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Abstract - This report talks about the creation of a Python based evaluation engine for OpenML.
The creation of this evaluation engine in Python is necessary for OpenML to remain relevant. Fur-
thermore, the report discusses the applications of the Pareto optimal front for clustering evaluation.
It looks at the possibility of using the Pareto front to evaluate clustering models and to find the op-
timal combination of metrics for clustering model evaluation. To do this, a set of models was made
and evaluated with a set of metrics. The results of metrics were then plotted against each other and
using those points Pareto fronts were constructed. To find useful combinations of clustering metrics, the
Pareto hypervolume and the amount of Pareto efficient points were analysed. However, in the end these
methods for metric selection did not turn out to be a better alternative to the use of correlation. Using
the Pareto front it self for clustering evaluation turned out to be more promising. The plotted fronts
can give OpenML users a lot more insight into how models perform a certain task. It is a lot harder to
quantify this result though. These results could be used by the OpenML team to improve their website
and evaluation engine.
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1 Introduction
OpenML is an online Machine Learning(ML) platform, to which people can upload datasets, ML models,
pipelines and more. An OpenML team member describes the idea of the platform as follows: ’The core
idea is to have a single repository of datasets and results of ML experiments on them.’ [7]. Using the
provided datasets and tasks, people can perform their own machine learning experiments, and compare
their results to those of others on the platform. This can be very useful when studying-, experimenting
with-, and working with- machine learning.

The machine learning experiments are uploaded in the format of runs. Creating such a run is done
as follows. Firstly, OpenML creates a task, which specifies the train and test data and what should
be returned by the model. Secondly, an OpenML user downloads the task and applies their machine
learning algorithm on it. Any machine learning algorithm. Lastly, the user publishes their run, which
uploads their predictions to the OpenML server. When a run is published, The evaluation engine is
executed on the incoming results. This evaluation engine is a small software library that assesses results
with a series of evaluation metrics such as accuracy, precision etc. After this, the results of these metrics
are automatically uploaded to the OpenML server.

Currently the evaluation engine is implemented in Java, but to make sure it stays relevant within the
machine learning community it needs to be rewritten in Python. OpenML components are being rewrit-
ten in Python because it is more modern and it is starting to become a more widely used programming
language than Java [2] [11]. Rewriting the evaluation engine in Python will be the focus of this project.
The end goal of the project is a fully functional evaluation engine for OpenML that is well-documented,
extensible, practical, and scalable.

In addition to the creation of the evaluation engine, this report will also focus on finding a better
way to evaluate clustering tasks. To do this, it will be determined which metrics have an interesting
trade-off and deviate the most from each other for a certain clustering task. Meaning, a ’good’ score
for one of these metrics often causes a ’bad’ score for the other. To find these ’most interesting’ met-
rics, an approach using the Pareto optimal front will be explored. Using a combination of the found
metrics can provide a better way of evaluating the model. Furthermore, the Pareto front can help give
more insight into how well a model performs, because clustering metrics are often not as straight forward
as a percentage of correct predictions. In turn, this could help the users of OpenML create better models.

1.1 Research questions
For the analysis with the Pareto front a research question is defined, together with two sub-questions.

Research question: How can the Pareto front by implemented by OpenML to improve the evaluation
of clustering metrics?
Sub-question 1: How can the Pareto front be used for clustering metric selection?
Sub-question 2: How can the Pareto front it self be used for clustering evaluation?
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2 Background information
2.1 Basic Idea of the evaluation engine
The idea of the evaluation engine is to have a Python software package/ library, that can easily be used
to evaluate machine learning models. In turn, the OpenML website will then be able to publish the
evaluations, using this package. The package has to be a standalone product, meaning more parties
than just the OpenML website must be able to use it. Outside parties that wish to use the package will
still have to use parts of the existing OpenML library though, as the package is designed to evaluate
OpenML runs. To ensure the ability for others to use the package, it will be open source. Because the
package is designed to specifically evaluate OpenML runs, it will have to communicate with OpenML
servers to receive and publish data. This communication will run through the existing OpenML Python
API.

In addition to the OpenML software package, the evaluation engine package will also build on a
variety of different existing libraries such as: pandas, numpy and scikit-learn. The use of established
packages will help improve extensibility and maintainability, and it will make the package easier to
understand. This is because it allows the package to use functions that are known to be correct and
efficient. Furthermore, it prevents extensive coding to define and update functions from scratch.

2.2 Clustering and evaluation
Clustering can be described as follows: ’clustering, or cluster analysis, refers to the process of organizing
objects into groups whose members are similar with respect to a similarity or distance criterion. As such,
a cluster is a collection of similar objects that are distant from the objects of other clusters. Unlike most
classification techniques that aim to assign new observations to one of the many existing groups, cluster-
ing is an exploratory procedure that attempts to group objects based on their similarities or distances
without relying on any assumptions regarding the number of groups.’ [5]

Clustering falls under unsupervised learning, which means that, during training, models do not have
access to the variable they are trying to predict. Furthermore, the true values of this target variable
sometimes do not even exist. This creates the need for other types of metrics that also don not require
a target variable to be present. Interpretation of those types of metrics is often less intuitive. The book
’Introduction to Information Retrieval’ gives a general description of such metrics: "Typical objective
functions in clustering formalize the goal of attaining high intra-cluster similarity (documents within a
cluster are similar) and low inter-cluster similarity (documents from different clusters are dissimilar).
This is an internal criterion for the quality of a clustering." [6]

2.3 The Pareto front
During multi-objective optimization (MOO) there is always a trade-off between a set of objective func-
tions. For example, making an algorithm more accurate also makes it slower and vice versa. A situation,
in which increasing one objective function is not possible without decreasing another, is called a non-
dominated solution or Pareto efficient. "A solution where an objective function can be improved without
reducing the objective function of the other is called non-Pareto optimal solution" [4]. The Pareto front
is the set of Pareto efficient solutions to the optimization problem. The best of an objective function
is given on a graph as an anchor point. The best possible situation is given by the utopia point. The
point on the Pareto front that is closest to the utopia point, is considered to be the optimal value of the
Pareto front (point ’p3’ in figure 2.1a). Depending on the scaling of the metrics and preference of the
creator, the front can be concave or convex. A visualization of such a convex Pareto front can be seen
in figure 21a. A visualization of a concave Pareto front can be seen in 2.1b.
Looking at the curve of the Pareto front can help show how correlated objective functions are. In addi-
tion, a steep curve makes it fairly easy to find the optimal solution, while a more gradual trade-off might
require the user to think more about how they want the model to perform. Therefore, if evaluation
metrics were taken as objective functions, the Pareto front could help select clustering evaluation metrics
and optimize models.
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(a) Convex Pareto front example (b) Concave Pareto front example

Figure 2.1: Examples of Pareto fronts

3 Methodology
3.1 Creating the evaluation engine
During the development of the machine learning engine there are a few important factors to take into
account. The engine needs to be well-designed, well-implemented, well-tested, well-documented, scal-
able, and extensible. These key points were taken into account throughout the creation of the evaluation
engine and have helped achieve a working Python package.

3.1.1 Package structure

The package loads all of the data from a certain run into a placeholder object, using the existing OpenML
Python API. This placeholder object firstly saves all of the data from the run, for example predictions,
true values, and row-indices. Secondly, the placeholder object stores a lot of information provided by
OpenML, like run ID, task type, etc. The object it self is created using a Python class that takes a run
ID as argument. Furthermore, this class also contains the function used to run evaluation metrics for the
inputted run. Running this function outputs all of the relevant metrics for the inputted OpenML run.
The results of all metrics can be outputted at once, or the result of one specific metric can be called. To
do this all of the metrics are categorized by what type of task they can be used for.

Next to the placeholder object class, there is a second very important class in the package. Namely,
the class containing all of the evaluation metrics. This evaluation metrics class is a child class to the
placeholder object class (Parent class). That means the class inherits all of the properties and methods
from the placeholder object class. The evaluation metrics class inheriting all of these properties and
methods, means it is very easy to use data from the loaded run. The metric functions can then very
easily be applied to the data.

To maintain consistency in the structure of the evaluation engine and to keep the structure as simple
as possible, Cookiecutter is used. According to the website Cookiecutter works roughly as follows: It
takes an example directory and a settings file that have been provided and then outputs a directory
structure [10]. The structure provided by Cookiecutter was used to make a start to the project and it
is used to keep consistency throughout development. A consistent structure is key for the extensibility
and scalability of the package.

To ensure that the package does not become extensively hard coded and to make sure it remains
easily updatable, metrics from established packages are used as much as possible. These metrics largely
originate from the scikit-learn package. For the rest a variety of libraries, like pandas and arff, are used
for data loading and processing. scipy and numpy are used for statistical and mathematical operations
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3.1.2 Testing

To make sure the software package is robust and has consistent output, extensive testing is performed.
This testing is done with the Pytest package. Figure 3.1 shows the structure in which the testing is
performed.
Firstly, the Placeholder object is tested. The test consists of multiple checks to see if the object’s
attributes are valid, for example, to see whether a run’s task type is supported by OpenML. Once the
placeholder testing is complete, a test on the evaluation metrics class is performed to see which metrics
have been implemented. This is necessary because all of the metrics from the OpenML website have
been included in this class, but not all of them are fully implemented. Checking implementation is very
straight forward, since all unimplemented metrics will raise a ’not implemented’ error when they are
used. With this second test, a list can be constructed of all implemented metrics that can be tested
further. Lastly, a test is performed to see whether the metrics of the new evaluation engine have the
same output as those of the old evaluation engine. To do this, the test iterates over random runs and
evaluates them until all metrics have at least been run once. Iterating over runs is necessary because not
all metrics are compatible with all task types. Iterating over random runs makes it so that runs from all
task types can be evaluated.

Figure 3.1: Structure of performed pytests

3.1.3 Documentation

Documentation is mainly done using docstrings. These docstrings contain a short description of the
function or class, the input it takes and the output it gives. This makes it easiest for others to understand
and use these functions. Using docstrings also conforms to the coding standards required by OpenML.
To make sure all documentation can be found in one place and to make it easily accessible, sphinx is
used. "Sphinx is a tool that makes it easy to create intelligent and beautiful documentation" [1]. Sphinx
allows the output of the package’s documentation in HTML, LaTeX, ePub, Texinfo, manual pages, and
plain text.

3.2 Clustering metric selection
When working on clustering tasks either one evaluation metric or a combination of multiple metrics
can be used to evaluate the model. Using a combination of metrics that have a large correlation will
be very uninformative, as the output of both metrics will change similarly when the model is altered.
This also means that optimizing the model, using highly correlated metrics, might lead to a sub optimal
model. Therefore, a combination of metrics that have a small correlation will work best for effective eval-
uation and optimization of the model. In this section the selection process of the metrics will be discussed

3.2.1 Preparation and models

Throughout the duration of this Bachelor End Project, only one existing clustering run was available on
the OpenML website. Furthermore, it was impossible to create new clustering runs or tasks with the
OpenML API due to errors in the OpenML system. This meant fitted clustering algorithms had to be
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created and evaluated ’manually’. The models had to cluster the iris dataset. This dataset can easily be
imported into any Python project, using the Scikit-learn package. The iris dataset contains information
on different types of irises, a type of flower. The datasets contains ’Sepal Length’, ’Sepal Width’, ’Petal
Length’ and ’Petal Width’ as variables and the actual type of iris as target variable. A few different
types of algorithms were used to perform the clustering task on this dataset. Also for each different
algorithm a few models were created with different parameters. A table of all algorithms and their sets
of parameters can be found in the appendix in table A.1.

The first algorithm is ’K-Means clustering’, which consists of the following 3 steps according to
Scikit-learn: "The first step chooses the initial centroids, with the most basic method being to choose
k samples from the dataset X. After initialization, K-means consists of looping between the two other
steps. The first step assigns each sample to its nearest centroid. The second step creates new centroids
by taking the mean value of all of the samples assigned to each previous centroid. The difference between
the old and the new centroids are computed and the algorithm repeats these last two steps until this
value is less than a threshold. In other words, it repeats until the centroids do not move significantly." [9].

The second clustering algorithm used is DBSCAN (Density-Based Spatial Clustering of Applications
with Noise). Unlike k-means clustering, which only really allows clusters to be convex shaped, DBSCAN
allows clusters to have any shape. This is because DBSCAN views clusters as areas of high density
separated by areas of low density. According to DBSCAN, a cluster is a set of core points combined with
set of non-core points that are close to a core point. To be considered a core point, a sample needs to
be less than Epsilon away from a minimum amount of other points. Epsilon and the minimal amount
of other points are parameters defined during creation of the model. Epsilon stands for the maximum
distance between two points. The number of clusters does not need to be specified before running the
model. The algorithm works by iterating over all points and checking whether it is a core point, non-core
points are labelled as noise. If a sample is a core point, the algorithm iterates over all points that are
close to the core point. Noise close to the core point will simply receive the same label as the core point.
If a point close to the newly discovered core point is a core point as well, the algorithm will recursively
iterate over all points close to that core point.

The third clustering method that was used is the MeanShift algorithm. MeanShift aims to find
clusters in smooth distributions of samples by finding local density maxima. To do this a kernel moves
through the feature space. The kernel moves by moving it’s centre to the mean of all of the points
within the kernel. The kernel no longer moving means that a candidate centroid has been found. After
the discovery of all candidate centroids, post-processing is performed. During this process, candidate
centroids that are too close to each other are removed so that only one of them remains. The remaining
candidates form the final set of cluster centroids.

The last used clustering algorithm is Affinity Propagation. This is a graph based clustering algorithm.
It does not require the number of clusters to be specified before running the algorithm. The functioning
of the algorithm can, according to Scikit-learn be described as: "AffinityPropagation creates clusters by
sending messages between pairs of samples until convergence. A dataset is then described using a small
number of exemplars, which are identified as those most representative of other samples. The messages
sent between pairs represent the suitability for one sample to be the exemplar of the other, which is
updated in response to the values from other pairs. This updating happens iteratively until convergence,
at which point the final exemplars are chosen, and hence the final clustering is given."[9]

3.2.2 Evaluation

Because of the nature of unsupervised learning, it is possible to fit a model on the same data you are
predicting. Unsupervised learning methods will not run into the same over-fitting issues that occur dur-
ing supervised learning. This is because, during unsupervised learning, the target value is not provided.
For the scope of this project, that means it is fine to predict the labels of the data on which the model
was fitted. Which is exactly what was done. Each model’s predictions were put into a data frame. Each
column in this data frame represents a model. This allows for easy comparison between the actual labels
and the assigned labels.
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All Scikit-learn clustering metrics, that could be run with just true values and predictions, were ran
on the predictions data frame and the target values. This created the list of used metrics seen in figure
3.2. The descriptions of these metrics are provided by the Scikit-learn website [8]. The outputs of these
metrics were stored in a data frame as well. This data frame was constructed as follows. Each metric
was run on the predicted labels of all models, forming a list of all results of that metric. Such a list was
then added to the data frame in a column named after the metric. The final data frame then contains
all metrics with their outputs for all models.

Figure 3.2: Table of used metrics with description

3.2.3 Scaling

To find out which metrics could be used for further analysis, the type and range of the metric outputs
need to be checked. All columns are checked to confirm they only contain numbers between 0 and 1. The
algorithm that performs these checks, outputs the names of the columns that do not pass them. These
columns can then be scaled or removed form the data frame. In this case, three metrics were returned:
’homogeneity_completeness_v_measure’, ’mutual_info_score’, and ’pair_confusion_matrix’.

The ’homogeneity_completeness_v_measure’ simultaneously returns three metrics, that have also
been included in the evaluation individually. Therefore, it does not make sense to scale this metric and
include it in the analysis.
The ’mutual_info_score’ metric had outputs greater than one, which would mean it had to be scaled.
However, a metric that was also computed is the ’normalized_mutual_info_score’, which is the scaled
version of the ’mutual_info_score’. This means it is also unnecessary to perform scaling on the ’mu-
tual_info_score’, as it would just lead to a duplicate column.
The last metric that could not be used as it is, is the ’pair_confusion_matrix’. While there are opera-
tions that turn a metric into one number, there did not seem to be a feasible way to scale the matrix to
one number. This is also because some very important information given by a matrix, is determined by
ratio’s and positions of numbers. This information would no longer be accessible after scaling the matrix
to one number. For these reasons, the ’pair_confusion_matrix’ was also not scaled.
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This means that in the end none of the metrics, that were not usable in their original form, were used
for further analysis. Consequentially, they were dropped from the data frame.

3.2.4 Correlation analysis

Before finding the most interesting trade-offs using the Pareto front, some preliminary analysis is done.
This preliminary analysis basically meant checking the correlations between all metrics. To do this, a
correlation matrix is made. This was done using a standard Pandas function. This matrix was turned
into a heatmap, which can be seen in figure 3.3.

The correlation metric can be turned into a table with three columns: one for the first metric, one
for the second metric and one containing the correlation between these metrics. This table can then be
ordered so that the smallest correlations are at the top of the table. This helps when selecting which met-
rics to plot the Pareto front for. A function is used to remove duplicates from this table. As mentioned
before, highly correlated metrics will likely not have a very interesting trade-off. Therefore, knowing
correlations helps determine which combinations of metrics are actually useful to see plotted as a Pareto
front.

Figure 3.3: Correlation matrix as heatmap

3.2.5 Analysis with the Pareto front

The metrics can be used to represent an x and y coordinate, thus allowing clustering runs to be plotted
as points. One metric is plotted on the x-axis and another on the y-axis. These points can be visu-
alized using a scatter plot, which will in turn also make visualization of the Pareto optimal front possible.

For the construction of the Pareto optimal front, Pareto efficient points(clustering models) need to
be found. Finding the Pareto efficient points is done as follows. An algorithm iterates over all of the
points in the set. Each iteration the algorithm checks whether there are points with both a higher x-
and y-coordinate, than the point that is being iterated over. If there are no points more efficient, the
iterated over point is added to the list of Pareto efficient points. Next, anchor points need to be estab-
lished. These anchor points are found by taking the best score for one objective function as one of the
coordinates and zero as the other (see definition in section 2.3). Together, the anchor points and the
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Pareto efficient points for the Pareto optimal front. Visualizations of these fronts can be seen in figure 4.1

After construction, Pareto fronts can be compared using their hypervolumes, the area under the
curve. To do this, all points in the front are exported along with the (0, 0) point. All of these points
together are inputted into the ’geometry.Polygon()’ function from the shapely package. The purpose of
the shapely package is "set-theoretic analysis and manipulation of planar features" [3]. In this case, the
’geometry.Polygon()’ function turns the Pareto front into a 2d shape. Most importantly, it also calculates
the area of that shape, the Pareto hypervolume, and saves it as an element of the shape. This area can
then be outputted very easily as result or for further analysis.

Another way of analysing the Pareto front is by looking at the amount of points that lie on the front.
This could give an insight into how many points are considered to be efficient and if a lot of points are
efficient the trade-off will very likely be more interesting. To do this the length of the vectors containing
the coordinates are obtained using the function that was also used for creating the Pareto front. All
code used during construction of the Pareto front can be found in section A.1 in the appendix.
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4 Results
4.1 Evaluation engine
The results of the creation of the package are quite straightforward. The package was created and could
in theory be used by the OpenML website. Not all are (fully) functional, however more metrics can be
integrated fairy easily as the evaluation engine was created to be scalable.

4.2 Clustering metric selection
Two of the constructed Pareto fronts are shown in Figure 4.1. A clear difference can be seen between
the front of two metrics with a very high correlation and the front of the metrics with a low correlation.
The front of two metrics with a high correlation shows no trade-off between the two metrics, as there
is one point performing best with regard to both metrics. The Pareto front of the two metrics with the
least correlation shows a trade-off that is a lot more diverse. It shows that plotting the Pareto front of
barely correlated metrics gives a lot more insight into the different performances of models. Plotting the
Pareto front of highly correlated metrics on the other hand, only showcases which models are ’better’
than others.

(a) Pareto front of metrics with correlation = 1.00 (b) Pareto front of metrics with correlation = 0.13

Figure 4.1: Pareto fronts for metrics

There is also a difference in the hypervolumes. The low correlation front has an area of 0.81 while
the high correlation front has an area of 0.66 (no measurement unit provided because area is calculated
through graph coordinates). This does however not mean that highly correlated metrics automatically
have a small hyper volume. For example, when a model performs very well for one metric and that
metric is highly correlated with another, the area of their Pareto front could be very large. The relation
between the correlations of metrics and the area of their Pareto front is show in a scatter plot in figure
4.2a. The correlation between the correlations of metrics and the hypervolumes of the same metrics is
−0.72. This does indicate that metrics with a high correlation will generally have a Pareto front with a
smaller hypervolume. All of the hypervolumes and correlations per metric combination can be seen in
Table A.2 in the Appendix.

Another way the Pareto front was analysed, was through the amount of points on the Pareto front.
The relation of the metric correlations and the amount of points on the Pareto front can be seen in
figure 4.2b. The correlation in this case is −0.88, which means it is an even stronger negative correlation
than that of the hypervolumes. Having more points on the Pareto front also means that the front is
likely to be more curved, as the efficient points can not all be in the same spot. This means finding the
amount of points on the front is likely a better way of evaluating a trade-off than calculating the Pareto
hypervolume.
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(a) Relation between metric correlations and hypervol-
umes

(b) Relation between metric correlations and the amount
of points on the pareto front

Figure 4.2: Pareto fronts for metrics

5 Discussion
The clustering metric selection analysis has created some useful insights. Firstly, the Pareto hyper-
volumes are quite highly correlated with the correlations between metrics. According to this analysis a
higher hypervolume will very likely indicate a more interesting trade-off between metrics. However, using
Pareto hypervolumes to find out which metrics have an interesting trade-off is not a fail safe method.
This is because metrics without an interesting trade-off can still generate a large Pareto hypervolume.
Moreover, using Pareto hypervolumes is less efficient than just using correlations between metrics, while
it does not seem like a better way of finding interesting trade-offs between metrics.

Looking at the amount of Pareto efficient points, seems like a better way of finding interesting trade-
offs as it is less susceptible to highly correlated metrics causing outliers. Also, counting the amount of
Points on the Pareto efficient front actually gives some insight into what the front looks like. This would
make it a better option for metric selection than using hypervolumes, though it does not look that much
more promising than just using the correlation.

In the end, constructing and plotting the Pareto front seemed most useful for the OpenML user,
because they can look at it and see how different models perform. This will allow them to work on a
tasks with some useful knowledge about how their model and models of others perform.

5.1 Limitations
During both the analysis of clustering metrics and the creation of the package, there were some issues
with the OpenML API. Most of them were resolved swiftly, however some them were not. An issue
with clustering tasks meant all models had to be newly created and were not in a real ’run’ format.
Consequentially, the used data set was fairly small and contained the results of only twenty models. API
issues also remove the possibility to create some integration of the Pareto front for the OpenML website.

Some limitations of the OpenML API also made it so that not all metrics could be implemented. Fur-
thermore, some metrics could not be compared to correct results, because they had no existing OpenML
implementation.

6 Conclusion
To bring this final bachelor project report to an end, the evaluation engine and research questions will
be discussed. The evaluation engine does not warrant much of a conclusion, since no ’real research’ was
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conducted. However, the development of the evaluation engine did bring many challenges with it. In the
end almost all of these challenges were overcome and a satisfactory evaluation engine was created.

This research provided the following answers to the research question and sub-questions stated in the
introduction. Firstly, The Pareto front can be used for the selection of clustering metrics by calculating
and comparing Pareto hypervolume or by counting and comparing the number of Pareto efficient points.
However, these methods do not seem to be optimal.
Secondly, Plotting the Pareto front seemed to be a very promising way to evaluate clustering models, as
it provides the OpenML user with useful insights into model performance.
Finally, answering the main research question, the Pareto front can best be used by OpenML to give in-
sight into the performance of clustering models. This can be done through construction and visualization
of the Pareto front.

6.1 Recommendations
Selecting combinations of clustering metrics can best be done using correlations between metrics. It
could be very useful to integrate some function into the OpenML website, that shows the correlation of
all metrics that have been used to evaluate runs for a specific task. Such a function could be very helpful
when selecting the metrics with which to optimize the model.
Building on this function that shows correlations, a function that constructs the Pareto front for selected
metrics can really help give insight into any machine learning task. It will show what models work well
and what limitations and trade-offs to keep in mind when starting or working on a task.
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A Appendix
A.1 Personal contribution
Throughout construction of the evaluation engine I have had a variety of responsibilities. I was in-
volved in implementation of metrics and providing those metrics with documentation. Furthermore, I
contributed to the testing with Pytest and creation of the placeholder object class. Lastly, I spent wuite
some time doing general debugging.

A.2 tables

K-Means n_clusters = 2
n_clusters = 3
n_clusters = 4
n_clusters = 5

DBSCAN eps=0.25, metric=’euclidean’
eps=0.25, metric=’manhattan’
eps=0.25, metric=’l2’
eps=0.50, metric=’euclidean’
eps=0.50, metric=’manhattan’
eps=0.50, metric=’l2’
eps=0.75, metric=’euclidean’
eps=0.75, metric=’manhattan’
eps=0.75, metric=’l2’

MeanShift no parameters specifies
bandwidth = 0.5
bandwidth = 1.0
bandwidth = 1.5

AffinityPropagation damping = 0.5
damping = 0.75
damping = 0.95

Table A.1: All models used for the analysis
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metrics hypervolumes correlations
0 [completeness_score, homogeneity_score] 0.809887 0.128571
1 [completeness_score, rand_score] 0.823846 0.479588
2 [fowlkes_mallows_score, homogeneity_score] 0.756245 0.531706
3 [completeness_score, adjusted_rand_score] 0.675218 0.605797
4 [completeness_score, v_measure_score] 0.714932 0.686452
5 [completeness_score, normalized_mutual_info_sc... 0.714932 0.686452
6 [completeness_score, adjusted_mutual_info_score] 0.711873 0.700762
7 [adjusted_mutual_info_score, homogeneity_score] 0.698076 0.778907
8 [fowlkes_mallows_score, rand_score] 0.722091 0.787485
9 [homogeneity_score, normalized_mutual_info_score] 0.701876 0.793728
10 [homogeneity_score, v_measure_score] 0.701876 0.793728
11 [fowlkes_mallows_score, completeness_score] 0.773755 0.804510
12 [adjusted_rand_score, homogeneity_score] 0.666560 0.805580
13 [fowlkes_mallows_score, v_measure_score] 0.622317 0.872151
14 [fowlkes_mallows_score, normalized_mutual_info... 0.622317 0.872151
15 [fowlkes_mallows_score, adjusted_mutual_info_s... 0.619808 0.879706
16 [homogeneity_score, rand_score] 0.821187 0.892425
17 [fowlkes_mallows_score, adjusted_rand_score] 0.599385 0.907797
18 [adjusted_mutual_info_score, rand_score] 0.664302 0.956298
19 [v_measure_score, rand_score] 0.666991 0.961383
20 [rand_score, normalized_mutual_info_score] 0.666991 0.961383
21 [adjusted_rand_score, adjusted_mutual_info_score] 0.551417 0.969519
22 [adjusted_rand_score, normalized_mutual_info_s... 0.553649 0.969920
23 [adjusted_rand_score, v_measure_score] 0.553649 0.969920
24 [adjusted_rand_score, rand_score] 0.642414 0.971860
25 [adjusted_mutual_info_score, normalized_mutual... 0.572513 0.999475
26 [adjusted_mutual_info_score, v_measure_score] 0.572513 0.999475
27 [v_measure_score, normalized_mutual_info_score] 0.574830 1.000000

Table A.2: All hypervolumes and correlations

A.3 Pareto front code

import numpy as np
import pandas as pd
from shape ly . geometry import Polygon

class Pareto ( ) :
" " " a c l a s s con ta in ing a l l f u n c t i o n s f o r the cons t ruc t i on o f the pare to

f r o n t

Input : A l i s t o f x coord ina t e s and a l i s t o f y coord ina t e s " " "

def __init__( s e l f , X, y ) :
s e l f .X = X
s e l f . y = y

def p a r e t o _ e f f i c i e n t ( s e l f ) :
" " "A func t i on to f i n d a l l a f the po in t s in the s e t o f po in t s t h a t

are pare to e f f i c i e n t . " " "

e f f i c i en t_X = [ ]
e f f i c i e n t _ y = [ ]

for i in range ( len ( s e l f .X) ) :
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more_e f f i c i en t = [ t for t in range ( len ( s e l f .X) ) i f ( s e l f .X[ t ] >
s e l f .X[ i ] and s e l f . y [ t ] > s e l f . y [ i ] ) ]

i f len ( more_e f f i c i en t ) == 0 :
e f f i c i en t_X . append ( s e l f .X[ i ] )
e f f i c i e n t _ y . append ( s e l f . y [ i ] )

#s o r t i n g by x coord ina t e s f o r l a t e r convenience
xs_ef f , y s_e f f = zip (∗ sorted ( zip ( e f f i c i ent_X , e f f i c i e n t _ y ) ) )
xs_ef f , y s_e f f = l i s t ( xs_e f f ) , l i s t ( ys_e f f )

return xs_ef f , y s_e f f

def anchor_points ( s e l f ) :
" " "A func t i on to f i n d the anchor po in t s o f the curren t s e t f o r

cons t ruc t i on o f the pare to f r o n t . " " "

anchor_X = [ 0 , max( s e l f .X) ]
anchor_y = [max( s e l f . y ) , 0 ]

return anchor_X , anchor_y

def f r o n t i e r ( s e l f ) :
" " "A func t i on t h a t uses the anchor po in t s and Pareto e f f i c i e n t

po in t s to cons t ruc t the
e n t i r e s e t o f po in t s t h a t forms the Pareto opt imal f r o n t i e r . " " "

frontier_X , f r ont i e r_y = s e l f . p a r e t o _ e f f i c i e n t ( )
anchor_X , anchor_y = s e l f . anchor_points ( )

f ront ier_X . i n s e r t (0 , anchor_X [ 0 ] )
f ront ier_X . append ( anchor_X [ 1 ] )

f r on t i e r_y . i n s e r t (0 , anchor_y [ 0 ] )
f r on t i e r_y . append ( anchor_y [ 1 ] )

return frontier_X , f r ont i e r_y

def hyper_volume ( s e l f ) :
" " "A func t i on t h a t uses the f r o n t i e r to f i n d the Pareto f r o n t hyper

volume ( the area behind the f r o n t i e r ) " " "
frontier_X , f r ont i e r_y = s e l f . f r o n t i e r ( )

#frontier_X . append (min( s e l f .X) )
#fron t i e r_y . append (min( s e l f . y ) )
f ront ier_X . append (0)
f r ont i e r_y . append (0)

Front i e r = zip ( frontier_X , f ron t i e r_y )

return Polygon ( Front i e r ) . area
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