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Abstract

This paper introduces a multiply robust imputation framework, Multiply-Robust-KNN-RF, for
addressing the missing data problem in mixed-type data with a binary outcome variable. k-NN
and Random Forest algorithms are combined in this framework to support multiple imputations
and provide protection against model misspecification. Extensive testing on several mixed-type
datasets, followed by an evaluation of the model’s performance compared to other single model
multiple imputation methods based on a variety of different performance metrics. The proposed
method exhibits slightly lower average bias, with a slightly higher average standard error relative
to the comparison methods. The Multiply-Robust-KNN-RFmethod, in general, provides a reliable
way for handling missing data in mixed-type datasets with a binary outcome variable and demon-
strates to be competitive in performance compared to other single model multiple imputation
methods.
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1 Introduction

During data collection, researchers inevitably deal with missing observations. This can happen due

to various reasons, with item nonresponse being a common reason [1]. Item nonresponse is when

a unit respondent opts to provide an incomplete data entry, choosing not to answer one or more

survey items [2]. This leads to missing data, which poses a problem for researchers. Furthermore, it

is critical to investigate whether these missing observations cause bias because this can significantly

affect the inferences that can be made from the data, complicating the analysis of the study [3].

To know this, it is important to understand which type of missing data we are dealing with.

1.1 Literature Review

Missing Data Mechanisms

First of all, we have missing completely at random (MCAR). This is described as the probability

that it is not related to any other data characteristic and occurs when the missing data is a random

subset of the entire sample. MCAR is the ideal situation as most techniques for handling missing

data give unbiased results, however making the assumption that the data is MCAR is unreasonable

[4, 5]. Next, we have missing at random (MAR). MAR refers to the likelihood that a data point

will be missing is correlated with the observed data. This implies that the values of other observed

variables in the data collection can be used to account for the missing data. This is a much more

reasonable assumption to make compared to MCAR. If the missing data is neither MCAR nor

MAR, then it is missing not at random (MNAR). MNAR refers to the likelihood that a data point

will be missing is correlated with the actual missing data. This implies that none of the other

observed variables in the data set can account for the missing data. It is important to note the

distinction between MAR and MNAR as it can affect the validity of statistical analysis. If MAR,

the analysis’ validity can still be maintained because it is possible to use statistical methods to

account for missing data. If MNAR, this might not be possible, which means that the results

might be biased.

Methods for Missing Data

Early Developments

To prevent working with missing values, researchers have historically ignored the problem and

used complete-case (CC) analysis [6]. Subjects with missing values for any of the model’s vari-

ables are typically excluded from multivariable modelling in common software programs [7]. This

is an approach where listwise deletion is performed on entries that have at least one missing value,

leaving only complete cases. But when a sizable part of the data is missing, this approach decreases

sample size, making predictions less accurate and statistical tests less powerful [8, 9]. The tech-

nique depends on the MCAR assumption because only under MCAR are the parameter estimates

consistent. If MCAR conditions are not met, the method can produce biased parameter estimates.

The issue is that it does not generate the minimum squared errors for a particular sample size and

ignores potentially systematic differences between complete and incomplete cases.
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Other missing-data handling techniques were developed to try to preserve the availability of data

and maintain statistical power, such as the missingness indicator method (MIM). In this method, a

new binary indicator is created to indicate whether the value of an explanatory variable is missing

[10, 7]. However, despite the benefit of being able to use all available information in the analysis,

the method can be quite flawed. This technique is prone to substantial bias as well as inefficiency

when missing values are MAR [11]. Even when missing data is MCAR, it can result in biased

associations of the original variables and outcome [4].

Imputation Techniques

Besides the aforementioned methods for handling missing values, there exist other strategies that

involve imputation. This more sophisticated method of handling missing data can be divided into

two categories: statistical and machine learning based methods [12]. Frequently used statistical

based techniques are mean/mode imputation, simple regression based imputation and expectation

management (EM). To start off with simple mean imputation, the average value of a missing at-

tribute across all observed data (overall sample mean) is used as the imputed value. For the mode

imputation, the missing attribute values are filled in by using the attribute value that occurs the

most frequently in all of the observed data. Although these simple imputation techniques offer

quick and easy ways to fill in missing values, concerns about the distortion of a variable’s distri-

bution, underestimation of variability, and compromise of relationships between variables emerge

[13]. In simple regression, a variable with missing values acts as the dependent variable in a least

squares regression equation, and other reliable factors in the data set are used to predict the

missing value. As imputed values may be less accurate if predictor variables are not adequately

correlated with variables having missing data, relevant variables must be at least fairly correlated

with the variable with missing instances [14]. Just as with mean/mode imputation, underestima-

tion of variation is a limitation to the simple regression imputation method. The EM algorithm

handles issues with missing data by taking a maximum probability strategy. The algorithm is a

two step iterative approach where the E-step computes the distribution for the missing data using

the known values for the observed data and the current parameter estimates; and the M-step

updates these parameter estimates using the maximum likelihood approach [12, 15]. The param-

eter estimates may not be robust however due to some outcome model misspecifications. This is

because the information contained in missingness probabilities is ignored by this method, which

only depends on the information from a working model predicting the missing values [11].

Frequently used machine learning based techniques are k-NN, cluster analysis and random forest.

In k-NN, the missing value is imputed using a statistical measure (such as the mean) of the k-

nearest data points to that data point with the missing value. In cluster analysis, the missing

value is imputed by first identifying cluster centroids after grouping a set of related objects into

the same cluster, then computing the distance between the missing value and the identified cluster

centroids, and finally using the value of the closest centroid as the imputed value. In random

forest, multiple decision trees are built using the bootstrapping method and depending on the

type of missing value (numerical or categorical), the final predictions are provided by the average

or majority votes of each tree’s estimate. Further details on k-NN and Random Forest in sections

2.1 and 2.2, respectively.
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Multiple Robustness

These methods are used to create complete data sets so that statistical analyses can be run on

these complete data sets. Imputation methods can be implemented in various ways. Specifically,

single-value imputation techniques determine what each missing value might have been and impute

that value to the data set in place of a single value, outputting a single completed data set [16].

Statistical analyses are then performed on this single complete data set. The outcome of multiple

imputation techniques, on the other hand, results in m ≥ 2 separate complete data sets where the

results are then pooled after analysis is performed on each one of the m data sets separately [17].

This approach can be preferred over single imputation in some applications as it better captures

the variation in missing data imputation.

The imputation procedure also allows for the simultaneous fitting of multiple models. Multiple

robustness refers to this concept, which was developed to counteract model misspecification [18].

Model misspecification refers to all the potential ways that the model could fall short of accurately

capturing the current situation. Since any model is only an approximation of reality, it is inevitable

to come across misspecified models [19]. This can lead to biased parameter estimates and error

terms as a result. When an imputation method is consistent if any one of those models is correctly

specified, it is referred to as being multiple robust. By doing this, protection against model

misspecification is provided. However, even when inconsistent, these multiply robust procedures

still have a tendency to have good numerical performance, even if all models are incorrectly

specified. Typically, procedures based on a single model do not work like this.

1.2 Scope

The aims of this study are to (1) introduce a multiply robust method combining multiple k-NN and

Random Forest models for missing binary data imputation on mixed-type data and (2) evaluate

the performance of this proposed method compared to single model multiple imputation methods

on selected data sets. The motivation to use feature encoded k-NN imputation and Random Forest

imputation in the proposed method is because these algorithms should, in theory, be able to handle

mixed-type data and are fairly accurate and robust. Furthermore, this method supports only

supervised classification tasks. This paper then aims to address the following research question:

To what extent does the performance of a multiply robust method combining multiple k-

NN and Random Forest imputation methods differ in comparison to the performances

of other single model multiple imputation methods, for the imputation of missing binary

outcome observations on mixed-type data?
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2 Methodology

In this section, the missing data problem is addressed using a general multiply robust imputation

framework on mixed data with a binary outcome variable based on machine-learning missing data

imputation techniques. Specifically, k-Nearest Neighbours and Random Forest are used within this

framework. For each method, the theoretical implementation is described as well as its extension

to produce multiple imputations. Aside from this general framework, Multivariate Imputation by

Chained Equations is presented as one of the comparison methods.

In this study, a univariate pattern of categorical data is assumed. This means that given an n× p

data matrix, let X denote the observed variables in the data set, and let Y be the binary target

variable. Y can be partitioned even further into Y obs, the observed set of values in Y , and Y mis,

the missing set of values in Y . Let R be a n× p response indicator matrix where elements rij = 0

if Y is missing and rij = 1 if Y is observed. We can assume that the data are Missing Completely

at Random (MCAR). This is a special case of MAR, where the likelihood of missingness does not

depend on either Y obs or Y mis [20, 21]. If MCAR is assumed, then the missing data is viewed

as a random sample of the complete data set. This gives that the distribution of R is modelled

as follows: P (R|Y obs, Y mis, ξ) = P (R|ξ), with ξ representing some unknown parameters denoting

the relationship between R and Y [22].

2.1 k-Nearest Neighbours

kNN algorithms are similarity-based techniques that rely on distance measurements to impute

missing data. The Minkowski norm is a popular metric for measuring the distance: (Σn
i=1|xi −

yi|p)1/p. The Euclidean distance is obtained from the Minkowski norm when p = 2, which will

be used in the remained of this study when discussing k-NN methods [23]. For this research, the

method used makes a slight modification to the Euclidean distance metric by introducing a weight,

denoted as follows:

dist(xi, yi) = (weight× ((Σn
i=1|xi − yi|2)1/2), where weight = total # coordinates in xi

# of nonmissing coordinates in yi

To note, this formula is a general case where multiple values can be missing in multiple columns.

As stated previously, a univariate pattern of categorical data is assumed in this study; so, the

weight will always be equal to 1. After this calculation, the k smallest distances (which have

been specified already) are selected. The values in Y mis
j are then imputed based on the values

in Y obs
j that correspond to the rows with the k smallest distances. The method of choice for

imputation in this case is a majority vote, essentially the most frequent value among the k nearest

neighbours, as we are dealing with categorical variables in this research. For k-NN, the ideal

value for k is typically chosen as k = ⌊
√
n⌋. This is possible as k-NN is conceptually simple and

has the advantage of being non-parametric, meaning that it can be used even if the variables are

categorical (provided these are properly encoded). k-NN methods require less hyper parameter

tuning or model specifications compared to the other two methods that will be shortly discussed.

Not only that, but the computational performance of this algorithm has been shown to be faster

than the other algorithms [24].
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2.2 Random Forest

The non-parametric Random Forest imputation approach can be used as it is capable of handling

any type of input data. By using a random forest that has been trained on observed values to

forecast missing values, this method implements an iterative imputation scheme. RF-based im-

putation techniques do not require the specification of parametric models or the assumption of

normality [24]. This proves to be very useful as then the only parameter that needs to be tuned

for this algorithm is the number of iterations.

For this research, the method imputes the missing values in an iterative fashion using Random

Forests. The algorithm works as follows:

Step 1 Set a candidate column Y , column with the smallest number of missing values

Step 2 Impute missing values of all non-candidate columns with either its column mean or its column

mode, depending on whether the column consists of numerical values or categorical values

Step 3 Fit Random Forest model, with outcome variable as the candidate column and predictors as

the non-candidate columns over all rows where the candidate column values are not missing

Step 4 Impute missing rows of the candidate column using the predictions from the fitted RF

Step 5 Repeat steps 1-3 for each column with a missing value

To note, this algorithm is presented for the case when multiple features have missing values, but

naturally this also applies in the case where you only have a single feature with missing values.

2.3 Multivariate Imputation By Chained Equations (MICE)

Single imputation techniques include k-NN and Random Forest imputation, which replace a miss-

ing value with a single value. On the other hand, Multivariate Imputation by Chained Equations

(MICE) is a popular multiple imputation method [25]. The statistical uncertainty in the impu-

tations is taken into consideration by making multiple imputations as opposed to just one. The

missing data are assumed to be MAR or MCAR by MICE. This is crucial since using MICE on

data that is not MCAR or MAR (e.g. MNAR) could result in biased estimations, as the miss-

ingness is related to the unobserved data. Many multiple imputation techniques that were first

created assumed a large joint model for one or more of the variables, for example a joint normal

distribution. MICE, on the other hand, performs a sequence of regression models in a different

way, modeling each variable with missing data as a function of the other variables in the data.

This means that, unlike earlier imputation techniques, MICE does not call for the specification of

a multivariate distribution for the missing data.

Additionally, MICE employs a chained equations method, which is particularly flexible and capable

of handling complex variables like bounds or survey skip patterns. The imputation model can be

specified separately for each data column using the chained equations method. This chained

equation method allows for the concatenation of univariate techniques to impute the missing

values. This procedure is carried out until convergence: typically the number of iterations needed

to reach this is about 10-20.
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2.4 Multiple Imputation Procedure

In the previous sections, k-NN and RF methods were presented for single imputation which pro-

duced a single completed data set. In order to extend these methods to produce multiple imputa-

tions, the following procedure is executed: Generate M bootstrapped samples of the original data

set using random sampling with replacement from the target feature; run k-NN or RF at each

iteration m; and then, output the entire set of M imputed data sets. Each of the M full data

matrices with imputed values can now be analysed separately, and the results are pooled.

2.5 Multiply Robust KNN-RF

The proposed method combines the multiple imputation k-NN and RF methods. This Multiply

Robust KNN-RF method should then in theory conduce consistent results, assuming that at least

one of the models is correctly specified. Even though this cannot be checked, this proposed method

fits multiple models; so the more models fitted, the more likely the assumption is met. The

described algorithm assumes that the number of models specified is always odd. This requirement

allows for a majority vote to be applied that ensures a clear and unambiguous outcome which

enhances the robustness of the approach, as it helps balance out any disagreement among the

models. If the algorithm also allowed for the specification of an even number of models, then

the possibility of having an equal number of votes for different predictions would exist. As a

result, there would be uncertainty and it would be challenging to then make a final decision. The

algorithm returns Aimp, containing M full data matrices with imputed values. Each data matrix

can then be individually analyzed (or pool and analyze the imputed data sets). The pseudocode

for the proposed method can be found in Algorithm 1 of Appendix A.
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3 Practical Application

3.1 Datasets

Data Description

The following data sets were used in this research: TitanicSurvival, detailing the survival status,

sex, age and passenger class of passengers in the Titanic disaster of 1912; SmokeBan, a study that

estimates how smoking prohibitions at work affect the indoor smoking of employees; PhDPubli-

cations, providing cross-sectional data on the scientific output of biochemistry PhD students;

and lastly, ResumeNames, containing cross-section data about resume, call-back and employer in-

formation for fictitious resumes. The data sets cover a range of sample sizes n and number of

dimensions p, with a varying degree of numerical variables and categorical variables present in

each data set. A target feature Y is selected for each data set, with the condition that is a binary

outcome variable. The following variables were chosen as the target features:

1. TitanicSurvival: survived (Did the passenger survive?)

2. SmokeBan: smoker (Is the individual a current smoker?)

3. PhDPublications: gender (Male or Female)

4. ResumeNames: call (Was the applicant called black?)

Data Handling & Preprocessing

The first step of preprocessing was to produce complete matrices by eliminating rows that already

included missing values. For TitanicSurvival, the age feature contained missing values; so all

passengers with missing age values were dropped. This was the only data set containing already

existing missing data. The next step in the preprocessing phase was to prepare the data for

modelling by applying feature scaling and feature encoding to each data set. To ensure that all

features contribute equally to the model and to avoid features with higher values from dominating

the model, feature scaling was used. The data can be changed to a more uniform scale by using

feature scaling, which makes it simpler to create accurate and efficient models. Moreover, k-NN

does not handle features with differing scales very well and this is done as a solution to that

problem. The feature scaling technique used was normalization. As for feature encoding, k-NN

can not handle categorical values. Therefore, it is important to convert the categorical values

of these attributes into numerical ones before doing any modelling. As for the Random Forests

used in this study, despite no scaling being necessary for this algorithm and it being capable

of handling categorical variables, it was opted to perform the same preprocessing steps before

applying Random Forest for consistency purposes. The exact values for n and p, as well as the

k-values for knn-1 (k1) and knn-2 (k2), after preprocessing are given in Table 1, 2 and 3.
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3.2 Experimental Setup

A series of computational experiments consisting of seven data imputation models are run on the

aforementioned data sets, with the performance of Multiply-Robust-KNN-RF compared against

the other six data imputation methods. The comparison methods used in this experiment are

applications of methods discussed in sections 2.1 - 2.4. Here is an overview of the models used:

1. Multiply-Robust-KNN-RF: This proposed method is a multiply robust method that makes

use of five different models. Each model imputes the values of the generated missing data

and using majority voting, a single value is imputed in each run of the experiment. All of

these sub-models are also used as comparison methods.

(a) k-Nearest Neighbors: Multivariate imputation that estimates missing features using

nearest samples. Two k-NN models were used with different k-values:

i. knn-1 with k = ⌊
√
n⌋

ii. knn-2 with k = ⌊n1/p⌋, where p is the number of dimensions

(b) Random Forest: Non-parametric imputation that estimates missing features using Ran-

dom Forests in an iterative fashion. Three Random Forest models were used with

different tmax values (maximum iterations):

i. rf-1 with tmax = 1

ii. rf-2 with tmax = 5

iii. rf-3 with tmax = 10

2. MICE: Multivariate imputation that estimates missing values by modeling each feature with

missing values as a function of other features in a round-robin fashion, with the number of

maximum imputation rounds set to 10. With 50 runs of the experiment, this would total a

maximum of 500 imputations. For categorical variables, the strategy used to initialize the

missing values is set to ’most frequent’.

To test the performance of these imputation methods, the complete data set is taken as the ground

truth and prior to each run, MCAR patterns of missing data in the binary target variable are gen-

erated (30%). Totalling 50 runs for each method, after each run the imputed values in Y mis are

tested against the actual values in the ground truth. The assessment of the quality of the imputa-

tion is based on the following performance metrics: accuracy, bias, SE and confusion matrix. The

results are then interpreted in relation to the comparison methods. As the sample size (ranging

from n = 915 to 10,000) and number of dimensions (ranging from p = 4 to 46) in the various data

sets examined vary substantially, it is expected that this makes them appropriate for performance

testing.

All experiments were conducted using Python 3.9.16 and all missing value imputation methods

used rely on existing Python implementations. The k-NN method was implemented using KN-

NImputer from scikit-learn [26], the Random Forest method was implemented using MissForest

from the missingpy library [27] and MICE was implemented using IterativeImputer from scikit-

learn [28]. The proposed method combines multiple KNNImputer/MissForest functions.
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3.3 Results

Accuracy

In Figure 1 of Appendix B, the accuracy results for each imputation method per data set across

all imputation rounds is presented. Accuracy is a performance metric that captures the amount

of correct predictions made by the model in relation to the total number of predictions made. To

be specific, the mean accuracy across all imputation rounds is calculated for each data imputation

method:

Mean Accuracy = 1
MΣM

m=1
#correct predictions
#total predictions

The benchmark methods and Multiply-Robust-KNN-RF method are compared; the method with

the highest average accuracy for each data set is marked in bold (see Table 1). This is done as we

are mostly concerned with comparisons between imputation methods within data sets, and not

across data sets. Interesting enough, the Multiply-Robust-KNN-RF method obtains the highest

mean accuracy score for only the first data set; but only cracks the top 3 for 2 out of the 4 data

sets. Comparatively, knn-1 achieves the highest mean accuracy for 3 out of the 4 data sets; while

knn-2 and rf-1 have the weakest performances (both having the lowest mean accuracy in 50% of

the data sets). In any case, it does not seem that the performance of Multiply-Robust-KNN-RF

relative to the comparison methods does not appear to significantly vary in each data set. The

accuracy scores for all methods run on the PhDPublications data set are, on average, lower than

those for the other data sets. As this data set also has the smallest sample size (n = 915), it could

be reasoned that small sample sizes are often correlated with more variance, leading to a more

likely chance of having insignificant results. However, the sample size of this data set is larger

than the general rule of thumb for data collection (n ≥ 30), so it woud be more likely that this

decreased performance is due to poor-quality data and/or the nature of the target feature Y (as

it is a sensitive feature). In contrast, the imputation methods seem to overfit on the ResumeNames

data set; with most of the methods achieving a mean accuracy score > 90%. Given that this data

set comprises 46 characteristics, it can be suggested that this is the result of the dimensionality

curse, which results in a decrease in accuracy score quality as dimensionality grows due to an

increase in variance. A more plausible explanation is that this is an imbalanced dataset that is

highly skewed towards the majority class (92% of the target feature Y is labeled as ”no”). As there

are so few examples in the minority class, it is possible to classify every single instance in the test

set as the negative class and still have a very high accuracy.

Name n p k1 k2 knn-1 knn-2 rf-1 rf-2 rf-3 mice mr-knn-rf

TitanicSurvival 1046 4 32 5 0.7719 0.7861 0.5873 0.7765 0.7761 0.7780 0.7885

SmokeBan 10000 7 100 3 0.7584 0.7106 0.7573 0.7235 0.7234 0.7573 0.7409

PhDPublications 915 6 30 3 0.6410 0.6185 0.5359 0.6221 0.6223 0.6343 0.6299

ResumeNames 4870 46 69 1 0.9188 0.872 0.9188 0.9088 0.9089 0.9188 0.9122

Table 1: Mean accuracy score for each imputation method on all 4 data sets. The highest mean

accuracy score for each data set is in bold.
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Bias

The bias of the estimated category proportions of the target variable is also used to assess each

imputation method’s performance. Calculating the estimator bias, which represents how different

the data is in its value distribution compared to before imputation, involves comparing the cate-

gory proportions before and after imputation. The proportion calculated from the original data set

before resampling is the true proportion. After imputation, the proportion of the original data set

becomes the estimated proportion. In order to determine the category proportions, the frequency

of each element in the data set (original data set for true proportion and imputed data set for

estimated proportion) is divided by the sample size (equal across both original and imputed data

sets). The true proportion is subtracted from the estimated proportion in order to calculate the

bias, which is expressed as θ̂− θ. The average bias will be the average of the predicted proportion

minus the true proportion across all imputations, or equivalently E[θ̂ − θ].

In Table 2, it is shown that Multiply-Robust-KNN-RF has a low positive average bias for Titan-

icSurvival and ResumeNames, and a moderate positive average bias for SmokeBan; while having a

low negative average bias for PhDPublications. For the single model multiple imputation meth-

ods, they follow a similar structure as that of the proposed method; except for rf-1. The average

bias for this method is relatively high on SmokeBan and PhDPublications, making rf-1 the weak-

est performing method in terms of bias assessment. In contrast, rf-2 and rf-3 (the two other RF

models) achieve the lowest average bias on 1 out of the 4 data sets each. This could be explained

by the fact that rf-1 can only have a maximum number of iterations per bootstrapped sample

equal to 1. It should be noted that increasing tmax may not always result in a reduction in bias.

Increasing tmax, however, may indirectly affect bias by enabling the model to learn more complex

patterns and reduce underfitting; giving the model more opportunities to update its parameters

and adjust its predictions, which can lead to a lower bias (up to a certain point before overfit-

ting); and providing the model with more opportunities to update its parameters and adjust its

predictions. The highest performing method was knn-2, achieving the lowest average bias on 50%

of the data sets. According to the results for knn-1 and knn-2, it appears that decreasing the

value of k lowers the bias. When comparing Multiply-Robust-KNN-RF to the other single model

multiple imputation methods, the proposed method is found to have a slightly lower average bias

relative to the mean of the average bias across the other imputation methods on all data sets. An

advantage to the multiply robust method that can be observed in the results is that the high bias

of rf-1 is offset by the other sub-models, further showcasing the robustness of the method.

Name n p k1 k2 knn-1 knn-2 rf-1 rf-2 rf-3 mice mr-knn-rf

TitanicSurvival 1046 4 32 5 0.1290 0.0472 0.4127 0.0426 0.0425 0.0425 0.0894

SmokeBan 10000 7 100 3 0.2280 0.0914 0.2427 0.1313 0.1313 0.2427 0.1711

PhDPublications 915 6 30 3 -0.0228 -0.0259 -0.4641 -0.0114 -0.0118 -0.0195 -0.0702

ResumeNames 4870 46 69 1 0.0812 0.0092 0.0812 0.0606 0.0607 0.0812 0.0680

Table 2: Average bias of category 0 for each imputation method on all 4 data sets. The lowest

bias for each data set is in bold.
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Standard Error

The imputed data sets were also analyzed to obtain the standard errors of the outcome cate-

gories using the estimated proportions. The standard error (SE) calculates how accurately any

given sample’s projected category proportions match the true category proportions. Before the SE

could be computed, the MSE was calculated after each imputation. This would be equal to taking

the squared difference between the estimated proportion and the true proportion. The average

MSE is then equal to the average of the squared differences between the estimated proportion

and the true proportion. Now, having calculated the average MSE and the previously calculated

average bias, the average variance can be obtained using V ariance = MSE − bias2. Finally,

taking the square root of the average variance gives the average SE.

The results in Table 3 suggest that rf-1 has the lowest average SE out of all the imputation

methods on 100% of the data sets. Besides this method, mice also achieves the lowest average SE

recorded alongside rf-1 on 2 out of the 4 data sets; while knn-1 is the highest performing model

exactly 1 time, together with rf-1 and mice, on ResumeNames. Throughout all of the imputation

methods on all data sets, it can be seen that the average SEs do not differ greatly and are quite

low. It should be noted, however, that the two data sets with the highest sample size also exhibit

the lowest average SEs across all data imputation methods. This is to be expected, as increasing

n lowers the standard error. What can be observed is that within each k-NN sub-model and RF

sub-model, decreasing the k-value or increasing the number of maximum iterations also slightly

increases the average SE in most cases. However, there will come a point where changing these

hyper-parameters will not yield much improvement (e.g. increase in SE from 0.0257 to 0.0471 to

0.0472 for rf-1 - rf-3). Again, the proposed method Multiply-Robust-KNN-RF does not appear

to perform better than some of its individual components, but the results show that it is very close

in terms of average SEs.

Name n p k1 k2 knn-1 knn-2 rf-1 rf-2 rf-3 mice mr-knn-rf

TitanicSurvival 1046 4 32 5 0.0354 0.0366 0.0257 0.0335 0.0336 0.0269 0.0324

SmokeBan 10000 7 100 3 0.0098 0.0157 0.0084 0.0131 0.0129 0.0084 0.0118

PhDPublications 915 6 30 3 0.0573 0.0447 0.0257 0.0471 0.0472 0.0765 0.0504

ResumeNames 4870 46 69 1 0.0070 0.0112 0.0070 0.0087 0.0087 0.0070 0.0080

Table 3: Average SE of category 0 for each imputation method on all 4 data sets. The lowest

standard error for each data set is in bold.
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Confusion Matrix

The final evaluation metric used in this study was visualizing a performance of each imputation

algorithm in a confusion matrix. Each row of the confusion matrix represents the true instances

of a class and each column of the confusion matrix represents the predicted instances of a class.

After each imputation, a confusion matrix is determined by computing the amount of TP , TN ,

FP , FN counts per sample and the average of these values across all imputations is represented

in a final confusion matrix. The final confusion matrix is represented with normalization by class

support size; which could be beneficial in the event of a class imbalance in order to have a more

visual understanding of which class is being incorrectly labeled.

In Appendix C.1 - C.4, confusion matrices for every method on all data sets are presented.

Multiply-Robust-KNN-RF is highlighted in each subsection with its own figure and the other

single model multiple imputation methods are grouped together. By adding the diagonals of each

confusion matrix containing the true positive rate (TPR) and true negative rate (TNR), it can

be determined which imputation model correctly predicts each class the best. For the Titanic-

Survival data set, the proposed method has the highest combination of TPR and TNR (as does

knn-2). Most of the other imputation methods have similar values in each cell, except for rf-1.

This method has a TNR of 1, meaning that it never falsely labels the class ”no” as the class ”yes”.

However, it always falsely labels the class ”yes” as the class ”no” (FNR = 1). Matter of fact, this

happens on every data set for rf-1. On the SmokeBan data set, and more so on the ResumeNames

data set; the confusion matrices present a very high TNR and FNR across all imputation meth-

ods. This makes sense, as these two data sets are the most imbalanced out of the 4 data sets. For

the PhDPublications, the results suggest that most of the imputation methods have very similar

TPR, TNR, FPR, FNR and are quite balanced. When comparing Multiply-Robust-KNN-RF

to the benchmark methods, the results show that it is outperformed slightly by only knn-1 and

mice.
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4 Discussion

One of the main aims of this paper was to address the missing data problem by introducing a

general multiply robust imputation framework on mixed-type data with a binary outcome variable

based on k-NN and Random Forest. This method is extended to create multiple imputations and

it is specifiable to allow for multiple k-NN and Random Forest models; increasing the likelihood

of any one of these models being correctly specified, and providing protection against model mis-

specification.

The performance of the multiply robust method is evaluated against six single model multiple

imputation methods through extensive experimentation on 4 mixed-type data sets with at least

one binary feature present; with all data sets varying in sample size and dimensionality. The

results show that Multiply-Robust-KNN-RF achieves moderate to high accuracy scores across all

data sets and performs well relative to the comparison methods. It performed the best compared

to the other benchmark methods on a single occassion, while being at most 2% lower in accuracy

compared to the best performing model.

The proposed method is shown to be slightly biased and have low average SEs across most of the

data sets, suggesting that this method is quite reliable. Multiply-Robust-KNN-RF had a slightly

lower average bias relative to the average bias of the other single model methods in all scenarios.

The results also show that this method had a slightly higher average standard error relative to

the other single model methods in half of the scenarios. For the single model multiple imputation

methods, the worst performing model in terms of the highest average bias was rf-1 for half of the

data sets; while it had the lowest average SE across all imputation methods. This bias-variance

tradeoff can be found in the results when looking at the various k-NN and Random Forest sub

models. According to the results, decreasing the value of k or increasing the maximum number

of iterations consistently show to lower the bias, but also increase the standard error (thus, an

increase in variance).

The confusion matrix provided some insights into the performance of each imputation method

for each class. The results suggest that the performance depends on the specific data set, as the

imbalanced nature of some of the data sets resulted in very high TNR and FNR values for all

imputation methods.. Multiply-Robust-KNN-RF outperforms all of the benchmark methods on a

single occassion, alongside knn-2, as they had the highest combination of TPR and TNR. On all

other occassions, the proposed method showcases similar results to most of the other comparison

models. Except for rf-1, which consistently exhibited very high TNR and always falsely labeled

the category 1 as the category 0 (FNR = 1) across all data sets; this was quite surprising. Due to

the performance of the Multiply-Robust-KNN-RF method varying across these different evaluation

metrics, and no single method consistently outperforming others in all aspects; it would be better

practice to provide a list of recommendations for various demands. If one is interested in accuracy,

on either a balanced or imbalanced data set, then knn-1 should be recommended based on the

results. If the bias-variance tradeoff is to be considered, then the method that balances these the

best is MICE as it is the only method to have achieved the lowest average bias and the lowest

average SE for at least one data set each. For the method that best evaluates the performance as

a representation of actual vs. predicted values, then knn-2 is recommended.
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4.1 Limitations and Future Work

A limitation of this study was the lack of model selection and parameter tuning. As this was

not the focus of the paper, it was opted to exclude this and implement a specific variation of the

proposed method with sub-optimal hyperparameter values and a specific number of models that

were somewhat backed up the theory. This was also to reduce time spent on procedures that

could have otherwise been used on setting up the experiment and evaluating the methods. How-

ever, during the evaluation of the methods, it was apparent that the performance of some of the

imputation methods would have benefited from some hyperparameter tuning and it would have

been interesting to implement the experimental setup with optimized methods and model selection.

Another limitation of the study is the design of the experiments. The experiment is set up

to compare the multiply robust method against other single model methods on the basis of a

few performance metrics. There is no study done into the effects of varying the missingness

mechanisms, the category proportions of the imbalanced data sets or the missing rate. In future

work, this could be implemented. The multiply robust method could have also been implemented

differently; instead of using a majority vote, weights could have been established. The multiply

robust method could have also been compared to other doubly or multiply robust methods, instead

of just single model multiple imputation methods.

5 Conclusion

In conclusion, through a series of experiments on 4 mixed-type data sets; the proposed multiply

robust imputation framework, Multiply-Robust-KNN-RF, demonstrates that it is competitive in

performance compared to other single model multiple imputation methods irrespective of the

sample size and dimensionality of the data sets used. The method has shown to produce moderate

to high accuracy scores. Compared to the other imputation methods, it exhibits reliability with

somewhat lower average bias and slightly greater average standard error. Increasing the maximum

number of iterations or decreasing the value of k both reduce bias but increase SE, as is the case

with the bias-variance tradeoff. Performance of the method differs across evaluation parameters,

pointing to the necessity for recommendations based on particular requirements. It is advised to

use knn-1 for accuracy, MICE to balance bias and variance, and knn-2 to assess performance in

terms of how well actual values compare to the predictions.
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A Pseudocode Multiply-Robust-KNN-RF

Algorithm 1 Multiply-Robust-KNN-RF

Input: Complete data set (A), target feature (Y ), number of bootstrapped samples (M), list

of numerical columns in data set (Xnum), missing rate (q), list of k-values (k), list of max

iteration values (tmax)

Output: Aimp ←M complete data sets with Aimp,m = (X, Y m) at iteration m

1: Initialize Aimp as an empty array

2: total = k.length+ tmax.length

3: if total is even then

4: Raise Error (”Number of total models should be odd”)

5: end if

6: for m = 1 to M do

7: Initialize random seed to a new seed value of m

8: Normalize Am[Xnum]

9: Draw bootstrap samples with replacement from the original data set to create Y m =

(Y obs,m, Y mis,m) using a missing rate of q

10: Initialize P as an empty array

11: for each k val in k do

12: Train KNN model (see section 2.1); replace Y mis,m with predictions from model

13: Inverse scale Am[Xnum]; round imputations to get binary outcomes

14: Append Am[Y ] to P

15: end for

16: for each t in tmax do

17: Train RF model (see section 2.2); replace Y mis,m with predictions from model

18: Inverse scale Am[Xnum]; round imputations to get binary outcomes

19: Append Am[Y ] to P

20: end for

21: Transpose the array P

22: Initialize MV as an empty array

23: for each pred in P do

24: Count the occurrences of each unique element in pred

25: majority ← element with the highest count

26: Append majority to MV

27: end for

28: Replace Am[Y ] with values from MV

29: Append Am to Aimp

30: end for

31: return Aimp
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B Accuracy plots

Figure 1: Accuracy plots for each dataset, comparing the proposed method Multiply-Robust-

KNN-RF to the comparison methods. The x-axis corresponds to the accuracy score at that particular

imputation round. The multiply robust method is solid and the single model multiple imputations

are dotted.
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C Confusion Matrices

C.1 TitanicSurvival Dataset

Figure 2: Confusion matrix for Multiply-Robust-KNN-RF on the TitanicSurvival data set

Figure 3: Confusion matrix for all the other single model multiple imputation methods on the

TitanicSurvival data set
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C.2 SmokeBan Dataset

Figure 4: Confusion matrix for Multiply-Robust-KNN-RF on the SmokeBan data set

Figure 5: Confusion matrix for all the other single model multiple imputation methods on the

SmokeBan data set
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C.3 PhDPublications Dataset

Figure 6: Confusion matrix for Multiply-Robust-KNN-RF on the PhDPublications data set

Figure 7: Confusion matrix for all the other single model multiple imputation methods on the

PhDPublications data set
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C.4 ResumeNames Dataset

Figure 8: Confusion matrix for Multiply-Robust-KNN-RF on the ResumeNames data set

Figure 9: Confusion matrix for all the other single model multiple imputation methods on the

ResumeNames data set
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