
 Eindhoven University of Technology

BACHELOR

Spiking Neural Networks for gesture recognition in WiFi CSI sensing
a feasibility study

Luteijn, Sophie C.A.

Award date:
2023

Awarding institution:
Tilburg University

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/7936f053-9dae-4d51-b9ac-29c51ded62ad

Department of Mathematics and Computer Science
Interconnected Resource-Aware Intelligent Systems

Spiking Neural Networks for gesture
recognition in WiFi CSI sensing: a

feasibility study

Bachelor Thesis

S.C.A. Luteijn

Supervisors:
Prof.Dr.Ir. N. Meratnia
MSc B.R.D. van Berlo

Eindhoven, January 2023

Abstract

WiFi CSI sensing has yielded promising results in activity recognition. Different machine
learning models have been studied in the context of human gesture recognition, but they
have demonstrated to be domain sensitive. Spiking neural networks could be capable
of addressing the domain shift problem, but first the in-domain performance must be
evaluated. In this thesis spiking neural networks with different spike encodings and LIF
neuron models are evaluated for the SignFi and MNIST datasets. We also compare the
performance of spiking neural networks to the performance of convolutional neural net-
works. The conclusion is that, under certain conditions, it is feasible to use spiking neural
networks for gesture recognition in WiFi CSI sensing, but that more research is needed to
understand the impact of the data and the different network components on the training
process and the in-domain performance.

Keywords: WiFi sensing, channel state information, spiking neural network, convo-
lutional spiking neural network, activity recognition, gesture recognition.

Contents

1 Introduction 2
1.1 Problem Statement . 3
1.2 Research Questions . 3
1.3 Project Structure . 3

2 Background Information 5
2.1 WiFi CSI . 5

2.1.1 DFS . 6
2.2 Deep Learning Algorithms . 6

2.2.1 Convolutional Neural Network . 7
2.2.2 Spiking Neural Network . 7
2.2.3 Spike Encodings . 8
2.2.4 Neuron Models . 9

3 Related Work 11
3.1 Learning Methods . 11
3.2 SNN Image Classification . 12

4 Methodology 14

5 Experiments 18
5.1 Data . 18

5.1.1 SignFi . 18
5.1.2 MNIST . 18

5.2 Implementation . 19
5.3 Results . 19

5.3.1 Different Input Encodings . 19
5.3.2 Variations in Neuron Models . 21
5.3.3 CNN Comparison . 23

5.4 Discussion . 25

6 Conclusion 28

1

Chapter 1

Introduction

As human computer interaction becomes more prevalent in daily life, there is an increase
in the use of human activity recognition in numerous fields such as smart homes, security
surveillance, healthcare and entertainment [54]. Different sensing technologies are used
to monitor activities and machine learning algorithms are used to detect, recognize and
estimate expressions of motion, including human non-verbal communications [34, 38].

A distinction can be made between device-based sensing techniques and device-free
sensing techniques. Device-based sensing techniques require the user to carry a device
to collect data. Carrying a device might work for some applications, but can also be
very impractical. Device-free sensing techniques are used to monitor the environment.
Commonly known device-free sensing techniques include visual and audio data. While
such methods make data collection easier, they also have several drawbacks. For instance,
the use of techniques based on video or audio is rather intrusive as subjects can be
identified from the data. In addition, for visual sensing, a subject needs to be located in
line-of-sight without occluding obstacles in the view and there are requirements regarding
the environment, such as the lighting conditions [68].

Ma, Zhou & Wang state that Wireless Fidelity (WiFi) sensing with Channel State
Information (CSI) data is not intrusive and easy to implement because WiFi networks are
already widely deployed. Channel State Information is a three-dimensional matrix that
stores information on the time-varying amplitude attenuation and phase shift of radio
signals that are sent between transmitter and receiver [10, 33, 61]. The receiver does not
only receive signals from the line of sight (LoS) path but also signals from transmission,
reflection, refraction, diffraction, adsorption and scattering [64]. Activities that are carried
out between or close to the transmitters and receivers cause signal disruptions [41]. These
disruptions generate amplitude attenuation and phase shift. CSI can be used to calculate
the size, speed, and location of the disruption [60].

One of the main assumptions is that there exists a fixed mapping between human
activity and CSI signal features [65]. Each signal variation pattern is associated with
a particular activity. Machine learning can be used to recognize human gestures based
on the extracted features [10, 64]. However, there is also a problem that we are still
facing. Changes in the domain have an impact on the performance of activity recognition
systems. This issue is known as the domain shift problem [39]. In this case the domain
can be defined as the set of all domain factors. These domain factors include but are not

2

limited to, the spatial environment of the experiment, the location and orientation of the
person performing the activity, from now on referred to as the performer, the physical
properties of the performer, the velocity with which a gesture is performed and even the
time of day. Changes in any of the domain factors can impact the signals and degrade
the performance of recognition models [54, 66, 68].

There are two main strategies academics have used to address the domain shift prob-
lem. The first method is to create more generalized models [5, 39]. The other more
popular method is to use domain adaptation [10, 13, 59].

1.1 Problem Statement

Various machine learning and deep learning frameworks have already demonstrated that
they can provide some answer to the domain shift problem. However, there are several
strategies that have not been fully evaluated in the context of gesture identification using
WiFi CSI data. The use of Spiking Neural Networks is one machine learning model that
should be investigated further. Before any conclusions can be drawn about the domain
shift resilience of SNNs, we first must evaluate its in-domain performance in the context
of WiFi CSI.

1.2 Research Questions

The purpose of this thesis is to evaluate the effect on the in-domain performance of
different spiking neural network components for gesture recognition on the SignFi dataset
and the MNIST dataset. The main research question is as follows: How well does a
spiking neural network perform in in-domain WiFi CSI gesture recognition with different
component settings? To answer this question, three subquestions are formulated:

• How do different rate and latency spike input encodings influence the performance
of a spiking neural network in gesture recognition?

• Which variation of a leaky integrate and fire (LIF) neuron performs best for gesture
detection on WiFi CSI?

• How does a spiking convolutional neural network perform compared to a convolu-
tional neural network?

1.3 Project Structure

Beginning with the introduction in Chapter 1, the motivation, problem and questions are
discussed. Then in Chapter 2 background information is provided to explain the concept
of WiFi CSI and the different methods that are used in Chapters 3, 4, 5 and 6. In Chapter
3, a brief literature review is given on the use of the techniques described in Chapter 2,
from which the research questions in Chapter 1 originate. In the methodology in Chapter
4 an explanation is given of the pipeline and how the research questions are answered. In

3

Chapter 5 an explanation is given of the experiments conducted according to 4 and results
are analyzed and discussed. Chapter 6 summarizes the results from Chapters 4 and 5,
how these answer the research questions presented in Chapter 1 and how this relates to
the information in Chapter 3.

4

Chapter 2

Background Information

This chapter provides background information on WiFi CSI, DFS, convolutional neural
networks and spiking neural networks, and some components of spiking neural networks.

2.1 WiFi CSI

In WiFi CSI sensing, a transmitter sends a radio signal using an antenna to a receiver.
These radio signals are electro-magnetic waves [26]. WiFi CSI utilizes the Multiple-Input
Multiple-Output technique (MIMO). This means that multiple antennas are used at the
transmitter and receiver. While combining information from different antennas reduces
errors, it also enables the data to travel over multiple paths at the same time [18, 33].
The radio waves carry information on a carrier frequency signal along these paths. At the
same time orthogonal frequency-division multiplexing (OFDM) is used to split the carrier
frequencies into different subcarrier frequencies. This way multiple data streams can be
transmitted in parallel [32, 68]. Different paths have different effects on the attenuation,
which is the reduction of the amplitude, and the phase shift of the subcarrier frequency
[62]. The data from the different subcarriers, or channels, can be combined. The resulting
signal, which is a superimposition of the different channels over the different paths, can
be measured at the receiver in voltage. Converting the voltage measurement to decibel
results in the received signal strength indicator (RSSI) [56].

Where RSSI only gives an indication of the cumulative signal strength, the CSI also
contains information on the different channels [5]. The CSI data at a single moment is
represented in a matrix HN×M×K with N receiving antennas and M transmitting anten-
nas [33, 62, 68]. The number of subcarriers is represented by K. Including the fourth
dimension, the time domain denoted as T , results in the matrix HN×M×K×T as shown in
figure 2.1. The CSI for each moment in time is calculated as follows:

H(f, t) =
N∑
n

an(t) exp
−j2πfτ(t)

N represents the total number of paths, an(t) the complex attenuation factor, tn(t) the
propagation delay and f the frequency. In an ideal scenario, the received signal would be
the result of multiplying the transmitted signal with the CSI matrix. However, random

5

phase errors are caused by packet boundary detection, sampling frequency offset, carrier
frequency offset and an unknown initial phase [29, 62]. This yields in a received signal for
each subcarrier that can be modeled by y = Hx + n. Where y is the received signal, H
the CSI, x the transmitted signal and n the noise.

Figure 2.1: Four dimensional CSI tensor containing the multipath channel variations,
image taken from [33].

2.1.1 DFS

The CSI data described above can be preprocessed further. The frequency domain consists
of multiple subcarriers K. As we are interested in the differences in the environment,
we want to look at the subcarrier which provides the most information. A principal
component analysis (PCA) is used to find the subcarrier with the most significant changes
over time. The resulting data is in the form HN×M×1×T .

A short-time Fourier transform (STFT) is then performed on the time domain to
generate the DFS spectrum. Next, the principal value amplitude is obtained [34, 62,
66]. Lastly, the information on the spatial domain N ×M is stacked into one dimension.
The resulting DFS data is in the form DFS ∈ RN×B×T with N representing the spatial
domain, B the frequency bins and T the time.

2.2 Deep Learning Algorithms

Artificial neural networks (ANN) are computational models that are inspired by the pow-
erful and complex structure of the human brain. In the human brain, neurons are cells
that pass electrical impulses and chemical signals to other neurons [28, 44]. In deep learn-
ing, artificial neurons, or nodes, are used to mimic the electrical activity of the brain. The
nodes are connected to other nodes by synapses. These synapses represent small gaps.
The node has an associated weight and a threshold function is used to determine if the
node in the next layer is activated [2, 9]. The information is given to the neural network
via the input layer. The input layer is followed by one or more hidden layers and an
output layer. Artificial neural networks can be trained for better performance.

6

2.2.1 Convolutional Neural Network

Convolutional neural networks are artificial neural networks primarily used for pattern
recognition in images and computer vision [2, 40]. Convolutional neural networks reuse
a set of weights, also known as the filter or kernel, on the output values in a layer [50].
The kernel shifts over the image performing element-wise multiplication with the part
of the image over which the kernel is hovering [1, 40]. This results in reduction in the
needed preprocessing compared to other artificial neural networks. A convolutional neural
network is able to capture spatial and temporal dependencies and consists of different
layers. These layers are convolutional layers, pooling layers and fully connected layers
[27, 40]. The convolutional layer multiplies the input image with the kernel resulting in
output neurons. After this a non-linear transformation is applied. The pooling layer is
used to downsample the spatial domain and filter out the important information. This is
especially needed once the input size of images increases to limit the exponential expansion
of the network [40, 50]. The fully connected layers work like the layers in a standard
artificial neural network and are used for the classification tasks. Compared to feed
forward artificial neural networks, convolutional neural networks are more suitable for
recognition tasks using image data.

Figure 2.2: Convolutional neural network architecture, image taken from [8].

2.2.2 Spiking Neural Network

The neurons in an artificial neural network are connected by chemical and electrical
synapses. The action potentials are the elementary unit of signal transmission. The
goal of spiking neural networks is to mimic the electrical synapses in a more biologically
realistic way [19, 31]. Natural neural networks are approached by including the synaptic
status of neurons and the time. The membrane potential of a neuron increases when a
spike is received and then decreases over time. If the membrane potential reaches a certain
threshold an impulse is sent from the presynaptic neuron to the postsynaptic neuron and
the membrane potential drops [17, 19, 52]. In addition, the human visual system does
not process all information at once. Instead, small parts of information are considered at
the time. The different inputs received over time lead to the activation of neurons [6].
The most realistic approach requires neuromorphic hardware. Nonetheless, it is possible
to convert the data to spike trains and feed this into a neural network [17]. Figure 2.3

7

depicts a spiking neural network architecture. The input data, in the form of images, is
converted into spike trains. After that, the spike trains are fed into the spiking neural
network. The synapsis in the human brain is represented by the link between two layers.
The model records the output spikes and the membrane potential. This information is
transformed back to a numerical class. The membrane potential is recorded in the neuron,
every time the membrane potential reaches the threshold, a spike is fired.

Figure 2.3: Spiking neural network architecture, image taken from [22].

2.2.3 Spike Encodings

This section provides a brief explanation of the encoding techniques that are being eval-
uated. There are different spike encoding methods all based on the human brain, some
more biologically realistic than others and some more complex than others. Two types
of spike encoding can be distinguished, rate coding and temporal coding [3]. Rate cod-
ing simply measures the number of occuring spikes. Whereas temporal coding can be in
the form of time to first spike coding, also known as latency coding, phase coding and
burst coding. A representation of the different encoding methods is given in figure 2.4.
SnnTorch [17] supports rate coding, latency coding and delta modulation. From these
predefined methods, rate coding and latency coding will be evaluated.

8

Figure 2.4: An overview of different neural encoding schemes, image taken from [21].

Rate Coding

In rate coding the number of spikes are measured over time. At first the initial input
data is repeated along the first dimension [16]. The number of repetitions is defined by
the number of time steps, S. Each input feature of the resulting matrix is considered
as a probability. The probabilities are used as inputs for a Bernoulli trial where the
probability of spike is equal to the input feature. Combining the different trials with
different probabilities results in a Poisson spike train.

Latency Coding

In latency coding the time-to-first spike is used. Similar to rate coding, the inputs are
repeated for each time step. Except now a LIF neuron is used with a logarithmic decay
to determine if there is a spike. For each datapoint in the original input, the time-to-first
spike is recorded in dimension S [16].

2.2.4 Neuron Models

Due to the use of electrical potentials, most research on neuron models originates in
physics. These models are based on resistor-capacitor (RC) circuits. Based on such RC
circuits are the Leaky Integrate-and-Fire (LIF) neuron models [17].

Leaky

The snnTorch package provides the Leaky neuron model. This is a first-order leaky
integrate-and-fire model. [17]. The neuron’s inner state, also known as the membrane
potential, is defined by U. Everytime an input current I is received, the potential U is

9

increased with I. In addition, the neuron potential decays logarithmically over time. Once
the threshold is reached the neuron is either reset to zero or the threshold is subtracted.

Synaptic

The Synaptic model is a second order LIF neuron that also takes into account synaptic
conductance. It is similar to the Leaky neuron except that it not only takes into account
the membrane potential decay rate beta, but that it also takes the synaptic current, alpha,
into account. In the human brain the synaptic decay rate would correspond to synaptic
fatique, which causes a neuron to spike less soon after a previous spike [7, 16].

10

Chapter 3

Related Work

This chapter provides a synopsis of the relevant works on WiFi-CSI gesture recognition
that are used as a foundation for this thesis. Next to this, literature is used to explain the
choices for the model components of the Spiking Neural Networks used in the experiments.

3.1 Learning Methods

Many researches have been conducted on the use of WiFi CSI data in human activity
recognition. Ma Yongsen et al. [33] have provided a comprehensive study of the different
methods and applications used in for example human detection, motion detection, spoof-
ing attack detection, activity recognition, motion recognition and gesture recognition.

In WiFall [23] Han et al. have used k-nearest neighbors (kNN) to classify the human
movements walk, sit, stand up and fall. In 2014 their framework, designed to help living
elders, already achieved 87% precision. Shobehy et al. [48] have utilized kNN classification
for indoor localization. A comparison is also made between kNN classification and CNN
classification for the respective setup. In this research kNN outperforms the use of CNN in
the localization task. The researchers in Arshad et al. present Wi-Chase [3], a Fine kNN
classifier that reaches an average accuracy of 94.2% on human activity recognition for 3
gestures. Li et al. [51] mentions how WiFinger, another kNN classifier is able to obtain up
to 90.4% average accuracy on finger-grained gesture recognition for 9 gestures. Another
tradional machine learning classification technique that has been thoroughly epxlored is
the use of support vector machines (SVM). Both kNN algorithms and SVM algortihms
are often combined with principal component analysis (PCA) and dynamic time warping
(DTW). An example of the use of support vector machines in gesture recognition is
WiSign [47]. WiSign employs two receivers. Each receiver predicts the gesture without
information from the other receiver. In the end, the predictions are aggregated, and
the final prediction is determined by a majority vote. In total 10 different classifiers are
trained and majority vote is used over the different classifiers. This results in 93.8%
accuracy in the classification of 5 different American Sign Language gestures.

11

In [34] the researchers mention the very low recognition accuracy in case of an in-
creasing number of classes in gesture recognition with kNN and SVM. This corresponds
with how in WiG, DeNum and WiSign [25, 47, 67] the SVM models have achieved high
accuracy, 88% NLoS in WiG, 94% in DeNum and 93.8% in WiSign, but only for a very
low number of classes being 4 in WiG, 10 in DeNum and 5 in WiSign. The same goes for
the kNN models. In WiAG [58], a 94% accuracy was obtained for 6 gestures. [36] resulted
in a 92% accuracy for 25 signs and in WiFinger [51] a 90.4% accuracy was obtained for 9
hand postures. In WiMu [57] the researchers have also shown the decrease in accuracy for
different numbers of classes in pattern recognition. Where they achieve a 95% accuracy
for 2 classes this decreases to 94.6%, 93.6%, 92.6% and 90.9% for 3, 4, 5 and 6 classes.

Other classification algorithms are needed for better gesture recognition once the num-
ber of classes increases. Convolutional Neural Networks have already shown to provide
a better solution than traditional machine learning algorithms [34]. In Widar3.0 body
velocity profiles are derived for cross-domain activity recognition for 15 gestures. The
use of kinetic characteristics that are irrespective of the domain lead to 92.7% accuracy
in-domain and 92.4% cross-domain accuracy for different environments and 88.9% cross-
domain accuracy for different users [66]. In [63] a 93.2% in-domain accuracy was achieved
and an 87.1% cross-domain accuracy. Another initiative that aims to reduce the domain
dependency in WiFi CSI gesture recognition is SignFi. SignFi feeds pre-processed CSI
measurements to a 9-layer CNN for gesture classification [34]. On average SignFi reaches
a 94.81% accuracy for 276 sign gestures. The domains include two different environments
and five different users.

3.2 SNN Image Classification

One type of learning method that is less explored is the deep learning technique Spiking
Neural Networks. As the difficulty of recognition tasks increases, there is a need for more
energy efficient implementations. The human brain is the most energy-efficient neuromor-
phic system there is, making it an appealing source of inspiration. The brain consumes
only around 20W, which is nine orders of magnitude lower than computers performing
similar tasks [4, 45]. However, increasing accuracy in recognition tasks requires a sub-
stantial increase in the size of the network. In [45] an idea is proposed to delete synapses
in order to increase hardware efficiency. Another idea is to use Spike-Timing-Dependent-
Plasticity (STDP) for training rather than recurrences [30]. Using an unsupervised SNN,
a 95% accuracy was obtained on the MNIST benchmark in [15].

As mentioned in section 2.2.2, the input in a Spiking Neural Network consists of spike
trains. Rate coding simply measures the number of occuring spikes. Whereas temporal
coding can be in the form of time to first spike coding, phase coding and burst coding.
According to [21] time to first spike coding, also known as latency coding [17], achieves
the highest computational performance. Phase coding, is the most resilient to input noise
while burst coding offers the highest robustness to hardware non-efficiency. Burst coding
is based on the idea that neurons send a burst of spikes in opposition to phase coding
where the spikes are measured over different periods.

When the human body receives a stimuli, there is some time before the brain starts
processing the information. This is the foundation for time-to-first spike coding [17].

12

Eshraghian et al. also mention the benefits of rate and latency coding. One main ad-
vantage of latency coding is that it consumes less power. Where for rate coding there
are many spikes, for latency coding only the first spike is recorded. Another advantage
is the runtime of spike encoding as less spikes need to be processed. An objection to
the use of latency coding versus rate coding would be that rate coding captures much
more information. More input spikes implies that there are other spikes that can cause a
neuron to fire when another neuron fails to do so. Next to this a larger number of spikes
results in more information for the model to learn from. This could result in less epochs
needed to train a model. In latency coding, it is possible to compensate for having less
information by having more neurons. In the human brain a sudden impulse also causes
more other neurons to be activated than a constant pulse [37].

In addition to different input encoding schemes, there are also different ways to model
the synaptic neurons. In general, the models used so far are variations of the leaky
integrate-and-fire neuron. In such models no attempt is made to describe the shape of the
action potential. [19]. The leaky integrate-and-fire neuron model is the most elementary
spiking neuron model [11]. It has been used widely as a baseline model. Not taken into
account in the Leaky neuron is the postdischarge refractoriness as described by Chacron
et al. in [11]. Leaky LIF neuron models only use current and future information and do
not remember previous spikings. They operate under the assumption that the threshold
for firing is constant. More physiologically plausible would be the inclusion of a dynamic
threshold. One way to include the previous information in a Leaky LIF neuron would
be to subtract the threshold for every spike and to use a threshold that slowly increases.
Another option is to include a second decay rate, representing the decay of the synaptic
current, alpha. This is the approach taken in the Synaptic LIF neuron model by [17].

13

Chapter 4

Methodology

To answer the research questions, experiments with different component settings are per-
formed to determine whether spiking neural networks are viable in WiFi CSI gesture
recognition under certain conditions. The overarching hypothesis is that spiking neural
networks can be used to classify gestures from WiFi CSI data.

Figure 4.1: A schematic representation of the SNN pipeline.

An overview of the general SNN pipeline is shown in figure 4.1. At first, transfor-
mations are applied to the images, such that the images are converted to tensors and
normalized. Then datasets are created for the training and testing set and subsets are
selected from these datasets. A validation set is used to establish independency of the
test set. To iterate over the data, a dataloader is used with batch size 16 and the images
are loaded in random order. The data is transformed into spikes for the SNNs. This step
is omitted for CNN. The model’s training is the following stage. In this stage the average
mse loss and accuracy for the training and validation data are returned for each epoch.

For the SNN models a similar structure is used as presented by Eshraghian et al. [16].
The convolutional network architecture used in the MNIST experiments is a 8C5-MP2-
24C5-MP2-384FC10 architecture. Where 8C5 is a 5× 5 convolutional layer with 8 filters.
MP2 is a 2 × 2 max pooling function. This is followed by a 5 × 5 convolutional layer
with 24 filters and another 2 × 2 max-pooling function. 384 neurons are then mapped
to 10 outputs using a fully connected layer. For the SignFi data a 8C5-MP2-24C5-MP2-

14

12696FC16 architecture is used. The only distinction between the model architectures is
the final fully connected layer. The SNNs contain a leaky neuron layer after each of the
two max-pooling layers and after the last linear mapping.

The number of iterations per epoch for the MNIST data is set at 100. The training
procedures employ the Adam optimizer, with betas ranging from 0.9 to 0.999 and a
constant learning rate at default of 0.001. The best performing model is selected based
on the loss per epoch for the training and validation set.

A test set is then used to further evaluate the model. Since the predictions of a spiking
neural network are in the form of output spikes, the predictions first need to be converted
to numerical predictions as shown in figure 4.2. For each batch the model returns a 3-D
matrix S × B × C with S time steps, batch size B and C number of classes. For each
2-D matrix S×C in dimension B, the number of spikes, represented by ones, are counted
per class. The class with the most non-zero values is the predicted class. The numerical
predictions can be used to construct the confusion matrix and to calculate accuracy,
precision, recall and the F1-score.

Figure 4.2: Spike classification to numerical classification for 6 classes.

To answer the first subquestion, 12 experiments are conducted to evaluate the impact
of rate coding and latency coding with varying time steps and spike threshold settings
on the performance of an SNN. Because of the increasing runtime due to increase in the
number of steps, the choice is made to evaluate for 30 epochs for MNIST rate coding
and for 50 epochs for all other experiments. The different experiment settings are shown
in figure 4.3. As the input tensors are not time varying the time varying input boolean
variable in rate coding is set to False. This also means that the number of time steps
needs to be specified. The spiking neural network is trained for 50, 100 and 250 time steps
for both MNIST and SignFi. The input data for a batch before spike conversion is in the
form B×I with B representing the batch size and I the input size. After spike conversion
the spike input data is in the form S ×B × I with S being the specified number of time
steps. As increasing the number of time steps increases the spike input size, this also
means a massive increase in the runtime. Intuitively, more input spikes are anticipated to
result in a better-performing network since there will be more data for the model to train
on. Based on human neural network structure, the expectation would be that biologically
more realistic temporal latency spike encoding, results in better performance. For latency
coding the threshold needs to be optimized in such a way that there is enough information
for the model to recognize the gesture but that there is no abundance in spikes resulting

15

in all images looking similar. The spiking neural network is trained for thresholds 0.01,
0.005 and 0.001. The expectation is that for latency coding, the default setting of 0.01 is
also the setting that achieve the best performance.

Figure 4.3: Experiment set for spike input evaluation.

To address the second subquestion, the SNN’s Leaky LIF layers will be replaced with
Synaptic LIF layers for one fixed spike encoding and only one combination of settings.
The alpha is set to 0.85. Both networks are trained for 50 epochs and for both LIF layers
the surrogate gradient of the Heaviside step function is used, spikegrad.surrogate.fast−
sigmoid [49, 55]. Since an SNN with the Leaky layers has already been trained on the
MNIST and SignFi data, just two further tests with the Synaptic layers are required.
Multiple metrics will be used to analyze the impact of the various LIF layers, and the
training procedure will also be assessed. The experiments written in bold in figure 4.4
are the extra experiments that need to be conducted to answer this subquestion. It is
expected that the SNN performs better on the training set with the Synaptic layers than
with the Leaky layers because of the inclusion of the biologically realistic synaptic fatigue.
However, the Synaptic neuron model might also prevent neurons from firing enough spikes.

Figure 4.4: Experiment set for neuron model evaluation.

To answer the third subquestion, a CNN is constructed using a similar model structure
as the SNN without the LIF layers and the data is fed into the CNN without spike
conversion. For the MNIST dataset a model is used with a 5× 5 convolutional layer with
8 filters followed by a 2× 2 max-pooling function after using a ReLU activation function.
This step is repeated with a 5× 5 convolutional layer with 16 filters. The output is then
flattened, after which the outputs are mapped from 256 neurons to 64 neurons to 10

16

outputs using fully connected layers. For the SignFi dataset the fully connected layers
map 8464 neurons to 64 neurons to 16 outputs. The cross-entropy loss function is only
applied. The SNN with the highest test set accuracy will be compared to the CNN. The
tests needed are presented in figure 4.5. An overview of the CNN pipeline used to answer
this subquestion is presented in figure 4.6.

Figure 4.5: Experiment set for comparison between CNN and SNN.

Figure 4.6: Convolutional neural network pipeline.

17

Chapter 5

Experiments

5.1 Data

There are two open datasets that will be used in this thesis. These are the MNIST dataset
[46] and the SignFi dataset [33]. Not all data is utilized directly from the open datasets.
This section provides more details on what data is used and how the data is used.

5.1.1 SignFi

The first of the two open datasets used in this thesis is the SignFi dataset collected by
researchers at the College of William and Mary. The datasets contain CSI traces and
ground truth labels for the different sign gestures [33]. The first dataset contains 8280
entries for 276 sign gestures performed in the lab environment and home environment.
Before the classification performance of the models can be evaluated, it first needs to be
shown that the data and respective models can be used for classification. In the scope of
this thesis, a subset containing the DFS profiles for the first 16 gestures is taken from the
lab dataset. A transformation is applied to the data to convert the images to grayscale
and to normalize the data. The subset contains 20 images per gesture for each of the 16
gestures. Random stratified sampling is used to create the training, validation and test
sets.

Figure 5.1: Class representation for SignFi subsets.

5.1.2 MNIST

The second dataset is the MNIST gesture dataset [46]. The original dataset is loaded
using torchvision and normalized. The training set contains 60000 images and the test set
10000. The first 2000 instances of the training set are used for training and the next 496
for validation. A subset of 496 instances from the test set is used for testing. As random

18

sampling is used without stratification, there is a slight class imbalance which should be
taken into account in the evaluation.

Figure 5.2: Class representation for MNIST subsets.

5.2 Implementation

The PyTorch framework is used to build the experiment models in Python [42]. On a
Lenovo Thinkpad P1 Intel Core i7 Gen 8, the CPU is used to run each experiment locally.
15 GB of RAM were available. The snnTorch package is used for the spiking neural
networks and the code is based on their available tutorials [16] and the tutorials provided
by [20]. Other packages that are used are torch [12], torchvision [35], torchmetrics [14],
numpy [24], pandas [53], and Scikit-learn [43]. For optimization, Adam is used with a
constant learning rate of 0.001 and the loss is measured using the mean squared error loss
and the cross-entropy loss. The runtime of the models varies from less than 5 minutes for
the SignFi convolutional neural network to approximately 14 hours for a spiking neural
network training loop with 250 time steps rate encoding for MNIST.

5.3 Results

5.3.1 Different Input Encodings

For the SignFi and MNIST datasets, there are 12 distinct tests with three different pa-
rameters tested for each input encoding. The training and validation loss are plotted
per epoch for each experiment to illustrate how different settings influence the training
processes of the SNN models. The logical outcome would have been that the models
learn from the training data, at least to some extent. These behaviors are evident in the
MNIST plots in figures 5.4 and 5.6. In contrast, for the SignFi dataset, the figures 5.3
and 5.5 show that the models only learn very little and that the model performance does
not improve significantly after training.

For SignFi data with rate encoding, the loss does initially drop substantially. After
the initial drop the loss stays constant. We do see that for both SignFi and MNIST, the
lower the number of steps, the faster the model learns and the better the model performs
on the training and validation set. This is surprising because more steps means more
information for the model to learn from. For SignFi data with latency encoding, the loss
function is similar for each threshold and does not show any improvements. Both the
training loss and validation loss show an increase after 11 epochs. This could mean that
the learning rate is too large for the model that is used.

Evaluation of the models using the SignFi test set results in 6.25% accuracy for each
of the models with rate encoding. To evaluate on the test set, the model at epoch 49 is

19

chosen. We see the same results for latency encoding. For every separate experiment the
model predicts every instance in the test set to be the same gesture, the gesture differs
per experiment. For this the model at epoch 27 is chosen.

The models show improvements for both rate conversion and latency conversion for
the MNIST dataset. The loss functions show that the model with rate coding learns faster
than the model with latency encoding and performs better after 30 epochs. Again, fewer
steps result in improved performance in both the training and validation sets. The loss
functions for both the training and validation sets show that the model is clearly still
improving despite being trained for 50 epochs. For the SNN with MNIST rate encoding,
fewer time steps result in smaller loss, as observed in the SignFi data. Another similarity is
that the threshold setting in latency encoding has only a minor effect on the loss function.
For the MNIST training data, the lower threshold results in slightly lower loss and faster
learning. The better performance with a lower threshold is still visible in the validation
data, but it is less evident. For 50 steps rate encoding on MNIST, the SNN achieves an
accuracy of 96.57% accuracy for 50 epochs on the test set. For 100 steps, the model at
epoch 27 achieves an accuracy of 96.37% and for 250 steps the model at epoch 28 achieves
an accuracy of 96.98%. For latency coding with threshold 0.01 an accuracy is achieved of
92.14% on the test set by the model at epoch 47. Setting the threshold to 0.005 results
in an accuracy of 93.15% for 49 epochs and setting the threshold to 0.001 results leads to
an accuracy of 93.35% on the test set after training on 49 epochs.

Figure 5.3: Training and validation loss for SignFi rate encodings.

Figure 5.4: Training and validation loss for MNIST rate encodings.

20

Figure 5.5: Training and validation loss for SignFi latency encodings.

Figure 5.6: Training and validation loss for MNIST latency encodings.

5.3.2 Variations in Neuron Models

For the second subquestion the Leaky LIF neuron in the SNN model is replaced by a
Synaptic LIF neuron.

For the SignFi data, the loss drops significantly at first as shown in figure 5.7. After the
initial drop the model continues to improve slightly for both the training and validation
data but not much. We can see that there is underfit for 50 epochs of training, which
could indicate that the model would perform better after longer training. In figure 5.8 the
confusion matrix resulting from running the model on the test set is shown. Interesting
to see is that the SNN with Synaptic LIF actually yields 28.13% accuracy. Note that
most of the false predictions are predicted to be in the first class. In the plot on the left
in figure 5.8, the accuracy, precision, recall and F1-score are plotted per class. The boxes
in these plots show the second and third quartile. The dots in the plots for precision and
F1-score indicate outliers. On the SignFi data, under similar circumstances, the model
with the Synaptic LIF performs better than the model with the Leaky LIF neuron model.

For the MNIST dataset the Synaptic neuron SNN is able to achieve a 99.26% accuracy
on the training set and a 100% accuracy on the validation set. The loss function shows
a very unceasing improvement for the training set, but also shows more variation for the
validation set. Evaluating on the test set yields in 96.37% accuracy. In figure 5.9 the
evaluation metrics are shown for both the Leaky layers and the Synaptic layers. The
results show that the accuracy, precision, recall and harmonic mean are all better for the

21

SNN with Leaky LIF layers for the experiment conducted. The confusion matrices in
figure 5.10 show the actual and predicted classes resulting from running the model on
the test set. The plot on the left is the confusion matrix for the SNN with Leaky LIF
and the plot on the right is the confusion matri for the SNN with Synaptic LIF. The
confusion matrices both show that for the MNIST dataset, the model has learned to an
extend where false predictions are spread over all classes.

Figure 5.7: SignFi and MNIST loss for Synaptic LIF SNN.

Figure 5.8: Confusion matrix and evaluation metrics for Synaptic LIF neurons in SignFi
SNN.

22

Figure 5.9: Evaluation metrics for Leaky and Synaptic LIF neurons in MNIST SNN.

Figure 5.10: Confusion matrices for Leaky and Synaptic LIF neurons in MNIST SNN.

5.3.3 CNN Comparison

The last question to answer is how a spiking neural network compares to a convolutional
neural network. For this two CNNs are run for the MNIST and SignFi data.

For the SignFi data, the loss and accuracy functions in figure 5.11 display that the
CNN is able to learn from the data but miserably fails to generalize and attain good
performance on the training and validation set. Where the model reaches an 97.97%
accuracy on the training data. The results for the validation and test set show 0.00% and
6.25% accuracy. For the test set, the CNN predicts everything to be in the same class.
This is also what causes the positive outliers for accuracy and recall in the evaluation
metrics.

The CNN yields better results for the MNIST data as shown in figure 5.13. The
model learns really well on the training data, reaching 100% accuracy. These results are
also matched for the validation set. On the test set the model achieves 97.58% accuracy
for epoch 48. There is still quite some variation in loss and accuracy for the different

23

epochs. Interesting to note in figure 5.14 is that the model predicts gesture 4 as gesture
6 more than once. This could be an indication that these images show the most similar
DFS profiles. The figure on the right confirms the solid performance of the CNN on the
MNIST dataset. Where for most classes the scores are above 0.96, even the outliers for
accuracy and recall still show an accuracy and recall of above 91% for the worst class.

Figure 5.11: Loss and accuracy for CNN using SignFi.

Figure 5.12: Confusion matrix and evaluation metrics for CNN using SignFi.

24

Figure 5.13: Loss and accuracy for CNN using MNIST.

Figure 5.14: Confusion matrix and evaluation metrics for CNN using MNIST.

5.4 Discussion

This section will discuss some limitations of the implementation and the experiments and
how these relate to the results.

Firstly, as mentioned before, the sampling for the MNIST training, testing and vali-
dation set is not stratified. For future research it is recommended to use stratification for
all sampling. Since the subset used for the MNIST classifications is still quite large, it is
possible to evaluate the models. However, the imbalance in classes influences the overall
accuracy and the training process itself. It is crucial to emphasize once more that the
input only contains the first 16 motions from the SignFi dataset in order to ensure repro-
ducibility. This decision was made in order to conduct faster experiments. Furthermore,
if the models cannot classify 16 gestures, they will be unable to classify 276 gestures.

In terms of the models, only few options out of many available options have been
tested. It is important to realize that there are many more component settings. Not all

25

spike encoding methods have been evaluated and not all LIF neuron models have been
used in the experiments. In addition, there are many more variables that influence the
feasibility of spiking neural networks in WiFi CSI sensing. In this case only one model
structure has been used with only one optimizer and only one loss function. No grid
search is performed or any other standard methods for hyperparameter tuning.

With regard to for example 5.5, it is also worth it to explore different settings for
the learning rate in future research. The decision was made to stick to default choices
as much as possible, since these are likely to have solid performance in different settings.
Think for example of using the Adam optimizer and a 0.001 learning rate. In terms of the
learning rate, it would be possible to implement an adaptive learning rate. This would
not guarantee better results but is worth exploring.

Both the spiking neural networks and the convolutional neural networks show very dif-
ferent performances for the two different datasets. Whereas different SNN models and the
CNN achieve good results on MNIST, model performance does not improve significantly
when trained on the SignFi dataset. In addition, some of the results can be caused by
coincidence such as the result fro the SNN with Synaptic LIF where the accuracy is much
better for the test set than for the train or validation set. The result of such different per-
formances for different datasets is surprising but nevertheless interesting. To understand
the cause of the differences, a thorough understanding of why the SNN performs well on
the MNIST dataset and why the SNN does not continue to learn on the SignFi dataset is
required. A possible answer can be found by understanding the differences between the
two datasets.

One very clear difference is the size of the data. Even though a subset is taken from the
MNIST dataset, there are still many more images from the model to learn from. Next to
this, the sizes of the images themselves are also different, since the MNIST images contain
less data points. As the same model structure is used for every experiment on SignFi and
MNIST, the model itself does not play a major role in the contrasting results for this
particular thesis even though it plays an important role in the overall performance.

There are two results that could be used as a starting point for further research.
Firstly, the SNN and CNN tend to predict labels for the SignFi data to be in the same
class. The class that is favoured differs per model. To understand if the number of images
contributes to the nature of the models, it would be interesting to see what happens if
only 20 images are used from each class of the MNIST data. To make an even better
comparison, this could be supplemented with using only 10 gestures from the SignFi data.

Secondly, understanding why the models fail to generalize on the SignFi data would
contribute to gainin more insights. For example, the convolutional neural network used,
performs well on the training set, but is not able to deliver similar results for the validation
and test data.

Another possible method that could be used to gain a better understanding of the
differences in the data is to look at the probability distributions of the data. Since the
data points in the input tensor are viewed as probabilities this could have a huge effect
on the spike generation and therefore also the model.

The experiments with different inputs show that in this case for rate coding the opti-

26

mal setting is 50 steps. Increasing the number of time steps only leads to more complexity
but not to a better model since it tends to overfit. For 50 epochs, the best setting for
latency coding is the default setting of 0.01. The differences are small and it is interesting
to note that the model does learn under all tested thresholds.

The Synaptic LIF neuron results in better model performance on the SignFi data than
the Leaky LIF neuron but it would be needed to introduce a longer training process. For
the MNIST dataset the Leaky LIF neuron shows better performance, even though both
models show good results.

It is interesting to observe that for the third research question the Spiking Neural
Network does learn from the training data. Nevertheless it fails to classify gestures in the
validation and test set and is overfitting. CNN does outperform the SNN on the MNIST
dataset for the current settings. Lastly, there are several occasions where the loss function
is still decreasing for both the training and validation data. In order to properly compare
the models, it is needed to run the training processes for more than 50 epochs.

27

Chapter 6

Conclusion

Where the initial expectation may have been that Spiking Neural Networks would be able
to classify different gestures from the WiFi CSI data in SignFi and MNIST. The results
have shown that this is not true for the used settings. The Spiking Neural Networks used
perform very well for the MNIST dataset and achieve high performance overall. As for
the SignFi dataset the Spiking Neural Networks either do not learn from the training
data or only learn on the training data but fail to predict the gestures for the validation
and test data. For the first research question we can conclude that the used model
that takes rate spikes as input performs better when trained on 30 epochs and that the
performance improves faster as for the model that takes the time-to-first spike as input.
For the second research question it is shown that both the Leaky LIF neuron and the
Synaptic LIF neuron can be used to classify images, at least for the MNIST data. Where
a Convolutional Neural Network is able to classify the MNIST gestures well, while trained
on 50 epochs, it also has trouble predicting the SignFi gestures.

Based on the results it is not possible to say that spiking neural networks can be used
to classify all kinds of data. One conclusion is that spiking neural networks are suitable
for WiFi CSI gesture recognition using the MNIST dataset and the settings used in this
thesis. Furthermore, more research is necessary to understand under what circumstances
spiking neural networks can and cannot learn. Before spiking neural networks can be
used to address the domain shift problem, a more thorough understanding is needed of
the effect of the data on the classification performance, a possible tendency to predict
instances to be part of the same class and the influence of the amount of data that is used
to train the model.

28

Bibliography

[1] A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way — by
Sumit Saha — Towards Data Science. url: https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53.

[2] All about neural networks: Here’s everything you need to know in 2022 - ai.nl. url:
https://www.ai.nl/knowledge-base/neural-network/.

[3] Sheheryar Arshad et al. “Wi-chase: AWiFi based human activity recognition system
for sensorless environments”. In: 18th IEEE International Symposium on A World of
Wireless, Mobile and Multimedia Networks, WoWMoM 2017 - Conference. Institute
of Electrical and Electronics Engineers Inc., July 2017. isbn: 9781538627228. doi:
10.1109/WoWMoM.2017.7974315.

[4] Daniel Auge et al. A Survey of Encoding Techniques for Signal Processing in Spiking
Neural Networks. Dec. 2021. doi: 10.1007/s11063-021-10562-2.

[5] Prachi Bagave and Ir DV Le Viet Duc. Unobtrusive sensing using Wi-Fi signals.
Tech. rep. 2018.

[6] Adarsha Balaji et al. “Run-time Mapping of Spiking Neural Networks to Neuro-
morphic Hardware”. In: (June 2020). url: http://arxiv.org/abs/2006.06777.

[7] Jose M Benita et al. “Synaptic depression and slow oscillatory activity in a biophys-
ical network model of the cerebral cortex”. In: (2012). doi: 10.3389/fncom.2012.
00064. url: www.frontiersin.org.

[8] Binary Image classifier CNN using TensorFlow — by Sai Balaji — Techiepedia —
Medium. url: https://medium.com/techiepedia/binary-image-classifier-
cnn-using-tensorflow-a3f5d6746697.

[9] Brain Basics: Know Your Brain — National Institute of Neurological Disorders
and Stroke. url: https://www.ninds.nih.gov/health-information/public-
education/brain-basics/brain-basics-know-your-brain.

[10] Jeroen Klein Brinke and Nirvana Meratnia. “Scaling activity recognition using chan-
nel state information through convolutional neural networks and transfer learning”.
In: AIChallengeIoT 2019 - Proceedings of the 2019 International Workshop on Chal-
lenges in Artificial Intelligence and Machine Learning for Internet of Things. Asso-
ciation for Computing Machinery, Inc, Nov. 2019, pp. 56–62. isbn: 9781450370134.
doi: 10.1145/3363347.3363362.

29

[11] Maurice J Chacron et al. “Communicated by Paul Bressloff Interspike Interval
Correlations, Memory, Adaptation, and Refractoriness in a Leaky Integrate-and-
Fire Model with Threshold Fatigue”. In: Neural Computation 15 (2003), pp. 253–
278. url: http://direct.mit.edu/neco/article-pdf/15/2/253/815471/
089976603762552915.pdf.

[12] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A Matlab-like
Environment for Machine Learning. Tech. rep. url: http://numpy.scipy.org..

[13] Oscar Day and Taghi M. Khoshgoftaar. “A survey on heterogeneous transfer learn-
ing”. In: Journal of Big Data 4.1 (Dec. 2017). issn: 21961115. doi: 10.1186/
s40537-017-0089-0.

[14] Nicki Skafte Detlefsen et al. “TorchMetrics-Measuring Reproducibility in PyTorch”.
In: (2022). doi: 10.21105/joss.04101. url: http://arxiv.org/abs/1907.11692.

[15] Peter U. Diehl and Matthew Cook. “Unsupervised learning of digit recognition us-
ing spike-timing-dependent plasticity”. In: Frontiers in Computational Neuroscience
9.AUGUST (Aug. 2015). issn: 16625188. doi: 10.3389/fncom.2015.00099.

[16] Jason K Eshraghian et al. “TRAINING SPIKING NEURAL NETWORKS USING
LESSONS FROM DEEP LEARNING”. In: ().

[17] Jason K. Eshraghian et al. “Training Spiking Neural Networks Using Lessons From
Deep Learning”. In: (Sept. 2021). url: http://arxiv.org/abs/2109.12894.

[18] Eva Webster. What is MIMO (multiple input, multiple output)? url: https://
www.techtarget.com/searchmobilecomputing/definition/MIMO.

[19] Wulfram Gerstner and Werner M. Kistler. “Detailed neuron models”. In: Spiking
Neuron Models. Cambridge University Press, June 2012, pp. 31–68. doi: 10.1017/
cbo9780511815706.003.

[20] GitHub - aladdinpersson/Machine-Learning-Collection: A resource for learning about
Machine learning & Deep Learning. url: https://github.com/aladdinpersson/
Machine-Learning-Collection.

[21] Wenzhe Guo et al. “Neural Coding in Spiking Neural Networks: A Comparative
Study for Robust Neuromorphic Systems”. In: Frontiers in Neuroscience 15 (Mar.
2021). issn: 1662453X. doi: 10.3389/fnins.2021.638474.

[22] Guo li Taiwan da xue et al. ISLPED 2017 : IEEE/ACM International Symposium
on Low Power Electronics and Design : July 24-26, 2017 @ Taipei, Taiwan. isbn:
9781509060238.

[23] Chunmei Han et al. “WiFall: Device-free Fall Detection by Wireless Networks”. In:
().

[24] Charles R. Harris et al. Array programming with NumPy. Sept. 2020. doi: 10.1038/
s41586-020-2649-2.

[25] Wenfeng He et al. “WiG: WiFi-based gesture recognition system”. In: Proceedings
- International Conference on Computer Communications and Networks, ICCCN.
Vol. 2015-October. Institute of Electrical and Electronics Engineers Inc., Oct. 2015.
isbn: 9781479999644. doi: 10.1109/ICCCN.2015.7288485.

30

[26] How WiFi Works — HowStuffWorks. url: https://computer.howstuffworks.
com/wireless-network.htm.

[27] Xin Huang et al. “Deep Learning Based Solar Flare Forecasting Model. I. Results
for Line-of-sight Magnetograms”. In: The Astrophysical Journal 856.1 (Mar. 2018),
p. 7. issn: 15384357. doi: 10.3847/1538-4357/aaae00.

[28] Somayeh Hussaini, Michael Milford, and Tobias Fischer. “Spiking Neural Networks
for Visual Place Recognition ViaWeighted Neuronal Assignments”. In: IEEE Robotics
and Automation Letters 7.2 (Apr. 2022), pp. 4094–4101. issn: 23773766. doi: 10.
1109/LRA.2022.3149030.

[29] Zhiping Jiang et al. “Eliminating the Barriers: Demystifying Wi-Fi Baseband Design
and Introducing the PicoScenes Wi-Fi Sensing Platform”. In: (Oct. 2020). url:
http://arxiv.org/abs/2010.10233.

[30] Chankyu Lee et al. “Training deep spiking convolutional Neural Networks with
STDP-based unsupervised pre-training followed by supervised fine-tuning”. In: Fron-
tiers in Neuroscience 12.AUG (Aug. 2018). issn: 1662453X. doi: 10.3389/fnins.
2018.00435.

[31] Vijaysinh Lendave. A Tutorial on Spiking Neural Networks for Beginners. Nov.
2021.

[32] Jiguang Lv, Wu Yang, and Dapeng Man. “Device-free passive identity identification
via WiFi signals”. In: Sensors (Switzerland) 17.11 (Nov. 2017). issn: 14248220. doi:
10.3390/s17112520.

[33] Yongsen Ma, Gang Zhou, and Shuangquan Wang. WiFi sensing with channel state
information: A survey. June 2019. doi: 10.1145/3310194.

[34] Yongsen Ma et al. “SignFi”. In: Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 2.1 (Mar. 2018), pp. 1–21. doi: 10.1145/
3191755.

[35] Sébastien Marcel and Yann Rodriguez. “Torchvision the machine-vision package of
Torch”. In: (2010). url: http://www.torch.ch.

[36] Pedro Melgarejo et al. “Leveraging directional antenna capabilities for fine-grained
gesture recognition”. In: UbiComp 2014 - Proceedings of the 2014 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing. Association for
Computing Machinery, Inc, 2014, pp. 541–551. isbn: 9781450329682. doi: 10.1145/
2632048.2632095.

[37] Gustavo B.M. Mello, Sofia Soares, and Joseph J. Paton. “A scalable population code
for time in the striatum”. In: Current Biology 25.9 (May 2015), pp. 1113–1122. issn:
18790445. doi: 10.1016/J.CUB.2015.02.036.

[38] Sushmita Mitra and Tinku Acharya. “Gesture recognition: A survey”. In: IEEE
Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews
37.3 (May 2007), pp. 311–324. issn: 10946977. doi: 10.1109/TSMCC.2007.893280.

31

[39] Kai Niu et al. “UnderstandingWiFi signal frequency features for position-independent
gesture sensing Transactions on Mobile Computing IEEE TRANSACTIONS ON
MOBILE COMPUTING 1 UnderstandingWiFi Signal Frequency Features for Position-
Independent Gesture Sensing”. In: (2021), pp. 1–16. doi: 10.1109/TMC.2021.
3063135{\"{i}}. url: https://youtu.be/o6IbReBig.

[40] Keiron O’Shea and Ryan Nash. “An Introduction to Convolutional Neural Net-
works”. In: (Nov. 2015). url: http://arxiv.org/abs/1511.08458.

[41] C H J M Oerlemans. The Effect of Data Preprocessing On the Performance of Few-
shot Learning for Wi-Fi CSI-based Gesture Recognition. Tech. rep.

[42] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: (2019).

[43] Fabian Pedregosa FABIANPEDREGOSA et al. “Scikit-learn: Machine Learning in
Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PE-
DREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830. url: http://scikit-
learn.sourceforge.net..

[44] Tomaso Poggio et al. “Why and when can deep-but not shallow-networks avoid the
curse of dimensionality: A review”. In: International Journal of Automation and
Computing 14.5 (Oct. 2017), pp. 503–519. issn: 17518520. doi: 10.1007/S11633-
017-1054-2. url: https://news.mit.edu/2017/explained-neural-networks-
deep-learning-0414.

[45] Nitin Rathi et al. STDP Based Pruning of Connections and Weight Quantization
in Spiking Neural Networks for Energy-Efficient Recognition. Tech. rep.

[46] Monika Schak and Alexander Gepperth. “Gesture MNIST: A New Free-Hand Ges-
ture Dataset”. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13532
LNCS (2022), pp. 657–668. issn: 16113349. doi: 10.1007/978-3-031-15937-
4{_}55/FIGURES/6. url: https://link.springer.com/chapter/10.1007/978-
3-031-15937-4_55.

[47] Jiacheng Shang and Jie Wu. “A robust sign language recognition system with mul-
tiple Wi-Fi devices”. In: MobiArch 2017 - Proceedings of the 2017 Workshop on
Mobility in the Evolving Internet Architecture, Part of SIGCOMM 2017. Associ-
ation for Computing Machinery, Inc, Aug. 2017, pp. 19–24. isbn: 9781450350594.
doi: 10.1145/3097620.3097624.

[48] Abdallah Sobehy, Eric Renault, and Paul Mühlethaler. “CSI-MIMO: K-nearest
neighbor applied to indoor localization”. In: (). url: https://hal.archives-
ouvertes.fr/hal-02491175.

[49] Ioana Sporea and André Grüning. “Supervised Learning in Multilayer Spiking Neu-
ral Networks”. In: Neural Computation 25.2 (Feb. 2012), pp. 473–509. doi: 10.
1162/NECO{_}a{_}00396. url: http://arxiv.org/abs/1202.2249%20http:
//dx.doi.org/10.1162/NECO_a_00396.

32

[50] Erik R Svensson. A comparison between Feed-forward and Convolutional Neural
Networks for classification of invoice documents. Tech. rep.

[51] Sheng Tan and Jie Yang. “WiFinger: Leveraging commodity WiFi for fine-grained
finger gesture recognition”. In: Proceedings of the International Symposium on Mo-
bile Ad Hoc Networking and Computing (MobiHoc). Vol. 05-08-July-2016. Associa-
tion for Computing Machinery, July 2016, pp. 201–210. isbn: 9781450341844. doi:
10.1145/2942358.2942393.

[52] Amirhossein Tavanaei et al. “Deep Learning in Spiking Neural Networks”. In: (Apr.
2018). doi: 10.1016/j.neunet.2018.12.002. url: http://arxiv.org/abs/
1804.08150%20http://dx.doi.org/10.1016/j.neunet.2018.12.002.

[53] The pandas development team. “pandas-dev/pandas: Pandas”. In: (Nov. 2022). doi:
10.5281/ZENODO.7344967. url: https://doi.org/10.5281/zenodo.7344967#
.Y8B9TLtB_Qk.mendeley.

[54] Hasmath Farhana Thariq Ahmed, Hafisoh Ahmad, and Aravind C.V. “Device free
human gesture recognition using Wi-Fi CSI: A survey”. In: Engineering Applications
of Artificial Intelligence 87 (Jan. 2020). issn: 09521976. doi: 10.1016/j.engappai.
2019.103281.

[55] Johannes C Thiele, Olivier Bichler, and Antoine Dupret. “SpikeGrad: An ANN-
equivalent Computation Model for Implementing Backpropagation with Spikes”.
In: ().

[56] Understanding RSSI. 2022.

[57] Raghav H. Venkatnarayan, Griffin Page, and Muhammad Shahzad. “Multi-user ges-
ture recognition using WiFi”. In: MobiSys 2018 - Proceedings of the 16th ACM In-
ternational Conference on Mobile Systems, Applications, and Services. Association
for Computing Machinery, Inc, June 2018, pp. 401–413. isbn: 9781450357203. doi:
10.1145/3210240.3210335.

[58] Aditya Virmani and Muhammad Shahzad. “Position and orientation agnostic ges-
ture recognition using WiFi”. In: MobiSys 2017 - Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services. Associa-
tion for Computing Machinery, Inc, June 2017, pp. 252–264. isbn: 9781450349284.
doi: 10.1145/3081333.3081340.

[59] Mei Wang and Weihong Deng. “Deep visual domain adaptation: A survey”. In:
Neurocomputing 312 (Oct. 2018), pp. 135–153. issn: 18728286. doi: 10.1016/j.
neucom.2018.05.083.

[60] William G. Wong. Wi-Fi Sensing: The Next Big Wireless Movement. Feb. 2022.

[61] Dan Wu et al. “WiFi CSI-based device-free sensing: from Fresnel zone model to
CSI-ratio model”. In: CCF Transactions on Pervasive Computing and Interaction
4.1 (Mar. 2022), pp. 88–102. issn: 25245228. doi: 10.1007/s42486-021-00077-z.

[62] Zheng Yang et al. Smart Wireless Sensing. Springer Singapore, 2021. doi: 10.1007/
978-981-16-5658-3. url: https://link.springer.com/chapter/10.1007/978-
981-16-5658-3_2.

33

[63] Yuqing Yin et al. “Towards fully domain-independent gesture recognition using
COTS WiFi device”. In: Electronics Letters 57.5 (Mar. 2021), pp. 232–234. issn:
1350911X. doi: 10.1049/ell2.12097.

[64] Daqing Zhang, Hao Wang, and Dan Wu. Toward Centimeter-Scale Human Activ-
ity Sensing with Wi-Fi Signals. Tech. rep. url: www.computer.org/computer-
multimedia.

[65] Daqing Zhang et al. “Practical Issues and Challenges in CSI-based Integrated Sens-
ing and Communication”. In: (Mar. 2022). url: http://arxiv.org/abs/2204.
03535.

[66] Yue Zheng et al. “Zero-effort cross-domain gesture recognition with Wi-Fi”. In:
MobiSys 2019 - Proceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services. Association for Computing Machinery, Inc,
June 2019, pp. 313–325. isbn: 9781450366618. doi: 10.1145/3307334.3326081.

[67] Qizhen Zhou et al. “A device-free number gesture recognition approach based on
deep learning”. In: Proceedings - 12th International Conference on Computational
Intelligence and Security, CIS 2016. Institute of Electrical and Electronics Engineers
Inc., Jan. 2017, pp. 57–63. isbn: 9781509048403. doi: 10.1109/CIS.2016.21.

[68] Augustinas Zinys, Bram van Berlo, and Nirvana Meratnia. “A domain-independent
generative adversarial network for activity recognition using wifi csi data”. In: Sen-
sors 21.23 (Dec. 2021). issn: 14248220. doi: 10.3390/s21237852.

34

