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Abstract— Solar power plays a vital role in 

addressing environmental challenges caused by fossil fuels. 

Nowadays, many households, office buildings, and 

communities are installing photovoltaic (PV) panels on 

their rooftops to harness green electricity and, more 

importantly, reduce electricity expenses. Despite its 

benefits, solar power supply is unpredictable, and 

sometimes generating more energy than is needed, 

resulting in wastage. To address this issue, a combination 

of renewable resources and battery energy storage (BES) 

proves to be an effective solution. BES allows surplus solar 

energy to be stored during periods of high supply, 

ensuring its availability when needed. Moreover, it is 

essential to not only consider the integration of BES and 

renewable energy sources in alignment with sustainability 

goals, but also recognize its economic advantages for 

building owners. By optimizing the performance of BES, 

it becomes possible to reduce electricity operating costs. 

Therefore, this study focuses on developing an energy 

management system (EMS) designed to enhance cost 

savings for PV owners. Conducted in Bunnik, the 

Netherlands, the case study aims to explore the impact of 

integrating RES with BES. The findings of this research 

provide valuable insights and highlight the substantial 

potential of such integration in achieving economic 

savings. 

NOMENCLATURE 
ARIMA - Auto Regressive Integrated Moving Average 

ANN - Artificial Neural Networks 

BES - Battery Energy Storage 

EMS - Energy Management System 

EU - European Union 

KNMI - Koninklijk Nederlands Meteorologisch Instituut 

LEC - Local Energy Community 

LP - Linear Programming 

MLR - Multiple Linear Regression 

NWP - Numerical Weather Prediction 

PV - Photovoltaic 

𝑅2 - R-squared 

RES - Renewable Energy Sources 

RMS - Root Mean Square 

SE - Standard Error 

SVR - Support Vector Regression 

SoC - State of Charge 

TSI - Total Sky Imager 

TROEF - Transparent Reducing CO2 and Optimizing Energy 

in an Ecosystem of Flexibility 

 

I. INTRODUCTION 

In its pursuit of the ambitious goal to achieve climate-

neutrality by 2050, the EU is actively promoting the energy 

transition. To expedite this transition and reach the set target, 

the establishment of local energy communities is strongly 

encouraged. These communities consist of prosumers, which 

include households, or office buildings equipped with small-

scale renewable energy production technologies, such as 

rooftop photovoltaic (PV) panels. Beyond the evident 

environmental consciousness, prosumers are increasingly 

motivated to install PV panels on their rooftops by the desire 

to curb electricity expenses. Embracing solar power not only 

aligns with their sustainability goals but also offers tangible 

economic benefits in the form of reduced electricity costs. 

 

However, a key drawback of solar power lies in its 

intermittent nature. The unpredictability of solar power 

supply often leads to situations where surplus energy is 

generated, exceeding immediate demand and resulting in 

wastage. To overcome this challenge and fully leverage the 

potential of solar energy, the integration of renewable 

resources with battery energy storage (BES) has emerged as 

an effective solution. BES offers the ability to store excess 

solar energy during periods of high supply, ensuring its 

availability for consumption during times of increased 

demand. 

 

To facilitate the seamless integration of BES with renewable 

resources, the implementation of an energy management 

system (EMS) becomes essential. An EMS empowers owners 

to optimize BES performance and achieve their objectives, 

such as load shifting, financial savings, grid independence, 

and more. Researches have already been conducted on this 

topic. 

 

The authors of references [1] and [2] have conducted 

comprehensive analyses of various methods for microgrid 

EMS. These methods encompass classical approaches like 

linear and nonlinear programming, dynamic programming, 

and rule-based methods. They also explore meta-heuristic 

approaches such as genetic and swarm optimization, as well 



as artificial intelligent methods like fuzzy logic, neural 

networks, and multi-agent systems. The studies further 

consider stochastic and robust programming approaches, 

model predictive control, and optimization algorithm types, 

including linear programming, non-linear programming, and 

stochastic programming. Both references provide 

comprehensive overviews of solution approaches, including 

heuristic approaches, neural network approaches, and other 

tools employed for energy management in microgrids. 

 

In [3], the focus is on a day-ahead operational planning 

method for a grid-connected local energy community (LEC), 

consisting of some prosumers, battery storage systems, and 

local loads. The primary objective is to achieve cost 

minimization for power transactions with the utility grid on 

the following day. A distributed procedure is utilized to 

calculate energy resource schedules, limiting grid balancing 

actions and allocating network losses. Results from various 

case studies are compared with those obtained from a 

centralized optimization approach. Both approaches yield 

comparable results, indicating that each prosumer within the 

LEC experiences cost reductions or increased revenues by 

participating in the LEC compared to transacting solely with 

an external energy provider. 

 

Furthermore, there is a study that presents an optimization 

model aiming to schedule energy transactions within a LEC 

of prosumers with PV production and BES [4]. The primary 

goal is also to minimize the total cost of the energy community. 

The model incorporates both peer-to-peer transactions and 

grid transactions. Findings demonstrate that implementing a 

battery system can yield energy savings of 11-13%, and when 

combined with peer-to-peer transactions, an overall cost 

reduction of up to 25% is achievable for community members. 

This approach fosters efficient energy management and cost 

savings within the LEC setting. 

 

Prior to operating the EMS, precise forecasting of RES is 

crucial. Reference [5] focuses on solar forecasting methods 

and evaluation metrics, categorizing them into three main 

categories: physical, statistical, and hybrid methods. The 

physical method incorporates numerical weather prediction 

(NWP), satellite or Total Sky Imager (TSI) cloud observations, 

and atmospheric data such as temperature, pressure, humidity, 

and cloud cover. Statistical methods involve historical data 

and are divided into statistical and learning approaches. 

Examples of statistical methods include regression analysis, 

Auto Regressive Integrated Moving Average (ARIMA), while 

machine learning techniques include artificial neural 

networks (ANN), support vector regression (SVR), random 

forests, and gradient boosting. It is observed in this reference 

that statistical methods, both traditional and machine 

learning-based, are more suitable for smaller areas and 

shorter-term forecasts. 

 

The referenced study [6] also conducted an in-depth 

investigation into predicting PV power generation. This 

review encompassed a comprehensive performance analysis 

of various forecasting models for PV power, categorized by 

different methodological approaches. Furthermore, the study 

critically assessed both the strengths and limitations 

associated with these models. Within the domain of regression 

modeling, the study identified multiple linear regression as a 

particularly effective technique, surpassing the predictive 

accuracy of simple regression analysis. Additionally, the 

study highlighted the significance of ANN, especially when 

dealing with intricate, nonlinear data relationships. Unlike 

conventional statistical methods, ANN excel in managing 

complex data interdependencies without relying on pre-

established assumptions. 

 

In [7], similar to [5], the study presented diverse variable 

generation forecasting models. Employing MLR analysis, it 

examined significant variables, identifying solar irradiance, 

relative humidity, and temperature as primary influencers of 

solar power generation. The outcomes demonstrated robust 

performance. 

 

Further, another study [8] explores the utilization of day-

ahead forecasted weather parameters from a weather station 

to predict RES using a feedforward neural network method. 

Additionally, reference [9] presents a multiple linear 

regression (MLR) analysis model for solar power prediction. 

This model generates probabilistic forecasts of solar energy 

by considering crucial variables like solar irradiance, relative 

humidity, and temperature, which have a significant impact 

on solar power generation. The model exhibits strong 

performance in forecasting solar power and can further 

enhance accuracy by incorporating additional historical data. 

 

In the study [10], weather data and regression analysis were 

employed to enhance forecasting accuracy. The research 

revealed that utilizing current, precise weather parameters as 

inputs led to more accurate generation forecasts, with same-

day corrections proving more precise than predictions made a 

day in advance. Additionally, the study highlighted the 

potential of accurate weather predictions to enhance the 

precision of power forecasts. 

 

The primary objective of this study is to achieve the electricity 

operating cost savings of a LEC. This will be attained by 

considering the uncertainty of PV generation through day-

ahead scheduling and implementing optimized BES 

operations. To assess this, the case study conducted in Bunnik, 

the Netherlands, examines the impact of integrating an EMS 

to efficiently schedule energy usage and storage in BES along 

with the existing PV panels. To address this, the EMS 

optimization problem takes into account day-ahead 

predictions for RES, utilizing regression analysis of weather 

forecasts and data from the Transparent Reducing CO2 and 

Optimizing Energy in an Ecosystem of Flexibility (TROEF) 

[11] research. Additionally, the study includes an evaluation 

of the battery sizing as part of its analysis. 

 

The research is organized as follows: Part II provides an 

overview of the project description and data collection. Part 

III describes the PV power generation prediction method. Part 

IV covers the sizing of the community's BES. In Part V, the 

discussion and methodology of the EMS for BES are 

presented. The results and conclusion are then presented in 

Part VI and Part VII, respectively. 

 

 

 

 

 

 

 

 



II. OVERVIEW OF PROJECT 

DESCRIPTION & DATA COLLECTION 

A.Project Description 
Currently, sustainability objectives remain unfulfilled due to 

extended payback periods for sustainable measures in homes 

and utilities. Users pursuing sustainability also encounter 

limited benefits due to conflicting incentives within the 

traditional energy system. Additionally, the surge in 

renewable energy generation complicates grid balance at 

reasonable costs. 

 

In the TROEF project, the consortium strives to forge a novel 

layered energy ecosystem, incorporating systems, tools, and 

business models to optimize energy exchange across Dutch 

buildings, aiming to minimize CO2 emissions. Within the 

TROEF project, TU/e's role centers on creating a Digital Twin 
of the energy ecosystem. This involves a virtual testing 

environment for design and a digital twin for control, critical 

for evaluating energy community value, optimizing system 

design, and formulating control strategies. 

 

This study sources data from the Bunnik community in the 

TROEF project, there are four buildings, with PV panels 

installed on the rooftops of buildings A, B, and C, shown in 

Fig. 1. In total, there are 424 PV panels, with each panel 

having a capacity of 270 watt peak (Wp). In the Netherlands, 

a standard specific energy yield of 875 kWh/kWp can be 

expected for solar panels [12]. Given that there are 424 PV 

panels, each with a capacity of 270 watt peak (Wp) in the 

community, it can be estimated that these devices are expected 

to generate approximately 100,170 kWh of energy per year. 

Remarkably, the actual energy generated by the PV panels in 

2021 was 102,122 kWh, which closely corresponds to the 

expected value based on the product specifications. Later in 

section 4 will present an introduction to the prediction of the 

PV generation formula, which is derived from the one-day 

ahead weather forecasting. As a result, the energy generation 

of a single PV panel can be accurately calculated. 

 

 
Figure 1. A configuration diagram for the building community 

(located in Bunnik) 

 

B.Data Collection 

Weather Data 

The Koninklijk Nederlands Meteorologisch Instituut (KNMI) 

is a leading weather agency known for its reliable data and 

rigorous validation process. Hourly data for 2021 was 

collected from KNMI's De Bilt location, including parameters 

such as air velocity, relative humidity, temperature, and global 

radiation. For day-ahead weather forecasting, KNMI's 

weather data was used due to its superior accuracy and 

efficiency compared to prediction algorithms. In Figure 2, it 

shows plots of some of the mentioned weather parameters. 

 

 

 
Figure 2. Weather data records from 2021 at the BAM campus 

located in Bunnik [13] 

 

 

Historical PV Production 

Throughout the entirety of 2021, data on historical PV power 

generation in the community was collected at one-hour 

intervals. 

 

Day-Ahead Forecasted Community’s Demand 

The case study in this research focuses on a business 

community, where the energy demand exhibits a consistent 

pattern and remains relatively stable over time. Therefore, the 

demand is assumed to be predictable as it remains constant 

throughout the study. The day-ahead forecasted data for the 

community's energy demand is obtained from the TROEF 

project and is based on hourly intervals throughout the year 

2021. 

 

Day-Ahead Forecasted Electricity Price 

Additionally, the day-ahead forecasted data for electricity 

prices is also obtained from the TROEF project for each hour 

throughout the entire year of 2021. 

 

The above-mentioned historical PV production, day-ahead 

forecasted community demand, and day-ahead forecasted 

electricity price data for the entirety of 2021 are shown in 

Figure 3 (see Appendix). 

 

 



III. PV GENERATION FORECASTING 

The prediction of PV generation is a crucial aspect of 

determining the optimal battery size and energy management 

strategy. In this study, a thorough analysis was conducted to 

examine the relationship between historical weather data and 

PV generation data, with hourly analysis conducted 

throughout the entirety of 2021. After conducting a 

comprehensive literature review of various research papers 

that predict PV generation [5-10], as mentioned in the 

introduction, it was determined that regression analysis was a 

suitable tool for this study's purpose. In this case, based on 

previous studies, the selection of significant weather 

parameters for the model is already established. Thus, 

adapting the Regression method for forecasting is deemed 

sufficient and effective. 

 

Building upon the insights presented in the aforementioned 

reference [9], the regression equation resulting from this 

method allows for the quantification of the relationship 

between multiple variables that have the most significant 

impact on PV generation, including temperature, relative 

humidity, air velocity, and solar radiation. This equation 

provides an estimate of the expected PV generation, which 

can be utilized to inform the design and operation of BES. 

 

To ensure the accuracy of the regression analysis, a thorough 

yearly data analysis was conducted, involving the 

identification and removal of missing and outlier data. The 

resulting MLR equation is presented below: 

 

Υ = 𝛼1𝒳1 + 𝛼2𝒳2 + ⋯ + 𝛼𝑘𝒳𝑘 + 𝛽                                    (1) 

 

Here, Υ  represents the response variable, signifying the 

projected PV generation in kilowatts (kW). The predictor 

variables 𝒳𝑘   correspond to different factors, with 𝒳1 

denoting Air Velocity (m/s), 𝒳2  representing Relative 

Humidity (%), 𝒳3   indicating Temperature (℃), and 𝒳4 

symbolizing Global Radiation (W/m²). The term 𝛽 stands for 

the error or fluctuations in Υ. 

 

For the current study's case, encompassing 424 PV panels, 

each with a 270-watt peak (Wp) capacity, the equation's 

coefficients can be expressed as shown in (2): 

Υ = 0,079125𝒳1 + 3,364651𝒳2 − 0,08611𝒳3 +
2,9187𝑒−5𝒳4 − 2,718835                                                  (2) 

 

In the event that the community seeks to introduce additional 

PV panels for an expected generation of 270Wp per panel, the 

coefficients in the equation would be as presented in (3): 

 

Υ = 0,000187𝒳1 + 0,007935𝒳2 − 0,000203𝒳3 +
0,006844𝑒−5𝒳4 − 0,006412                                                       (3) 

 

To ascertain the accuracy of the equation (2), diverse 

statistical metrics were utilized to evaluate the model's 

performance. These metrics encompass Multiple R, Adjusted 

R-squared, Root Mean Square, and standard error. The 

resulting findings are summarized as follows. 

 

The Multiple R, also referred to as the multiple correlation 

coefficient or coefficient of multiple determination, assesses 

the strength of the linear relationship between predicted 

values (Y) and actual values of the dependent variable (Y), 

accounting for all independent variables (X1, X2, X3, X4) 

together. Its formula can be represented mathematically as: 

𝑅 = √𝑅1
2 + 𝑅2

2 + ⋯ + 𝑅𝑘
2                                                        (4) 

 

In this equation 𝑅  signifies the multiple correlation 

coefficient. 𝑅1 , 𝑅2 , … , 𝑅𝑘  represent the individual correlation 

coefficients between the dependent variable and each 

independent variable. This formula gauges the collective 

linear relationship between predicted and actual dependent 

variable values when considering multiple independent 

variables. The calculated multiple correlation coefficient 

(Multiple R) was 0,974691, indicating a robust positive 

correlation between the dependent variable and the entire set 

of independent variables. This suggests that the model 

effectively explains a significant portion of the variation in 

PV generation. 

 

In addition, R-squared (𝑅2 ) was employed to quantify the 

proportion of variance in the dependent variable that is 

accounted for by the independent variables. The formula for 

R-squared is: 

 

𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
                                                                         (5) 

 

Where 𝑆𝑆𝑅 is the sum of squared residuals, 𝑆𝑆𝑇 is the total 

sum of squares. However, a 𝑅2 value of 0,9 typically indicates 

a model that fits about 90% of data points. Yet, it's important 

to recognize that as more independent variables are 

introduced, 𝑅2  may increase even if these extra variables 

don't significantly enhance the model's performance. To 

mitigate this, the Adjusted R-squared was adopted, factoring 

in the number of independent variables. Its formula is: 

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −
(1−𝑅2)×(𝑛−1)

𝑛−𝑝−1
                                         (6) 

 

Where n represents the number of data points, p denotes the 

number of independent variables. In this study, the computed 

adjusted 𝑅2 was 0,949999, signifying that roughly 95% of the 

variability in PV generation is explicable by the incorporated 

independent variables. This substantial adjusted R-squared 

value reaffirms the model's remarkable fit and overall 

effectiveness in the context of regression analysis. 

 

Root Mean Square (RMS) is a mathematical concept widely 

employed to assess the average magnitude of a set of values. 

It proves especially valuable when addressing fluctuations or 

differing magnitudes within a dataset, allowing for an 

understanding of the overall magnitude of values while 

accounting for both positive and negative disparities. The 

formula for calculating the RMS value is: 

 

𝑅𝑀𝑆 = √
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1                                                                (7) 

 

Where 𝑛 signifies the quantity of values in the dataset and 𝑥𝑖 

represents each individual value within it. The RMS value 

serves to illuminate the effective or equivalent magnitude of 

the value set, assisting in the comprehension of diverse data 

trends and fluctuations. In this investigation, the calculated 

RMS value amounts to 4,436816. 

 

Furthermore, the standard error (SE) was calculated as 

4,507800. This value is indicative of the model's high 

prediction accuracy, with an average separation of 

approximately 4.51 between actual data points and the 

regression line. The formula for calculating the SE is: 

 



𝑆𝐸 = √
1

𝑛−𝑝−1
∑ (𝑌𝑖 − 𝑌′

𝑖)2𝑛
𝑖=1                                               (8) 

 

Where 𝑛 represents the number of data points, 𝑝 denotes the 

number of independent variables. 𝑌𝑖  is the actual value of the 

dependent variable for data point 𝑖, 𝑌′𝑖  is the predicted value 

of the dependent variable for data point 𝑖. The relatively low 

SE value enhances the model's dependability and accuracy in 

forecasting PV generation. 

 

In conclusion, these critical metrics played a pivotal role in 

assessing the quality and accuracy of the regression model in 

predicting the PV generation of the existing PV panels based 

on the provided independent variables. The results indicate 

the model's admirable performance, with a high multiple 

correlation coefficient, substantial adjusted 𝑅2  value, and 

small SE (see Table 1). These findings validate the model's 

effectiveness in effectively explaining and predicting 

variations in PV generation using the weather parameters 

from KNMI forecasts. 

 

Additionally, the seasonal variations of Actual vs. Predicted 

PV Production are presented in Figures 4 to 7, available in the 

appendix. These visual representations further underscore the 

model's robustness and its ability to capture diverse patterns 

across different seasons. 

 
Table 1. Regression Model Evaluation and Coefficients 

 
 

 

IV. BATTERY ENERGY STORAGE 

To optimize the utilization of solar energy, given its 

intermittent nature, a dependable BES becomes essential. By 

integrating PV generation with BES, surplus energy can be 

stored and utilized during periods of low solar output. 

Moreover, this BES can charge when the electricity price is 

low and discharge when the price is high, enabling more 

efficient energy management and achieving the desired 

objectives. In this context, determining the suitable battery 

size and technology holds utmost importance in ensuring 

optimal performance and cost-effectiveness. 

 

A. BES Selection - Comparing Parameters and 

Cost 
When selecting a BES, several parameters such as cost, 

performance, and reliability must be taken into consideration. 

The Energy Storage Technology and Cost Characterization 

Report by the U.S. Department of Energy [14] presents the 

latest data collected across a wide range of parameters and 

performance metrics for different storage types in 2025. The 

report includes several critical performance metrics, such as 

round-trip efficiency, response time, depth of discharge, 

lifespan, cycle life, volume, and safety, which are essential for 

determining the most suitable energy storage technology for 

a particular application. Tables 2 (see Appendix) provides a 

side-by-side comparison of different BES, offering valuable 

insights into the advantages, disadvantages, and cost 

implications of each option, thus aiding in the selection 

process. 

 

B. Selection of a Short-Term BES: Lithium-Ion 

Battery 
According to [14], a lithium-ion battery emerges as the ideal 

short-term BES for building communities, aligning perfectly 

with the parameters outlined earlier. Its superior cost-

effectiveness and remarkable performance metrics make it the 

top choice. On average, a lithium-ion battery can last up to ten 

years with 3500 life cycles at 80% Depth of Discharge and 

boasts an incredibly short response time of just one second. 

Moreover, the high specific energy of the lithium-ion battery 

[15] allows it to store a substantial amount of energy per unit 

of battery weight or volume. This feature translates to a 

smaller battery space requirement, making it an efficient and 

practical choice for short-term energy storage in building 

communities. 

 

Furthermore, based on the data gathered until 2021 from the 

National Renewable Energy Laboratory's website [16], the 

capital cost of Li-ion batteries has indeed shown a decreasing 

trend. Depending on their storage duration, the cost ranges 

from $135 to $211 per kilowatt-hour (kWh). Considering 

these attributes, the lithium-ion battery stands as a particularly 

compelling solution for short-term energy storage for the 

building community within the scope of this study, as 

highlighted in Table 3. 

 
Table 3. Performance, Cost, and Sustainability of Lithium-ion 

Batteries [14][16] 

 
 

C.Battery Size for the Community 
After thoroughly analyzing historical data on community 

demand and PV production, it became evident that the year 

2021 witnessed a total of 4,733 hours of sunshine, resulting in 

a substantial energy generation from the PV devices. Notably, 

during the period spanning from mid-April to mid-August, 

characterized by ample sunshine and intensified solar activity 

(as depicted in Fig. 8 in the Appendix), the electricity status 

consistently remained positive. The term "electricity status" 

represents the disparity between PV generation and 

community demand, with a positive value signifying surplus 

power generation within the building community during those 

periods. 

 

Given these findings, the central objective of sizing the 

battery is to efficiently fulfill the operational needs of the 

community's energy management system. Additionally, the 

battery's design must take into account the potential future 

increments in PV generation to ensure its capability to 

effectively meet the escalating energy storage requirements. 

Consequently, based on the analyses and considerations, a 300 

kWh Li-ion battery storage system with 95% efficiency and 

an 80% depth of discharge is recommended. This system 

strikes an optimal balance between cost-effectiveness and 



energy storage demands, taking into account the community's 

specific energy consumption patterns. Moreover, the battery's 

modular configuration facilitates future scalability, enabling 

seamless expansion to cater to the community's evolving 

energy needs. By opting for this battery size, the community 

can ensure a reliable and sustainable energy storage solution, 

while simultaneously minimizing costs, making it a prudent 

and advantageous long-term investment for enhanced energy 

security. 

 

 

V. ENERGY MANAGEMENT SYSTEM 

FOR LEC 

To enable the smooth integration of BES with renewable 

resources, the adoption of an EMS is crucial. This research 

emphasizes a well-functioning EMS, which plays a pivotal 

role in effectively optimizing BES performance, ultimately 

leading to minimized energy costs for the LEC. 

 

The EMS utilizes an LP method, effectively addressing the 

optimization problem by considering the objective and 

fulfilling system constraints during LEC operation. This 

research employs an offline LP approach in the EMS, 

requiring a day-ahead forecast of RES and load demand for 
optimization purposes. This forecast enables the management 

of energy transactions between the LEC and the utility grid. 

 

The EMS flow chart, shown in Fig. 9, demonstrates the 

system's logic, where historical data, including weather 

parameters and RES, is analyzed using MLR to understand 

their relationship. An equation is then derived to predict RES 

generation based on one-day ahead forecasted weather 

parameters. Finally, incorporating the day-ahead prediction, 

the EMS formulates and solves an optimization problem for 

the BES. 

 

 
Figure 9. Energy Management System Flowchart 

 

Optimization Problem 
In this research, the energy system comprises PV panels for 

power generation (𝑃𝑉(𝑡) [𝑘𝑊]), consistently producing non-

negative energy (𝑃𝑉(𝑡) ≥ 0 ). The system also includes a 

power demand (𝑃𝐷(𝑡) [𝑘𝑊] ) component, representing the 

electricity required by the community, which is always non-

negative (𝑃𝐷(𝑡) ≥ 0). Additionally, a BES is integrated into 

the setup, governing the transition between charging and 

discharging processes (𝑃𝑒𝑠𝑠(𝑡) [𝑘𝑊] ). When 𝑃𝑒𝑠𝑠(𝑡) < 0 , 

it indicates that the battery is discharging, whereas 𝑃𝑒𝑠𝑠 >
0 signifies that the battery is charging. The net power 

exchanged with the utility grid (𝑃𝐸(𝑡) [𝑘𝑊]) is determined 

by the difference between the power demand (𝑃𝐷(𝑡) ), the 

battery operation (𝑃𝑒𝑠𝑠(𝑡)), and the PV production (𝑃𝑉(𝑡)). 

When 𝑃𝐸(𝑡) > 0, it indicates that the system imports power 

from the utility grid, and when 𝑃𝐸(𝑡) < 0, it indicates that the 

system exports excess power to the utility grid. The schematic 

diagram of the energy system can be seen in Figure 10. 
 

 
Figure 10. Power Flow Schematic Diagram 

 

The primary objective of this study is to minimize the 

operating cost (OC [𝐸𝑈𝑅𝑂] ) associated with energy 

consumption in day-ahead scheduling. This expense is 

determined by subtracting the expense of purchasing energy 

from the utility grid from the income generated by selling 

surplus energy back to the grid. It can be expressed by: 

 

𝑀𝑖𝑛 𝑂𝐶 = ∑ (𝑃𝐸(𝑡) × ∆𝑡 × 𝐶(𝑡)24
𝑡=1 )                                  (9) 

 

In this representation, the index ' 𝑡  ' ranges from 1 to 24, 

signifying each hour in a day. As mentioned earlier, 

𝑃𝐸(𝑡) [𝑘𝑊]  represents the power flow value from/to LEC 

to/from the utility grid. ∆𝑡 [ℎ𝑟]  denotes the time interval, 

indicating the duration over which the battery charging or 

discharging occurs (in this study, the time interval is 

consistently set to 1 hour). 𝐶(𝑡) [𝐸𝑈𝑅𝑂/𝑘𝑊ℎ] represents the 

electricity price at that specific moment. 

 

Constraints 
During the optimization process, several crucial constraints 

must be considered. First and foremost, maintaining a power 

balance is of utmost importance. This involves calculating the 

net power by subtracting the community demand from the 

combined power generated by the PV panels and the battery. 

If additional energy is needed, it can be obtained from the 

utility grid, whereas any surplus energy can be exported to the 

grid as shown: 

 

𝑃𝐸(𝑡) = 𝑃𝐷(𝑡) − 𝑃𝑉(𝑡) + 𝑃𝑒𝑠𝑠(𝑡)                                           (10) 

 

The State of Charge (SoC) at time 't' represents the current 

energy level stored in the battery [%], which plays a crucial 

role in maintaining the energy balance within acceptable 

limits. It is subject to the following constraints: 

 

𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑡 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥                                                (11) 

 

The function for SoC is defined as follows: 

 

𝑆𝑜𝐶𝑡 = 𝑆𝑜𝐶𝑡−1 + (𝑃𝑒𝑠𝑠𝑡−1 × ∆𝑡)/𝐵𝐶                                    (12) 

 

In the equation, ' 𝑆𝑜𝐶𝑡 ' represents the SoC of the battery at a 

given time ' 𝑡  ', and ' 𝑆𝑜𝐶𝑡−1 ' denotes the initial SoC of the 

battery at the beginning of the time interval before ' 𝑡  '. 

'𝑃𝑒𝑠𝑠𝑡−1' represents the battery charging and discharging flow 



at the beginning of the time interval before ' 𝑡 '. '∆𝑡' denotes 

the time interval, which is always 1, as mentioned before. ' 𝐵𝐶 

' represents the total capacity of the battery [𝑘𝑊ℎ]. 
 

In summary, the state of charge at any time ' 𝑡 ' depends on the 

previous state of charge, the charging/discharging rate 

(𝑃𝑒𝑠𝑠(𝑡)), and the battery capacity. This relationship allows 

tracking and controlling the energy levels in the battery to 

ensure they remain within acceptable limits. 

 

The battery charging and discharging flow, denoted as 

𝑃𝑒𝑠𝑠(𝑡), is a crucial aspect of this research. Ensuring that the 

charging and discharging rates of the battery remain within 

the predefined limitation P [𝑘𝑊] is imperative to guarantee 

their smooth operation, as illustrated: 

 

|𝑃𝑒𝑠𝑠(𝑡)| ≤ 𝑃                                                                          (13) 

 

This constraint ensures that the battery operates safely and 

efficiently, preventing it from being overloaded during the 

charging or discharging processes. Adhering to this constraint 

is essential in maintaining the battery's performance and 

prolonging its lifespan. 

 

Furthermore, to ensure the battery operates in a healthy 

manner, it is assumed that in the study case, the battery should 

only fully charge and discharge once per day. This assumption 

is based on the lifecycle being assumed to be 3500 cycles for 

operating over 10 years, which averages to almost 1 cycle per 

day. And the constraint can be presented as: 

 

∑ (|𝑃𝑒𝑠𝑠(𝑡)| × ∆𝑡) ≤ 𝐵𝐶24
𝑡=1                                                (14) 

 

Finally, the rated power of the transformer, denoted as 

𝑃𝑡𝑟 [𝑘𝑊] , represents its maximum capacity or power 

handling capability. In the context of the research, it is 

imperative to ensure that the transformer's loading does not 

exceed 100% of its rated power to guarantee safe and efficient 

operation. To adhere to this requirement, the following 

constraint is applied: 

 
|𝑃𝐸(𝑡)|

𝑃𝑡𝑟
×  100% ≤ 100%                                                        (15) 

 

Here, |𝑃𝐸(𝑡)|represents the absolute value of the total power 

flowing through the transformer. The above constraint ensures 

that the transformer operates within its safe limits, avoiding 

overloading that could lead to overheating and potential 

damage. By following this constraint, the efficiency and 

reliability of the transformer within the electrical system can 

be maintained. 

 

The optimization problem introduced in (9) to (15) is solved 

using a deterministic LP formulation. Based on the day-

ahead scheduling results, the LEC can control the BES to 

achieve savings in electricity operating costs. 

 

 

VI. RESULTS 

In this study, the optimization problem is formulated in 

Python, and the SolverFactory class from the Pyomo library 

is utilized for its solution. Specifically, the CBC solver is 

employed to address the formulated mathematical 

optimization model, enabling the efficient operation of the 

BES. The input data includes day-ahead predicted values of 

RES obtained through regression analysis, and load demand 

and electricity prices as described in part II B. The BES 

chosen for this study is a lithium-ion battery, and the 

simulation incorporates the parameters specified in Table 4. 

 
Table 4. The parameters of considered BES 

 
 

The simulation is performed for one day each for both 

weekdays and weekends, and it is further extended to across 

all seasons. This comprehensive approach enables us to 

observe and analyze the variations in energy scheduling 

between weekdays and weekends under different seasonal 

conditions. 

 

 

Scenario 1: Existing Number of PV Panels 
In the first scenario, the optimization considers that the EMS 

is operating with the current number of PV panels and the 

BES. 

 

In Figure 11, the blue line represents the power demand, while 

the yellow line depicts the corresponding electricity 

generation from PV sources. The pink line indicates the 

electricity price, exhibiting fluctuations throughout the day 

and peaking during nighttime hours. Notably, power demand 
is significantly higher during working hours, whereas PV 

generation peaks around noon. 

 

 

 

 
Figure 11. Energy Profile for BES on Weekday in Summer with the 

Original Number of PV Panels 

 



However, on weekdays, the aggregate power demand exceeds 

the output from PV generation. To address this energy deficit, 

the EMS orchestrates the BES. The gray line signifies the 

power exchange between the utility grid and the LEC. This 

involves importing power from the grid during the day to 

meet the demand, with a focus on stockpiling extra energy in 

the battery during midday when electricity prices are 

relatively lower. Subsequently, the stored excess energy is 

sold back to the grid during high-priced nighttime hours. 

 

Within the graph, the purple line delineates the SoC of the 

battery. Notably, the battery charges around midday, causing 

the SoC to rise, and then discharges during the night after 

selling power to the utility grid. The green line reflects the 

battery's charging or discharging status, showcasing charging 

during midday and discharging at night in alignment with the 

described scenario. Lastly, the red line signifies the 

transformer loading, where a lower value is desirable to 

ensure the safety of the grid. 

 

In Figure 12, the scenario portrays a subtle variation, where 

all color lines hold identical significance. As it's the weekend, 

the demand maintains a consistent and low level throughout 

the day, distinct from the fluctuations seen on weekdays. This 

results in a surplus of PV generation, capably fulfilling the 

community's needs, especially around noon. 

 

However, it's crucial to acknowledge the strategic adaptation 

executed by the system in this scenario. The excess power 

generated promptly returns to the utility grid when electricity 

 

 

 

 
Figure 12. Energy Profile for BES on Weekend in Summer with 

the Original Number of PV Panels 

prices are relatively high. Afterwards, the system continues to 

operate and obtains some energy from the grid during periods 

of lower electricity prices. This acquired energy combines 

with the surplus PV energy stored within the BES. Eventually, 

during the nighttime hours when electricity prices reach their 

peak, this stored energy is effectively returned to the grid. 

 

Scenario 2: Assumption of Future PV Panel 

Expansion, Resulting in a 3.5 Times Increase in 

PV Generation 
In the second scenario, the optimization takes into account the 

possibility of future expansion in the community's PV panel 

capacity. Therefore, the EMS is operating with 3.5 times the 

PV generation compared to the current capacity, along with 

the BES. 

 

In Figure 13, representing a weekday, all color lines continue 

to hold consistent significance. Notably, the power generated 

by PV sources has increased by a factor of 3.5 compared to 

the initial scenario. However, even with this considerable 

increase, PV generation continues to fall short of fulfilling the 

power demand during most of the daytime.  

 

Consequently, the EMS opts to address this energy shortfall 

by procuring power from the utility grid within these time 

periods. Additionally, as the previous scenario,  it strategically 

purchases surplus energy for storage in the battery during 

times of lower electricity costs. Subsequently, in alignment 

with the usual pattern, during periods of elevated electricity 

 

 

 

 
Figure 13. Energy Profile for BES on Weekdays in Summer with 

Assumption of Future PV Panel Expansion 



 

 
Figure 14. Energy Profile for BES on Weekends in Summer with 

Assumption of Future PV Panel Expansion 

 

prices later in the night, the EMS efficiently sells back the 

stored excess energy to the grid, capitalizing on favorable 

price conditions. 

 

In Figure 14, which represents a weekend, the substantial 

increase in power generated by PV sources (3.5 times greater 

than the initial scenario) brings about a significant 

transformation. Abundant PV energy generation is observed 

throughout the daytime, enabling the EMS to efficiently sell 

energy to the grid for extended periods. This outcome notably 

benefits the community, resulting in substantial revenue from 

the surplus PV energy sold back to the grid. 

 

Of particular note is the noon period, during which surplus 

energy is not only sold to the utility grid but also stored within 

the BES. This strategic energy storage is influenced by 

electricity prices, as they are not very high. Subsequently, 

BES operation resumes during the high-priced nighttime 

hours, further enhancing profit generation. This scenario 

vividly exemplifies the EMS's prowess in optimizing energy 

resource utilization and revenue generation. 

 

 

 

 

 

 

 

 

 

 

 

Table 5. The parameters 

No BES Scenario 1 Scenario 2

Spring 26259,13 23808,49 9377,90

Summer 52486,45 48929,87 21435,71

Autumn 39871,58 37024,91 26738,49

Winter 34507,34 32401,35 28108,42

Yearly 153124,50 142164,62 85660,52

% 7,2 44,1

Comparing Reduction in Energy Costs with No BES

Operating Cost (EURO)

 
 

Table 5 presents the operating cost results across various 

scenarios: No BES, Scenario 1, and Scenario 2. These 

scenarios are evaluated across all seasons and the entire year. 

In Scenario 1, there is a 7,2% reduction in energy costs 

compared to the No BES condition. Notably, in Scenario 2, 

where the PV panel capacity is expanded, the energy cost 

reduction is even more remarkable, reaching 44,1% compared 

to the No BES scenario. 

 

 

VII. CONCLUSION 

The European Union (EU) has set ambitious goals to 

significantly decrease its carbon footprint, aiming for net-zero 

greenhouse gas emissions by 2050 and a 55% reduction by 

2030 compared to 1990 levels. To achieve this, the EU is 

promoting renewable energy adoption and energy efficiency 

to pave the way for a future marked by sustainability and 

diminished carbon footprint. 

 

One of the key strategies is to encourage households, office 

buildings, and communities to embrace renewable energy 

resources, such as PV panels and other renewable energy 

systems. These installations not only contribute to a 

sustainable energy future by reducing reliance on fossil fuels 

but also offer an attractive opportunity for cost savings. 

 

In this research, the integration of BES with RES is examined 

to optimize the EMS for energy cost savings. A case study in 

Bunnik, the Netherlands, explores the economic viability of 

installing BES, and even expanding PV panels in the future. 

The optimization process utilizes LP techniques, with day-

ahead values of RES determined through regression analysis, 

incorporating critical weather forecast parameters from 

KNMI. 

 

The findings of this study suggest that the integration of BES 

and the optimization of the EMS can yield energy cost savings. 

Particularly, these results emphasize that the inclusion of 

additional PV panels in the future has the potential to 

significantly enhance the achieved energy cost reductions. 

 

While these results showcase the potential advantages of 

integrating BES and EMS, it is crucial to acknowledge that 

the outcomes are based on the data from the TROEF project. 

Therefore, the actual energy cost savings in real-world 

applications may vary depending on various factors and 

uncertainties. Nonetheless, the findings emphasize the 

considerable potential and benefits of adopting BES and EMS 

technologies, especially when considering potential future 

renewable energy expansions. 
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APPENDIX 

 
Figure 3. PV Production, Community’s Demand, and Electricity Price in 2021 



 
Figure 4. Actual vs. Predicted PV Production in Spring 

 

 
Figure 5. Actual vs. Predicted PV Production in Summer 

 

 
Figure 6. Actual vs. Predicted PV Production in Autumn 

 
Figure 7. Actual vs. Predicted PV Production in Winter 

 



 
Figure 8. Electricity Status in 2021 

 

 

 
Table 2. Summary of 2018 findings and 2025 predictions for BES cost and parameter ranges by technology type [14] 

 


