adding a lot of new variables to the linear program. In

particular, the number of variables now increases with the fourth power in relation to the number of

vertices v. Again, by adding this constraint to the integer linear program, we still cannot solve it for

higher parameters. So we find that adding all these new w variables is not worth it. We decide that

we do not use these constraints and variables any further.

3.4.3 Constraints for v = 4(k + 1)− 6λ

We try to add other constraints that reduce the feasible region of the LP relaxation of the integer

linear program as specified in Section 3.2 as adding the previous constraints still does not help

solve the problem for larger parameters. We find the following result on λ-edge-regular graphs with v

vertices that are k-regular and contain at least one K4 with parameters that satisfy v = 4(k+1)−6λ.

This is Lemma 2 from [6].

Lemma 3.4.4. Let G be a λ-edge-regular graph with v vertices that is k-regular for some v, k, λ.

Assume G contains at least one K4, then

(i) v = 4(k + 1)− 6λ if and only if every vertex of G is adjacent to either 1 or 2 vertices of every

K4 of which it is not an element;

(ii) v = 4(k + 1) − 6λ and λ = k/3 + 1 if and only if every vertex of G is adjacent to exactly 2

vertices of every K4 of which it is not an element.
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Note that there are a several open cases for strictly Neumaier graphs with parameters that satisfy

v = 4(k+1)− 6λ that can be found in Table 2.1. All feasible parameters for Neumaier graphs up to

64 vertices that satisfy v = 4(k + 1)− 6λ can be seen in Table 3.2.

v k λ e s Exists?

16 9 4 2 4 Yes, [8]

22 12 5 2 4 No, [8]

24 8 2 1 4 Yes, [8, 11, 13]

28 9 2 1 4 Yes, [8, 12]

28 15 6 2 4

34 18 7 2 4

36 11 2 1 4

40 12 2 1 4 Yes, [8]

40 21 8 2 4

46 24 9 2 4

48 14 2 1 4

52 15 2 1 4 Yes, [12]

52 27 10 2 4

58 30 11 2 4

60 17 2 1 4

64 18 2 1 4

64 33 12 2 4

Table 3.2: Feasible parameters for strictly Neumaier graphs up to 64 vertices that satisfy v = 4(k +
1)− 6λ.

Therefore, it is relevant to see whether we can add a useful cut only for this parameter class. It

is worth noting that strictly Neumaier graphs are edge-regular, and for all parameters in Table 3.2,

s = 4 and so the Neumaier graph contains a K4. So by Lemma 3.4.4 we know that for strictly

Neumaier graphs with parameters listed in Table 3.2, every vertex is adjacent to 1 or 2 vertices of

every K4 of which it is not an element and if moreover λ = k/3 + 1, every vertex is adjacent to

exactly 2 vertices of every K4 of which it is not an element. We can model item (i) as a constraint

as follows. For every vertex l, and any subset K of 4 vertices that do not contain this vertex l, if

they are all connected, l is connected to 1 or 2 of them. This gives the following constraint for every

subset K ⊆ {1, . . . , v} of 4 vertices and every vertex l ∈ {1, . . . , v} \K

1 ≤
∑
j∈K

xl,j ≤ 2 if
∑

i,j∈K s.t. i<j

xi,j = 6.

Namely, vertices in the subset K are all pairwise connected if and only if there are 6 edges between

these vertices. This is not a linear constraint. Instead, for M large enough we can add the following

constraint for every subset K ⊆ {1, . . . , v} of 4 vertices and every vertex l ∈ {1, . . . , v} \K

1−M(6−
∑

i,j∈K s.t. i<j

xi,j) ≤
∑
j∈K

xl,j ≤ 2 +M(6−
∑

i,j∈K s.t. i<j

xi,j). (3.41)
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Note that again M = v is large enough. Similarly, we can model item (ii). We can add the following

constraint for every subset K ⊆ {1, . . . , v} of 4 vertices and every vertex l ∈ {1, . . . , v} \K

2−M(6−
∑

i,j∈K s.t. i<j

xi,j) ≤
∑
j∈K

xl,j ≤ 2 +M(6−
∑

i,j∈K s.t. i<j

xi,j). (3.42)

Note that this is a stronger constraint. Again, it is interesting to see whether adding these constraints

will cut off any non-integer solutions found after running the LP relaxation of the linear program, i.e.

if this gives a useful cut. To do this, we solve the LP relaxation of the integer linear program with vari-

ables and constraints as explained in Section 3.2 and for parameters that do not satisfy λ = k/3+1

we check whether there is a subset K of 4 vertices and a vertex l /∈ K such that the constraint

(3.41) is not satisfied. For parameters that satisfy λ = k/3 + 1 we instead check whether there is

a subset K of 4 vertices and a vertex l /∈ K such that the constraint (3.42) is not satisfied. The

corresponding Python code can be found in Appendix B. We did some testing for all parameters in

Table 3.2. We find there are two parameter sets for which the found solution to the LP relaxation

violates the constraint for some K and l. Specifically for v = 40, k = 21, λ = 8, e = 2, s = 4 and

v = 64, k = 33, λ = 12, e = 2, s = 4. Note that both these parameter sets satisfy λ = k/3 + 1.

However, we can still not solve the linear program for parameters satisfying v = 4(k + 1)− 6λ after

adding this constraint to the integer linear program. Again, we decide that we do not use these

constraints any further.

Adding extra constraints does not seem to improve the performance time of the linear program.

There are more results on Neumaier graphs that we have not considered modeling as extra con-

straints. For example Lemma 1.5 in [18] which is a result on regular cliques in edge-regular graphs.

This is stated below as Lemma 3.4.5.

Lemma 3.4.5. Let G be an edge-regular graph which is not complete and which has e-regular

cliques of size s. Then two distinct regular cliques have at most e common points.

This is just an example, there are various other results we have not looked at. However, we expect

this approach to not be effective and so we will not pursue it further.
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Chapter 4

Boolean satisfiability problem approach

Unfortunately, our current integer linear program fails to find any new strictly Neumaier graphs. So

we try a different approach to find strictly Neumaier graphs. We model the problem as a boolean

satisfiability problem.

Similar as for the integer program, we label the vertices of the Neumaier graph from 1 up to v.

We define binary variables xi,j for i, j ∈ {1, . . . , v} to represent whether there is an edge in the

resulting graph between vertices i and j. If there is such an edge, xi,j = 1, otherwise xi,j = 0.

We can interpret xi,j as true when it equals 1 and false when it equals 0. We then define a graph

G = (V,E) with vertices V = {1, . . . , v} and edges E = {{i, j} | i, j ∈ {1, . . . , v} and xi,j = 1}.

We now introduce conditions that should be satisfied by these variables x to make sure the resulting

graph is a strictly Neumaier graph.

We make use of the following symbols: ¬,∧,∨. Firstly, the expression ¬xi,j represents the negation

of xi,j which means xi,j should be false. Next, the expression xi,j ∧ xi,m represents the conjunc-

tion of xi,j and xi,m which means that both xi,j and xi,m should be true. Moreover, we use the

following notation ∧j∈{1,...,v}(xi,j) to denote the conjunction of all xi,j for j ∈ {1, . . . , v}, implying all

xi,j should be true for j ∈ {1, . . . , v}. Lastly, the expression xi,j ∨ xi,m represents the disjunction

of xi,j and xi,m which means that xi,j or xi,m should be true. Again we use the following notation

∨j∈{1,...,v}(xi,j) to denote the disjunction of all xi,j for j ∈ {1, . . . , v}, implying at least one xi,j

should be true for j ∈ {1, . . . , v}.

4.1 Constraints

4.1.1 Preliminary constraints

We first introduce conditions on these variables to make sure they represent edges in a graph. We

do not allow self loops in the graph. So there should be no edges between two the same vertices.

For any vertex i, xi,i represents whether the vertex is connected to itself, so this should be false. We

get the following condition

∧i∈{1,...,v}(¬xi,i). (4.1)

Edges are symmetric, meaning there is an edge between vertices i and j for two vertices i, j ∈
{1, . . . , v} if and only if there is also an edge between j and i. Either there is an edge between
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vertex i and j and so there is also an edge between vertex j and i, or there is no edge between

vertex i and j and so there is also no edge between vertex j and i. So for any 2 vertices i, j, either

both xi,j and xj,i are false or they are both true. We get the following condition

∧i,j∈{1,...,v}((xi,j ∧ xj,i) ∨ (¬xi,j ∧ ¬xj,i)). (4.2)

With these conditions we have made sure that the variables indeed represent edges in a graph. Now

we still have to make sure that the resulting graph is a strictly Neumaier graph.

4.1.2 s-clique

The resulting graph needs to have a clique of size s. Similar as in our integer linear program we can

assume without loss of generality that the first s vertices form such a clique. This means there is an

edge between every two distinct vertices in the first s vertices. So xi,j should be true for any two

distinct vertices i, j ∈ {1, . . . , s}. We get the following condition

∧i,j∈{1,...,s}s.t.i ̸=j(xi,j). (4.3)

Note that assuming the first s vertices form this clique makes the condition relatively easy, this will

also be helpful when adding the condition to ensure this is an e-regular clique.

4.1.3 e-regular clique

There should be an e-regular s-clique in the graph, meaning that every vertex outside the clique

is connected to e vertices in the clique. Note that we can use that the first s vertices, 1 up to s,

form a clique of size s. We will ensure this is an e-regular clique by imposing extra conditions on

these vertices. We can split this into two conditions. Each vertex outside the clique should not

be connected to more than e vertices in the clique and each vertex outside the clique should not

be connected to less than e vertices in the clique. The first condition can be expressed using the

following formula

∧i∈{s+1,...,v}(∧I⊆{1,...,s}s.t.|I|=e+1(∨l∈I(¬xi,l))). (4.4)

This formula states that for any vertex i outside the clique, for all subsets I of e + 1 vertices in the

clique, at least one edge should be missing between vertex i and a vertex l ∈ I. This implies all

vertices i outside the clique cannot have more than e neighbors in the clique. Similarly, the second

condition can be expressed using the following formula

∧i∈{s+1,...,v}(∧I⊆{1,...,s}s.t.|I|=s−e+1(∨l∈I(xi,l))). (4.5)

This formula states that for any vertex i outside the clique, for all subsets I of s − e + 1 vertices in

the clique, at least one edge should be present between vertex i and a vertex l ∈ I. This implies

all vertices i outside the clique cannot have less than e neighbors in the clique. Together, these

formulas imply that all vertices i outside the clique have exactly e neighbors in the clique. For this

we used that the first s vertices form a clique.
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4.1.4 k-regular

The graph should be k-regular, meaning each vertex in the graph is connected to k other vertices.

We can again split this into two conditions. Each vertex should not be connected to more than

k other vertices and each vertex should not be connected to less than k other vertices. The first

condition can be expressed using the following formula

∧i∈{1,...,v}(∧I⊆{1,...,v}s.t.|I|=k+1(∨l∈I(¬xi,l))). (4.6)

This formula states that for any vertex i, for all subsets I of k + 1 vertices, at least one edge should

be missing between vertex i and a vertex l ∈ I. This implies all vertices i cannot have more than k

neighbors. Similarly, the second condition can be expressed using the following formula

∧i∈{1,...,v}(∧I⊆{1,...,v}s.t.|I|=v−k+1(∨l∈I(xi,l))). (4.7)

This formula states that for any vertex i, for all subsets I of v − k + 1 vertices, at least one edge

should be present between vertex i and a vertex l ∈ I. This implies all vertices i cannot have less

than k neighbors. Together, these formulas imply that all vertices have exactly k neighbors and thus

guarantee that the graph is k-regular.

4.1.5 λ-edge-regular

The resulting graph should moreover be λ-edge-regular, meaning the graph is regular and all con-

nected vertices have λ common neighbors. We already made sure the resulting graph is k-regular

with conditions (4.6) and (4.7). We can make sure all adjacent vertices have exactly λ common

neighbors by splitting this into two conditions. The first condition is that for every two vertices, they

are either not connected or they do not have more than λ common neighbors. The second condition

is that for every two vertices, they are either not connected or they do not have less than λ common

neighbors. The first condition can be expressed using the following formula

∧i,j∈{1,...,v}(¬xi,j ∨ (∧I⊆{1,...,v}s.t.|I|=λ+1(∨m∈I(¬xi,m ∨ ¬xj,m)))). (4.8)

This formula states that for any two vertices i and j, either xi,j is false, which means that vertices i

and j are not connected, or for all subsets I of λ+1 vertices, there is at least one vertex m ∈ I that

is not a common neighbor of vertices i and j. So either xi,m is false or xj,m is false for some m ∈ I.

This condition implies that all vertices i and j are either not adjacent, or they cannot have more than

λ common neighbors. Similarly, the second condition can be expressed using the following formula

∧i,j∈{1,...,v}(¬xi,j ∨ (∧I⊆{1,...,v}s.t.|I|=v−λ+1(∨m∈I(xi,m ∧ xj,m)))). (4.9)

This formula states that for any two vertices i and j, either xi,j is false, which means that vertices i

and j are not connected, or for all subsets I of v− λ+1 vertices, there is at least one vertex m ∈ I

that is a common neighbor of vertices i and j. So both xi,m and xj,m are true for some m ∈ I. This

condition implies that all vertices i and j are either not adjacent, or they cannot have less than λ

common neighbors. Together, these formulas imply that all vertices i and j are either not connected

or they have exactly λ common neighbors.
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4.1.6 Strictly Neumaier graph

We now have all formulas to ensure the graph is a Neumaier graph. We are however looking for

srictly Neumaier graphs. For the graph to be a strictly Neumaier graph, it should moreover not be

co-edge-regular. This means that not all pairs of non-adjacent vertices have the same number of

common neighbors. So there should at least be two pairs of non-adjacent vertices in the graph such

that they have a different number of common neighbors. In Section 3.1.6 we found all 9 cases with

vertices a, b, c, d we need to ensure the graph is not co-edge-regular. We saw for at least one such

case we need that vertices a and b are not connected, vertices c and d are not connected, and a

and b have less common neighbors than c and d. For given a, b, c, d, the following formula ensures

these properties

(¬xa,b) ∧ (¬xc,d) ∧ (∨K∈{1,...,k}((∧I⊆{1,...,v}s.t.|I|=K(∨m∈I(¬xa,m ∨ ¬xb,m)))

∧ (∧I⊆{1,...,v}s.t.|I|=v−K+1(∨m∈I(xc,m ∧ xd,m))))). (4.10)

This formula states that for given vertices a, b, c, d, xa,b and xc,d are both false. This means there is

no edge between vertices a and b and there is no edge between vertices c and d. Moreover, there

is a number K ∈ {1, . . . , k} such that for all subsets I of K vertices, there is at least one vertex

m ∈ I that is not a common neighbor of vertices a and b and for all subsets I of v−K + 1 vertices,

there is at least one vertex m ∈ I that is a common neighbor of c and d. This means that vertices a

and b have less than K common neighbors and vertices c and d have at least K common neighbors

for some K ∈ {1, . . . , k}. So this implies that vertices a and b have fewer common neighbors than

vertices c and d. Note that we already ensured that all vertices have exactly k neighbors, so there

exist no two vertices that have more than k common neighbors. Therefore we know that there exists

no K > k such that vertices a and b have less than K common neighbors and vertices c and d

have at least K common neighbors. We need for at least one case with values an, bn, cn, dn that the

formula is true. So we can add the disjunction of (4.10) for all cases. This gives the following formula

∨n∈{1,...,9} ((¬xan,bn) ∧ (¬xcn,dn) ∧ (∨K∈{1,...,k}((∧I⊆{1,...,v}s.t.|I|=K(∨m∈I(¬xan,m ∨ ¬xbn,m)))

∧ (∧I⊆{1,...,v}s.t.|I|=v−K+1(∨m∈I(xcn,m ∧ xdn,m)))))). (4.11)

We have successfully established all the necessary conditions to ensure that the resulting graph

from our boolean satisfiability problem G = (V,E) is a strictly Neumaier graph with parameters v,

k, λ, e, and s. Here V = {1, . . . , v} and E = {{i, j} | i, j ∈ {1, . . . , v} and xi,j = 1}. This graph

consists of v vertices. It is non-complete as this follows from the parameters given in Table 2.1. It

is edge regular as it is non-empty, k-regular, and any two adjacent vertices have λ common neigh-

bors. Additionally, there exists a clique of size s, namely {1, . . . , s}, that is e-regular. Moreover, the

resulting graph is not strongly regular.

We now know that a strictly Neumaier graph exists for the given parameters v, k, λ, e, s if and only

if the corresponding boolean satisfiability problem is satisfiable because we have not imposed any

additional assumptions on these graphs, aside from the usual ’without loss of generality’.
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4.2 Implementation

We implement the boolean satisfiability problem in Python (version 3.7.6) using the Z3-solver library

(version 4.12.1.0). Similar to our integer linear program, it is important to note that we can represent

the variables in a more compact way to solve the SAT problem more efficiently. Instead of defining

xi,j for all pairs of vertices, we only need to define xi,j for j > i, since xi,i = 0 and xj,i = xi,j for

all i, j ∈ {1, . . . , v}. This allows us to transform all conditions accordingly. For instance, we can

replace the k-regularity condition (3.5) with the following condition

∧i∈{1,...,v}(∧I⊆{1,...,v}\{i}s.t.|I|=k+1((∨l∈Is.t.l>i(¬xi,l)) ∨ (∨l∈Is.t.l<i(¬xl,i))).

This way we only use variables xi,j for which j > i. Similarly, all other conditions can be replaced.

We do not go into too much detail. So for our implementation we use this more compact way to

describe the variables instead. The full boolean satisifiability problem can be found below. Here,

condition (4.12) corresponds to condition (4.3) and ensures the first s vertices form a clique. Con-

ditions (4.13) and (4.14) correspond to conditions (4.4) and (4.5) respectively and ensure the clique

formed by the first s vertices is e-regular. Conditions (4.15) and (4.16) correspond to conditions (4.6)

and (4.7) respectively and ensure the graph is k-regular. Conditions (4.17) and (4.18) correspond to

conditions (4.8) and (4.9) respectively and ensure that the graph is λ-edge-regular. Condition (4.19)

corresponds to condition (4.11) and ensures the graph is not strongly regular. The Python code for

the boolean satisfiability problem to find strictly Neumaier graphs with variables and constraints as

described can be found in Appendix B.

∧i,j∈{1,...,s}s.t.j>i (xi,j) (4.12)

∧i∈{s+1,...,v} (∧I⊆{1,...,s}s.t.|I|=e+1(∨l∈I(¬xl,i))) (4.13)

∧i∈{s+1,...,v} (∧I⊆{1,...,s}s.t.|I|=s−e+1(∨l∈I(xl,i))) (4.14)

∧i∈{1,...,v} (∧I⊆{1,...,v}\{i}s.t.|I|=k+1((∨l∈Is.t.l>i(¬xi,l)) ∨ (∨l∈Is.t.l<i(¬xl,i)))) (4.15)

∧i∈{1,...,v} (∧I⊆{1,...,v}s.t.|I|=v−k+1((∨l∈Is.t.l>i(xi,l)) ∨ (∨l∈Is.t.l<i(xl,i)))) (4.16)

∧i,j∈{1,...,v}s.t.j>i (¬xi,j ∨ (∧I⊆{1,...,v}\{i,j}s.t.|I|=λ+1((∨m∈Is.t.m<i(¬xm,i ∨ ¬xm,j))∨

(∨m∈Is.t.i<m<j(¬xi,m ∨ ¬xm,j)) ∨ (∨m∈Is.t.m>j(¬xi,m ∨ ¬xj,m)))))
(4.17)

∧i,j∈{1,...,v}s.t.j>i (¬xi,j ∨ (∧I⊆{1,...,v}s.t.|I|=v−λ+1((∨m∈Is.t.m<i(xm,i ∧ xm,j))∨

(∨m∈Is.t.i<m<j(xi,m ∧ xm,j)) ∨ (∨m∈Is.t.m>j(xi,m ∧ xj,m)))))
(4.18)

∨n∈{1,...,9} ((¬xan,bn) ∧ (¬xcn,dn) ∧ (∨K∈{1,...,k}((∧I⊆{1,...,v}\{an,bn}s.t.|I|=K(

(∨m∈Is.t.m<an(¬xm,an ∨ ¬xm,bn)) ∨ (∨m∈Is.t.an<m<bn(¬xan,m ∨ ¬xm,bn))∨

(∨m∈Is.t.m>bn(¬xan,m ∨ ¬xbn,m)))) ∧ (∧I⊆{1,...,v}s.t.|I|=v−K+1(

(∨m∈Is.t.m<cn(xm,cn ∧ xm,dn)) ∨ (∨m∈Is.t.cn<m<dn(xcn,m ∧ xm,dn))∨

(∨m∈Is.t.m>dn(xcn,m ∧ xdn,m)))))))

(4.19)

4.3 Results

We were able to solve the SAT problem only for the smallest parameters that can be found in Ta-

ble 2.1, namely v = 16, k = 9, λ = 4, e = 2, s = 4. Using these parameters, we obtained the
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strictly Neumaier graph shown in Figure 4.1, and its corresponding adjacency matrix A2, which is

presented below.

Figure 4.1: Strictly Neumaier graph with parameters v = 16, k = 9, λ = 4, e = 2, s = 4 found after
solving SAT problem with adjacency matrix A2.

A2 =



0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0

1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1

1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 0

1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1

1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1

1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0

1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1

0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0

1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1

0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1

0 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0

1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0

1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1

0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0


We already found a strictly Neumaier graph with parameters v = 16, k = 9, λ = 4, e = 2, s = 4 using

our integer linear program as seen in Chapter 3. Specifically, we found a graph that is isomorphic

to the strictly Neumaier graph we found in Chapter 3 and therefore also isomorphic to the strictly

Neumaier graph mentioned in [9] with the same parameters. It took 20 minutes and 14.1 seconds to

find this graph by running our implementation of the SAT problem. This is significantly slower than

the integer linear program as seen in Chapter 3. For the next three parameter sets in Table 2.1,

the program did not solve within the given time limit of 5 hours. We expect that the program would

also not solve within the time limit for any higher parameters as the number of variables increases

quadratically with the number of vertices v.
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Chapter 5

How close is a graph to be a Neumaier
graph

We saw that both the integer linear program as specified in Section 3.2 and the boolean satisfiability

problem as specified in Section 4.2 fail to find new strictly Neumaier graphs. Therefore we will now

look into whether we can find graphs close to Neumaier graphs. We first define what it means for a

graph to be close to a Neumaier graph.

5.1 Distance to Neumaier graph

We did some experimenting and found that for both the integer program and the SAT problem, the

constraints that ensure all adjacent vertices in the graph have exactly λ common neighbors make

the problem particularly difficult. For the integer program these are constraints (3.21) and (3.22). For

the SAT problem these are conditions (4.17) and (4.18). We therefore define the distance between a

Neumaier graph and another graph based on how many vertices do not satisfy this λ-edge-regularity

constraint. As mentioned, NG(v, k, λ, e, s) is the collection of Neumaier graphs with parameters

v, k, λ, e, s. We define the distance between a k-regular graph G = (V,E) with v vertices and an

e-regular s-clique from a Neumaier graph with parameters v, k, λ, e, s in two different ways. These

two distances correspond to the L0-norm and the L1-norm respectively. The L0 norm of a vector is

the number of non-zero entries while the L1-norm of a vector is the sum of the absolute values of

the entries. For the first distance we count the number of pairs of adjacent vertices i, j ∈ {1, . . . , v}
that do not have exactly λ common neighbors. We let N(i) denote the neighborhood of vertex i, i.e.

the set of all vertices connected to i and similarly we let N(j) denote the neighborhood of vertex j.

We define the first distance below.

d0(G,NG(v, k, λ, e, s)) =| {{i, j} ∈ E s.t. |N(i) ∩N(j)| ≠ λ} |

This distance d0 equals the L0-norm of the difference between the vector that consists of the number

of common neighbors for all adjacent pairs of vertices and the vector for which each entry is λ.

Namely, the L0-norm of this vector is exactly the number of pairs of adjacent vertices which do not

have λ common neighbors. For the second distance, we sum over each pair of adjacent vertices

i, j ∈ {1, . . . , v} and calculate the difference between the number of common neighbors and λ. This

31



distance is defined below.

d1(G,NG(v, k, λ, e, s)) =
∑

{i,j}∈E

||N(i) ∩N(j)| − λ|

This distance d1 equals the L1-norm of the difference between the vector that consists of the num-

ber of common neighbors for all adjacent pairs of vertices and the vector for which each entry is λ.

Namely, the L1-norm of this vector is exactly the sum of all the differences between the number of

common neighbors of pairs of adjacent vertices and λ. Note that for both distances, if the graph G

is a Neumaier graph with parameters v, k, λ, e, s, the distance to NG(v, k, λ, e, s) is 0.

5.2 Lagrangian relaxation of the integer linear program

As mentioned, we can still only solve the linear program for the smallest number of vertices, v = 16.

We tried removing some constraints from the integer linear program with variables and constraints

as specified in Section 3.2 and find that removing constraints (3.21) and (3.22) make the the program

run significantly faster. We repeat these constraints here.∑
m∈{1,...,v}\{i,j}

yi,j,m ≤ λ+M(1− xi,j) for i, j ∈ {1, . . . , v} s.t. j > i

∑
m∈{1,...,v}\{i,j}

yi,j,m ≥ λ−M(1− xi,j) for i, j ∈ {1, . . . , v} s.t. j > i

These are the constraints that guarantee the resulting graph of the linear program is λ-edge-regular.

Now, instead of solving the original integer linear program, we can remove these difficult constraints

and move them to the objective function and solve the program with the following objective function

min
v∑

i=1

v∑
j=i+1

max{
∑

m∈{1,...,v}\{i,j}

yi,j,m − λ−M(1− xi,j), λ−M(1− xi,j)−
∑

m∈{1,...,v}\{i,j}

yi,j,m, 0}.

(5.1)

So for given parameters, a strictly Neumaier graph exists if and only if this new integer program, with

objective function (5.1) and variables and constraints as specified in Section 3.2 except for the λ-

edge-regularity constraints, has an optimal solution with value 0. Namely, then for all i, j ∈ {1, . . . , v}
such that j > i,

∑
m∈{1,...,v}\{i,j} yi,j,m ≤ λ+M(1− xi,j) and

∑
m∈{1,...,v}\{i,j} yi,j,m ≥ λ−M(1−

xi,j), so each value in the sum is 0. We can linearize this objective function (5.1) and solve the

new integer linear program. We implement this in Python, the code can be found in Appendix B.

This still does not give new insights as the program only solves for the smallest parameter set in

Table 2.1. Again, we find a graph isomorphic to the graphs seen in Chapter 3 and Chapter 4. It

is worth noting that the smallest graph was found in 13.5 seconds which is faster than the original

integer program which solved in 31.6 seconds. The program however still does not solve for the next

three parameter sets in Table 2.1 within a time limit of 5 hours. Instead, we can penalize violations

of the constraints (3.21), (3.22) in the objective function using the Lagrangian relaxation method

as described in [4]. This method may be useful to solve an integer program that consists of both

nice constraints and complicating constraints, which is indeed the case in our problem. However,

the Lagrangian approach only provides a bound on the optimal value of the original integer linear
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program. We are not interested in the optimal value of the integer program as the objective function

is constant and we only want to find a feasible solution. In hindsight, this approach does not make

sense as we are interested in whether the problem is feasible and if so what a feasible solution would

be, instead of the optimal value. We therefore do not go into more detail. We have nevertheless

tested the Lagrangian relaxation approach and implemented it in Python. The code can be found

in Appendix B. Indeed it appears using the method of Lagrangian relaxation is not the right way to

tackle our problem as we do not find graphs close to Neumaier graphs according to the distances

as defined before.

5.3 Gradually solving the boolean satisfiability problem

We can only solve the boolean satisfiability problem for the smallest number of vertices, v = 16.

Similar as to the integer linear program, we tried removing some conditions from the SAT problem

as specified in Section 4.2 and we find that the conditions (4.17), (4.18), and (4.19) take the longest

to add to the program. We repeat these conditions here.

∧i,j∈{1,...,v}s.t.j>i (¬xi,j ∨ (∧I⊆{1,...,v}\{i,j}s.t.|I|=λ+1((∨m∈Is.t.m<i(¬xm,i ∨ ¬xm,j))∨

(∨m∈Is.t.i<m<j(¬xi,m ∨ ¬xm,j)) ∨ (∨m∈Is.t.m>j(¬xi,m ∨ ¬xj,m)))))

∧i,j∈{1,...,v}s.t.j>i (¬xi,j ∨ (∧I⊆{1,...,v}s.t.|I|=v−λ+1((∨m∈Is.t.m<i(xm,i ∧ xm,j))∨

(∨m∈Is.t.i<m<j(xi,m ∧ xm,j)) ∨ (∨m∈Is.t.m>j(xi,m ∧ xj,m)))))

∨n∈{1,...,9} ((¬xan,bn) ∧ (¬xcn,dn) ∧ (∨K∈{1,...,k}((∧I⊆{1,...,v}\{an,bn}s.t.|I|=K(

(∨m∈Is.t.m<an(¬xm,an ∨ ¬xm,bn)) ∨ (∨m∈Is.t.an<m<bn(¬xan,m ∨ ¬xm,bn))∨

(∨m∈Is.t.m>bn(¬xan,m ∨ ¬xbn,m)))) ∧ (∧I⊆{1,...,v}s.t.|I|=v−K+1(

(∨m∈Is.t.m<cn(xm,cn ∧ xm,dn)) ∨ (∨m∈Is.t.cn<m<dn(xcn,m ∧ xm,dn))∨

(∨m∈Is.t.m>dn(xcn,m ∧ xdn,m)))))))

The first two formulas guarantee that the resulting graph of the SAT problem is λ-edge-regular while

the third formula guarantees that it is not strongly regular. To simplify the problem-solving process,

we can remove these difficult conditions and repeatedly solve the SAT problem while adding more

conditions based on which ones are not satisfied. For the λ-edge-regular conditions, we can for

example solve the problem, then check which pairs of vertices do not satisfy the condition and for

such pairs we can introduce extra conditions so they satisfy the λ-edge-regular property and then

solve the problem again. We can repeat this until we find a λ-edge-regular graph which also satis-

fies the other conditions. However, dealing with the condition that ensures the graph is not strongly

regular is more complex. Therefore we will not add this condition. Instead, we can continue solving

the problem until we obtain a graph that is λ-edge-regular and hoping for a favorable outcome not

strongly regular.

So we can solve the SAT problem as defined in Section 4.2, and add conditions (5.2) and (5.3)

for a random edge {i, j} such that vertices i and j do not have λ common neighbors in the solution

of the SAT problem. We will continue this process until we find a graph that is λ-edge-regular and,
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ideally, not strongly regular.

¬xi,j ∨ (∧I⊆{1,...,v}\{i,j}s.t.|I|=λ+1((∨m∈Is.t.m<i(¬xm,i ∨ ¬xm,j))∨

(∨m∈Is.t.i<m<j(¬xi,m ∨ ¬xm,j)) ∨ (∨m∈Is.t.m>j(¬xi,m ∨ ¬xj,m))))
(5.2)

¬xi,j ∨ (∧I⊆{1,...,v}s.t.|I|=v−λ+1((∨m∈Is.t.m<i(xm,i ∧ xm,j))∨

(∨m∈Is.t.i<m<j(xi,m ∧ xm,j)) ∨ (∨m∈Is.t.m>j(xi,m ∧ xj,m))))
(5.3)

We expect this approach to solve faster than adding all conditions at once as we did in Section 4.2.

Namely, removing the difficult conditions makes the problem easier to solve. Then in each itera-

tion we expect that the solver remembers its previous solutions and thus solve the problem more

efficiently. Moreover, by gradually adding conditions, we can stop the process as soon as we find

a strictly Neumaier graph, rather than adding more unnecessary conditions. Also, we can stop the

process as soon as the SAT problem is not satisfiable anymore as then we know there exists no

Neumaier graph with the given parameters.

We have implemented this way of solving the SAT problem in Python. The code can be found

in Appendix B. It solves in 45 iterations for the smallest parameters as found in Table 2.1, which

are v = 16, k = 9, λ = 4, e = 2, s = 4. So the λ-edge-regularity condition is added for 45 pairs

of vertices instead of all
(
16
2

)
= 120 pairs of vertices. Here

(
16
2

)
represents the binomial coefficient,

which equals the number of ways to choose 2 vertices out of a set of 16 vertices. We again find

a strictly Neumaier graph isomorphic to the graphs found before in Chapter 3 and Chapter 4 with

these parameters. It only took 4 minutes and 54.0 seconds to find this graph by gradually adding

more conditions compared to the 20 minutes and 14.1 seconds which it took to find this graph with

the regular SAT problem.

We already found this graph. Instead we now try this method for the parameters v = 21, k =

14, λ = 9, e = 4, s = 7. This is the second parameter set in Table 2.1. For these parameters it

is known that no strictly Neumaier graph exists. We are however wondering whether we can find

that this graph does not exist using the SAT problem. We run it for 50 iterations. The adjacency

matrices corresponding to the first solution and the solution after 50 iterations can be found in Ap-

pendix A, these are A3 and A4 respectively. Note that both graphs of these adjacency matrices

have v vertices, are k-regular and contain an e-regular s-clique. But they may not be λ-edge-regular

and they may be co-edge-regular. Let G3 denote the graph with adjacency matrix A3, similarly

let G4 denote the graph with adjacency matrix A4. Then d0(G3, NG(21, 14, 9, 4, 7)) = 95 and

d0(G4, NG(21, 14, 9, 4, 7)) = 78. So we see that for graph G3 there are more adjacent vertices that

do not have exactly λ common neighbors than for graph G4. Also, d1(G3, NG(21, 14, 9, 4, 7)) = 125

and d1(G4, NG(21, 14, 9, 4, 7)) = 88. So we see that for graph G3 the sum of the difference of

number of common neighbors with λ is larger than for graph G4. We see that graph G4 is closer to

be a Neumaier graph than graph G3 according to both defined distances. So we find that by using

this method, we indeed gradually get closer to finding a Neumaier graph. However, we are looking

for strictly Neumaier graphs.

A disadvantage of this method is that we have not taken into account that the graph should not

be strongly regular. So it may be the case that we would eventually find a Neumaier graph with
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parameters v = 21, k = 14, λ = 9, e = 4, s = 7 if such a graph exists, and so we could still not

conclude that no strictly Neumaier graph exists with these parameters. Moreover, for parameters

for which a strictly Neumaier graph exists, it may be the case that we would find a strongly regular

graph that is λ-edge-regular at some point during the process. Then, in the next iteration no more

conditions are added since there are no pairs of vertices {i, j} in the graph such that i and j do

not have λ common neighbors. The problem is solved again and we expect it finds the same graph

since no conditions are added. This would mean that we would keep finding the same Neumaier

graph that is not a strictly Neumaier graph. Another disadvantage of this method is that it still takes

a long time to add all conditions. This is mainly because we iterate over all subsets of sizes k + 1,

v − k + 1, λ+ 1, and v − λ+ 1 of a set of size v.

We find that using this method, we get closer towards a Neumaier graph according to both dis-

tances as defined before. So we could possibly find whether a strictly Neumaier graph exists with

parameters in Table 2.1. However, since adding all conditions takes a long time, by gradually solving

the SAT problem we have not managed to find any other strictly Neumaier graphs except for the

smallest graph.
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Chapter 6

Conclusions and future work

The goal of this thesis was to identify new methods to find strictly Neumaier graphs with parameters

in Table 2.1. We have thus formulated the problem of finding a strictly Neumaier graph as an integer

linear program and as a boolean satisfiability problem. We implemented and tested both methods.

We found that for both of these methods, we are able to find the smallest strictly Neumaier graph.

However, this graph was already known to exist. We also found that for larger parameters, both

programs do not solve within the given time limit of 5 hours. This is because both problems are

NP-complete. We then tried to add constraints to the integer program to cut off more non-integer so-

lutions, however this approach did not lead to promising results. So instead we tried to find methods

with which we could approach a strictly Neumaier graph. We implemented the Lagrangian relax-

ation of the integer program and found that this approach did not work in our case since the integer

program has a constant objective function. We also tried to incrementally solve the boolean satisfi-

ability problem by gradually adding more conditions. We found that even though this is faster than

the original boolean satisfiability problem and it does work, we can still not find other graphs within

the time limit of 5 hours.

Our research has certain limitations that should be acknowledged. First off all, we have exclu-

sively used Python for solving the programs, in particular we have only considered Gurobi as integer

program solver and Z3-solver as SAT solver. We have not explored any other solvers that may of-

fer alternative approaches. Additionally, we have focused on linearizing all constraints in the integer

program rather than exploring the possibility of developing a nonlinear integer program. These limita-

tions highlight potential directions for further investigation and expansion of our research. Moreover,

even though we have found two methods with which we can find whether strictly Neumaier graphs

exist for given parameters, we were not able to find new results on Neumaier graphs. This was due

to the limitations of time and computational power. Since the integer linear program solved signif-

icantly faster for the smallest strictly Neumaier graph, we expect that this method is more likely to

solve faster for larger parameters as well. For future research both methods should be tested for a

longer period of time to see whether this gives new outcomes.

These methods can be explored more beyond finding new strictly Neumaier graphs as well. Sim-

ilar integer programs or SAT problems could for example be developed to find other graphs that

satisfy given constraints. As seen, strictly Neumaier graphs are a family of graphs that are very con-

strained. If the methods we explored would be used for graphs that have to satisfy fewer constraints,
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they might be more efficient.

Additionally, for future research, it should be investigated whether either the integer program or

the SAT problem can be solved more efficiently. One idea worth investigating is the application of

symmetry breaking techniques, which we have not yet explored. For example, in both problems all

vertices in the clique are interchangeable and all vertices outside the clique are interchangeable.

Similar methods as in [3] could be used to reduce the search space by applying symmetry breaking

techniques both in the integer linear program and the SAT problem. By incorporating symmetry

breaking into the programs, it may be possible to significantly improve the efficiency of the methods

and find for other parameters in Table 2.1 whether a strictly Neumaier graph exists.
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Appendix A

Adjacency Matrices

A3 =



0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1
1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1
1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0
1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0
1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0
0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1
0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1
0 1 0 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1
0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1
1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1
1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1
1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0
1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0
1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0
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A4 =



0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1
1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 1
1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0
1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1
1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0
1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1
1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0
1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1
1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1
0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1
0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 0
1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1
1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1
1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0
1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0
0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1
0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1
0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1
1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1
1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0
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Appendix B

Code

The code can additionally be found here.

1 # import packages
2 from gurobipy import *
3 import networkx as nx
4 import numpy as np
5 from itertools import combinations
6 import matplotlib.pyplot as plt
7 from z3 import *
8 import random
9

10

11 def find_adjacencymatrix(edges, v):
12 """"Find adjacency matrix of graph given its edges and the number of vertices."""
13

14 adjacency_matrix = np.zeros((v, v), dtype=int)
15

16 for (i,j) in edges:
17 adjacency_matrix[i][j] = 1
18 adjacency_matrix[j][i] = 1
19 return adjacency_matrix
20

21

22 def find_edges(adjacency_matrix):
23 """Find edges of graph given its adjacency matrix."""
24

25 edges = []
26 v = len(adjacency_matrix)
27

28 for i in range(v):
29 for j in range(i):
30 if adjacency_matrix[i][j] != 0:
31 edges.append((i, j))
32

33 return edges
34

35

36 def is_Neumaier_graph(A, v, k, l, e, s):
37 """"Check whether graph with adjacency matrix A is a Neumaier graph with
38 parameters v, k, l, e, s."""
39

40 G = nx.from_numpy_matrix(A) # graph with adjacency matrix A
41

42 if nx.is_directed(G):
43 return False # directed graph
44

45 if nx.number_of_selfloops(G) != 0:
46 return False # graph has self loops
47

48 if nx.number_of_nodes(G) != v:
49 return False # not v vertices
50

51 if nx.degree_histogram(G)[k] != v:
52 return False # not k-regular
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53

54 for (i,j) in nx.edges(G):
55 if len(list(nx.common_neighbors(G, i, j))) != l:
56 return False # not l-edge-regular
57

58 for clique in nx.find_cliques(G):
59 nr_nodes = 0
60 if len(clique) == s: # only consider s-cliques
61 for i in set(range(v)) - set(clique):
62 if sum(A[i][j] for j in clique) == e:
63 nr_nodes += 1
64 if nr_nodes == v - s:
65 return True # e-regular clique
66

67 return False # no e-regular clique
68

69

70 def is_strictlyNeumaier_graph(A, v, k, l, e, s):
71 """"Check whether graph with adjacency matrix A is a strictly Neumaier graph with
72 parameters v, k, l, e, s."""
73

74 if not is_Neumaier_graph(A, v, k, l, e, s):
75 return False # not Neumaier graph
76 G = nx.from_numpy_matrix(A)
77 if nx.is_strongly_regular(G):
78 return False # strongly regular
79 return True # strictly Neumaier graph
80

81

82 def print_graph(edges, parameters):
83 """Print edges and plot the graph with these edges."""
84

85 assert len(parameters) == 5, ’5 parameters are expected.’
86 v, k, l, e, s = parameters
87

88 print(edges) # print edges
89

90 G = nx.Graph()
91 G.add_nodes_from(range(1, v + 1))
92 G.add_edges_from([(i + 1,j + 1) for (i,j) in edges])
93 nx.draw(G, with_labels=True) # plot the graph

3.2 Implementation of the integer linear program

1 def initialize_ILP(parameters):
2 """Create integer program with binary variables x, y, z."""
3

4 assert len(parameters) == 5, ’5 parameters are expected.’
5 v, k, l, e, s = parameters
6

7 model = Model() # create model
8

9 x = {} # create x variables
10 for i in range(v):
11 for j in range(i):
12 x[i,j] = model.addVar(vtype = GRB.BINARY, name = "x_%i_%i" % (i, j))
13

14 y = {} # create y variables
15 for i in range(v):
16 for j in range(i):
17 for m in set(range(v)) - {i, j}:
18 y[i,j,m] = model.addVar(vtype = GRB.BINARY, name = "y_%i_%i_%i" % (i, j, m))
19

20 z = model.addVars(9, vtype = GRB.BINARY, name = ’z’) # create z variables
21

22 model.setObjective(0, GRB.MINIMIZE) # set objective to 0
23

24 return model, x, y, z
25
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26

27 def initialize_relaxed_ILP(parameters):
28 """Create relaxed program with variables x, y, z."""
29

30 assert len(parameters) == 5, ’5 parameters are expected.’
31 v, k, l, e, s = parameters
32

33 model = Model() # create model
34

35 x = {} # create x variables
36 for i in range(v):
37 for j in range(i):
38 x[i,j] = model.addVar(lb = 0, ub = 1, name = "x_%i_%i" % (i, j))
39

40 y = {} # create y variables
41 for i in range(v):
42 for j in range(i):
43 for m in set(range(v)) - {i, j}:
44 y[i,j,m] = model.addVar(lb = 0, ub = 1, name = "y_%i_%i_%i" % (i, j, m))
45

46 z = model.addVars(9, lb = 0, ub = 1, name = ’z’) # create z variables
47

48 model.setObjective(0, GRB.MINIMIZE) # set objective to 0
49

50 return model, x, y, z
51

52

53 def add_Neumaier_constraints(model, x, y, z, parameters):
54 """Add linear constraints to the integer program so the resulting graph is a Neumaier graph."""
55

56 assert len(parameters) == 5, ’5 parameters are expected.’
57 v, k, l, e, s = parameters
58 M = v # big M
59

60 # the first s vertices form a clique
61 model.addConstrs((x[i,j] == 1 for i in range(s) for j in range(i)))
62

63 # the graph is k regular
64 model.addConstrs((quicksum(x[i,j] for j in range(i)) +
65 sum(x[j,i] for j in range(i + 1, v)) == k for i in range(v)))
66

67 # the clique is e regular
68 model.addConstrs((quicksum(x[i,j] for j in range(s)) == e for i in range(s, v)))
69

70 # the y variables are products of the x variables
71 model.addConstrs((y[i,j,m] >= x[i,m] + x[j,m] - 1 for i in range(v) for j in range(i) for m in range(j)))
72 model.addConstrs((y[i,j,m] >= x[i,m] + x[m,j] - 1 for i in range(v) for j in range(i) for m in range(j+1, i)))
73 model.addConstrs((y[i,j,m] >= x[m,i] + x[m,j] - 1 for i in range(v) for j in range(i) for m in range(i+1, v)))
74

75 model.addConstrs((y[i,j,m] <= x[i,m] for i in range(v) for j in range(i) for m in set(range(i)) - {j}))
76 model.addConstrs((y[i,j,m] <= x[m,i] for i in range(v) for j in range(i) for m in range(i+1,v)))
77 model.addConstrs((y[i,j,m] <= x[j,m] for i in range(v) for j in range(i) for m in range(j)))
78 model.addConstrs((y[i,j,m] <= x[m,j] for i in range(v) for j in range(i) for m in set(range(j+1,v)) - {i}))
79

80 # the graph is l edge regular
81 model.addConstrs((quicksum(y[i,j,m] for m in set(range(v)) - {i, j}) <= l + M * (1 - x[i,j])
82 for i in range(v) for j in range(i)))
83 model.addConstrs((quicksum(y[i,j,m] for m in set(range(v)) - {i, j}) >= l - M * (1 - x[i,j])
84 for i in range(v) for j in range(i)))
85

86

87 def add_strictlyNeumaier_constraint(model, x, y, z, parameters):
88 """Add linear constraints to the integer program so the resulting graph is not co-edge-regular."""
89

90 assert len(parameters) == 5, ’5 parameters are expected.’
91 v, k, l, e, s = parameters
92 M = v # big M
93

94 cases = [(0, s, 1, s + 1), (0, s, 0, s + 1), (0, s, 1, s), (0, s, s + 1, s + 2), (0, s, s, s + 1),
95 (s + 1, s + 2, 0, s), (s, s + 1, 0, s), (s, s + 1, s + 2, s + 3), (s, s + 1, s + 1, s + 2)]
96 model.addConstr(quicksum(z[h] for h in range(9)) >= 1) # at least one of the cases holds
97

98 for i in range(9): # z variables represent whether a case holds
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99 a, b, c, d = cases[i]
100 model.addConstr(x[b,a] <= (1 - z[i]))
101 model.addConstr(x[d,c] <= (1 - z[i]))
102 model.addConstr(quicksum(y[b,a,m] for m in set(range(v)) - {a, b}) -
103 sum(y[d,c,m]for m in set(range(v)) - {c, d}) <= M * (1 - z[i]) - 1)
104

105

106 def solve_model_ILP(model, x, y, z, parameters):
107 """Solve the integer program and return x variables."""
108

109 assert len(parameters) == 5, ’5 parameters are expected.’
110 v, k, l, e, s = parameters
111

112 model.optimize() # optimize model
113 if model.status == GRB.Status.OPTIMAL: # feasible
114 x_values = model.getAttr(’x’, x) # get values of x corresponding to edges in resulting Neumaier graph
115 else: # infeasible
116 x_values = None
117 return x_values
118

119 def solve_ILP_NG(v, k, l, e, s):
120 """Find whether a strictly Neumaier graph exists with given parameters v, k, l, e, s
121 by solving corresponding integer linear program and print the graph if it exists."""
122

123 parameters = v, k, l, e, s
124

125 model, x, y, z = initialize_ILP(parameters) # create model
126 add_Neumaier_constraints(model, x, y, z, parameters) # Neumaier graph
127 add_strictlyNeumaier_constraint(model, x, y, z, parameters) # not strongly regular
128 x_values = solve_model_ILP(model, x, y, z, parameters) # solve the program and get x variables
129 if x_values is None: # infeasible
130 print(’There exists no strictly Neumaier graph with the given parameters:
131 v = {}, k = {}, l = {}, e = {}, s = {}.’.format(v, k, l, e, s))
132 else: # feasible
133 edges = [(i,j) for i in range(v) for j in range(i) if x_values[i, j] >= 0.99]
134 print_graph(edges, parameters) # strictly Neumaier graph

3.4 Adding further constraints to the integer program

1 def check_maximumclique_constraint(v, k, l, e, s):
2 """Check whether any solutions to the LP relaxation of the integer program that finds a strictly Neumaier graph
3 with parameters v, k, l, e, s are cut off by adding the constraint on the maximum clique size."""
4

5 parameters = v, k, l, e, s
6

7 model, x, y, z = initialize_relaxed_ILP(parameters) # create LP relaxation
8 model.setParam(’OutputFlag’, 0)
9 model.setParam(’Method’, 0)

10

11 add_Neumaier_constraints(model, x, y, z, parameters) # Neumaier graph
12 add_strictlyNeumaier_constraint(model, x, y, z, parameters) # not strongly regular
13

14 x_values = solve_model_ILP(model, x, y, z, parameters) # solve LP relaxation and get x values
15

16 maximum = 0 # initialize maximum to 0
17 for subset in combinations(range(v), s+1): # iterate over subsets S
18 sum_value = sum(x_values[i,j] for i in subset for j in subset if i > j)
19 if sum_value > maximum:
20 maximum = sum_value
21

22 return maximum > s * ((s + 1) / 2) - 1 # True if solution is cut off, False if not
23

24

25 def check_triangle_constraint(v, k, l, e, s):
26 """Check whether any solutions to the LP relaxation of the integer program that finds
27 a strictly Neumaier graph with parameters v, k, l, e, s are cut off by adding the
28 constraint that every triangle belongs to at most one K4."""
29

30 assert v == 3 * (k - l) + 1, ’This constraint only holds for parameters such that v = 3(k - l) + 1.’

44



31 parameters = v, k, l, e, s
32 M = v
33

34 model, x, y, z = initialize_relaxed_ILP(parameters) # create LP relaxation
35 model.setParam(’OutputFlag’, 0)
36 model.setParam(’Method’, 0)
37

38 add_Neumaier_constraints(model, x, y, z, parameters) # Neumaier graph
39 add_strictlyNeumaier_constraint(model, x, y, z, parameters) # not strongly regular
40

41 x_values = solve_model_ILP(model, x, y, z, parameters) # solve LP relaxation and get x values
42

43 for i in range(v): # copy x values for j > i
44 for j in range(i+1, v):
45 x_values[i,j] = x_values[j,i]
46

47 for triangle in combinations(range(v), 3): # iterate over all triangles
48 if (sum(x_values[i,j] for i in triangle for j in (set(range(v)) - set(triangle))) >
49 2 * (v - 4) + 3 + M * (3 - (sum(x_values[i,j] for i,j in combinations(triangle, 2))))):
50 return True # solution is cut off
51 return False # solution is not cut off
52

53

54 def check_strongertriangle_constraint(v, k, l, e, s):
55 """Check whether any solutions to the LP relaxation of the integer program that finds
56 a strictly Neumaier graph with parameters v, k, l, e, s are cut off by adding the stronger
57 constraint that every triangle belongs to at most one K4."""
58

59 assert v == 3 * (k - l) + 1, ’This constraint only holds for parameters such that v = 3(k - l) + 1.’
60 parameters = v, k, l, e, s
61 M = v
62

63 model, x, y, z = initialize_relaxed_ILP(parameters) # create LP relaxation
64 model.setParam(’OutputFlag’, 0)
65 model.setParam(’Method’, 0)
66

67 w = {} # add w variables
68 for i in range(v):
69 for j in range(i):
70 for m in range(j):
71 for t in set(range(v)) - {i,j,m}:
72 w[i,j,m,t] = model.addVar(lb = 0, ub = 1, name = "w_%i_%i_%i_%i" % (i, j, m, t))
73

74 add_Neumaier_constraints(model, x, y, z, parameters) # Neumaier graph
75 add_strictlyNeumaier_constraint(model, x, y, z, parameters) # not strongly regular
76

77 for triangle in combinations(range(v), 3): # add constraints on w variables
78 m,j,i = triangle
79 model.addConstrs(w[i,j,m,t] <= x[i,t] for t in (set(range(i)) - {j,m}))
80 model.addConstrs(w[i,j,m,t] <= x[t,i] for t in (set(range(i+1,v))))
81 model.addConstrs(w[i,j,m,t] <= x[j,t] for t in (set(range(j)) - {m}))
82 model.addConstrs(w[i,j,m,t] <= x[t,j] for t in (set(range(j+1,v)) - {i}))
83 model.addConstrs(w[i,j,m,t] <= x[m,t] for t in (set(range(m))))
84 model.addConstrs(w[i,j,m,t] <= x[t,m] for t in (set(range(m+1,v)) - {i,j}))
85

86 model.addConstrs(w[i,j,m,t] >= x[i,t]+x[j,t]+x[m,t] - 2 for t in range(m))
87 model.addConstrs(w[i,j,m,t] >= x[i,t]+x[j,t]+x[t,m] - 2 for t in range(m+1, j))
88 model.addConstrs(w[i,j,m,t] >= x[i,t]+x[t,j]+x[t,m] - 2 for t in range(j+1, i))
89 model.addConstrs(w[i,j,m,t] >= x[t,i]+x[t,j]+x[t,m] - 2 for t in range(i+1, v))
90

91 x_values = solve_model_ILP(model, x, y, z, parameters) # solve LP relaxation and get x values
92 for i in range(v): # copy x values for j > i
93 for j in range(i+1, v):
94 x_values[i,j] = x_values[j,i]
95 w_values = model.getAttr(’x’, w) # get w values
96

97 for triangle in combinations(range(v), 3): # iterate over all triangles
98 m,j,i = triangle
99 if (sum(w_values[i,j,m,t] for t in (set(range(v)) - {i,j,m})) >

100 1 + M * (3 - x_values[i,j] - x_values[i,m] - x_values[j,m])):
101 return True # solution is cut off
102 return False # solution is not cut off
103
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104

105 def check_K4_constraint(v, k, l, e, s):
106 """Check whether any solutions to the LP relaxation of the integer program that finds
107 a strictly Neumaier graph with parameters v, k, l, e, s are cut off by adding the
108 constraint that every vertex is adjacent to 1 or 2 vertices of every K4."""
109

110 assert v == 4 * (k + 1) - 6 * l, ’This constraint only holds for parameters such that v = 4(k + 1) - 6l.’
111 parameters = v, k, l, e, s
112 M = v
113

114 model, x, y, z = initialize_relaxed_ILP(parameters) # create LP relaxation
115 model.setParam(’OutputFlag’, 0)
116 model.setParam(’Method’, 0)
117

118 add_Neumaier_constraints(model, x, y, z, parameters) # Neumaier graph
119 add_strictlyNeumaier_constraint(model, x, y, z, parameters) # not strongly regular
120

121 x_values = solve_model_ILP(model, x, y, z, parameters) # solve LP relaxation and get x values
122

123 for i in range(v): # copy x values for j > i
124 for j in range(i+1, v):
125 x_values[i,j] = x_values[j,i]
126

127 if l == k/3 + 1:
128 for i in range(v):
129 for subset in combinations(set(range(v)) - {i}, 4): # iterate over all subsets of size 4
130 if sum(x_values[i,j] for j in subset) >
131 2 + M * (6 - sum(x_values[t,j] for (t,j) in combinations(subset, 2))):
132 return True # solution is cut off
133 elif sum(x_values[i,j] for j in subset) <
134 2 - M * (6 - sum(x_values[t,j] for (t,j) in combinations(subset, 2))):
135 return True # solution is cut off
136 else:
137 for i in range(v):
138 for subset in combinations(set(range(v)) - {i}, 4): # iterate over all subsets of size 4
139 if sum(x_values[i,j] for j in subset) >
140 2 + M * (6 - sum(x_values[t,j] for (t,j) in combinations(subset, 2))):
141 return True # solution is cut off
142 elif sum(x_values[i,j] for j in subset) <
143 1 - M * (6 - sum(x_values[t,j] for (t,j) in combinations(subset, 2))):
144 return True # solution is cut off
145 return False # solution is not cut off

4.2 Implementation of the boolean satisfiability problem

1 def initialize_SAT_easyconditions(parameters):
2 """Create SAT problem with variables x and add conditions such that the resulting graph
3 has an e-regular s-clique and is k-regular."""
4

5 assert len(parameters) == 5, ’5 parameters are expected.’
6 v, k, l, e, s = parameters
7

8 x = [[Bool("x_%i_%i" % (i, j)) for j in range(i)] for i in range(v)] # create literals
9

10 solver = Solver() # create solver instance
11

12 # the first s vertices form a clique
13 solver.add(
14 And([x[i][j] for i in range(s) for j in range(i)])
15 )
16

17 # the graph is k-regular
18 solver.add(
19 And([
20 And([
21 Or([
22 Not(x[i][m]) if m < i else Not(x[m][i]) if m > i else True for m in I
23 ])
24 for I in combinations(range(v), k+1) # iterate over all subsets of size k + 1
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25 ])
26 for i in range(v) # iterate over all vertices
27 ])
28 )
29 solver.add(
30 And([
31 And([
32 Or([
33 x[i][m] if m < i else x[m][i] if m > i else False for m in I
34 ])
35 for I in combinations(range(v), v - k + 1) # iterate over all subsets of size v - k + 1
36 ])
37 for i in range(v) # iterate over all vertices
38 ])
39 )
40

41 # the clique is e-regular
42 solver.add(
43 And([
44 And([
45 Or([
46 Not(x[i][m]) for m in I
47 ])
48 for I in combinations(range(s), e + 1) # iterate over all subsets of size e + 1
49 ])
50 for i in range(s, v) # iterate over all vertices outside the clique
51 ])
52 )
53 solver.add(
54 And([
55 And([
56 Or([
57 x[i][m] for m in I
58 ])
59 for I in combinations(range(s), s - e + 1) # iterate over all subsets of size s - e + 1
60 ])
61 for i in range(s, v) # iterate over all vertices outside the clique
62 ])
63 )
64

65 return solver, x
66

67

68 def add_SAT_difficultconditions(solver, x, parameters):
69 """Add difficult conditions to the SAT problem so the resulting graph is
70 l-edge-regular and not strongly regular."""
71

72 assert len(parameters) == 5, ’5 parameters are expected.’
73 v, k, l, e, s = parameters
74 cases = [(0, s, 1, s + 1), (0, s, 0, s + 1), (0, s, 1, s), (0, s, s + 1, s + 2), (0, s, s, s + 1),
75 (s + 1, s + 2, 0, s), (s, s + 1, 0, s), (s, s + 1, s + 2, s + 3), (s, s + 1, s + 1, s + 2)]
76

77 # the graph is l-edge-regular
78 solver.add(
79 And([
80 Or(Not(x[i][j]), And([
81 Or([
82 Or(Not(x[i][m]), Not(x[j][m])) if m < j else
83 Or(Not(x[i][m]), Not(x[m][j])) if j < m < i else
84 Or(Not(x[m][i]), Not(x[m][j])) if m > i else
85 True for m in I
86 ])
87 for I in combinations(range(v), l + 1) # iterate over all subsets of size l + 1
88 ]))
89 for i in range(v) for j in range(i) # iterate over all pairs of vertices
90 ])
91 )
92 solver.add(
93 And([
94 Or(Not(x[i][j]), And([
95 Or([
96 And(x[i][m], x[j][m]) if m < j else
97 And(x[i][m], x[m][j]) if j < m < i else
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98 And(x[m][i], x[m][j]) if m > i else
99 False for m in I

100 ])
101 for I in combinations(range(v), v - l + 1) # iterate over all subsets of size v - l + 1
102 ]))
103 for i in range(v) for j in range(i) # iterate over all pairs of vertices
104 ])
105 )
106

107 # the graph is not strongly regular
108 solver.add(
109 Or([
110 And(Not(x[b][a]), Not(x[d][c]), Or([
111 And(And([
112 Or([
113 Or(Not(x[a][m]), Not(x[b][m])) if m < a else
114 Or(Not(x[m][a]), Not(x[b][m])) if a < m < b else
115 Or(Not(x[m][a]), Not(x[m][b])) if m > b else
116 True for m in I
117 ])
118 for I in combinations(range(v), K) # iterate over all subsets of size K
119 ]),
120 And([
121 Or([
122 And(x[c][m], x[d][m]) if m < c else
123 And(x[m][c], x[d][m]) if c < m < d else
124 And(x[m][c], x[m][d]) if m > d else
125 False for m in I
126 ])
127 for I in combinations(range(v), v - K + 1) # iterate over all subsets of size v - K + 1
128 ]))
129 for K in range(1, k + 1) # iterate over all values for K
130 ]))
131 for (a, b, c, d) in cases # iterate over all cases
132 ])
133 )
134

135

136 def solve_model_SAT(solver, x, parameters):
137 """Solve SAT problem and return the edges."""
138

139 assert len(parameters) == 5, ’5 parameters are expected.’
140 v, k, l, e, s = parameters
141

142 if str(solver.check()) == ’sat’: # feasible
143 model = solver.model()
144 edges = []
145 for i in range(v):
146 for j in range(i):
147 if model.evaluate(x[i][j]) == True:
148 edges += [(i,j)] # get edges of resulting graph
149 else: # infeasible
150 edges = None
151

152 return edges
153

154

155 def solve_SAT_NG(v, k, l, e, s):
156 """Find whether a strictly Neumaier graph exists with given parameters v, k, l, e, s
157 by solving corresponding SAT problem and print the graph if it exists."""
158

159 parameters = v, k, l, e, s
160

161 solver, x = initialize_SAT_easyconditions(parameters) # create model and add easy conditions
162 add_SAT_difficultconditions(solver, x, parameters) # add difficult conditions
163

164 edges = solve_model_SAT(solver, x, parameters)
165 if edges is None: # infeasible
166 print(’There exists no strictly Neumaier graph with the given parameters:
167 v = {}, k = {}, l = {}, e = {}, s = {}.’.format(v, k, l, e, s))
168 else: # feasible
169 print_graph(edges, parameters) # print resulting graph
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5.1 Distance to Neumaier graph

1 def d0(A, v, k, l, e, s):
2 """Return distance between graph with adjacency matrix A and NG(v, k, l, e, s) based on number
3 of pairs of adjacent vertices that do not satisfy l-edge-regularity."""
4

5 neighbors = np.zeros((v), dtype=set)
6 for i in range(v):
7 neighbors[i] = [j for j in range(v) if A[i][j] == 1] # get neighbors of each node
8

9 distance0 = 0 # initialize distance to 0
10 for i in range(v):
11 for j in range(i + 1, v):
12 if A[i][j] == 1: # only consider adjacent vertices
13 common_neighbors = len(set(neighbors[i]).intersection(neighbors[j])) # number of common neighbors
14 if common_neighbors != l:
15 distance0 += 1
16 return distance0
17

18

19 def d1(A, v, k, l, e, s):
20 """Return distance between graph with adjacency matrix A and NG(v, k, l, e, s) based on distances
21 between the number of common neighbors of adjacent pairs of vertices and l."""
22

23 neighbors = np.zeros((v), dtype=set)
24 for i in range(v):
25 neighbors[i] = [j for j in range(v) if A[i][j] == 1] # get neighbors of each node
26

27 distance1 = 0 # initialize distance to 0
28 for i in range(v):
29 for j in range(i + 1, v):
30 if A[i][j] == 1: # only consider adjacent vertices
31 common_neighbors = len(set(neighbors[i]).intersection(neighbors[j])) # number of common neighbors
32 distance1 += abs(common_neighbors - l) # distance between number of common neighbors and l
33 return distance1

5.2 Lagrangian relaxation of the integer linear program

1 def initialize_model_obj(parameters):
2 """Create integer program with binary variables x, y, z, w and objective function."""
3

4 assert len(parameters) == 5, ’5 parameters are expected.’
5 v, k, l, e, s = parameters
6

7 model = Model(name = ’neumaier linear program’) # create model
8

9 x = {} # create x variables
10 for i in range(v):
11 for j in range(i):
12 x[i,j] = model.addVar(vtype = GRB.BINARY, name = "x_%i_%i" % (i, j))
13

14 y = {} # create y variables
15 for i in range(v):
16 for j in range(i):
17 for m in set(range(v)) - {i, j}:
18 y[i,j,m] = model.addVar(vtype = GRB.BINARY, name = "y_%i_%i_%i" % (i, j, m))
19

20 z = model.addVars(9, vtype = GRB.BINARY, name = ’z’) # create z variables
21

22 w = {} # create max variables
23 for i in range(v):
24 for j in range(i):
25 w[i,j] = model.addVar(vtype = GRB.BINARY, name = "w_%i_%i" % (i, j))
26

27 model.setObjective(quicksum(w[i,j] for i in range(v) for j in range(i)), GRB.MINIMIZE) # set objective
28

29 return model, x, y, z, w
30
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31 def add_Neumaier_constraints_obj(model, x, y, z, w, parameters):
32 """Add linear constraints to the integer program so the resulting graph is a Neumaier graph."""
33

34 assert len(parameters) == 5, ’5 parameters are expected.’
35 v, k, l, e, s = parameters
36 M = v # big M
37

38 # the first s vertices form a clique
39 model.addConstrs((x[i,j] == 1 for i in range(s) for j in range(i)))
40

41 # the graph is k regular
42 model.addConstrs((quicksum(x[i,j] for j in range(i)) +
43 sum(x[j,i] for j in range(i + 1, v)) == k for i in range(v)))
44

45 # the clique is e regular
46 model.addConstrs((quicksum(x[i,j] for j in range(s)) == e for i in range(s, v)))
47

48 # the y variables are products of the x variables
49 model.addConstrs((y[i,j,m] >= x[i,m] + x[j,m] - 1 for i in range(v) for j in range(i) for m in range(j)))
50 model.addConstrs((y[i,j,m] >= x[i,m] + x[m,j] - 1 for i in range(v) for j in range(i) for m in range(j+1, i)))
51 model.addConstrs((y[i,j,m] >= x[m,i] + x[m,j] - 1 for i in range(v) for j in range(i) for m in range(i+1, v)))
52

53 model.addConstrs((y[i,j,m] <= x[i,m] for i in range(v) for j in range(i) for m in set(range(i)) - {j}))
54 model.addConstrs((y[i,j,m] <= x[m,i] for i in range(v) for j in range(i) for m in range(i+1,v)))
55 model.addConstrs((y[i,j,m] <= x[j,m] for i in range(v) for j in range(i) for m in range(j)))
56 model.addConstrs((y[i,j,m] <= x[m,j] for i in range(v) for j in range(i) for m in set(range(j+1,v)) - {i}))
57

58 # the w variables represent max values
59 model.addConstrs((w[i,j] >= 0 for i in range(v) for j in range(i)))
60 model.addConstrs((w[i,j] >= quicksum(y[i,j,m] for m in set(range(v)) - {i,j})- l -
61 M * (1 - x[i,j]) for i in range(v) for j in range(i)))
62 model.addConstrs((w[i,j] >= l - M * (1 - x[i,j]) -
63 quicksum(y[i,j,m] for m in set(range(v)) - {i,j}) for i in range(v) for j in range(i)))
64

65

66 def solve_model_obj(model, x, y, z, w, parameters):
67 """Solve the integer program and return the x variables and the optimal value."""
68

69 assert len(parameters) == 5, ’5 parameters are expected.’
70 v, k, l, e, s = parameters
71

72 model.optimize() # optimize model
73 if model.status == GRB.Status.OPTIMAL: # feasible
74 x_values = model.getAttr(’x’, x) # get values of x corresponding to edges in resulting Neumaier graph
75 value = model.getAttr(’ObjVal’)
76 else: # infeasible
77 x_values = None
78 value = 0
79

80 return x_values, value
81

82

83 def solve_ILP_with_objective_NG(v, k, l, e, s):
84

85 parameters = v, k, l, e, s
86

87 model, x, y, z, w = initialize_model_obj(parameters) # create model
88 add_Neumaier_constraints_obj(model, x, y, z, w, parameters) # Neumaier graph
89 add_strictlyNeumaier_constraint(model, x, y, z, parameters) # not strongly regular
90 x_values, value = solve_model_obj(model, x, y, z, w, parameters) # get x variables and optimal value
91 if x_values is None: # infeasible
92 print(’There exists no strictly Neumaier graph with the given parameters:
93 v = {}, k = {}, l = {}, e = {}, s = {}.’.format(v, k, l, e, s))
94 elif value > 0: # feasible but not a strictly Neumaier graph
95 print(’There exists no strictly Neumaier graph with the given parameters:
96 v = {}, k = {}, l = {}, e = {}, s = {}.’.format(v, k, l, e, s))
97 edges = [(i,j) for i in range(v) for j in range(i) if x_values[i, j] >= 0.99]
98 print_graph(edges, parameters)
99 A = find_adjacencymatrix(edges, v)

100 distance0 = d0(A, v, k, l, e, s)
101 distance1 = d1(A, v, k, l, e, s)
102 print(’d0 to NG{}: {}’.format(parameters, distance0))
103 print(’d1 to NG{}: {}’.format(parameters, distance1))
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104 else: # feasible and strictly Neumaier graph
105 edges = [(i,j) for i in range(v) for j in range(i) if x_values[i, j] >= 0.99]
106 print_graph(edges, parameters)
107

108

109 def initialize_model_Lagrangian(u_1, u_2, parameters):
110 """Create linear program with binary variables x, y, z with objective function
111 to approach edge-regular graph."""
112

113 assert len(parameters) == 5, ’5 parameters are expected.’
114 v, k, l, e, s = parameters
115 M = v
116

117 model = Model() # create model
118

119 x = {} # create x variables
120 for i in range(v):
121 for j in range(i):
122 x[i,j] = model.addVar(vtype = GRB.BINARY, name = "x_%i_%i" % (i, j))
123

124 y = {} # create y variables
125 for i in range(v):
126 for j in range(i):
127 for m in set(range(v)) - {i,j}:
128 y[i,j,m] = model.addVar(vtype = GRB.BINARY, name = "y_%i_%i_%i" % (i, j, m))
129

130 z = model.addVars(9, vtype = GRB.BINARY, name = ’z’) # create z variables
131

132 # set objective for lagrangian relaxation
133 model.setObjective(quicksum((u_1[i,j] * (l + M * (1 - x[i,j]) -
134 quicksum(y[i,j,m] for m in set(range(v)) - {i,j})) + u_2[i,j] *
135 (quicksum(y[i,j,m] for m in set(range(v)) - {i,j}) - l + M *
136 (1 - x[i,j]))) for i in range(v) for j in range(i)), GRB.MAXIMIZE)
137

138 return model, x, y, z
139

140

141 def add_Neumaier_constraints_Lagrangian(model, x, y, z, parameters):
142 """Add constraints to the integer program except for edge-regularity constraints."""
143

144 assert len(parameters) == 5, ’5 parameters are expected.’
145 v, k, l, e, s = parameters
146 M = v
147

148 # the first s vertices form a clique
149 model.addConstrs((x[i,j] == 1 for i in range(s) for j in range(i)))
150

151 # the graph is k regular
152 model.addConstrs((quicksum(x[i,j] for j in range(i)) +
153 sum(x[j,i] for j in range(i + 1, v)) == k for i in range(v)))
154

155 # the clique is e regular
156 model.addConstrs((quicksum(x[i,j] for j in range(s)) == e for i in range(s, v)))
157

158 # the y variables are products of the x variables
159 model.addConstrs((y[i,j,m] >= x[i,m] + x[j,m] - 1 for i in range(v) for j in range(i) for m in range(j)))
160 model.addConstrs((y[i,j,m] >= x[i,m] + x[m,j] - 1 for i in range(v) for j in range(i) for m in range(j+1, i)))
161 model.addConstrs((y[i,j,m] >= x[m,i] + x[m,j] - 1 for i in range(v) for j in range(i) for m in range(i+1, v)))
162

163 model.addConstrs((y[i,j,m] <= x[i,m] for i in range(v) for j in range(i) for m in set(range(i)) - {j}))
164 model.addConstrs((y[i,j,m] <= x[m,i] for i in range(v) for j in range(i) for m in range(i+1,v)))
165 model.addConstrs((y[i,j,m] <= x[j,m] for i in range(v) for j in range(i) for m in range(j)))
166 model.addConstrs((y[i,j,m] <= x[m,j] for i in range(v) for j in range(i) for m in set(range(j+1,v)) - {i}))
167

168

169 def subgradient_method(v, k, l, e, s, nr_iterations):
170 """Run the subgradient algorithm for given number of iterations hoping to approach a Neumaier graph."""
171

172 parameters = v, k, l, e, s
173 M = v # big M
174

175 u_1 = {} # initialize Lagrangian multipliers
176 u_2 = {}
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177 for i in range(v):
178 for j in range(i):
179 u_1[i,j] = 1
180 u_2[i,j] = 1
181

182 t = 1 # iteration counter
183 g_best = 1000000 # initialize g_best to high value
184

185 while t <= nr_iterations:
186 model, x, y, z = initialize_model_Lagrangian(u_1, u_2, parameters) # initialize model
187

188 add_Neumaier_constraints_Lagrangian(model, x, y, z, parameters) # Neumaier graph except edge-regular
189 add_strictlyNeumaier_constraint(model, x, y, z, parameters) # not strongly regular
190 model.setParam(’OutputFlag’, 0)
191

192 x_star = solve_model_ILP(model, x, y, z, parameters) # solve the program and get x variables
193 y_star = model.getAttr(’x’, y) # get y variables
194 g = model.getAttr(’ObjVal’)
195 print(g) # print objective value
196

197 if g < g_best: # update g_best if necessary
198 g_best = g
199 x_values = x_star
200 t += 1
201

202 s_1 = {} # find a subgradient
203 s_2 = {}
204 for i in range(v):
205 for j in range(i):
206 s_1[i,j] = l + M * (1 - x_star[i,j]) - sum(y_star[i,j,m] for m in set(range(v)) - {i,j})
207 s_2[i,j] = sum(y_star[i,j,m] for m in set(range(v)) - {i,j}) - l + M * (1 - x_star[i,j])
208

209 alpha = 1/t # stepsize
210

211 for i in range(v): # update lagrangian multipliers
212 for j in range(i):
213 u_1[i,j] = max(0, u_1[i,j] - alpha * s_1[i,j])
214 u_2[i,j] = max(0, u_2[i,j] - alpha * s_2[i,j])
215

216 print(g_best) # print best value
217 edges = [(i,j) for i in range(v) for j in range(i) if x_values[i, j] >= 0.99]
218 print_graph(edges, parameters)
219 A = find_adjacencymatrix(edges, v)
220 distance0 = d0(A, v, k, l, e, s)
221 distance1 = d1(A, v, k, l, e, s)
222 print(’d0 to NG{}: {}’.format(parameters, distance0))
223 print(’d1 to NG{}: {}’.format(parameters, distance1))

5.3 Gradually solving the boolean satisfiability problem

1 def add_edgeregularity_constraint(solver, x, i, j, parameters):
2 """Add edge regularity condition to SAT problem for vertices i and j."""
3

4 v, k, l, e, s = parameters
5

6 solver.add(
7 Or(Not(x[i][j]), And([
8 Or([
9 Or(Not(x[i][m]), Not(x[j][m])) if m < j else

10 Or(Not(x[i][m]), Not(x[m][j])) if j < m < i else
11 Or(Not(x[m][i]), Not(x[m][j])) if m > i else
12 True for m in I
13 ])
14 for I in combinations(range(v), l + 1) # iterate over all subsets of size l + 1
15 ]))
16 )
17 solver.add(
18 Or(Not(x[i][j]), And([
19 Or([
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20 And(x[i][m], x[j][m]) if m < j else
21 And(x[i][m], x[m][j]) if j < m < i else
22 And(x[m][i], x[m][j]) if m > i else
23 False for m in I
24 ])
25 for I in combinations(range(v), v - l + 1) # iterate over all subsets of size v - l + 1
26 ]))
27 )
28

29

30 def check_edgeregular(G, l):
31 """Check whether the graph G is l-edge-regular."""
32

33 for (i,j) in nx.edges(G):
34 if len(list(nx.common_neighbors(G, i, j))) != l:
35 return False # graph is not l-edge-regular
36 return True # graph is l-edge-regular
37

38

39 def check_notcoedgeregular(G):
40 """Check whether the graph G is not co-edge-regular."""
41

42 number_common_neighbors = []
43 for (i, j) in nx.non_edges(G):
44 number_common_neighbors.append(len(list(nx.common_neighbors(G, i, j))))
45 return len(set(number_common_neighbors)) > 1
46

47

48 def solve_graduallySAT_NG(v, k, l, e, s, nr_iterations):
49 """Find whether a Neumaier graph exists with given parameters v, k, l, e, s by solving
50 corresponding SAT problem and gradually adding conditions and print the graph if it exists."""
51

52 parameters = v, k, l, e, s
53 t = 0 # iteration counter
54 solver, x = initialize_SAT_easyconditions(parameters) # initialize model and add easy constraints
55 G = nx.Graph() # initialize graph
56

57 while t <= nr_iterations:
58 print(t) # print iteration
59 if str(solver.check()) == ’sat’: # feasible
60 model = solver.model()
61 edges = []
62 for i in range(v):
63 for j in range(i):
64 if model.evaluate(x[i][j]) == True:
65 edges += [(i,j)] # edges of found solution
66 if t == nr_iterations: # print results in last iteration
67 print_graph(edges, parameters)
68 A = find_adjacencymatrix(edges, v)
69 distance0 = d0(A, v, k, l, e, s)
70 distance1 = d1(A, v, k, l, e, s)
71 if distance0 == 0 and distance1 == 0: # Neumaier graph
72 if check_notcoedgeregular(G): # strictly Neumaier graph
73 print(’A strictly Neumaier graph is found in {} iterations’.format(t))
74 else:
75 print(’A Neumaier graph is found in {} iterations,
76 but it is not a strictly Neumaier graph’.format(t))
77 else:
78 print(’d0 to NG{}: {}’.format(parameters, distance0))
79 print(’d1 to NG{}: {}’.format(parameters, distance1))
80 else: # not last iteration
81 G.clear()
82 G.add_edges_from(edges) # graph with edges of found solution
83 if check_edgeregular(G, l) and check_notcoedgeregular(G): # strictly Neumaier graph
84 print(’A strictly Neumaier graph is found in {} iterations’.format(t))
85 print_graph(edges, parameters)
86 break
87 if not check_edgeregular(G, l): # add condition for two random vertices
88 vertex_1, vertex_2 = random.choice([(i, j) for (i, j) in edges if
89 len(list(nx.common_neighbors(G, i, j))) != l])
90 add_edgeregularity_constraint(solver, x, vertex_1, vertex_2, parameters)
91 t += 1
92 else: # infeasible
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93 print(’There exists no Neumaier graph with the given parameters:
94 v = {}, k = {}, l = {}, e = {}, s = {}.’.format(v, k, l, e, s))
95 break
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