
 Eindhoven University of Technology

BACHELOR

Developing a Versatile Hybrid Recommender System
Case Study on Programming Task Prediction

Dumitru Toader, Maria Emanuela

Award date:
2023

Awarding institution:
Tilburg University

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8ea14661-12d4-4e4b-b8b0-4baacd54bc0e


Eindhoven University of Technology and Tilburg University

JBP000 Final Bachelor Project

Developing a Versatile Hybrid Recommender System:

Case Study on Programming Task Prediction

Maria Emanuela Dumitru Toader (1537156)
June 12, 2023



Abstract
This study addresses the challenge that educators face, that of identifying suitable datasets for program-

ming coursework. While datasets enhance students’ learning by bridging theory and real-world scenarios,

the search for a perfect match can be cumbersome due to the sheer diversity of available datasets. Rec-

ognizing the gap of research in this particular topic as well as the limitations of current recommender

systems, which are often inflexible and domain-specific, this research introduces a hybrid recommender

system that tackles the issue of matching programming tasks with relevant datasets. By evaluating sev-

eral predictive methods, integrating the most effective ones, and conducting a rigorous evaluation, the

project develops a versatile, adaptable system. Notably, certain machine learning techniques like deci-

sion trees and random forests demonstrated strong performance, but the collective strength of the hybrid

system outperformed them. This system facilitates dataset selection for educators, allowing more focus

on pedagogy, and it provides a promising foundation for future multi-purpose recommender systems.

2



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Prevalent recommender systems and their domains . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Deep learning and machine learning techniques . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Recommender system types and their contextualization . . . . . . . . . . . . . . . . . . . 7

3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Data Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Individual Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.3 Architecture creation and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Research question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Research question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 Research question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 System Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9 Conclusion & future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A Additional data tables and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

B Links pertaining to data, materials, and code . . . . . . . . . . . . . . . . . . . . . . . . 42



1 | Introduction
In today’s data-driven educational landscape, the use of datasets in programming coursework has become

more of a necessity than a mere luxury. Datasets serve as a vital bridge between theoretical knowledge

and practical, real-world scenarios, thereby enhancing the overall learning experience of students. The

underlying idea is to expose learners to real-world data sets early, promoting a better understanding of

data analysis and interpretation.

However, many educators struggle with the challenge of finding suitable datasets for their assignments,

which can be time-consuming and resource-intensive. With the wide array of datasets available, finding

the perfect match for a particular assignment or programming task is like finding a needle in a haystack.

Each dataset holds unique potential, but fully understanding this potential is not a straightforward pro-

cess. It typically requires deep exploration and analysis, which is a time-intensive process.

The main challenge lies in fully understanding the potential of datasets without thorough exploration.

Educators, especially those without extensive data science backgrounds, face difficulty in extracting in-

sights from these datasets. Additionally, time constraints prevent educators from delving deep into each

dataset, resulting in untapped potential. In this age of technology, using an automated method of iden-

tifying suitable programming tasks, such as a recommender system, makes sense.

Another challenge arises however from the inflexibility of existing recommender systems. Most of these

systems are designed to serve specific purposes or deal with a particular set of topics, making them less

adaptable to new subjects or areas. Furthermore, there is a noticeable absence of technology solutions

that effectively address the specific need for matching programming tasks with relevant datasets, a gap

that this project aims to bridge.

To address these challenges, this study takes a thorough and diverse approach. The first step of this

approach is the evaluation of various individual predictive methods, including popular machine learning

algorithms as well as similarity-based collaborative and content-based filtering. Each method is tested

and assessed rigorously to understand its potential as well as its strengths and weaknesses fully.

The next step taken is the aggregation of the most effective methods to create an integrated system.

This hybrid approach maximizes overall performance by leveraging the best techniques for each predic-

tive task. Finally, this integrated system is subjected to rigorous evaluation processes, ensuring that it

not only functions well but also effectively recommends suitable programming tasks for datasets.

4



The result of the chosen approach is a versatile, hybrid recommender system. This system stands out

for its adaptability, being capable of handling a variety of topics, making it a valuable tool for educators

across different disciplines. During the analysis of the individual predictive methods, some machine

learning techniques, particularly decision trees, and random forests, exhibited strong performance.

However, when these techniques were integrated into the recommender system, the overall performance

showed a marked improvement, highlighting the power of a hybrid approach. Collaborative filtering, in

particular, proved to be a valuable component, providing high-quality predictions in scenarios where the

system struggled to reach a consensus.

This study presents a significant advancement at the intersection of education and data science. It

introduces a new recommender system that predicts suitable programming tasks for specific datasets,

providing a solution to the challenge faced by educators and addressing the gap in research on this topic.

The development of this hybrid, adaptable system also lays the groundwork for future research and the

creation of effective systems across different domains.

In a broader context, this work contributes to the overarching objective of enhancing education through

technology. By simplifying the process of selecting datasets for programming tasks, this system has

the potential to save educators valuable time and effort, allowing them to dedicate more attention to

teaching and interacting with students. Additionally, the developed system exhibits great potential for

applicability across a wider variety of topics, paving the way for recommender systems that are designed

to serve multiple purposes.

2 | Related Works
The objective of this project revolves around engineering a recommender system that predicts suitable

programming tasks for specific CSVs. However, this necessitates a thorough understanding of the current

state of research in this field. Therefore, this section presents the exploration of several key areas related

to the development of recommender systems, ensuring a better understanding of the field. The first

subsection will provide an overview of prevalent recommender systems and their respective application

domains. Following this, the predominant types of deep learning and machine learning techniques em-

ployed within the development of the systems are presented. Lastly, the diverse types of recommender

systems and their adeptness in varying scenarios will be presented. This section provides insight into

the development process of recommender systems, as well as the various predictive methods employed

in their development.

5



2.1 | Prevalent recommender systems and their domains
The systematic review conducted by Portugal et al., 2018 sheds light on the utilization of machine learn-

ing algorithms in the creation of recommender systems and the prevalent research trends in this area.

One of the goals of their study is to assist researchers in appropriately positioning new research activity

in the domain. Additionally, they explored the utilization of machine learning in the development of

various recommender system types. They identified prevalent trends in the construction of three primary

categories: content-based filtering, collaborative filtering, and hybrid systems. They also investigated the

prevalent domains and found the most frequent to be movies, social networks, and e-commerce. Notably,

the coding and algorithm domains received limited attention.

In their comparative analysis, Ravi et al., 2022 compared recommender systems, expert systems, and

explainable artificial intelligence. They also emphasize the substantial data requirements for applying

deep learning techniques in recommender systems and explainable artificial intelligence. The findings

from both studies suggest that certain recommender systems and predictive methods tend to be more

prevalent in specific topics. However, it is crucial to acknowledge that this is due to the specifics of

certain topics, as the choice and utilization of a particular model are dependent on the availability of

data and the specific objectives of the recommendation task.

2.2 | Deep learning and machine learning techniques
In recent years, the usage of deep learning in recommender systems has increased. Batmaz et al.,

2019 conducted a literature review on deep learning in recommender systems, investigating challenges

and prevalent domains. Deep learning techniques presented in the paper include restricted Boltzmann

machines, deep belief networks, auto-encoders, recurrent neural networks, and convolutional neural net-

works. However, a fact highlighted in the paper by Ravi et al., 2022. is that deep learning requires a large

amount of data to be effective in recommender systems. Therefore, although deep learning techniques

could be a feasible method for implementing a recommender system in many domains, the implementa-

tion is dependent on the availability of large amounts of data.

In their paper, Portugal et al., 2018 had, as a first goal, identifying trends in the use and research of

machine learning algorithms in recommender systems. Throughout the paper, they presented the most

prevalent machine learning techniques, the main approaches used for classes of recommender systems, as

well as the most commonly used evaluation metrics in the reviewed papers. The most prevalent machine

learning techniques identified were ensemble, k-means, support vector machines (SVM), Bayesian, and

decision trees.

6



The most commonly encountered recommender system in the works reviewed were collaborative filter-

ing systems, with neighborhood-based recommenders being more common than model-based ones. The

second most encountered category of recommender systems were those with content-based filtering, with

the subcategory of classifier-based systems being more common than the neighbor-based ones. The least

encountered type of recommender systems were the hybrid ones. When investigating the most common

evaluation methods, the researchers identified precision, recall, F-measure, RMSE, and MAE as the most

frequently used performance metrics.

All these findings on the use of machine learning algorithms in implementing recommender systems

in different domains are useful in helping to situate new research activity appropriately. The systematic

review gives insight into the most common methods implemented in the field of machine learning for

recommender systems. It can provide a starting point for new implementations in a different domain of

application for new recommender systems.

2.3 | Recommender system types and their contextualization
Recommender systems are defined as computational structures designed to present personalized sug-

gestions to users, founding their recommendations based on users’ historical behaviors and preferences

(Shani and Gunawardana, 2011). The fundamental components of recommender systems are usually

users and items. The users represent the component to which the recommendation is being made, while

items refer to the objects that are being recommended. Depending on the type of system the recom-

mendations are made taking into consideration a combination of user and item similarity as well as

the interaction between them. These recommender systems are typically categorized into three primary

types: content-based filtering, collaborative filtering, and hybrid systems. Each of the first two types

employs distinct methodologies and caters to diverse scenarios while the third one embodies properties

of the other two.

Content-based filtering and collaborative filtering systems

Content-based filtering systems primarily operate by generating recommendations based on user or item

profiles. These systems necessitate some form of data concerning user characteristics or information on

items. Subsequently, these systems suggest items that bear a resemblance to those previously favored by

the user, or items that have been liked by similar users(Shani and Gunawardana, 2011). Content-based

filtering systems can be further divided into classifier-based and neighbor-based systems (Shani and

Gunawardana, 2011). Classifier-based systems employ machine learning algorithms, like decision trees,

7



to predict the relevance of items to users based on past behavior. Meanwhile, neighbor-based systems

recommend items that are similar to those previously favored by the user, based on similarity in item

characteristics. In such systems, the cosine distance between the dataset and programming task vectors

can be used to ascertain preference (Shani and Gunawardana, 2011).

On the other hand, collaborative filtering systems base their recommendations on the similarity be-

tween users’ preferences. These systems exclusively rely on historical interactions, without considering

the characteristics of individual users or items(Shani and Gunawardana, 2011). As such, these systems

can encounter difficulties when dealing with new users or items, a challenge known as the ’cold start’

problem (Lika et al., 2014). Collaborative filtering systems can also be differentiated into neighborhood-

based and model-based systems (Shani and Gunawardana, 2011). Neighborhood-based systems identify

similar users based on historical behavior and generate recommendations using mathematical calculations

based on items liked by these similar datasets. On the other hand, model-based systems utilize statistical

models, such as matrix factorization or deep learning models, to predict users’ preferences, rank items

that users have not interacted with, and generate recommendations (Shani and Gunawardana, 2011).

The selection between content-based and collaborative filtering systems is heavily influenced by the

structure of the data and thus, by the presence of a ’cold start’ problem. The term ’cold start’ problem

refers to the scenario where new users or items enter the database, but no information is available regard-

ing their interaction with the other object types (Lika et al., 2014). Collaborative filtering systems can

prove to be highly effective in generating recommendations when sufficient data is available. However,

if new objects enter the system without any interaction information, the performance can suffer. These

types of systems are widely spread through mass on-demand services. However, these algorithms require

some interaction information when initializing a new object and get better in their recommendations

after gathering more interactions. Therefore, in situations where the ’cold start’ problem arises for col-

laborative filtering, other systems might be more suitable. Content-based filtering can be a viable option

if there is sufficient data about the characteristics of the users and items (Lika et al., 2014). However,

for situations that are not optimal for either system type, hybrid systems can be the solution.

Hybrid recommender systems

The field of recommender systems has seen an increase in the variety of approaches, each with its own

advantages and limitations. Two prominent categories are content-based and collaborative filtering tech-

niques. However, researchers have discovered that the most effective recommender systems often combine

multiple techniques in what is known as a hybrid approach.

8



For instance, the study conducted by Geetha et al., 2018 exemplifies the practical implementation of a

hybrid recommender system. Their movie recommendation system successfully integrates content-based

and collaborative filtering techniques, leveraging the strengths of each to overcome their individual lim-

itations (Geetha et al., 2018). The user feedback received during the evaluation of their system further

validates the utility of hybrid recommender systems. The system’s effectiveness is not solely due to the

integration of these techniques, but also the use of clustering, similarity, and classification strategies.

These findings are consistent with previous research in the field, suggesting that combining content-

based and collaborative filtering can lead to more accurate and precise recommendations (Burke, 2002).

Building on these insights, future studies can explore the incorporation of additional machine learn-

ing and clustering algorithms to further enhance the performance of hybrid recommendation systems.

Furthermore, the applicability of the hybrid approach extends beyond movie recommendations. The

reviewed literature suggests that this approach can be extended to domains such as music, videos, news,

books, and e-commerce, offering users a more personalized and accurate digital experience (Geetha et al.,

2018). The positive outcomes observed within the field indicate that similar methods can potentially be

explored in other domains that have received less attention in recommender systems research.

Hybrid recommender systems aim to leverage the strengths of both content-based and collaborative

filtering systems, addressing the limitations inherent to each approach. These systems provide a robust

solution, particularly in scenarios where the ’cold start’ problem is prevalent. The works of Burke, 2002

and Geetha et al., 2018 highlight the power of hybrid systems in enhancing the overall performance of

recommendation systems.

Overall, integrating multiple techniques through hybrid approaches shows promise for advancing rec-

ommender systems. By leveraging the strengths of different predictive methods and tailoring them to

specific domains, researchers can develop more accurate and effective recommendation systems that cater

to the diverse needs and preferences of users. These hybrid systems offer a practical solution for opti-

mizing recommendations in various domains, including those with limited or relatively scarce research.

3 | Objective
Based on the comprehensive literature review and relevant studies, it has been consistently observed that

hybrid systems incorporating multiple predictive methods and/or steps tend to be the most effective and

promising in the field of recommender systems. Building upon these findings, the primary objective

of this project is to design, develop, and evaluate a recommendation system tailored for the topic of

selecting programming tasks that can be performed utilizing specific CSV files.

9



The methodology suggests the possibility of improving task prediction accuracy through careful selec-

tion and combination of predictive methods. These selected methods will be integrated into a unified

architecture for the final system. To guide the development process, three research questions have been

formulated, each corresponding to a specific phase of system development. These research questions will

provide the necessary structure and framework for achieving the project objectives effectively.

Research Question 1: How accurate is each of the prediction methods in recommending suitable

programming tasks?

In the initial phase, the spotlight will be on scrutinizing the individual performance of various prediction

methodologies. The accuracy of each method will be assessed. Collaborative filtering, content-based

filtering as well as six machine-learning techniques will be evaluated. The machine learning techniques

that will be evaluated are: linear regression, k-nearest neighbors, support vector machines, random forest,

decision trees, and Naive Bayes. Expectations anticipate a range of performance across these method-

ologies, with certain methods likely to demonstrate superior prediction accuracy.

Research Question 2: How can the most effective prediction methods be integrated into a unified

architecture of a recommender system?

Following the evaluation of individual methodologies, the research will progress toward developing an

architecture that seamlessly integrates the most effective methods. The anticipated approach involves

multiple phases, where the predictions from various models are combined to create an optimal rec-

ommendation system. The integration phase will also consider the trade-offs between complexity and

performance, striving to maximize accuracy.

Research Question 3: How does the performance of the integrated system compare to that of the

individual prediction methods?

Once the system is developed, the focus will shift to evaluating its overall performance. The expectation

is that the integrated recommender system will outperform the individual prediction methods in terms

of overall accuracy, thanks to the way the collaborative nature of the integration. To better understand

the integrated recommender system, performance dynamics will be explored through three sub-questions:

Subquestion 3.1: What is the frequency of disagreements among the individual prediction methods within

each layer of the recommender system?

10



The first sub-question revolves around discerning instances where the system’s individual components

diverge in their recommendations. Such discrepancies may necessitate invoking the next layer within the

system, with the hope of yielding more refined recommendations. The aim of this question is to better

understand the dynamics between the layers of the architecture, as well as the need for subsequent layers.

The resulting information will be useful for system optimization and refinement.

Subquestion 3.2: What is the accuracy of the predictions when the component methods are in

agreement within each layer of the recommender system?

The second sub-question focuses on the system’s performance when there is a consensus among the

component methods within a layer. It is expected that a unified agreement may indicate a higher level

of confidence in the generated recommendations, potentially leading to increased accuracy. Evaluating

the accuracy in these cases will provide insights into the information that passes to subsequent layers.

Subquestion 3.3: How does the overall accuracy of the final prediction compare to the accuracy of

the individual prediction methods?

The third sub-question assesses the aggregate performance of the final recommender architecture, com-

paring it to the individual methods it encompasses. This comparison will be used to determine if the

integration of multiple prediction methods into a unified architecture yields superior accuracy, thereby

validating the system’s design and conception.

The goal of this research project is to create a system that predicts possible programming tasks based on

an input CSV file, aiming to simplify task selection for educators. Additionally, the aim is to integrate

this system into a larger database of CSV files, providing professors with a user-friendly platform to

easily find suitable files and programming tasks for their courses.

4 | Approach
This section presents an outline of the planned approach for designing a recommender system that pre-

dicts suitable programming tasks for specific CSV files. Prior research has shown that hybrid systems

that integrate multiple predictive methods have the potential for achieving high performance. It is also

evident from the literature that the type and amount of data required can vary depending on the specific

system chosen. In the context of this project, CSV files and programming tasks will represent the core

components of users and items, respectively.

11



The selection and effectiveness of a recommender system depend on the quality and availability of data,

specifically in this situation, data related to programming tasks and datasets. When considering the

development of a recommender system for this project, three main data structures are considered: the

utility matrix, dataset profiles, and programming task profiles. The utility matrix captures the inter-

actions between datasets and programming tasks and is represented as a sparse matrix. Each row of

the matrix corresponds to a dataset, and each column represents a programming task. The dataset and

programming task profiles consist of vectors that describe the characteristics of these items.

The tables below outline the assumed schema for the format of the three database components: Table

4.1 presents the presumed structure of the interaction matrix, Table 4.2 exhibits the assumed structure

of the dataset profiles, and Table 4.3 displays the supposed structure of the programming task profiles.

programming task 1 programming task 2 programming task 3
dataset 1 1 ? 0
dataset 2 0 1 1
dataset 3 1 0 ?

Table 4.1: Dummy structure of interaction matrix

Characteristics
#1 #2 #3 #4

dataset 1 X X
dataset 2 X X X
dataset 3 X X X

Table 4.2: Structure of dataset profiles

Characteristics
#1 #2 #3 #4

programming task 1 X X
programming task 2 X X
programming task 3 X X X

Table 4.3: Structure programming task profiles

As discussed previously, the choice of using content-based or collaborative filtering depends on the pro-

vided data and the state of potential new entries. For cases with an incomplete interaction matrix, a

content-based approach may be preferable. This method uses dataset and programming task profiles

to generate recommendations, ensuring that any new datasets or tasks introduced won’t be affected by

the cold start issue. However, if the interaction matrix is more comprehensive, a collaborative filtering

approach might prove more effective. With the choice of developing a hybrid system, a balance needs to

be struck between the necessary data and the true status of the available data.

For the context of the project, the assumption is that after the implementation of a base system, new

items will be introduced without any available past interaction. It is also assumed that the state of

the interaction matrix is mostly complete at the beginning of the project. Therefore, a combination of

predictive methods will be employed, each being used in various stages of the prediction with various de-

grees of probability based on their performance capabilities. The system will primarily utilize the utility

matrix and dataset profiles due to the combination of data availability and recommendation direction.

12



The approach will start with the evaluation of different predictive methods, including content-based

filtering, collaborative filtering, and various machine-learning techniques. Each method will be analyzed

individually to measure its performance. Depending on the specific predictive method, different sections

of the data will be utilized. Content-based filtering uses dataset profiles to identify similar CSVs and

recommends programming tasks that are preferred by those similar CSVs. On the other hand, collabo-

rative filtering predicts programming tasks by analyzing the similarity of preferences between datasets

using the interaction matrix. Meanwhile, various machine learning algorithms will assess the suitability

of a programming task based on the characteristics of a CSV.

Once the individual predictive methods are evaluated, the next phase involves the development of an

integrated system. This system will be designed to harness the strengths of the most effective models,

applying them to appropriate situations or specific prediction tasks. It is envisioned as an ensemble

system, somewhat akin to a random forest model, capable of taking multiple model predictions as input.

It will then generate a final recommendation based on the majority prediction, thus capitalizing on the

highest-performing methods.

Finally, the integrated system will undergo a detailed evaluation. This evaluation stage plays a criti-

cal role in understanding the effectiveness of the hybrid recommender system. To assess the system’s

performance, appropriate metrics will be employed, considering the findings from the literature review re-

garding commonly used metrics. This strategic and iterative approach involves sequential steps, starting

with individual method evaluations, followed by system integration, and concluding with a comprehensive

evaluation of the system’s performance. Each phase is instrumental in progressing toward the primary

objective - the design, development, and evaluation of an effective recommender system.

5 | Methodology
This section of the project presents the step-by-step procedures employed throughout the research, show-

casing the data creation, the individual model evaluation, and the development and appraisal of the final

system architecture. The first subsection presents the data creation, emphasizing the state of the initial

data and expansion of it, the interaction matrix, and the dataset profiles data. The following subsection

explains the methodology of evaluation of distinct models, including content-based filtering, collaborative

filtering, and machine learning models, while also addressing the application of grid search for parameter

tuning. The final subsection outlines the structure and evaluation of the ultimate system architecture,

aiming to address the sub-research questions related to the third research question. The section pro-

vides a comprehensive overview of the methodologies as well as the framework employed throughout the

research process.

13



5.1 | Data Creation
Initial data available

The initial data available for the project consisted of six past assignments that were part of the JBI010

Programming course from the Joint Bachelor of Data Science at Tilburg University and the Technical

University of Eindhoven. For each of the assignments, the data consisted of the CSV dataset used for

that particular assignment as well as the PDF containing the assignment tasks and instructions. Since

the available data does not match the assumed format of the data that would be later provided, pre-

processing of the initial data was necessary. Several methods were used to transform and generate the

required data to match the desired format shown in Table 4.1 and Table 4.2.

5.1.1 | CSV characteristics

As mentioned in the Approach section, the CSV characteristics are utilized as predictors for the purpose

of predicting suitable programming tasks in this project. The structure of the target dataset was outlined

and presented in Table 4.2. A function was developed to extract the characteristics of a given CSV and

automate the characterization process. This function enables easy analysis and description of future CSV

files in a consistent manner. The extracted dataset characteristics included row count, column count,

missing value count, integer column count, flat column count, categorical column count, string column

count, boolean column count, and object column count. Once all characteristics were computed, the

function saved and outputted the dataframe presented in Table 5.1.

crow ccol object float64 int64 bool cnan categorical string
books 550 7 3 1 3 0 0 1 2

GE 208636 5 4 0 2 0 0 3 0
hotelsv 478394 17 8 4 5 0 5312 6 2

hiv 173 95 95 0 0 0 0 1 94
ukraine 66722 21 13 4 6 0 142286 10 1

videos 38916 16 8 0 5 3 612 8 0

Table 5.1: CSV characteristics of initial 6 files

After ensuring the desired data format, the next challenge encountered is having only six entries in the

dataframe, which is insufficient for effective model training and testing. To overcome this limitation,

the dataframe needs to be expanded with additional entries. The first step is the extraction of multiple

CSVs from Kaggle. The dataset titles and links can be found in Appendix B.1. By sourcing datasets

from Kaggle projects, we ensure the validity of the CSV entries and gain insights into their intended use,

which will aid in creating the mapping dataset later. After the characterization process, the dataset will

consist of 25 entries, as shown in Table A.1. Due to the dataset’s relatively small size and the project’s

scope restricting further search for additional datasets, synthetic data will supplement the existing one.

14



To create a dataset with 1000 entries, synthetic data will be generated by randomizing characteristics

within a specified range. The mean and deviation of the characteristics will be used to generate random

values for the remaining rows. This will ensure that the data stays within the parameters of the initial

characteristics. The resulting dataset will consist of 1000 entries, representing the 9 CSV characteristics,

with approximately 1/40 representing authentic CSVs and the rest consisting of synthetic data.

5.1.2 | Mapping

For the creation of the mapping dataset, the main elements necessary are the CSV characteristics and the

list of possible programming tasks. To identify possible programming tasks, three source materials were

investigated. Firstly, the six given PDF assignments were broken into parts in order to identify the main

chapters of programming that are addressed in each of them. Secondly, the sourcebook for the course

JBI010 Programming course from the Joint Bachelor of Data Science was investigated in order to evalu-

ate the information gained throughout the course. Lastly, the findings were compared to the guide for

Python Programming for Data Science , which aims to provide an introduction to using Python in data

science. Links to the Python guides can be found in Appendix B.2. As a result of these investigations,

6 main chapters and programming tasks were identified. Therefore, the CSVs will be mapped to the

following programming tasks: Data Manipulation, Data Visualization, Data Cleaning and Preprocessing,

Programming Concepts, Exploratory Data Analysis, and Object-Oriented Programming.

The next step in mapping is to determine the data requirements for possible questions that may be

part of a programming task. The goal is to identify the CSV characteristics that could be important

for each programming task. After identifying a few relevant characteristics for each task, mapping func-

tions are created accordingly. Once the 25 authentic CSVs are mapped to the programming tasks and

validated against real usage of the datasets, the mapping functions can be deemed valid. Finally, the

entire list of CSVs can be mapped to the respective programming tasks. The mapping of the first 25

CSVs (original 6 and an additional 19 from Kaggle) can be found in Table B.2.

5.2 | Individual Model Evaluation
This project employs two primary datasets in the modeling and evaluation processes: a CSV character-

istics dataset and a mapping dataset. For clarity and consistency, these datasets will be renamed as

x_full and y_full, respectively, as per the structures shown in Table A.1 and Table A.2 in Appendix

A. The x_full dataset serves as the source of predictor variables, while the y_full dataset contains the

corresponding target variables.

15



In keeping with established best practices from previous research, notably Nguyen et al., 2021 and

Joseph, 2022, the datasets are partitioned into training and testing subsets with a 70-30 split. This

division ensures a random but proportional representation across both subsets. Consequently, four new

datasets are derived: x_train, x_test, y_train, and y_test. This clarified naming scheme aids in under-

standing which data is utilized in different modeling scenarios as discussed in prior sections.

This split facilitates a robust evaluation of the model’s performance and accuracy. The training data,

consisting of x_train and y_train, forms the basis for training the model and uncovering patterns within

the data. Meanwhile, the testing data, represented by x_test and y_test, serves as an independent data

set that allows for objective evaluation of the model’s predictions.

This partitioning approach contributes to the robustness of the evaluation process by ensuring that

the model is tested on unseen data, thus reducing the risk of overfitting. It allows for an assessment

of the model’s generalization capabilities and its ability to make accurate predictions on new, unseen

instances. Throughout the modeling, parameters will be hyper-tuned using GridSearch and thresholds

will be identified by testing the prediction on the training dataset. This ensures that the validation of

the models will not interfere with the testing data which will remain untouched until the evaluation phase.

In the context of the collaborative filtering and content-based filtering approaches, the literature re-

view and especially the works of Portugal et al., 2018 and Burke, 2002, combined with the subsequent

machine learning approaches, have guided the selection of similarity methods. The likeness between

entries is assessed using cosine similarity for collaborative filtering and the Pearson correlation coefficient

for content-based filtering. These similarity metrics offer different perspectives on the relationships be-

tween entries, capturing both directional alignment and linear dependence of variables. This approach

ensures that the recommendations provided are based on a comprehensive analysis of the similarities

between entries and contribute to the overall effectiveness of both methods.

5.2.1 | Content-based filtering

Content-based filtering is the first approach used to recommend suitable programming tasks for CSVs.

For this approach, for the test CSVs, the most similar train CSVs will be identified using cosine simi-

larity. The data used for creating the similarity matrix is dataset x_full (the combination of x_train

and x_test). For each CSV instance in the x_test dataset, the correlation matrix assists in identifying

the most similar CSVs present within the x_train dataset. This notion of similarity, derived from the

matrix, enables the selection of CSVs that exhibit comparable characteristics.

16



First, for each CSV in the test set, the indexes of the most similar CSVs from the train set are saved.

This includes the most similar CSVs in terms of cosine similarity. To generate predictions, the mean

of the target variables associated with the most similar CSVs from the y_train dataset is assigned to

y_pred for each entry in x_test. This process ensures that the predictions are based on the collective

behavior of similar CSVs in the training set.

Evaluating the accuracy of the predictions is a crucial step in assessing the performance of the content-

based filtering approach. If the predicted values are not 0 or 1, but values between, they are checked

against a 0.5 threshold and transformed into 1 or 0. The choice of threshold is due to the final’s prod-

uct preference of receiving recommendations of partially unclear predictions as well. Afterward, the

evaluation is conducted both at the individual programming task level and as an overall measure. By

comparing the predicted values (y_pred) with the actual values (y_test), the accuracy for each program-

ming task can be determined. Lastly, the overall accuracy, balanced accuracy, F-1 score, precision, and

recall will be computed. The metrics were chosen based on research presented in the related works section.

5.2.2 | Collaborative filtering

Collaborative filtering is the next approach used to recommend suitable programming tasks for CSVs.

This approach entails constructing correlation matrices using an adapted version of the y_full dataset.

Specifically, the combination of y_train and y_drop, which represents a modified variant of y_test, is

used. In y_drop, 1 to 3 values are randomly dropped from every entry of the dataset and later replaced

with 0.5, representing a midpoint between suitability and unsuitability in terms of programming tasks.

The correlation matrix is then created based on the mix of y_train and y_drop, incorporating the

Pearson correlation coefficient. The matrix effectively captures the likenesses among different entries, al-

lowing for the estimation of missing values. For every entry in y_drop, any absent values are substituted

with the mean derived from the most similar entries in y_train, based on the similarity matrix.

After assigning the mean prediction, a threshold is applied to classify the values as recommended or

unrecommended programming tasks. Values above 0.5 are considered recommended, while values below

0.5 are categorized as unrecommended. This transformation process ultimately converts the predicted

dataset into a binary format, specifically denoted as 1 and 0. To evaluate the accuracy of this approach,

a comparison is made between the predictions and the actual values contained within the initial y_test

dataset. The evaluation consists of individual prediction tasks and an overall appraisal of balanced ac-

curacy, accuracy, F1-score, precision, and recall (same metrics used for content-based filtering).

17



Similar to the content-based filtering approach, the collaborative filtering method aims to deliver robust

recommendations by leveraging the correlation matrix and considering the similarities between different

entries. By utilizing the modified y_full dataset and employing statistical measures, the collaborative

filtering approach aims to provide accurate and reliable recommendations of programming tasks for cases

when some of the programming task preferences are known.

5.2.3 | Machine learning

The next approaches that will be evaluated are six types of machine learning models. Both classifier

and regressor options will be tested for the following algorithms: linear regression, k-nearest neighbors,

support vector machines, decision trees, random forest, and Naive Bayes. These will be modeled and

tested using the training and testing data described previously, following a 70-30 split ratio. Thus, the

x_train and y_train datasets will be employed for model fitting, while x_test will serve as the basis for

prediction, with subsequent comparison against the y_test dataset.

Threshold tuning

Considering the nature of the regressor models, their output will not fall within the binary classes of

0 or 1 but instead represent a continuous variable within this range. Consequently, direct calculation

of accuracy and balanced accuracy measures becomes unfeasible after predicting the test set. However,

with the objective of delivering a binary target prediction and assessing the performance, the focus lies on

investigating the optimal threshold value. Although the conventional initial threshold is commonly set at

0.5 for values between 0 and 1, tuning the threshold will take into account model variations and potential

imbalances across different programming tasks. Thus, the goal is to identify the optimal threshold for

each model and programming task combination.

To determine the threshold value without involving the test set, the method will be developed using

the training set exclusively. The same model employed for prediction on the test set will be used to

predict the training set, on which the model was initially fitted. A method similar to that in the article

Brownlee, 2020 will be employed. Thus, in increments of 0.01, a range of threshold values will be exam-

ined to identify the optimal F1 score for the model’s predictions on the training set. Subsequently, the

best-performing threshold value will be employed for making predictions on the test set. This method-

ology ensures that the mapping of predictions to binary values maximizes the efficiency of the model

specifically for each individual programming task.

18



GridSearch for Parameter Tuning

Optimizing model performance necessitates careful consideration of parameters in support vector ma-

chines, k-nearest neighbors, decision trees, and random forest models. Choosing the optimal combination

of parameters is important for these four types of machine learning. To ensure parameter tuning remains

independent of the test set, the process is exclusively conducted on the training set. GridSearch, with

a 5-fold cross-validation, is employed to identify the optimal parameters from a predefined set for each

model. Implementing GridSearch guarantees that the models are fine-tuned solely using the training

data. The 5-fold cross-validation further enhances the process by continuously splitting the data, pro-

viding a validation dataset at each step of the algorithm. In this manner, model performance can be

effectively assessed while avoiding any data leakage from the test set.

This method is employed for machine-learning algorithms where parameters can be fine-tuned. There-

fore, it is applied to support vector machines, k-nearest neighbors, decision trees, and random forests.

By utilizing GridSearch with cross-validation, the most suitable parameter configurations can be deter-

mined for each machine-learning model. This systematic approach ensures robust and reliable model

performance by optimizing the parameters based on the training data, thus enhancing the predictive

capabilities of the four predictive approaches.

Evaluation

Each of the 12 machine-learning models is evaluated against the y_test dataset. The evaluation follows

five measurements, namely accuracy, balanced accuracy, F1 score, precision, and recall, chosen based on

the literature reviewed in the related works section. The results are stored in a dataset, along with the

evaluation scores of the content-based and collaborative filtering methods.

5.3 | Architecture creation and evaluation
The review of relevant literature highlights the benefits of integrating diverse models within the recom-

mender system’s architecture. Thus, the aim of this part of the project is to merge the highest-performing

models into a unified architecture, which will then generate the final predictions. The system’s design

ensures that these models are used to their full potential, with careful consideration given to both the

overall system performance and the performance on individual programming tasks.

With the purpose of seamlessly integrating these models, the system will be structured into layers. The

layers work together in the sense that each layer tries to predict the unfinished predictions of the previous

layer. Within each layer, the models independently generate predictions, which are then aggregated. In

19



cases where disagreements arise within a layer, the situation is escalated to the subsequent layer, where

a new set of models collaboratively strives to reach a consensus on the recommendation. This ensures

that the system incorporates a diverse range of perspectives and factors, leading to predictions that are

more accurate and dependable.

In the upcoming sections, the methodology employed to integrate these models as well as the processes

utilized to establish consensus within a layer will be explained. The evaluation process of the model’s

performance will also be presented. The emphasis throughout is on developing a recommender system

that is both robust and adaptable, and that takes advantage of the multitude of models used in order to

increase its performance.

5.3.1 | Data

The data used will be the previously introduced ’ x_full’ and ’ y_full’ datasets, with a 70-30 split ratio

for the training and testing. To maintain the integrity of the evaluation process, the test data remains

untouched until the final evaluation phase. As a result, only the models that show good performance on

the training data are considered for integration into the system.

In order to steer clear of using the model evaluation done on the test data, as presented in the pre-

vious section, cross-validation is applied to the training data. This way, the performance of different

models can be measured on the same scale. The evaluation method will be the same as the one done

previously, but the training and testing data will differ such that the true test data will not be used.

Known as k-fold cross-validation, this technique is a strong way to choose models, and it lessens the

chance of overfitting on the test data.

When it comes to evaluating models, a 5-fold cross-validation is used. This method splits the train-

ing dataset into five subsets of equal size. Each round of the validation process has the model fitted on

four of these subsets and then tested on the remaining subset. This cycle occurs five times in total, each

time with a different part serving as the test set. The models are then evaluated based on their average

performance across these five iterations.

Figure 5.1 presents the overall structure of the K-fold evaluation technique, while Table 5.2 presents

the structure of the evaluation DataFrame.

20



Figure 5.1: K-fold evaluation of individual prediction methods

models accuracy balance acc. F-1 score precision recall
all pt i all pt i all pt i all pt i all pt i

CBF
CF
ML j regression
ML j classification
Legend: i: index indicating programming task j: index indicating machine learning

Table 5.2: Structure of evaluation dataframe

This methodology of evaluating using validation ensures a comprehensive assessment of each model’s per-

formance. It also helps reduce bias that might come from the specific way the training data is arranged.

The process of cross-validation provides a fair look at the models’ skill in applying their training to data

they haven’t seen before. As model performance will be the key factor in choosing models for the system,

an evaluation that takes into account the need for good prediction power on unseen data is important.

The goal is to prevent overfitting on the test data, making sure that the models chosen will give solid

and dependable predictions.

5.3.2 | Structure

The design of the system will follow a layered approach, with three unique layers. This approach is

intended to make the system work better by improving the prediction accuracy with each layer.

Firstly, part of the input for the system will be the evaluation of individual predictive model approaches.

The system will necessitate these such that it can pick the models that will be employed in each layer.

This evaluation is done using the 5-fold cross-validation method on the training dataset, as mentioned

before. The models used by the system are chosen based on their average performance within the cross-

validation. However, it’s worth noting that the collaborative filtering model is reserved for the final

stage of the system because it needs some previous information regarding programming task preferences.

For each of the layers, the best models will be selected by means of thresholds. Therefore, a specific

threshold will be set for each layer, and the chosen metric (balanced accuracy for layer 1 and normal

accuracy for the other layers) must surpass this threshold for the model to be integrated. While differ-

ent layers will be looking at different performances, the performance scores will be compared to preset

21



thresholds of 0.75 for the first layer, 0.85 for the second layer, and 0.95 for the third layer. The chosen

thresholds strike a balance between allowing for diverse model options while maintaining a minimum

performance standard. However, the user can choose to change these preset thresholds. In case the

threshold filtering yields too few models, the safeguard implemented is that for each layer, a minimum

number of models need to be selected. For the first layer, the minimum number of models is 7, for the

second layer the minimum number is 5 and for the last one, the minimum number is 3. This ensures

that if within a layer, the final prediction is agreed upon, this prediction has a very high chance of being

an accurate recommendation. This is important as predictions that are agreed upon in one layer will

not be double-checked in the next one. The input data for the selection process consists of the evalu-

ation dataframe generated from the K-fold cross-validation, along with a list specifying the minimum

number of models and the corresponding threshold values. Using this data, the selection process identi-

fies and returns a list of models that meet the defined standards for each predictive task within each layer.

Figure 5.2 presents the overall design of the system, showcasing the connections and communication

between the different layers. On the other hand, Figure 5.3 provides a visual representation of the pre-

diction process within each layer, illustrating how predictions are generated and flow through the system.

Together, these figures provide a comprehensive overview of the system’s architecture and the sequential

flow of predictions within it.

Figure 5.2: Overall structure of the architecture

The first layer of the architecture is populated by the models with the best overall performance. Within

this layer, the predictions made by the models are averaged, creating a consensus prediction. Any predic-

tions in which all models agree, resulting in an average of either 1 (indicating suitability) or 0 (indicating

unsuitability), are regarded as finalized. These finalized predictions are not subject to further assessment

in subsequent layers.

For those tasks not finalized in the first layer, they are forwarded to the second layer. The models

used in this layer are selected based on their performance on each individual programming task predic-

tion. Therefore, this layer enables a more granular, task-specific optimization of the prediction process.

22



Figure 5.3: In-depth view of general layer prediction

Once again, the prediction process within this layer involves averaging the predictions of the models.

This average prediction is then integrated back into the broader matrix and passed on to the third layer.

As with the first layer, any unanimous predictions (with an average of 1 or 0) are deemed final and are

not subject to further prediction in the third layer.

The architecture’s third and final layer presents a more stringent set of criteria for model selection.

This layer focuses on the performance of the models on individual programming tasks, requiring a higher

standard than the preceding layers. Furthermore, this layer introduces a range of options for users, pro-

viding flexibility and customization in the system’s output. The choice of stricter criteria ensures that

the best top-performing models are the only ones predicting the recommendation.

This layer of the system is where the collaborative filtering model has a chance to come into play. This

model is uniquely suited to this stage due to its reliance on pre-existing finalized predictions, which are

now available from the previous layers. Therefore, the user has the option to choose whether to include

the collaborative filtering model in the prediction process. In such cases, the unfinalized predictions are

subsequently finalized using the collaborative filtering model, which takes advantage of the pre-existing

predictions from previous layers. Additionally, users have the option to choose from 8 formats for the

non-finalized predictions.

23



The 8 transformation options are a combination of individual and combined methods. One set of options

involves the use of a confidence interval transformation. Half of the output formats utilize this confidence

interval transformation, while the other half do not. When a confidence interval is applied, values that

are within the specified distance (pre-loaded as 0.2) of 0 or 1 are mapped to them accordingly. As men-

tioned before, one of the options for transformations is collaborative filtering. This option is available

both with and without a confidence interval. If applied with a confidence interval, the values that are still

not 0 or 1 after applying the interval transformation, are mapped to 0 or 1 with collaborative filtering.

Another option for transformation is using the top model. This option is similar to the collaborative

filtering option and its only difference is that it applies the best-performing model for that specific task

instead of collaborative filtering. The top model transformation can also be done both with and without

a confidence interval transformation. Another option is to deliver percentage transformations. This

option can also be employed both with and without a confidence interval. This option simply delivers

any remaining undecided predictions as percentages. The last confidence interval option is to deliver

undecided predictions as 0.5. The last transformation option is of using a threshold mapping (with a

pre-loaded value of 0.5). Therefore, all undecided predictions larger than the threshold are mapped to 1,

while the others are mapped to 0.

5.3.3 | Evaluation of the architecture

The evaluation of the system’s architecture aims to find a better understanding of the input each layer

has on the final performance, as well as the relation between layers and models within a layer. This

assessment will also help in answering the last research question.

Firstly, the focus will be on evaluating the disagreements within each layer. Of interest on this topic

are both the overall ratio of agreements to disagreements as well as the distribution of these. For this

task, the amount and position of finalized decisions will be assessed within each layer. This will yield the

proportion of overall disagreement and the distribution over the individual programming tasks. These

results will help in elevating the understanding of the system’s performance and help identify possible

faults in the layers or programming tasks where the prediction power is decidedly lower.

The next aspect of the system performance that will be investigated is the accuracy of the finalized

predictions. Of interest in this case are once again, both the overall accuracy and the accuracy of each

of the programming tasks. This aspect of the system’s performance is very important due to the fact

that finalized predictions are no longer touched in the subsequent layers. Therefore, if the predictions

are not accurate in the first layer, then they will not be accurate in the final result either and will make

24



the overall accuracy of the system lower. Thus, this analysis is an important part of a comprehensive

understanding of the final performance of the system.

Lastly, the accuracy of the final results will be compared with that of the individual model approaches.

For this step, similar to the evaluation of individual models, measures of accuracy and balanced accuracy

will be calculated for each of the programming tasks, as well as for the overall performance. For the

final system, the various options of output will also be compared in order to find if there is an increase

in performance in one of the choices of output for the non-finalized predictions.

6 | Results
The following section presents the results obtained from the final evaluation of the implemented system.

The results will specifically address the research questions and subsequent sub-research questions that

have guided the project. It is important to emphasize that the results presented in this section are derived

from a single, uninterrupted run of the implementation process, encompassing the system’s complete ex-

ecution from start to finish. Although the implementation allows for adjustments in threshold values at

certain stages, it is crucial to note that running the system again, for instance, by resplitting and regen-

erating the data, may yield marginally different results. Furthermore, modifying the threshold values

can potentially lead to the utilization of different models, thereby introducing variations in the outcomes.

It is worth mentioning that prior to the architectural implementation, individual methods were also

evaluated at an intermediate point. However, the results presented in this section refer only to the final

evaluation, which occurs after the execution of the implemented system. By adopting this approach,

it is ensured that the results encompass the full extent of the system’s performance, incorporating all

modifications and refinements implemented throughout its execution as well as portraying the final run

in cases where a model might have been called multiple times throughout the process.

Throughout this section, each research question and sub-research question will be presented individ-

ually, providing an in-depth analysis of the system’s effectiveness in addressing the specific objectives

outlined in this study. This structured approach enables a comprehensive analysis of the system’s efficacy

in addressing the specific objectives of the project as well as a deeper understanding of the effects some of

the decisions have on the final results. By adopting this approach, the aim is to present a comprehensive

evaluation of the implemented system’s efficacy and its fulfillment of the research goals.

25



6.1 | Research question 1
In accordance with the methodology outlined in the previous section, a total of 14 individual methods

were evaluated. Each method underwent evaluation for task prediction as well as an overall assessment

based on five different metrics: accuracy score, balanced accuracy score, F1 score, precision, and recall.

Some of the rounded results for each method can be found in the appendix of this paper (accuracy scores

in Table A.3). Additionally, a CSV format of the results is provided in the repository linked in Appendix

B.4, allowing for further exploration and analysis.

Upon examining the final results, it becomes evident that except for the Multinomial Naive Bayes

model, all other 13 models predict with an accuracy score of over 0.7. Furthermore, 10 of these models

(excluding Support Vector Classification, Support Vector Regression, and K-Neighbors Regressor) also

exhibit a balanced accuracy score above 0.7. From these findings, it can also be inferred that Random

Forest and Decision Trees emerge as the highest-performing models, followed by collaborative filtering.

However, it is crucial to note that the prediction and evaluation of collaborative filtering are heavily de-

pendent on the specific dropped values used for testing. Consequently, the performance of collaborative

filtering may not be consistently maintained across all cases.

Model Overall pt1 pt2 pt3 pt4 pt5 pt6
LogisticRegression 0.871 0.753 0.891 0.883 0.830 0.925 0.918

LinearRegression 0.849 0.805 0.943 0.860 0.864 0.781 0.840
MultinomialNB 0.666 0.610 0.618 0.757 0.549 0.920 0.542

GaussianNB 0.894 0.806 0.912 0.889 0.924 0.933 0.910
KNeighborsClassifier 0.705 0.785 0.589 0.708 0.549 0.919 0.560
KNeighborsRegressor 0.674 0.770 0.570 0.663 0.551 0.850 0.563
DecisionTreeClassifier 0.974 0.996 0.928 0.972 0.984 0.996 0.972
DecisionTreeRegressor 0.979 0.996 0.957 0.972 0.984 0.996 0.972

RandomForestClassifier 0.982 1.000 0.950 0.981 0.982 1.000 0.977
RandomForestRegressor 0.972 0.996 0.925 0.966 0.984 0.996 0.972

SVC 0.641 0.658 0.603 0.657 0.567 0.751 0.576
SVR 0.636 0.646 0.606 0.646 0.553 0.751 0.573
CBF 0.787 0.775 0.691 0.844 0.683 0.895 0.769

CF 0.835 0.832 0.856 0.815 0.825 0.840 0.831

Table 6.1: Balanced Accuracy Scores Individual Prediction Methods

Table 6.1 presents the balanced accuracy scores for both the overall evaluation and each individual

programming task. These results reveal that the Random Forest Classifier achieves perfect predictions

for Task 1 and Task 5, while also exhibiting the highest performance for Task 3 and Task 6. On the

other hand, the Decision Tree Regressor emerges as the highest-performing model for Task 2. In the

26



case of Task 4, the Random Forest Regressor demonstrates the highest balanced accuracy. Additionally,

it is noteworthy that certain models, such as Logistic Regression and Multinomial Naive Bayes, display

notable differences in their prediction capabilities depending on the specific task being evaluated.

In conclusion, the evaluation of the 14 individual methods reveals varying levels of performance across dif-

ferent metrics. The results indicate that Random Forest and Decision Trees emerge as the top-performing

models. Collaborative filtering, although dependent on the iteration of dropped variables also exhibits

high accuracy. The findings also highlight that lower overall accuracy doesn’t necessarily mean a lower

accuracy in all programming tasks but might also represent a big fluctuation in prediction capabilities

depending on the task being predicted. These findings facilitate the understanding of certain models as

well as highlight the potential some of them have for specific predictive tasks.

6.2 | Research question 2
The second research question delves into the incorporation of individual methods into a system. In pur-

suit of this objective, several combinations were tested, aiming to identify an architecture that guarantees

both the highest level of certainty and comprehensive range across all predictive tasks. The architecture

presented in the methodology section emerged as the most suitable choice, meeting the desired criteria.

Analyzing the results from the previous subsection, it becomes evident that certain models exhibit rela-

tively strong prediction capabilities across all tasks, while others excel only in specific prediction tasks.

Additionally, the collaborative filtering model necessitates pre-existing task predictions to be available.

Thus, a simple overall average would provide a rudimentary solution but lacks comprehensiveness.

The concept behind implementing layers is to employ increasingly specialized groups of models. Initially,

models with an overall accuracy above a predetermined threshold contribute to the baseline prediction.

This is a simple yet effective way to integrate several methods into the prediction process. The subse-

quent layer, layer 2, focuses on the prediction capabilities for each specific task. Lastly, only the most

effective models for each individual predicting task are utilized in the last layer.

The approach adopted for addressing this research question involved exploring various methods of gen-

erating predictions that incorporate the opinions of different models. The resulting structure allows

for the inclusion of both models that perform well across all tasks and models that shine on particular

tasks. By combining these different models in a systematic manner, the resulting predictions offer an

understanding of each prediction task and ensure a higher certainty of prediction.

27



6.3 | Research question 3
The final research question focuses on evaluating the implemented system, encompassing both the assess-

ment of its content and comparison with simpler, individual implementations. The system’s output is

contingent upon the approach chosen to handle values for which a unanimous agreement was not reached.

There are eight options of output format and they were all evaluated using binary mapping thresholds set

at 0.5 and confidence interval mapping thresholds at 0.2. For output options involving values other than

0 and 1, such values were considered incorrect for the accuracy evaluation. Assessing the effectiveness of

the architecture in comparison to individual implementations serves as both a benchmark and validation

of the initial premise that integrating multiple models can enhance performance. This evaluation directly

contributes to the ongoing enhancement and fine-tuning of the system.

The models used in each layer of the system were carefully selected to ensure an unbiased decision-

making process. Employing the same evaluation tactic as before, combined with a 5-fold cross-validation

approach on the training data, the models were chosen based on their performance and accuracy. Specific

balanced accuracy thresholds were set at 0.75, 0.85, and 0.95 for each layer, along with minimum model

requirements of 7, 5, and 3, respectively. These thresholds and requirements ensured that only models

meeting the desired level of accuracy and relevance were incorporated into each layer of the system. The

resulting models used are as follows:

• Layer 1: Logistic Regression, Linear Regression, Gaussian Naive Bayes, Decision Tree Classifier

and Regressor, Random Forest Classifier and Regressor, Content-Based Filtering (CBF)

• Layer 2:

– Programming task 1: Linear Regression, Decision Tree Classifier and Regressor, Random

Forest Classifier and Regressor

– Programming tasks 2-4 and 6: Logistic Regression, Linear Regression, Gaussian Naive Bayes,

Decision Tree Classifier and Regressor, Random Forest Classifier and Regressor

– Programming task 5: Logistic Regression, Multinomial Naive Bayes, Gaussian Naive Bayes,

K-Nearest Neighbors Classifier, K-Nearest Neighbors Regressor, Decision Tree Classifier and

Regressor, Random Forest Classifier and Regressor, Content-Based Filtering (CBF)

• Layer 3:

– Programming tasks 1 and 3-6: Decision Tree Classifier and Regressor, Random Forest Classi-

fier and Regressor

– Programming task 2: Random Forest Regressor and Classifier, Logistic Regression

28



• Top models:

– Programming tasks 1, 3, and 4: Random Forest Classifier

– Programming task 2: Logistic Regression

– Programming tasks 5 and 6: Random Forest Regressor

.

6.3.1 | Subquestion 3.1

In addressing subquestion 3.1, the focus is on examining the agreement-disagreement ratio within each

layer of the implemented system. The agreement is defined as a scenario where all models predict either

0 or 1, resulting in a mean prediction value of either 0 or 1 (excluding values in between). To evaluate

this, the percentage of disagreements was calculated for each prediction task individually and overall.

These percentages were determined for each layer, along with the percentage of disagreed-upon cases. A

case registers as disagreed if there exists at least one disagreement within its associated prediction tasks.

The results can be found in Table 6.2.

Name Case Total pt1 pt2 pt3 pt4 pt5 pt6
Layer 1 0.920 0.385 0.490 0.467 0.310 0.343 0.293 0.407
Layer 2 0.723 0.224 0.193 0.263 0.227 0.237 0.180 0.247
Layer 3 0.173 0.030 0.003 0.117 0.020 0.027 0.003 0.010

Table 6.2: Cumulative Disagreement Proportions For Each Layer

Name Case Total pt1 pt2 pt3 pt4 pt5 pt6
Layer 1 0.920 0.385 0.490 0.467 0.310 0.343 0.293 0.407
Layer 2 0.786 0.583 0.395 0.564 0.731 0.689 0.614 0.607
Layer 3 0.240 0.134 0.017 0.443 0.088 0.113 0.019 0.041

Table 6.3: Proportionate Disagreement Proportions For Each Layer

It is important to note that as the disagreements are calculated based on the entire layer after prediction,

each subsequent layer can have at most the same number of disagreements as the previous layer, if not

fewer. This implies that the results in Table 6.2 demonstrate how the proportion of disagreements de-

creases with each layer throughout the prediction process. From the table, it can be observed that after

the first layer, 92% of cases had at least one disagreement. However, before the final transformation in

the third layer, only 17% of cases exhibited at least one disagreement. Additionally, after the final layer,

it is clear that prediction task 2 has the highest disagreement rate at 11.67%, while the remaining tasks

demonstrate disagreements ranging from 3% to 1%, with prediction tasks 1 and 5 having disagreements

in only 0.3% of cases.

29



To provide a more comprehensive understanding of the disagreement ratio within each layer, Table

6.3 is derived from the data in Table 6.2. This table specifically focuses on the predictions made within a

single layer, enabling a clearer assessment of the disagreement ratio for that particular layer. Compared

to Table 6.2, Table 6.3 exclusively considers the predictions made within the specific layer. Therefore,

these results give a better understanding of the comparison of the performance of the predictions by not

taking into account the cumulative performance of all previous layers. As the first layer does not have any

previous layers, the values in Tables 6.2 and 6.3 are similar in this case. These results indicate that each

layer does improve on the previous layer’s predictive capabilities. Each subsequent layer predicts with a

higher rate of agreement on the cases not agreed upon from the previous layer. The final layer has its

highest disagreement rates of 44.3% in prediction task 2 and 11.3% in prediction task 4, while all the other

prediction tasks have disagreements in under 10% of the cases (going as low as 1.7% for prediction task 1).

6.3.2 | Subquestion 3.2

Subquestion 3.2 focuses on assessing the accuracy of the agreed predictions within the three layers of

the implemented system. In the previous subquestion, the emphasis was on the agreement ratio, with

subsequent layers exhibiting a higher percentage of agreements. The logical next step is to evaluate the

accuracy of these agreed predictions. It is crucial to ensure that the agreed predictions are correct, as

they remain unchanged in subsequent layers. The system design prioritizes the idea of fewer but reliable

agreements. Alongside the three layers, the transformed final layer, where values are mapped, is also

evaluated. The detailed results, including all measurements, can be found in the corresponding CSV

file in the provided repository while the accuracy score can be found in Appendix A.4. The balanced

accuracy results are presented in Table 6.4.

Name Overall pt1 pt2 pt3 pt4 pt5 pt6
Layer 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Layer 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Layer 3 0.988 1.000 0.964 0.988 1.000 1.000 0.980

ci0_choice0 0.988 1.000 0.964 0.988 1.000 1.000 0.980
ci0_choice1_thr0.5 0.977 0.996 0.951 0.966 0.982 0.996 0.972

ci0_choice2 0.968 1.000 0.891 0.981 0.982 0.996 0.972
ci0_choice3 0.989 1.000 0.970 0.989 1.000 1.000 0.980

ci1_choice0_thr0.2 0.988 1.000 0.964 0.988 1.000 1.000 0.980
ci1_choice1_thr0.2 0.988 1.000 0.964 0.988 1.000 1.000 0.980
ci1_choice2_thr0.2 0.968 1.000 0.891 0.981 0.982 0.996 0.972
ci1_choice3_thr0.2 0.989 1.000 0.970 0.989 1.000 1.000 0.980

Table 6.4: Agreement Balanced Accuracy Scores

From the presented results, it is clear that both Layer 1 and Layer 2 achieve a perfect accuracy score.

This is highly desirable, as it indicates that inaccurate predictions are not propagated through the sys-

tem from one layer to the next. The final layer has an overall balanced accuracy score of 98%. Task 1,

30



Task 4, and Task 5 achieve perfect accuracy scores, demonstrating the system’s proficiency in accurately

predicting these tasks. The remaining tasks also exhibit high accuracy, with balanced accuracy scores

exceeding 96%.

Notably, the only transformation that enhances the overall accuracy of the agreed predictions is the

collaborative filtering transformation. It is also worth mentioning that transformations involving confi-

dence intervals show either no significant difference or an enhanced accuracy in the agreed predictions

compared to those without confidence intervals. Since these scores are calculated solely using predictions

of 1 or 0, it implies that the values that were initially disagreed upon and subsequently mapped using

the confidence interval approach have been accurately assigned in the final predictions. These findings

highlight the system’s ability to generate accurate predictions. The perfect accuracy of the first two

layers backs up the reliability of the system. While the final layer does not produce the same perfect

metrics for all prediction tasks, it still maintains very high accuracy in the other cases as well.

6.3.3 | Subquestion 3.3

Subquestion 3.3 centers around investigating the final results of the system after the transformation

in the last layer. During this evaluation, transformations containing values other than 0 and 1 are

deemed as incorrect predictions. These results are subsequently compared to the findings in Table 6.1

from the results of Research Question 1. Table 6.5 presents the outcomes of the eight different types of

transformations. Upon comparing these two tables, it becomes apparent that certain transformations

achieve a higher balanced accuracy for the overall prediction compared to the top-performing individual

methods. Notably, employing the collaborative filtering method as the final transformation enables the

perfect prediction of an additional task that could not be achieved solely by relying on the predictions

of individual methods. However, it is crucial to note that the system’s focus extends beyond balanced

accuracy alone, as this metric is insufficient for a comprehensive evaluation of success. Alongside the

improvement in prediction accuracy, an additional advantage of the system lies in its enhanced reliability

of performance.

By comparing the results of the system’s final transformation with the performance of individual methods,

it is clear that certain transformations exhibit a superior balanced accuracy for the overall prediction.

This signifies the effectiveness of the system in combining the strengths of multiple individual methods

to achieve higher accuracy in the predictions. Furthermore, the inclusion of the collaborative filtering

method in the final transformation allows for the successful prediction of an additional task that could

not be accomplished solely through individual methods. This highlights the system’s ability to leverage

complementary information from different models to enhance its predictive capabilities.

31



Model Overall pt1 pt2 pt3 pt4 pt5 pt6
Layer 1 0.593 0.503 0.530 0.685 0.509 0.681 0.587
Layer 2 0.763 0.801 0.733 0.767 0.664 0.812 0.748
Layer 3 0.952 0.996 0.844 0.958 0.960 0.996 0.969

CI0_Choice0 0.952 0.996 0.844 0.958 0.960 0.996 0.969
CI0_Choice1_thr0.5 0.977 0.996 0.951 0.966 0.982 0.996 0.972

CI0_Choice2 0.968 1.000 0.891 0.981 0.982 0.996 0.972
CI0_Choice3 0.989 1.000 0.970 0.989 1.000 1.000 0.980

CI1_Choice0_thr0.2 0.952 0.996 0.844 0.958 0.960 0.996 0.969
CI1_Choice1_thr0.2 0.952 0.996 0.844 0.958 0.960 0.996 0.969
CI1_Choice2_thr0.2 0.968 1.000 0.891 0.981 0.982 0.996 0.972
CI1_Choice3_thr0.2 0.989 1.000 0.970 0.989 1.000 1.000 0.980

Table 6.5: Balanced Accuracy Scores Individual Prediction Methods

The evaluation of the system extends beyond the final results, encompassing both the underlying structure

and the individual layer results. The results of individual layers provide valuable insights into the system’s

performance. The evaluation of the agreement-disagreement ratio, accuracy of the agreed predictions,

and transformation effects in each layer explain the contribution of each layer to the overall system

performance. Through this comprehensive analysis, it becomes evident that the systematic combination

of models and the iterative refinement process result in improved prediction accuracy and reliability.

7 | Discussion
The results of the implemented system for programming task prediction have been analyzed, addressing

the research questions and sub-research questions that guided this study. The discussion will now pro-

vide a comprehensive analysis of the findings, highlighting the key points and implications of the results.

The system’s performance, as indicated by its final model accuracy, exceeded the best individual model.

This result lends credence to the system’s methodology, combining multiple models to leverage their

individual strengths, mitigate their weaknesses and increase reliability.

A unique feature of this system, compared to traditional models, is the enhanced reliability of its pre-

dictions. The results reveal that the predictions out of layer 2 were near-perfect, showing a remarkable

accuracy of 99.98% after 1000 iterations (starting from the splitting of the data). This high level of

accuracy boosts the system’s reliability, making it a promising alternative to individual models. The

consistency in accurate predictions observed in this study suggests the system’s efficacy in providing

reliable solutions, thus highlighting its potential for further application in similar prediction tasks. The

robustness and generalizability of the system set it apart. Although applied to programming tasks in

this study, the system demonstrated potential for broader application in other prediction tasks that

utilize machine learning. The strong performance of the system, coupled with its adaptability, suggests

its capacity to be incorporated into various prediction tasks beyond the programming domain.

32



Upon evaluating the agreement-disagreement ratio out of the predictions within each layer of the imple-

mented system, it was observed that the second layer had the largest proportion of disagreements. This

finding suggests that there is room for further optimization within the architecture. The introduction

of an additional layer between the second and third layers could potentially lead to a decrease in the

number of disagreements before reaching the final layer. Such an addition may further improve the

reliability and accuracy of the system, giving it a chance to achieve better results.

The results of this study underscore the importance of model integration in enhancing the accuracy

and reliability of predictions. The incorporation of multiple models into a layered system led to superior

results compared to any of the individual models. This lends support to the approach of combining

models to form a system, suggesting that a coordinated effort of multiple models may be more effective

than relying on single models. Moreover, the layered structure of the system allows for flexibility and

adaptability, enabling the system to perform reliably across different prediction tasks. The system’s final

models’ balanced accuracy scores are a testament to its high performance. While some tasks, such as

Task 2, exhibited higher rates of disagreement, the overall high accuracy of the final models demonstrates

the system’s proficiency in managing a diverse range of tasks.

While the layered system architecture exhibits considerable robustness and reliability, it is crucial to

remember that the predictive power of the system is fundamentally dependent on the individual predic-

tion methods, which form the bedrock of the system’s predictions. There will inevitably be cases where

the system’s predictive capacity might falter, particularly when the individual models themselves are

in disagreement. A clear illustration of this phenomenon can be seen in the example of Task 2, where

the individual methods consistently struggled to reach a consensus, resulting in the system having the

highest number of disagreements. However, despite this inherent challenge, the layered system exhibits

its true merit by the end of layer 3, where the predictions that were agreed upon achieved an impressive

accuracy rate of 97%. This performance surpasses the accuracy of any individual prediction method,

further reinforcing the system’s potential for increased reliability and robustness.

The validation of the system’s performance with 1000 iterations, taking the mean of the results, re-

vealed consistent outcomes. Additionally, the system’s versatility and applicability in other domains

were examined using a Diabetes classification dataset from Kaggle (found in Appendix B.3). While the

performance results were not as high as with programming tasks in absolute terms, the system outper-

formed the individual methods. The detailed performance results can be found in one of the data folders

within the code repository (linked in Appendix B.4).

33



8 | System Delivery
The code for delivering the system presented in the paper consists of five Python files, each contain-

ing different functions and classes. These files are named ”data_creation.py,” ”methods_pipeline.py,”

”system_architecture.py,” ”delivery_ui.py,” and ”main.py”. Each file uses some elements imported from

previous files. To run the tool, users can simply execute the ”main.py” file, which acts as the entry point

and calls the necessary components.

Running the ”main.py” file will call the necessary class and prompt the user interface. When the tool

is run, a pop-up appears, prompting the user to make a choice between using the tool for prediction or

testing. For testing, two options are available: using programming task prediction data or using other

datasets. In the latter case, a preloaded diabetes prediction dataset with 4000 entries is included. Users

can also provide their own dataset by following the instructions in the README file, ensuring the data is

appropriately named and separated into predictor and target variable files. For using the tool to predict

programming tasks, two CSV files are preloaded in the correct file location. Users can change or add

additional CSVs in the correct file location as well. The preloaded CSVs are the full Diabetes dataset

and a fruit prices dataset. Both were retrieved from Kaggle and the links can be found in Appendix B.3.

After selecting the purpose and dataset, users are prompted to choose from eight transformation op-

tions. They can select any number of transformations according to their needs. The choices are then

double-confirmed with the users through the means of a pop-up that gives the option of going back

and reselecting. Once the choices are confirmed, the user is asked whether they would like to retrain or

not. Retraining involves running grid search and k-fold cross-validation again. While retraining is not

required for predicting suitable tasks for specific CSVs, it is recommended when testing in order to ensure

maximal performance. The tool notifies the user about this and mentions that training is mandatory

when using a new dataset as errors can occur otherwise.

Depending on the transformations chosen, there are two pop-ups that may appear. These pop-ups

ask the user whether they want to change the threshold value or the confidence interval value. Users

can also choose to input multiple options for thresholds and confidence interval values if desired. The

pop-ups prompt users to specify the number of values they want to input for each variable, and then the

corresponding number of prompts appear, with the default variable values pre-loaded as options. During

this step, if the value provided by the user is not within the range of 0 to 1 for the threshold or 0 to 0.5

for the confidence interval, an error message appears, requesting the user to input a valid value. The

final values are double-checked with the user to ensure accuracy.

34



After the tool completes its execution, the results are displayed in a pop-up window and are also recorded

in a text file, which includes the timestamp of the execution. For testing purposes, the pop-up window

presents only the overall balanced accuracy to avoid overcrowding the interface, while the full results

are available in the text file. This allows users to have a comprehensive view of the system’s performance.

In summary, the code delivery includes a set of organized Python files that facilitate the execution

and testing of the tool. User interaction is handled through pop-up prompts, allowing users to make

choices and provide input for various parameters. Results are presented in a clear and accessible manner,

providing users with the necessary information about the system’s performance. The modular structure

of the code ensures flexibility and ease of use, enabling users to utilize the tool for prediction and testing

purposes efficiently.

9 | Conclusion & future work
This project aimed to answer several questions related to the accuracy of prediction approaches in

recommending suitable programming tasks, the effective integration of these methods into a unified

recommender system architecture, and a comparative analysis of the performance of the integrated

system against the individual prediction methods. By addressing three research questions and three sub-

questions, this project sheds light on the potential and effectiveness of the proposed system in delivering

reliable predictions.

Research Question 1 centered around the accuracy of individual prediction approaches. The findings

from our analysis revealed that decision trees and random forest algorithms consistently outperformed

other methods in terms of precision. However, it’s important to note that other models also performed

well in specific tasks, underscoring the necessity of utilizing a broad palette of prediction methodologies.

The localized high performance of some models supports the theory of necessitating specific model choices

for each prediction task. Thus, applying only the overall best model to everything might not be the best

solution as the one-size-fits-all approach doesn’t always yield optimal results in all predictive tasks.

Research Question 2 was dedicated to integrating various prediction methods into a unified, effective

system. The result was a layered system that aimed for consensus at each level, with disagreements

leading to further consideration at the next layer. This methodology efficiently combined the strengths

of each prediction method while mitigating their individual limitations.

35



For Research Question 3, a comparison was conducted between the integrated system and the individual

methods. This comparison was broken down into three sub-questions to provide an in-depth understand-

ing of the system’s performance. Subquestion 3.1 evaluated the agreement-disagreement ratio within

each layer, finding that disagreements were significantly diminished by the third layer. Through this

analysis, it was also revealed that the second layer has the highest ratio of disagreements out of the

predicted values. This finding could prompt further investigation into the balancing of the layers and

the potential addition of further layers. Through the results of subquestion 3.2, near-perfect accuracy

was discovered for the predictions on which component methods were under agreement within the first 2

layers. This finding further supports the efficacy of collective decision-making. Furthermore, the results

indicated that the collaborative filtering method as a transformation of disagreed predictions shows the

most promising results in terms of overall accuracy. Subquestion 3.3 compared the metrics of the inte-

grated system to those of the individual methods. The results showed that some of the transformations

of the system outperform the individual prediction methods, vouching for the merit of the integrated,

layered approach.

In conclusion, the study highlighted the benefits of an integrated, layered system for programming

task recommendations. The goal was not exclusively to achieve superior accuracy, but also to produce

more reliable predictions across a broader variety of tasks. The aim was not just identifying the best

predictive method, but the creation of a system that consistently delivers high-quality recommendations

across a wider variety of prediction tasks.

The findings from this project offer valuable insights into the field of recommendation systems, emphasiz-

ing the significance of a diverse range of prediction methods, the strength of integration, and the essential

role that a layered architecture can play in boosting prediction performance. Looking ahead, there is

potential for this research to prompt more advanced, nuanced, and adaptable recommendation systems

both on the topic of programming task prediction and beyond. The system leverages the strengths of

multiple models, promoting a collaborative decision-making process, thereby aiming for more accurate

and reliable predictions, facilitating improved decision-making.

The prospects for future work, based on the outcomes and findings of the current study, are abun-

dant. The system shows significant promise beyond just programming task prediction, indicating a

vast potential for further exploration and development. For instance, the layered architecture could

be expanded upon, with the introduction of additional layers and nuanced adjustments to the decision

thresholds within each layer. Furthermore, an in-depth investigation of the variety and quantity of mod-

els incorporated within each layer could potentially enhance the system’s robustness and adaptability.

36



The choice of initial individual models offers another intriguing avenue for research. By integrating

models that have demonstrated high efficacy in other prediction contexts, the system could potentially

exhibit enhanced performance and generalizability. Moreover, applying this system to diverse prediction

tasks is crucial for validating the structure of further research.

10 | Acknowledgments
This paper is written as part of the Final Bachelor Project and is submitted in partial fulfillment of the

requirements of the degree of Joint Bachelor of Science in Data Science from the Eindhoven University of

Technology and Tilburg University under the supervision of Prof.Dr. M. van den Brand, Dr. M. Seraj,

and Dr. L. Ochoa Venegas. Online tools were used for grammar checking and rephrasing.

37



References
Batmaz, Z., Yurekli, A., Bilge, A., & Kaleli, C. (2019). A review on deep learning for recommender

systems: Challenges and remedies. Artificial Intelligence Review, 52, 1–37.

Brownlee, J. (2020). A gentle introduction to threshold-moving for imbalanced classification. Machine

Learning Mastery.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User modeling and user-adapted

interaction, 12, 331–370.

Geetha, G., Safa, M., Fancy, C., & Saranya, D. (2018). A hybrid approach using collaborative filtering and

content based filtering for recommender system. Journal of Physics: Conference Series, 1000(1),

012101.

Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: The ASA

Data Science Journal, 15(4), 531–538.

Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender

systems. Expert systems with applications, 41(4), 2065–2073.

Nguyen, Q. H., Ly, H.-B., Ho, L. S., Al-Ansari, N., Le, H. V., Tran, V. Q., Prakash, I., & Pham, B. T.

(2021). Influence of data splitting on performance of machine learning models in prediction of

shear strength of soil. Mathematical Problems in Engineering, 2021, 1–15.

Portugal, I., Alencar, P., & Cowan, D. (2018). The use of machine learning algorithms in recommender

systems: A systematic review. Expert Systems with Applications, 97, 205–227.

Ravi, M., Negi, A., & Chitnis, S. (2022). A comparative review of expert systems, recommender systems,

and explainable ai. 2022 IEEE 7th International conference for Convergence in Technology

(I2CT), 1–8.

Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. Recommender systems

handbook.

38



A | Additional data tables and results

crow ccol object float64 int64 bool cnan categorical string
books 550 7 3 1 3 0 0 1 2

GE 208636 5 4 0 2 0 0 3 0
hotels 478394 17 8 4 5 0 5312 6 2

hiv 173 95 95 0 0 0 0 1 94
ukraine 66722 21 13 4 6 0 142286 10 1

videos.csv 38916 16 8 0 5 3 612 8 0
admissions 1914 16 2 8 6 0 0 2 0

air 7323 21 2 18 1 0 19171 1 1
AQI 16695 14 7 2 5 0 302 6 1

tennis 60101 17 10 2 5 0 0 10 0
homicide 195 6 3 1 2 0 0 2 1

suicide 916 8 8 0 0 0 0 0 1
GOOGLE 4717 6 1 4 1 0 0 0 1

abortion 64814 19 3 13 3 0 276577 3 0
penguins 344 18 10 7 2 0 336 8 1

piano 917 1 1 0 0 0 0 0 1
population 234 18 4 3 11 0 0 1 3

killers 1531 6 6 0 0 0 0 1 3
spotify 300 11 6 0 4 1 0 6 0
travel 1303 1 1 0 0 0 0 0 1

housing 5000 7 1 6 0 0 0 0 1
births 5496 9 4 2 3 0 0 4 0

wdi_wide 217 16 5 11 0 0 140 4 1
avg_temp 465 16 16 0 0 0 2 0 16

world_pop 216 63 1 42 20 0 42 0 1

Table A.1: CSV characteristics of first 25 files

39



pt1 pt2 pt3 pt4 pt5 pt6
books 1 1 0 1 0 1

GE 0 1 0 1 0 1
hotels 1 1 1 1 1 1

hiv 0 0 1 1 0 1
ukraine 1 1 1 1 1 1

videos.csv 1 1 1 1 1 1
admissions 1 1 0 0 0 0

air 1 1 1 0 1 0
AQI 1 1 1 1 0 1

tennis 1 1 1 1 0 1
homicide 0 1 0 1 0 1

suicide 0 0 1 1 0 1
GOOGLE 1 1 1 1 1 0

abortion 1 1 1 1 0 1
penguins 0 0 0 0 0 0

piano 1 1 0 1 0 1
population 1 0 1 1 0 1

killers 1 1 1 1 1 1
spotify 0 0 0 0 0 0
travel 0 1 0 0 0 0

housing 1 1 0 1 0 1
births 0 1 1 1 0 1

wdi_wide 1 0 1 1 0 1
avg_temp 1 1 1 1 1 1

world_pop 1 0 1 1 0 1
Legend: pt1: Data Manipulation pt2: Data Visualization pt3: Data Cleaning and Preprocessing
pt4: Programming Concepts pt5: Exploratory Data Analysis pt6: Object-Oriented Programming

Table A.2: CSV characteristics of first 25 files

40



Model Overall pt1 pt2 pt3 pt4 pt5 pt6
LogisticRegression 0.888 0.777 0.900 0.900 0.907 0.920 0.923

LinearRegression 0.868 0.810 0.947 0.877 0.913 0.810 0.853
MultinomialNB 0.666 0.630 0.610 0.690 0.600 0.907 0.560

GaussianNB 0.878 0.797 0.907 0.867 0.880 0.923 0.897
KNeighborsClassifier 0.743 0.787 0.607 0.753 0.793 0.907 0.610
KNeighborsRegressor 0.747 0.780 0.620 0.787 0.797 0.860 0.637
DecisionTreeClassifier 0.978 0.997 0.930 0.983 0.983 0.997 0.977
DecisionTreeRegressor 0.983 0.997 0.960 0.983 0.983 0.997 0.977

RandomForestClassifier 0.985 1.000 0.953 0.987 0.990 1.000 0.980
RandomForestRegressor 0.979 0.997 0.933 0.980 0.993 0.997 0.977

SVC 0.736 0.710 0.650 0.797 0.813 0.797 0.647
SVR 0.733 0.703 0.653 0.790 0.810 0.797 0.643
CBF 0.797 0.773 0.693 0.853 0.793 0.897 0.770

CF 0.880 0.860 0.873 0.890 0.927 0.870 0.860

Table A.3: Accuracy Scores Individual Prediction Methods

Name Overall pt1 pt2 pt3 pt4 pt5 pt6
Layer 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Layer 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Layer 3 0.991 1.000 0.970 0.993 1.000 1.000 0.983

ci0_choice0 0.991 1.000 0.970 0.993 1.000 1.000 0.983
ci0_choice1_thr0.5 0.983 0.997 0.957 0.980 0.990 0.997 0.977

ci0_choice2 0.975 1.000 0.900 0.987 0.990 0.997 0.977
ci0_choice3 0.992 1.000 0.973 0.993 1.000 1.000 0.983

ci1_choice0_thr0.2 0.991 1.000 0.970 0.993 1.000 1.000 0.983
ci1_choice1_thr0.2 0.991 1.000 0.970 0.993 1.000 1.000 0.983
ci1_choice2_thr0.2 0.975 1.000 0.900 0.987 0.990 0.997 0.977
ci1_choice3_thr0.2 0.992 1.000 0.973 0.993 1.000 1.000 0.983

Table A.4: Agreement Accuracy Scores

41



B | Links pertaining to data, materials, and code
B.1 | Kaggle datasets

• Travel Company Insurance Prediction → Travel Company New Clients.csv: https://www.kaggle.

com/datasets/sellingstories/travel-company-insurance-prediction

• ATP Tennis 2000 - 2023 Daily update → atp_tennis.csv: https://www.kaggle.com/datasets/dissfya/

atp-tennis-2000-2023daily-pull

• World Air Quality Index by City and Coordinates → AQI and Lat Long of Countries.csv: https://

www.kaggle.com/datasets/adityaramachandran27/world-air-quality-index-by-city-and-coordinates

• US Births by Year, State, and Education Level → us_births_2016_2021.csv: https://www.kaggle.

com/datasets/danbraswell/temporary-us-births

• Countries by Intentional Homicide Rate → countries-by-intentional-homicide-rate.csv: https://

www.kaggle.com/datasets/bilalwaseer/countries-by-intentional-homicide-rate

• Google Stocks Complete → GOOGLE.csv: https://www.kaggle.com/datasets/bilalwaseer/google-

stocks-complete

• Serial Killers Wiki → serial_killers.csv: https://www.kaggle.com/datasets/abdullahsamiir/serial-

killers-wiki

• Air Index of world’s All Cities 2017 to 2022 → air_index.csv: https://www.kaggle.com/datasets/

bilalwaseer/air-index-of-worlds-all-cities-2017-to-2022

• Prison Population in the US → admissions_releases_states.csv: https://www.kaggle.com/datasets/

konradb/prison-population-in-the-us

• Abortion Opinions in the General Social Survey → gss_abortion.csv: https://www.kaggle.com/

datasets/utkarshx27/abortion-opinions-in-the-general-social-survey

• World’s Cities with their Average Temperature → worlds all cities with their avg temp - Sheet1.csv:

https://www.kaggle.com/datasets/bilalwaseer/worlds-cities-with-their-average-temperature

• Global Suicide, Mental Health, Substance Use → crude suicide rates.csv: https://www.kaggle.com/

datasets/thedevastator/global-suicide-mental-health-substance-use-disor

• World Demographic Indicators Extract → wdi_wide.csv: https://www.kaggle.com/datasets/mathsian/

world-demographic-indicators-extract

42

https://www.kaggle.com/datasets/sellingstories/travel-company-insurance-prediction
https://www.kaggle.com/datasets/sellingstories/travel-company-insurance-prediction
https://www.kaggle.com/datasets/dissfya/atp-tennis-2000-2023daily-pull
https://www.kaggle.com/datasets/dissfya/atp-tennis-2000-2023daily-pull
https://www.kaggle.com/datasets/adityaramachandran27/world-air-quality-index-by-city-and-coordinates
https://www.kaggle.com/datasets/adityaramachandran27/world-air-quality-index-by-city-and-coordinates
https://www.kaggle.com/datasets/danbraswell/temporary-us-births
https://www.kaggle.com/datasets/danbraswell/temporary-us-births
https://www.kaggle.com/datasets/bilalwaseer/countries-by-intentional-homicide-rate
https://www.kaggle.com/datasets/bilalwaseer/countries-by-intentional-homicide-rate
https://www.kaggle.com/datasets/bilalwaseer/google-stocks-complete
https://www.kaggle.com/datasets/bilalwaseer/google-stocks-complete
https://www.kaggle.com/datasets/abdullahsamiir/serial-killers-wiki
https://www.kaggle.com/datasets/abdullahsamiir/serial-killers-wiki
https://www.kaggle.com/datasets/bilalwaseer/air-index-of-worlds-all-cities-2017-to-2022
https://www.kaggle.com/datasets/bilalwaseer/air-index-of-worlds-all-cities-2017-to-2022
https://www.kaggle.com/datasets/konradb/prison-population-in-the-us
https://www.kaggle.com/datasets/konradb/prison-population-in-the-us
https://www.kaggle.com/datasets/utkarshx27/abortion-opinions-in-the-general-social-survey
https://www.kaggle.com/datasets/utkarshx27/abortion-opinions-in-the-general-social-survey
https://www.kaggle.com/datasets/bilalwaseer/worlds-cities-with-their-average-temperature
https://www.kaggle.com/datasets/thedevastator/global-suicide-mental-health-substance-use-disor
https://www.kaggle.com/datasets/thedevastator/global-suicide-mental-health-substance-use-disor
https://www.kaggle.com/datasets/mathsian/world-demographic-indicators-extract
https://www.kaggle.com/datasets/mathsian/world-demographic-indicators-extract


• World Population Insights: 1970-2022 → population.csv: https://www.kaggle.com/datasets/gyaswanth297/

world-population-insights-1970-2022

• World Population Data 1960-2020 → world_pop.csv: https://www.kaggle.com/datasets/utkarshx27/

world-population-data-1960-2020

• Housing Dataset of 5000 People Staying in USA → USA_Housing.csv: https://www.kaggle.com/

datasets/darshanprabhu09/housing-dataset-of-5000-people-staying-in-usa

• Spotify Top 50 Playlist Songs | @anxods → spotify-streaming-top-50-world.csv: https://www.

kaggle.com/datasets/anxods/spotify-top-50-playlist-songs-anxods

• International Piano Competitions → piano_comp.csv: https://www.kaggle.com/datasets/leesstephanie/

international-piano-competitions

• Penguin Size, Clutch, and Blood Isotope Dataset → penguins_raw.csv: https://www.kaggle.com/

datasets/utkarshx27/penguin-size-clutch-and-blood-isotope-data

B.2 | Python Programming source books
• Learning Python by doing (2022) by Mark van den Brand, Mauricio Verano Merino, Lina María

Ochoa, Mazyar Seraj, Tom Verhoeff and Gijs Walravens

https://programming-pybook.github.io/introProgramming/intro.html#learning-python-by-doing

• Python Programming for Data Science (2021) by Tomas Beuzen

https://www.tomasbeuzen.com/python-programming-for-data-science/README.html

B.3 | Additional datasets
• Diabetes 50-50 split: https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset

• Fruit prices: https://www.kaggle.com/datasets/vstacknocopyright/fruit-and-vegetable-prices

B.4 | Source code for the project
Dumitru Toader, Maria Emanuela. (2023). Developing a Versatile Hybrid Recommender System: Case

Study on Programming Task Prediction. Zenodo. https://doi.org/10.5281/zenodo.8030182

GitHub Repository: https://github.com/emadumitru/FBP_2023_Versatile_Hybrid_RS

43

https://www.kaggle.com/datasets/gyaswanth297/world-population-insights-1970-2022
https://www.kaggle.com/datasets/gyaswanth297/world-population-insights-1970-2022
https://www.kaggle.com/datasets/utkarshx27/world-population-data-1960-2020
https://www.kaggle.com/datasets/utkarshx27/world-population-data-1960-2020
https://www.kaggle.com/datasets/darshanprabhu09/housing-dataset-of-5000-people-staying-in-usa
https://www.kaggle.com/datasets/darshanprabhu09/housing-dataset-of-5000-people-staying-in-usa
https://www.kaggle.com/datasets/anxods/spotify-top-50-playlist-songs-anxods
https://www.kaggle.com/datasets/anxods/spotify-top-50-playlist-songs-anxods
https://www.kaggle.com/datasets/leesstephanie/international-piano-competitions
https://www.kaggle.com/datasets/leesstephanie/international-piano-competitions
https://www.kaggle.com/datasets/utkarshx27/penguin-size-clutch-and-blood-isotope-data
https://www.kaggle.com/datasets/utkarshx27/penguin-size-clutch-and-blood-isotope-data
https://programming-pybook.github.io/introProgramming/intro.html#learning-python-by-doing
https://www.tomasbeuzen.com/python-programming-for-data-science/README.html
https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/datasets/vstacknocopyright/fruit-and-vegetable-prices
https://doi.org/10.5281/zenodo.8030182
https://github.com/emadumitru/FBP_2023_Versatile_Hybrid_RS

	Introduction
	Related Works
	Objective
	Approach
	Methodology
	Results
	Discussion
	System Delivery
	Conclusion & future work
	Acknowledgments
	Additional data tables and results
	Links pertaining to data, materials, and code

