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Abstract

Due to an increase in cancer survival rates and cancer incidence, the amount of
cancer survivors steeply increases. However, a research gap has been identified
regarding long-term symptom burden among cancer survivors. Multiple machine
learning techniques were used in this research to predict and cluster symptom
burden. This had the purpose of better understanding cancer survivorship and
exploring the possibility for machine learning models to predict symptom burden
in practice. A neural network was created and compared against less complex
models. A significant improvement was observed, but predictions were largely
biased towards the mean. K-means clustering on fatigue trajectories did not
indicate that trajectories were clustered.
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Introduction
Due to advancements in cancer diagnosis and treatment, a global in-

crease in cancer survival rates can be observed. These advancements include
chemotherapy, combination treatment and screening for certain cancers. (10)

In the Netherlands for example, the cancer survival rate increases by 1% each
year on average, with a current survival rate of 66%. (8) Data also shows a
global positive trend in cancer incidence. (5) This can be explained by pop-
ulation ageing; people are getting older on average and older people have a
much higher risk of getting cancer. (4) Another explanation of higher cancer
incidence is natural selection; as more people survive cancer, they also pass
on their genetic material to future generations more often. (11) These phe-
nomena can be observed through higher cancer incidence rates in countries
with better access to healthcare.
As a consequence of higher cancer incidence and higher cancer survival rates,
the number of cancer survivors steeply increases. The term ‘cancer survivor’
is used for cancer patients from the moment of diagnosis. (7) Thus, the term
does not indicate whether the patient has completed treatment or not. The
majority of cancer survivors experience long-term effects from cancer and/or
its treatment. (3) Common effects include fatigue, pain, insomnia and feelings
of depression/anxiety and can last more than 10 years. (6) Existing research
on this topic is mostly limited to finding factors that correlate with specific
long-term symptoms. A research gap has been identified regarding analysis of
longitudinal and multiple symptom burden of cancer survivors. (1) Research
into these aspects is vital to understanding the course and extent of cancer
survivorship.
This research will address this research gap by analysing longitudinal data of
Health-Related Quality of Life (HRQoL) variables, with a focus on predicting
symptom burden, using machine learning techniques. A conclusion will be
drawn on the potential of symptom burden prediction using machine learn-
ing. Complementary explorative analysis will be done to gain insights into
the variables used. Longitudinal clustering of patients will also be carried
out using k-means clustering. A conclusion will be drawn on the potential
to cluster a patient’s symptom trajectory using machine learning.
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Methods

2.1 Data description

The dataset used in this paper is a collection of longitudinal Patient-Reported
Outcome (PRO) data. The data consists of 1931 cancer survivors who re-
ported on their health related quality of life (HRQoL) using the EORTC
QLQ-C30 questionnaire (Appendix A). Each person answered the ques-
tionnaire between 1 and 8 times after cancer diagnosis for a total of 6242
completed questionnaires. The data is combined from three different cohorts
from the profiles registry: ’Procore’, ’Lymphoma’ and ’Rogy’. (9) Each cohort
collected data from specific cancer types, for a total of 8 cancer types in the
data.
The collected data can be divided into 7 categories shown in figure 2.1. Socio-
demographics include the age(group) and sex of a patient, as well as their
education level and relationship status. Medical data includes whether the
patient currently, previously or never indulged in smoking and/or alcohol
use. It also includes a calculated BMI and whether the patient suffers from
zero, one, or more comorbidities. Cancer factors describe which type of can-
cer and stage the patient was diagnosed with and which treatment(s) he/she
received. The dataset includes 8 types of cancer: Non-Hodgkin Lymphoma
(NHL), Hodgkin Lymphoma (HL), Chronic Lymphocytic Leukemia (CLL),
Multiple Myeloma (MM), ovarian cancer, endometrial cancer, colon cancer
and rectal cancer. The stage ranges from 1 to 4. Possible treatments in-
clude chemotherapy, radiation therapy, hormone therapy, targeted therapy,
surgery, systemic therapy, stem cell transplant, and watchful waiting, which
means that no treatment is given, but the patient’s condition is watched
closely. Note that chemotherapy is a form of systemic therapy. Thus, if
the patient has received chemotherapy, they will also have received systemic
therapy. Data related to the questionnaire includes the patient’s answers to
30 questions about his or her health condition in the past week. 28 questions
are on a 4-point Likert scale and 2 questions are on a 7-point Likert scale.
It also includes the time passed since diagnosis and the number of question-
naires taken including the current one, termed ’wave’. The functioning and
symptoms categories are computed results from the questionnaire answers on
a scale of 0 to 100. Which questions are used and how the score is computed
can be found in figure A.3. A higher score for functioning factors indicates
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the patient is doing well, except for financial problems. A higher score for
symptom factors indicate a higher symptom burden.

Figure 2.1: Variables within their specific categories and with their abbrevi-
ation if applicable.

2.2 Explorative analysis

2.2.1 Missing values

The dataset contains both structurally missing values and random missing
values. Structurally missing values are caused by the three cohorts hav-
ing discrepancies in the variables they collected and the method of collec-
tion. Through analysis of missing variables per cohort, it was found which
structurally missing values exist and how many random missing values oc-
cur within each cohort. Structurally missing values were corrected based on
well-grounded assumptions. From the amount of remaining random values,
it was determined which values were suitable for further analysis.

2.2.2 Distributions

Distributions of variables were analysed in order to find possible outliers and
under-representations. Outliers can result from incorrectly collected or com-
puted data. Incorrect values can negatively affect further analysis, thus they
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should be removed. Under-representations exist when there is little to no
data of a category/group within an independent variable. Since there is less
data on under-represented groups, there is more uncertainty regarding their
effect on dependent variables.
The age at which patients were diagnosed was collected in 2 different ways.
The Lymphoma and Rogy cohorts provided the age in years, whereas the
Procore cohort provided age categories. The categories could be used for
analysis, but this would be less informative than using the age in years.
Therefore, it was chosen to convert the Procore age categories to age in years
based on the average age for a given age category. The distribution of the
diagnosis age variable in years was then visualised, using a histogram with a
kernel density estimate. Other socio-demographics and medical factors were
analysed and reported on if outliers or notable distributions were found.
It is possible that cancer stage can have a different effect on dependent vari-
ables per cancer type. Therefore, the number of patients for each cancer type
and stage were visualised in order to find possible under-represented cancer
forms. The same was done for treatment types per cancer type, because a
treatment’s effect on dependent variables may also differ per cancer type.
Treatment types were computed as the percentage of patients that received
the treatment per cancer type, because treatments are not mutually exclu-
sive and patients can also receive no treatment at all. Chemotherapy was left
out since it coincides with systemic therapy. Watchful waiting was included
despite not being a physical treatment. It is however informative of which
cancer types watchful waiting is applicable for.
In order to perform a longitudinal analysis, it is relevant to know how tem-
poral data is distributed. The number of respondents per wave was plotted,
as well as the distribution of how many questionnaires patients have taken.
This can be used to determine how many waves have sufficient data to be
included in a longitudinal analysis. The time elapsed between diagnosis and
taking the questionnaire was also plotted for each wave. This is informative
of the range and outliers within these distributions.

2.2.3 Dependent variables

This section provides distributions and summary statistics of the dependent
variables (symptom variables, functioning variables and quality of life). This
provides insights on the predictability of these variables and their relation
with important independent variables. Distributions of all dependent vari-
ables were plotted and their mean and skewness, according to the Fisher-
Pearson skewness coefficient, were computed. means of dependent variables
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were then computed for each cancer group (lymphoma, gynecologic cancers
and colorectal cancers). These cancer groups correspond with the three co-
horts. Cancer groups were used rather than cancer types to avoid low sample
sizes such as in figure 3.2. One-way ANOVA was performed to find which
symptoms differ significantly between cancer groups. Lastly, mean depen-
dent variables were visualised per cancer group and stage. A single scale
was used for symptom variables and functioning variables to allow for easy
comparison within and between dependent variables.

2.3 Predictive analysis

Different methods of predicting symptom burden of different complexity have
been constructed and compared. Symptoms were predicted separately from
each other. If longitudinal data was used, it was used from the previous
wave. For prediction of the first wave it was assumed that prior symptom
burden scores were all 0.
As shown in figure 3.7, the symptom variables are all skewed towards 0. It is
essential that cases where the symptom burden is not 0 are also accurately
predicted, since it is more valuable to know which survivors will experience
symptoms than who will not. Therefore, the performance of these models
will be measured in Mean Squared Error (MSE), which punishes outliers
more so than Mean Absolute Error (MAE) for example.

2.3.1 Baseline

Three baseline models were constructed with the following prediction rules:

• Baseline 1: Predict mean symptom burden.

• Baseline 2: Predict mean symptom burden per tumor type.

• Baseline 3: Predict symptom burden from previous wave. Predict 0 if
it is the first wave.

The baselines were used as reference scores for more complex prediction
models. The predictions from baseline models are very explainable due to
their simplicity. Thus, if more complex models do not show improvement,
the baseline models are preferable. Baseline 1 is the most simplistic. Baseline
2 and 3 were compared against baseline 1 to find which baseline provides the
best reference.
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2.3.2 Regression

Multiple linear regression models were constructed for each symptom, using
variables that have few missing values. The same independent variables
were used for all symptoms. Backwards selection was used to further reduce
the amount of independent variables and variables were kept that had a
significant effect for at least one symptom. surgery was excluded due to a
high VIF of surgery and tumortype. This multicollinearity comes from the
fact that surgery is never applicable for lymphomas and almost always for
solid cancers (See figure 3.3).

2.3.3 Neural Network

A neural network was constructed for each symptom. The independent vari-
ables sex, diagnosis age and wave were used, as well as all tumor types as
dummies and all treatment types. The symptom scores of the prior wave
were also constructed and used as independent variables. Other variables
were excluded due to a high amount of missing values. It was chosen to pre-
dict for all cancer types in one model, rather than training separate models
on specific cancer types. This was supported by table 3.4, which shows that
4 out of 8 symptoms do not differ significantly between cancer groups. The
Keras and Tensorflow libraries were used to construct the neural networks.
The models all contained 3 hidden layers. The width of those layers was ini-
tially set to 15, but reduced if overfitting was detected. Symptoms differed
in how sensitive they were to overfitting, thus different models used different
widths. Early stopping was also used to prevent overfitting. Using a dropout
layer, L1 regularization or L2 regularization did not seem to reduce overfit-
ting. The hidden layers use ReLU as activation. The model used ’adam’ as
optimizer. K-fold cross validation (with k=10) was used to obtain reliable
estimates.

2.3.4 Validation

After creating and testing different prediction models, the best performing
model, the neural network, was validated. The purpose is to investigate
whether the model has flaws or if it has potential to be used in practice.
This was done by comparing the distribution of predicted values against the
distribution of true values. Similar distribution shapes would provide evi-
dence for an effective prediction model. The last fold of the cross-validation
was used for the distributions, so the distributions show 10% of the data.
While MSE was used to compare model performance, this is not an easily
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interpretable measurement of accuracy. In order to validate the accuracy of
the neural network, a categorical accuracy measure was used for prediction
of fatigue scores. The categories were 0 (no fatigue), between 0 and 40 (mild
fatigue) and between 40 and 100 (clinically relevant fatigue). No changes
were made to the neural network to obtain these results. Instead, the predic-
tions and true values were categorised. The result was again obtained using
10-fold cross validation.
From the distribution of the predicted values and true values for fatigue by
a neural network (figure 3.13), it was found that the network favours predic-
tions near the mean. A random forest classifier was constructed to compare
against the neural network on performance of predicting the aforementioned
fatigue categories. If the random forest out-performs the network, it pro-
vides evidence that MSE is not a suitable loss function. The decision tree
was created using the XGBoost random forest classifier with a max depth of
12. Results were obtained using 10-fold cross validation. A confusion matrix
of the results was computed for the neural network and the random forest
on the same 10% subset of test data.

2.4 Longitudinal clustering

K-means clustering was applied to longitudinal fatigue data. The purpose
of this analysis is to find what trajectories patients can possibly be grouped
in and what the optimal number of clusters is. Clustering was performed
using the kml package in R, which provides k-means clustering, specifically
for longitudinal data. Fatigue data was used from the first wave up to and
including the fifth wave. Trajectories that had 3 or more missing values were
not included. Between 2 and 8 clusters were compared for optimal clustering
and evaluated by their Calinsky-Harabasz score. The algorithm was re-run
50 times with different starting conditions for optimal results.
The trajectories with their cluster means were plotted for 2 cluster means
and 5 cluster means. It was chosen to plot 2 cluster means because it had
the highest Calinski Harabasz score. 5 cluster means were plotted because
this was the lowest number of clusters with cluster mean trajectories that
are not constant over time.
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Results

3.1 Explorative analysis

3.1.1 Missing values

Missing values of socio-demographics, medical factors, cancer factors and
treatment types are given as a percentage in table 3.1. Age and sex can
be seen to have little to no missing values, which makes them suitable for
further analysis. education and partner have a higher number of missing
values. These factors are also not expected to have a high predictive power
of symptom burden, making them less suitable for further analysis. Medical
factors are interesting to investigate, but all have a high number of missing
values.
Cancer factors are the main independent variables of interest. It can be
seen that there are no missing values for tumortype and most missing values
in stage are found in the Lymphoma cohort. More specifically, most miss-
ing stage values occur within the tumor types Non-Hodgekin Lymphoma,
Chronic Lymphocytic Leukemia and Multiple Myeloma.
Many treatment type variables have structurally missing values, which can be
distinguished by a missing percentage of 100, indicated in bold. These treat-
ment types are not collected by that cohort, because they are not relevant
for said cohort. Therefore, missing treatment data that was not collected by
the cohort is assumed to be 0 (i.e. treatment not underwent).
The remaining questionnaire, functioning and symptom variables all have a
low number of missing values (< 5%).
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procore lymphoma rogy

Socio-demographics

Age 0.0 0.2 0.3
sex 0.0 0.0 0.0
education 0.9 9.8 2.0
partner 25.9 0.9 1.4

Medical factors

smoking 26.0 63.1 2.7
alcohol use 26.3 65.6 10.6
bmi 23.9 10.0 2.8
comorbidities 26.2 3.8 34.5

Cancer factors
tumortype 0.0 0.0 0.0
stage 0.3 49.0 8.0

Treatment types

chemotherapy 0.0 0.0 100.0
radiotherapy 0.0 0.0 0.6
hormonetherapy 0.0 100.0 0.6
targetedtherapy 0.0 0.0 100.0
surgery 4.6 100.0 0.6
systemic 0.0 0.0 0.6
watchfulwaiting 100.0 8.3 100.0
stemcell 100.0 0.0 100.0

Table 3.1: Percentage of missing values of socio-demographic and medical
factors and cohort.

3.1.2 Distributions

The distribution of age is plotted in figure 3.1. It can be seen that the
dataset consists largely of older patients. Sex is equally distributed in the
data with 52% being male. Of the patients that reported on their smoking
behaviour, 11% currently smokes and 51% had previously smoked. Of those
that reported on their alcohol use, 65% currently consumes alcohol and 8%
previously consumed alcohol. BMI is found to have at least 25 impossible
values, with a minimum of 1 and a maximum of 418. This indicates the BMI
measurement may not be reliable. It was also found that many patients in
the dataset suffer from comorbidities, with 42% having more than 1 comor-
bidity and 29% having 1 comorbidity.
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Figure 3.1: Age distribution of patients.

Figure 3.2 shows the number of participants for each cancer type and
stage, including the patients where stage data is missing. It can be seen
that endometrial cancer has an over-representation of first stage patients
and solid cancers have an under-representation of stage 4 patients. Distri-
bution of stages is less clear for the lymphomas due to the high amount of
missing stage data. Notable is that stage 4 appears to be the largest group
for Non-Hodgkin Lymphoma.

Figure 3.2: Number of patients for each cancer type and stage, including
missing stage data.

Figure 3.3 shows the percentage of patients who received a treatment
per cancer type. Although patients most commonly receive 1 type of treat-
ment (n = 3281), they can also receive no treatment (n = 360), 2 types of
treatment (n = 2297) or 3 to 4 types of treatment (n = 304).
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Figure 3.3: Percentage of treatment received per cancer type.

Figure 3.4 shows the amount of collected data for each wave. It can be
seen that the amount gradually decreases with each wave. Figure 3.5 shows
the number of waves patients have completed. It follows that patients have
completed 4 questionnaires most commonly.

Figure 3.4: Amount of data per wave.
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Figure 3.5: Distribution of number of questionnaires taken my patients.

Figure 3.6 shows the elapsed time between diagnosis and the moment of
taking the questionnaire per wave. Of course, higher waves generally have a
higher time since diagnosis. It can also be seen that each wave has a cutoff
point at 5 years after which much fewer questionnaires are taken. Lastly, the
first waves start from 0 years, the third wave from 1 year and the fourth and
fifth wave from 2 years.

Figure 3.6: Time elapsed since diagnosis at the moment of taking the ques-
tionnaire for each wave.
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3.1.3 Dependent variables

Figure 3.7 shows the distributions of the symptoms. All symptoms have
0 as mode value, which means that no symptom burden is most commonly
observed. It can be seen that all symptom distributions are right-skewed, but
differ in their degree of skewness. 3.2 shows the mean and skewness according
to the Fisher-Pearson skewness coefficient for each symptom. The symptoms
are computed from 1, 2 or 3 questionnaire items, with more items leading to
more possible symptom scores. It appears from the fatigue distribution that
the computation from three items leads to irregularities in the distribution.

Figure 3.7: Distribution of symptom burden variables.

mean skew

Fatigue 27.82 0.84
Nausea/Vomiting 4.70 3.67
Pain 19.10 1.32
Dyspnoea 14.78 1.65
Insomnia 22.16 1.14
Appetite loss 8.62 2.62
Constipation 10.02 2.27
Diarrhea 8.83 2.47

Table 3.2: Distribution statistics of symptom burden variables.

14



Figure 3.8 shows the distributions of functioning variables and quality
of life. Functioning variables have a mode value of 100, indicating that full
functioning is most commonly observed. QoL has a mode value of 83. All
distributions are left-skewed. Their mean and skewness according to the
Fisher-Pearson skewness coefficient can be seen in 3.3. Emotional and phys-
ical functioning are computed from 4 and 5 questionnaire items respectively.
The other variables are computed from 2 items. Many irregularities can be
found in the distributions, which have likely resulted from the computation
from multiple items.

Figure 3.8: Distribution of functioning variables and quality of life.

mean skew

Physical functioning 80.40 -1.15
Role functioning 75.76 -1.03
Emotional functioning 83.18 -1.49
Cognitive functioning 83.39 -1.46
Social functioning 84.30 -1.58
Quality of life 74.08 -0.91

Table 3.3: Distribution statistics of functioning variables and quality of life.
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Table 3.4 shows the mean symptom burden for each symptom per cancer
group and the significance of a One-way ANOVA. The same analysis was
performed for functioning variables and quality of life. Their mean values
and ANOVA significance can be found in table 3.5.

Lymphoma Gynecologic Colorectal p

Fatigue 29.5 31.7 21.4 ***
Nausea/Vomiting 4.4 6.8 3.9
Pain 21.0 22.2 12.7 ***
Dyspnoea 16.8 14.2 10.8 ***
Insomnia 21.7 26.7 19.9
Appetite loss 8.0 10.8 8.3
Constipation 9.1 14.5 8.9
Diarrhea 7.1 8.6 12.9 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.4: Mean symptom burden for each symptom per cancer group and
significance of one-way ANOVA.

Lymphoma Gynecologic Colorectal p

Physical functioning 77.6 81.4 85.9 ***
Role functioning 73.3 76.5 80.7 ***
Emotional functioning 83.1 81.1 84.8 *
Cognitive functioning 81.5 83.5 87.4 ***
Social functioning 83.4 82.2 87.7 ***
Quality of life 73.2 73.5 76.4 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.5: Mean functioning/QoL per cancer group and significance of one-
way ANOVA.
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Figure 3.9 shows the average symptom burden for each symptom by can-
cer group and stage. Functioning variables and quality of life are plotted
in the same manner in figure 3.10. Note that the colours are inverted for
functioning variables and QoL, since higher functioning scores are positive
and higher symptom scores are negative.

Figure 3.9: Average symptom burden per cancer group and stage.

Figure 3.10: Average functioning score and quality of life per cancer group
and stage.
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3.2 Predictive analysis

3.2.1 Baseline

The results of the baselines described in 2.3.1 are visualised in 3.11. Baseline
2 has the best metric score and baseline 3 the worst for each symptom except
dyspnoea. In the case of dyspnoea, baseline 3 has the best metric score and
baseline 1 the worst. Baseline 1 is slightly worse than baseline 2 for each
symptom. The MSE can also be seen to vary widely between symptoms. In
conclusion, baseline 2 performs the best and can be used as a reference for
more complex models.

Figure 3.11: MSE of baseline predictions of each symptom.

3.2.2 Regression

Table 3.6 and 3.7 show the results of a multiple linear regression model of
each symptom. Coefficient estimates are shown including their significance.
The value between brackets is the standard error. Non-Hodgekin Lymphoma
(indolent) is the reference variable of the cancer types.

18



Nausea/
Fatigue Vomiting Pain Dyspnoea

(Intercept) 20.19∗∗∗ 0.46 13.99∗∗∗ 13.73∗∗∗

(1.74) (0.88) (1.72) (1.64)
sex 5.39∗∗∗ 2.30∗∗∗ 5.70∗∗∗ −0.04

(0.75) (0.38) (0.74) (0.71)
Non-Hodgekin −0.73 −0.76 −4.17∗∗ 0.71
Lymphoma (aggresive) (1.39) (0.70) (1.38) (1.32)
Hodgekin Lymphoma −4.57∗ −1.82∗ −10.44∗∗∗ −4.35∗

(1.84) (0.93) (1.82) (1.74)
Chronic Lymphocytic 2.13 0.29 0.05 1.11
Leukemia (1.55) (0.78) (1.53) (1.47)
Multiple Myeloma 8.08∗∗∗ 2.50∗∗∗ 12.81∗∗∗ 7.40∗∗∗

(1.39) (0.70) (1.37) (1.32)
Ovarian cancer 3.41∗ 3.07∗∗∗ −4.14∗ 0.69

(1.63) (0.82) (1.61) (1.54)
Endometrial cancer −0.46 0.91 −2.72 −1.03

(1.59) (0.80) (1.57) (1.50)
Colon cancer −5.77∗∗∗ 0.47 −10.38∗∗∗ −2.44

(1.32) (0.67) (1.30) (1.25)
Rectal cancer −5.72∗∗∗ −0.04 −6.90∗∗∗ −6.87∗∗∗

(1.59) (0.80) (1.58) (1.50)
wave −0.96∗∗∗ −0.27∗ −0.14 0.12

(0.24) (0.12) (0.24) (0.23)
targetedtherapy −2.67∗ −0.12 −2.58∗ −0.76

(1.17) (0.59) (1.16) (1.11)
systemic 5.67∗∗∗ 1.75∗∗∗ 1.75 1.82

(1.00) (0.51) (0.99) (0.95)
watchfulwaiting 0.37 0.81 −5.36∗∗∗ 0.73

(1.49) (0.75) (1.48) (1.41)
stemcell −0.37 −1.32 −3.45∗ −4.27∗

(1.77) (0.89) (1.75) (1.67)
R2 0.06 0.02 0.08 0.02
Adj. R2 0.06 0.02 0.07 0.02
Num. obs. 5886 5888 5892 5854
MSE 613.5 156.8 602.6 547.3
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3.6: Multiple linear regression model for each symptom (table 1/2).
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Insomnia Appetite loss Constipation Diarrhea
(Intercept) 17.33∗∗∗ 1.80 7.35∗∗∗ 3.15∗

(2.01) (1.40) (1.45) (1.39)
sex 6.39∗∗∗ 4.21∗∗∗ 2.26∗∗∗ 2.19∗∗∗

(0.86) (0.60) (0.63) (0.60)
Non-Hodgekin −2.18 −1.29 −0.19 −0.82
Lymphoma (aggresive) (1.61) (1.12) (1.17) (1.12)
Hodgekin Lymphoma −4.87∗ −2.25 −4.73∗∗ −3.16∗

(2.12) (1.48) (1.54) (1.47)
Chronic Lymphocytic 0.85 3.59∗∗ −1.87 −0.60
Leukemia (1.79) (1.25) (1.29) (1.24)
Multiple Myeloma 1.02 6.15∗∗∗ 6.58∗∗∗ 2.81∗

(1.60) (1.12) (1.16) (1.11)
Ovarian cancer 3.47 1.51 6.98∗∗∗ 1.29

(1.88) (1.31) (1.36) (1.30)
Endometrial cancer −4.73∗ 1.76 1.49 1.63

(1.84) (1.28) (1.32) (1.27)
Colon cancer −4.74∗∗ 1.90 −0.48 6.87∗∗∗

(1.53) (1.06) (1.10) (1.06)
Rectal cancer −3.38 1.51 −0.50 7.76∗∗∗

(1.84) (1.28) (1.33) (1.27)
wave −0.48 −0.94∗∗∗ −0.34 −0.42∗

(0.28) (0.19) (0.20) (0.19)
targetedtherapy 0.04 0.15 0.47 0.37

(1.36) (0.95) (0.98) (0.94)
systemic −2.55∗ 3.66∗∗∗ −0.98 1.75∗

(1.16) (0.81) (0.84) (0.80)
watchfulwaiting −2.18 −2.16 −1.58 2.95∗

(1.73) (1.20) (1.25) (1.19)
stemcell 1.42 −4.92∗∗∗ −5.06∗∗∗ −0.75

(2.04) (1.42) (1.48) (1.42)
R2 0.02 0.03 0.03 0.02
Adj. R2 0.02 0.03 0.03 0.02
Num. obs. 5874 5883 5851 5853
MSE 820.5 399.6 427.2 392.2
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3.7: Multiple linear regression model for each symptom (table 2/2).
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3.2.3 Neural Network

Table 3.8 shows the results of the neural network prediction for each symp-
tom. MSE is given with its standard error, obtained from 10-fold cross-
validation. The table also shows how many neurons the three layers of the
neural network contained for each symptom.

neurons
MSE SE per layer

Fatigue 444.7 9.3 12
Nausea/vomiting 144.1 7.3 6
Pain 471.5 13.2 12
Dyspnoea 417.9 8.5 6
Insomnia 631.0 11.7 15
Appetite loss 339.5 14.7 12
Constipation 360.4 11.9 12
Diarrhea 353.7 14.8 6

Table 3.8: Neural network performance for each symptom.

Figure 3.12 Shows the MSE of the best baseline model (baseline 2), the
regression model and the neural network for each symptom. While the re-
gression model only shows slight improvement from the baseline, the neural
network shows substantial improvement.
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Figure 3.12: MSE of prediction models of each symptom.

3.2.4 Validation

Figure 3.13 shows the distribution of predicted values for fatigue by a neural
network and the corresponding distribution of the true values. It is visible
that the distributions do not have the same shape. The network predicts
very few near 0 values and many values between 10 and 40, whereas true val-
ues have mostly values of 0. This indicates that the neural network favours
predictions around the mean.

The accuracy of the neural network on categorical prediction of fatigue
scores is 52.34% (SE = 0.70). The categories were 0 (no fatigue), between 0
and 40 (mild fatigue) and between 40 and 100 (clinically relevant fatigue).
The accuracy of the random forest classifier on categorical prediction of fa-
tigue scores is 55.23% (SE = 0.66). Figure 3.14 shows the results of the
neural network and the random forest classifier in a confusion matrix. The
accuracy of the random forest classifier is slightly higher than the neural
network. Despite this slight difference in overall accuracy, it can clearly be
seen in the confusion matrices how the random forest classifier shows less
bias towards predicting mild fatigue.
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Figure 3.13: Distribution of predicted values and true values for fatigue by
a neural network.

Figure 3.14: Confusion matrices of fatigue class prediction by the neural
network and the random forest classifier.
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3.3 Longitudinal clustering

Figure 3.15 shows the Calinski-Harabasz score for each number of clusters.
It can be seen that a lower number of clusters has a higher Calinski-Harabasz
score, meaning that less clusters work better on the data than more clusters.

Figure 3.15: Calinski Harabatz score for 2 to 8 clusters.

Figure 3.16 shows the mean trajectories of fatigue data of wave 1 to 5.
The trajectories are clustered in 2 groups. The cluster means are shown in
different colours and trajectories within the same cluster are given the same
colour. The percentage of trajectories belonging to each cluster is shown
above the graph. The mean trajectories are relatively constant over time
and divided in a high and low mean. The low mean trajectory includes the
majority (64.1%) of patients.
The same plot for 5 cluster means can be found in figure 3.17. These tra-
jectory means are not all constant over time. Clusters D increases over time
and cluster E decreases and then stagnates.
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Figure 3.16: 2-means clustering of fatigue data from wave 1 to 5.

Figure 3.17: 5-means clustering of fatigue data from wave 1 to 5.
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Discussion

4.1 Interpretation of results

The main focus of this research was to predict symptom burden of cancer
survivors. Models of different levels of complexity were compared on this
task. From figure 3.12, it can be seen that linear regression only shows slight
improvement over a simple baseline (even predicting worse on diarrhea). The
neural network, however, shows substantial improvement.
When comparing results between symptoms, nausea/vomiting has a much
lower MSE in each model than other symptoms, and insomnia has a much
higher MSE. The high accuracy on predicting nausea/vomiting can be at-
tributed to its highly skewed distribution towards 0 (figure 3.7). The vast
majority of patients do not experience nausea and/or vomiting, thus pre-
dicting a low score for all patients results in a low MSE. The high MSE for
predicting insomnia can also be explained by its distribution; It has the high-
est mean and lowest skew after fatigue. This raises the question why fatigue
does not have a higher MSE than insomnia. It is not the case that fatigue can
be predicted more accurately from the independent variables than insomnia.
Baseline 1, which is only based on the symptom mean, also has a higher
MSE for insomnia than fatigue (figure 3.11). Therefore, the higher MSE of
insomnia than other symptoms can solely be attributed to the distribution
of the insomnia variable.
After establishing that the neural network shows substantial improvement in
predicting symptom scores than less complex models, it was investigated how
meaningful these predictions were and if the model shows potential for prac-
tical use. This was done by comparing the distribution of predictions with
the distribution of true values (figure 3.13). It was found that predictions
are much more centred around the mean. The implication this has is that
it will often be predicted that a patient has mild fatigue when they have no
or severe fatigue in reality. Especially no fatigue occurs often in reality, but
is virtually never predicted by the neural network. In order to measure the
severity of this issue, fatigue values and predictions by the neural network
were transformed to 3 ordinal categories (no fatigue, mild fatigue and clini-
cally relevant fatigue). The neural network predicted the correct category in
52.34% (SE = 0.70) of the cases. A random forest classifier was constructed
to investigate whether the bias towards the mean could be reduced by train-
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ing on the categorised data. It was found that the bias was reduced, but mild
fatigue was still over-predicted (figure 3.14). The accuracy of the classifier
was 55.23% (SE = 0.66). It can be concluded that the neural network has
potential for predicting symptom burden, since it is substantially better than
linear regression. However, it is too biased to have any practical use in its
current state. A random forest classifier for 3 categories is able to decrease
this bias. Its disadvantage is that it can only predict 3 values, whereas a
neural network can predict any value between 0 and 100, which would be
more informative if used in practice.
longitudinal k-means clustering was performed in order to find clusters within
longitudinal fatigue data. The Calinski Harabasz score was lower for each
additional amount of cluster, which was measured for 2 to 8 clusters (figure
3.15). This means having 2 clusters fits the data the best, although it is
likely that this is the case because the data is not clustered at all. The mean
cluster trajectories of 2 to 4 clusters were all constant over time such as in
figure 3.16. When using 5 cluster means, a cluster with increasing fatigue
appears, as well as a cluster that first drops and then stagnates. It can be
concluded that the main characteristic separating fatigue trajectories is the
severity of the fatigue, rather than the trajectory.

4.2 Limitations

The dataset contained many random missing values that could not be cor-
rected. These missing values occurred for the variables education, partner,
smoking, alcohol use, bmi, comorbidities and stage. These variables could
not be used for much of the analysis since it would reduce the sample size
significantly. Stage data is especially relevant for predicting symptom bur-
den. This can be seen in 3.9, where many cancer groups show increased
symptom burden for higher stages.
From the age distribution in figure 3.1, it can be seen that younger ages
are under-represented. Although this distribution is representative of cancer
incidence, it should be kept in mind that the lack of data on younger pa-
tients may influence the prediction accuracy for younger patients. Stage 4
solid cancers, or metastatic cancer, is under-represented in the dataset (fig-
ure 3.2). This is likely due to the fact that metastatic cancer is not curable
in most cases.
Overall, the dataset could be improved by more complete data collection. It
could also be improved by more accurate or informing data, such as the age
in years instead of age groups for all cohorts and more elaborate data on the
nature of possible comorbidities, for example.
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4.3 Future research

The analyses presented in this research provide a starting point for more
predictive analyses, among others. Since the dataset includes multiple ques-
tionnaires of the same respondent over time, a multilevel regression could
be used to gain insights on the variance of dependent variables within and
between patients. Insights on which independent variables to use could be
gathered from the multiple regression in this research. More research can also
be done on using random forest classifiers for prediction. The neural network
could be improved on predicting ordinal data such as the 3 fatigue categories
presented in this research using ordinal classification techniques for neural
networks. (2) Moreover, prediction can be extended towards functioning vari-
ables and quality of life, since this research has focused on symptom burden.
Longitudinal clustering research can be extended by applying 3d k-means
clustering, which would cluster patients based on all symptoms rather than
one.

4.4 Conclusion

A potential for machine learning techniques to be used for symptom burden
prediction for cancer survivors has been established in this research. This
was shown through significant improvement in accuracy of a neural network
model over a baseline model and multiple regression model. However, the
model currently has a large bias towards the mean. It is expected that this
can be reduced if more complete and elaborate data is used, and the combi-
nation of machine learning technique and performance metric is optimized.
A potential for machine learning to cluster symptom trajectories of cancer
survivors was less evident. It is likely that there is no clustering between
trajectories of fatigue. If they are clustered, they are mainly clustered by
their severity, not their trajectory. Clustering by severity has little practical
use, since it would not provide any additional insights into the trajectory a
patient’s symptoms will take.
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Figure A.1: EORTC QLQ-C30 Page 1
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Figure A.2: EORTC QLQ-C30 Page 2

35



Figure A.3: EORTC QLQ-C30 Scoring system
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