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1 Abstract

This report will investigate whether PageRank Scores per politician per period
in the Dutch House of Representatives can say something useful about the next
period. More specifically, it will be investigated whether there is a correlation
between the PageRank Scores of one period and the next. There will also be
research on how the PageRank Scores summed up from the politicians per party
correlate to the number of seats earned in the upcoming elections. Based on the
PageRank scores in the prior period, it will be determined whether one can say
something useful about the chances of a politician becoming a minister in the
upcoming period. The data comes from the Dutch House of Representatives.
The network on which the PageRank scores are based is a network containing
links between politicians if they filed a motion together, where weights are ad-
justed based on the number of motions filed together. Four variations of the
PageRank algorithm are used: the Standard RandomWalk PageRank, Weighted
PageRank, Personalized PageRank, and Weighted Personalized PageRank. The
number of motions handed in per politician will be used to obtain the Person-
alized and Weighted Personalized PageRank Scores.

Keywords: PageRank, Dutch House of Representatives, Python, Networkx, Par-
ties, Politicians, Ministers.
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2 Introduction

Larry Page and Sergey Brin started working on a searching engine in 1996,
which worked based on links from websites on the internet, which they first
called Backrub [1]. The name Backrub was later changed to Google, which is
a name everyone knows today. The name Google is derived from a mathemati-
cal term called ’googol’, which equals 10100. This enormous number represents
the vast amount of data available worldwide that Google tries to order. The
founders of Google introduced PageRank to objectively say something about
the relative importance of web pages [2]. It is a clever algorithm that has since
then not only been used to rank websites given a search input. An example
where PageRank is used for a different purpose is where PageRank was used
to distinguish phishing websites from genuine websites, which back in 2012 al-
ready had a 98% accuracy [3]. That is still an example based on web pages, but
PageRank can be used in a much broader sense. It can even be used in sports.
PageRank can be used to measure performances in ball sports, like Basketball.
The algorithm can be applied not only for the team performance or the coaches’
performances but also for individual players. It is possible to make a ranking
that is not only based on the traditional statistics, like points scored, by includ-
ing extra data such as partaking in a successful play [4].

In this report, research will be done on a social network. It is always inter-
esting to analyze a network and determine what node is the most important
or most central. In a social network, this node could mean the most influen-
tial person. As for economics networks, tons of network analysis applications
are already widely used. One can, for example, process a change over time in
economic transactions between nations to study changes in the world economic
system [5]. Somewhat closer to the subject of this report is the use of social
network analysis in American Politics [6], which shows that the political sides
of social networks are also valuable.

This report will investigate whether PageRank can help predict Dutch polit-
ical networks based on motions handed in together by politicians. Data is
collected from 09-09-2008 up until 10-05-2022, not just the motions filed to-
gether by politicians in the House of Representatives but also additional data
that can help predict and explain the networks and analysis results. The dates
of the elections, the installation dates of newly appointed politicians, the seat
distributions, and the coalitions throughout the years. All this data will be com-
bined to make sense of the network and answer some questions. Can PageRank
be run on a weighted network that represents motions handed in together by
politicians over a period before the 2017 elections to predict the outcome of the
seat distribution? Or can one perhaps distinguish the importance of politicians
based on their PageRank scores in past periods?

Various hypotheses will first be named and elaborated. The goal of having vari-
ous hypotheses is to eventually help form a conclusion on how helpful PageRank
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is in (these specific) political networks. After the hypotheses are explained in
section 3, the reader will be informed of the data used in this research. Section
4.1 will elaborate on where the data comes from, how it was gathered, and what
precisely it represents. It will also be explained how the data was made ready
for the hypothesis testing, and some numbers will be shown to demonstrate
how big the network became. After going through the data, some variations of
the PageRank algorithm will be explained in section 4.2. This paper uses four
types of PageRank: Standard Random Walk PageRank, Personalized PageR-
ank, Weighted PageRank, and Weighted Personalized PageRank. They will be
explained one by one by showing an example of a network and its correspond-
ing PageRank scores. After the examples, it is time to get into the maths.
Some math knowledge may be required to understand the algorithm correctly.
However, hopefully, one can still grasp the basic idea of the calculations even
without prior knowledge after reading section 4.2.5. There will be an exam-
ple calculation for the first iteration of the Weighted Personalized PageRank
algorithm to provide a feeling of how the algorithm works. After obtaining the
necessary knowledge, it is time to show what coding was needed to get results
for the hypotheses. In this section, which is section 4.3, apparent problems will
be mentioned when trying to work with the data. It will also be explained how
some results were obtained. Afterwards, the results will be presented and elab-
orated on shortly in section 5. Next, in section 6 there is a discussion section in
which it will be reviewed what may have been coded differently or what other
research could lead to some interesting insights. At last, the conclusion will be
presented in section 7.
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3 Objective

The project’s primary goal is to investigate whether one can use PageRank to say
something useful about the importance of a politician and whether PageRank
can be used to predict changes in the network over time. Multiple hypotheses
are set up to analyse whether that is the case.

Hypothesis one investigates whether a politician manages to take a more central
position in the network after being active in a previous period. Are the different
types of people a politician filed motions with together in the last period of im-
portance on how central a politician will get in the network in the new period?
Whether the number of motions handed in per politician means something to
their PageRank scores will also be tested. The first hypothesis is as follows:

Hypothesis 1: There is a strong correlation between the PageRank score of a
politician in a previous period and the politician’s current PageRank score.

The following hypothesis is about finding out whether there exists a connec-
tion between the PageRank scores of politicians and their corresponding parties
regarding seat distribution. Worded differently; are the parties where the sum
of the PageRank scores of their politicians is higher favoured by voters? The
second hypothesis is:

Hypothesis 2: There is a strong correlation between the number of votes earned
by a party and the summation of the PageRank score of the corresponding politi-
cians in the period before the elections.

The third and final hypothesis dives into whether the PageRank score of politi-
cians can be used to see whether a politician will be rewarded with a role as a
minister. The idea is that if someone manages to claim a central position in the
network, he or she becomes more powerful and thus a candidate for a ministry.
That is only if the politician is a party member of a party in the coalition. Oth-
erwise, one is very unlikely to become a minister. It must be mentioned that
this hypothesis is less extensively dealt with, as the other two hypotheses were
already filling up the time available for this project. The hypothesis is as follows:

Hypothesis 3: There is a strong correlation between the PageRank score of politi-
cians in a prior period and the chances of getting a role as a minister in a new
cabinet.
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4 Methodology

4.1 The Data

To answer the hypotheses and help form the main question’s conclusion, data
is needed over a more extended period from which a political network can be
obtained. Such a political network could, for example, be a network in which
politicians are linked if they worked on a motion together, which is precisely
what is done for this research. In other words, let A be the adjacency matrix
of the graph, where A takes a n × n shape with n being the total amount of
politicians in the network. Now Aij equals 1 if it happens to be the case that
politician i and j filed in a motion together. Then that would also mean that
Aji will be 1, as there cannot be one-sided cooperation in handing in a motion.
Aij and Aji are set to 0 if the politicians did not work together on any motion
within the data set. To build the network, data is obtained from the website
’Open Kamer’ [7].

Next to having the network, some other data is helpful as well. For instance,
the number of seats per party shows the seat distribution within the House of
Representatives. Which parties were in the cabinets during the various periods
in the data can also be scraped. Furthermore, the dates on which the newly
appointed House of Representatives members were installed are stored to distin-
guish the various periods in the House of Representatives, such that questions
can be asked about changes over time. For all politicians, their corresponding
parties are stored to answer the questions where the cabinet plays a role. Also,
if it happens to be the case, the minister’s role for every politician will be stored.

4.1.1 Collecting the Data

The website needs to be scraped because there is no download button available
on ’Open Kamer’. The so-called ’Web Scraper’-tool was used to achieve this [8].
With the tool, it is possible to go through each page of the website, go through
all the motions, amendments, and bills, and collect all the information needed
on those separate pages. For the research in this paper, no further distinction
will be made between the motions, amendments, and bills. Because all three
of them can show collaboration between politicians and more data is helpful to
have more differences in the number of motions, amendments, and bills filed
per politician, this decision was made. Therefore, from here on, they will all be
referred to as motions, which was already done in the paragraphs before this one.

When scraping for a specific motion, various data is obtained. An example
of what a motion looks like on the website is shown in figure 1. The date is
shown in the top-left corner, in the format of Year-Month-Day. Whether the
motion was accepted or not is indicated with a symbol in the top-right corner;
in the example of figure 1, the motion is rejected by the House of Represen-
tatives. The name of the motion is stored right under the text ’Motie’ in the
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centre of the top. Underneath the name is stored which parties voted in favour
(’Voor’) and against (’Tegen’) the motion or the parties that did not vote at
all (’Niet Gestemd’). This example shows that some members of the House of
Representatives are acting independently, like Nilüfer Gündogan [9]. The names
at the bottom of the figure show the submitters of the motion, where it is also
indicated on behalf of which party they operate.

Figure 1: Example of a motion from 22-03-2022

The first step in scraping a motion is to take the date when the motion was
filed. This data is needed later on to specify specific periods. On the website
’Open Kamer’, data is available from 09-09-2008 up until the present. The
percentage of votes in favour per motion is also taken because, with that infor-
mation, one can check whether a motion passed. A motion passed if more than
50 per cent of the votes were in favour. Next to that, the name of the motion
will be taken so that it can be assured that there are no duplicates. Lastly,
the submitters of the motion are stored. Sometimes, only one person submits a
motion, and only one name is stored. In other cases, groups of different people
worked together. Then, all names are stored. Together with the names, their
parties will also be stored (if they are not working independently within the
House of Representatives), and, if it is the case, their function as minister will
be stored. The data is formatted in a CSV file from which the cleaning will
start with the help of a Python script.

Information about when the members of the House of Representatives were
installed is found on the website of the House of Representatives itself [10] by
tracing back how many days the current members have been in the House of
Representatives. The seat distribution of the House of Representatives through-
out the years (’zetelverdeling’ in Dutch) is found on CBS [11] and Parlement.com
[12]. The information about the various cabinets throughout the years can be
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found on the website of Rijksoverheid [13].

The following installation dates are obtained, which will thus indicate the var-
ious periods: 30-11-2006, 17-06-2010, 20-9-2012, 23-03-2017, 31-03-2021. As
mentioned before, the data on ’Open Kamer’ starts on 09-09-2008, so the first
period is incomplete. The following table contains the information about the
seat distribution within the periods mentioned:

Seat distribution in the House of Representatives
Party 2006 2010 2012 2017 2021
PvdA 33 30 38 9 9
CDA 41 21 13 19 15
VVD 22 31 41 33 34
D66 3 10 12 19 24
GroenLinks 7 10 4 14 8
SP 25 15 15 14 9
SGP 2 2 3 3 3
ChristenUnie 6 5 5 5 5
PVV 9 24 15 20 17
PvdD 2 2 2 5 6
50Plus 0 0 2 4 1
DENK 0 0 0 3 3
FVD 0 0 0 2 8
Volt 0 0 0 0 3
JA21 0 0 0 0 3
BBB 0 0 0 0 1
Bij1 0 0 0 0 1

The various cabinets and the dates they started are the following:

Cabinets in the House of Representatives
Date Parties involved
22-02-2007 CDA, PvdA, ChristenUnie
14-10-2010 CDA, VVD
05-11-2012 PvdA, VVD
26-10-2017 CDA, VVD, D66, ChristenUnie
10-01-2022 CDA, VVD, D66, ChristenUnie

4.1.2 Cleaning the Data

As the scraper tool is not that comprehensive, much cleaning is left to do. The
data is currently not usable for testing. For instance, some data is missing on
the website. There are four motions where not all information that is needed is
present. These motions are deleted from the data as they do not add anything
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to the research. An example of a motion with missing information is shown in
figure 2. All the motions are stored in a Pandas DataFrame structure, meaning

Figure 2: Example of an incomplete motion from 22-12-2011

the Python library Pandas is used. More Python libraries are utilised, which
are mentioned at this report’s end. With a DataFrame structure, one can eas-
ily loop through all the motions to further edit the data to make it ready for
hypothesis testing. For instance, submitters’ names are not yet in a useable
format. The data can look like this:

Indiener(s):
Jasper van Dijk
,
Mahir Alkaya
(SP)

The string is split in such a way that a list is created per motion in which
the members’ full names are stored. The party of which those politicians are a
member is also stored with the names. This makes sure that later on, research
can also be done on the network of parties instead of individuals in the form
of politicians. With the number of votes in favour of the motion, a dummy
variable is created stating whether a motion was approved.

A graph can be created when the adjacency matrix of everyone that has filed
a motion together is built. In figure 3, one can see the network for the period
of 31-03-2021 up until 10-05-2022, where, as mentioned before, there is an edge
between politicians if they filed in at least one motion together, where each node
in the graph represents a politician. There are also politicians without edges in
the network, as they only filed motions individually. All edges have the same
width. As can be seen, it is not a complete graph, making it more interesting
for general research and PageRank. For the various periods, where in the table
the date means the starting date of the period which goes on until the next
date, the following amount of politicians and motions are obtained:
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Amount of Politicians and Motions per period
Period Politicians Motions
22-02-2007 180 2660
17-06-2010 196 3186
20-9-2012 236 7022
23-03-2017 222 5943
31-03-2021 169 1402

Figure 3: Network from 31-03-2021 up until 10-05-2022
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4.2 PageRank

Various variations of the PageRank algorithms exist, all with advantages and
disadvantages, depending on the network. In this subsection, the different
PageRank algorithms used for this report’s analysis will be explained. How-
ever, the general idea of PageRank will be explained first.

As mentioned in the introduction, PageRank was in the first place created to
measure the importance of various websites. However, it just mathematically
objectively measures the centrality of nodes in a network, where nodes can rep-
resent anything the network is made of. A simple example will be given on a
created data set, which looks like the data that will be used further on in the
report, but for simplicity, it will be smaller.

4.2.1 Standard Random Walk PageRank

Imagine a political network consisting of 6 nodes representing politicians. The
nodes would share an edge if the politicians filed a motion together. No ex-
tra data has been used yet. The network is shown in figure 4, along with the
corresponding adjacency matrix. In this example, a standard random walk will
be performed, which is one of the ways to calculate the PageRank scores and
is overall seen as the simplest form of the algorithm. The mathematics will be
explained later on, but what the PageRank scores mean to represent can be
described as follows. The algorithm starts at a random node in the graph. For
now, this starting node is ’A’. This node ’A’ is now visited once, which is some-
thing that is stored. From node ’A’, the algorithm can go to either node ’B’ or
’C’ because the edges of ’A’ lead to those nodes. A coin is tossed to decide which
route is used, where all neighbours of the current node have an equal chance
of being visited. The coin favours node ’B’, so node ’B’ is visited once as well.
Node ’B’ is connected to nodes ’A’, ’D’, and ’E’, and a coin will be tossed to
decide where to go. This goes on and on, and after many runs of the algorithm,
the number of visits to each node form a distribution. This distribution can be
normalized simply by dividing the number of visits of each node by the sum of
visits of all nodes. This is what the PageRank score essentially represents. The
PageRank scores for the Random Walk are given in the table below, calculated
by the PageRank function included in the Python library NetworkX.
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Figure 4: Example Structure Politicians Random Walk PageRank

PageRank Scores corresponding to figure 4
Node Standard

Random
Walk PageR-
ank Score

A 0.144675
B 0.205369
C 0.144675
D 0.205369
E 0.214217
F 0.085694

The sum of the scores will add up to 1, potentially slightly deviating based
on rounding. This is always the case, such that the position of the nodes is rela-
tive to the network; the sum of the scores will never exceed 1, even if the network
becomes incredibly large. What can be noticed is that the scores of nodes ’A’
and ’C’ and nodes ’B’ and ’D’ are the same. This is because the graph is sym-
metric right now; the nodes are connected to the same kind of nodes, which
again have the same connections, meaning the calculations for those nodes are
the same. The scores will always be the same for this network, no matter how
many times one tries to run the algorithm because of its mathematics. In this
example, there is no distinction in what edges are more important. However,
different results are obtained if weights are put on the edges.

4.2.2 Weighted PageRank

Weights, in this case, could mean the number of motions the politicians worked
on together. Assume that politicians A and C submitted two motions together.
Now the weight of the edge going from A to C becomes 2 instead of 1. Fur-
ther changes for the edge weights are made, visualized in the new graph and
adjacency matrix in figure 5. A new situation is created in which some nodes
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now have more important connections than others. Again, the mathematics
will be explained later on; for now, it is only necessary to realize that weights
can affect the scores drastically, and here is the reason. Consider again the
explanation of what the PageRank scores represented by the example before
weights were added. The algorithm flipped a coin to decide what node to visit
next, and it still works like that, only the coin is now favoured towards edges
with higher weights. Imagine the algorithm being at node ’A’, the chances of
going to node ’B’ are now 1

3 , as the sum of the weights from node ’A’ are 3
and the weight of the edge going from ’A’ to ’B’ is 1. This way, nodes with
important edges are favoured over nodes with less important edges, thus rear-
ranging the PageRank score distribution in the graph. This adjacency matrix
will yield the following PageRank scores once Weighted PageRank is performed:

Figure 5: Example Structure Politicians Weighted PageRank

PageRank Scores corresponding to figure 5
Node Standard

Random
Walk PageR-
ank Score

Weighted
PageRank
Score

A 0.144675 0.123132
B 0.205369 0.201455
C 0.144675 0.122809
D 0.205369 0.230874
E 0.214217 0.268231
F 0.085694 0.053500

It is interesting to see that nodes A and C and nodes B and D no longer have
identical scores. Both ’A’ and ’C’ got lower scores, where ’A’ is now slightly
more central than ’C’. Node ’B’ also got a lower PageRank score, while node
’D’ went up. ’E’ also got a higher score, as both ’D’ and ’E’ got more important
links than all other nodes. Node ’F’ already had the lowest score in the Random
Walk algorithm, but the node got an even lower score now as it only has one
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edge with a small weight compared to other edges.

4.2.3 Personalized PageRank

One more alteration can be made to decide to which node the algorithm goes.
As mentioned before, the original purpose of the algorithm was to rank websites
by following links to different websites. There was a problem that some websites
do not have external links leading to other pages, meaning that the algorithm
could get stuck. In a graph, those websites would be nodes without outward
links. Those nodes are called dangling nodes [14]. In the example of a graph rep-
resenting politicians who worked together on a motion, dangling nodes cannot
exist, as there cannot be a one-sided collaboration on a motion, but what can
happen is that there are politicians in the network who are disconnected from
the main network. A clever solution exists to be still able to reach all politicians.
Before deciding what edge to take from the current node, another decision has
to be made. Again, a coin is flipped, where there are two options. Option one is
to choose an edge from the current node, doing the same thing as before. The
other option is to jump to a random node in the network. The chances for this
coin are decided by a so-called damping parameter a, where usually a = 0.85
[15]. This means that there is an 85% chance of taking an edge from the current
node and a 15% chance of jumping to another random node, which does not
have to be connected to the current node. By default, after having decided to
jump to a random node, the chances of reaching node ’A’ are 1

N , where N is
the number of nodes in the network. However, one can alter the odds of going
to specific nodes so that the distribution is no longer uniform. To stay with
this example, the chances of reaching a node could be decided by taking the
number of motions the politician worked on divided by the sum of all motions
handed in. Changing those odds is what is done in Personalized PageRank. For
context, the damping parameter was 0.85 for the Random Walk and Weighted
PageRank scores above. This value will always be used throughout this report
as the damping parameter. Consider the graph in figure 6 together with the
according adjacency matrix and a vector representing the motions handed in
per politician, which in this case is the out-degree per node. The PageRank
scores are given in the table below. Note that the Weighted PageRank Scores
are still the scores according to figure 5 and that the weights are set to 1 for the
Personalized PageRank Scores.
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Figure 6: Example Structure Politicians Personalized PageRank

PageRank Scores corresponding to figure 6
Node Standard

Random
Walk PageR-
ank Score

Weighted
PageRank
Score

Personalized
PageRank
Score

A 0.144675 0.123132 0.142857
B 0.205369 0.201455 0.214285
C 0.144675 0.122809 0.142857
D 0.205369 0.230874 0.214285
E 0.214217 0.268231 0.214286
F 0.085694 0.053500 0.071428

Notice how nodes ’A’ and ’C’, and ’B’ and ’D’ again have the same score,
as weights are not taken into account, meaning that the graph is symmetrical
again. Compared to the Random Walk PageRank scores, nodes ’A’, ’C’ and
’F’ got a lower score, and ’B’, ’D’ and ’E’ went up, although the differences for
nodes ’A’, ’C’ and ’E’ are almost negligible. The algorithm behaves as expected,
as the chances of visiting nodes ’B’, ’D’, and ’E’ is increased by the manipulation
of the random jumps. There is one final manipulation that will be done in this
research to get the fourth and final alteration of the PageRank algorithm.

4.2.4 Weighted Personalized PageRank

The Weighted and Personalized PageRank algorithms will be combined to cre-
ate a Weighted Personalized PageRank algorithm. Combining these algorithms
means that the weights of the edges will not consist of the same values, and
the jumps to random nodes will not be completely uniform. Consider figure 7,
where the weights are the same as in figure 5, and the personalization vector is
changed accordingly to contain the number of motions handed in per politician,
matching the out-degree. The newly obtained Weighted Personalized PageRank
scores are in the table below, where the scores of the previous figures are as well.
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Figure 7: Example Structure Politicians Weighted Personalized PageRank

PageRank Scores corresponding to figure 6
Node Standard

Random
Walk PageR-
ank Score

Weighted
PageRank
Score

Personalized
PageRank
Score

Weighted
Personalized
PageRank
Score

A 0.144675 0.123132 0.142857 0.107143
B 0.205369 0.201455 0.214285 0.214286
C 0.144675 0.122809 0.142857 0.107142
D 0.205369 0.230874 0.214285 0.250001
E 0.214217 0.268231 0.214286 0.285714
F 0.085694 0.053500 0.071428 0.035714

It can be noticed from the table that nodes ’D’ and ’E’ got an even more
central position within the network according to Weighted Personalized PageR-
ank compared to all other versions of the algorithm applied before. Later in this
report, all four different algorithms will be used to see which will help provide
the best answer to the various hypotheses. Now onto the mathematics.

4.2.5 Mathematics behind PageRank

There are various ways of writing down the formula of PageRank. Notice that
thus far, an undirected graph was used in the example figures. Officially, PageR-
ank was created for directed networks, but any undirected graph can easily be
changed into a directed graph by splitting the edge of the undirected graph in
two; if in an undirected graph, there is an edge between nodes ’A’ and ’B’ with
weight 3, then in a directed graph two edges will be created. One goes from
node ’A’ to ’B’ with weight 3, and the other goes from ’B’ towards ’A’, again
with weight 3. After explaining the formula, an example of an iteration will be
given to show how the algorithm’s calculation works. Here, the following math-
ematical recursive equation will be used to explain what the PageRank scores
have to comply with for the Standard Random Walk algorithm for a directed
graph:
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Ri = α

N∑
j=1

AjiRj

k+j
+ (1− α)Ei. (1)

Every term can be explained separately. The PageRank vector itself is R, where
Ri depicts the PageRank score of node i. The term α, where 0 < α ≤ 1, is the
damping factor. This factor represents the chance of not jumping to a different
random node in the network. Again, as mentioned before, in the examples given
earlier in this chapter, the damping factor a was set to 0.85, as it is widely used
as the default value. The next part is the summation of the equation, which is

N∑
j=1

AjiRj

k+j
. (2)

The summation essentially sums over all nodes j pointing to node i, where
Aji = 1 if node j has an edge going to node i. The PageRank score of node j
is depicted by Rj , meaning the algorithm takes into account from which node
the link is coming to increase the score if it comes from an already important
node. In other words, a connection to a central node j increases the PageRank
score of node i more than a connection not that connected to the network. The
out-degree of node j is k+j , meaning the total amount of edges leaving node j.
The next bit of the recursive equation is

(1− α)Ei. (3)

This term shows the chances of randomly jumping to another node in the net-
work, where α is again the damping factor, Ei is the chance of reaching a specific
different node, which in the basic form of PageRank equals 1

N for every node,
with N being the total amount of nodes in the network. This means that each
node is just as likely to be reached. This vector can be changed, as was also
explained before in the examples, which leads to Personalized PageRank.

The base formula can be rewritten if the following term is introduced:

Āij =

{
Aij

k+
i

, if Aij = 1

0, else
. (4)

This term transforms the adjacency matrix into a row normalized adjacency
matrix. That means that for every row in the matrix, the sum of the values
adds up to 1. Now when replacing Aji with this new term in the base formula,
the following formula is obtained:

R = (αĀR+ (1− α)E). (5)
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And because the vector is now already row normalized, the formula can be
rewritten as:

R = (αĀ+ (1− α)1TE)R. (6)

From this final formula, it can be concluded that the PageRank vector is simply
an eigenvector with eigenvalue 1. That means it has a unique solution to the
problem, meaning the PageRank scores of a network will always be the same if
the network remains the same.

An example of the calculation will now be given for Weighted Personalized
PageRank, as this is the most comprehensive calculation. Consider again the
graph in figure 7. The terms Ā will be row-normalized, and E will be changed
accordingly. The result can be seen in figure 8.

The PageRank algorithm is recursive; it considers the results of the previ-

Figure 8: Example Structure Politicians Calculation

ous run. For the first iteration of PageRank, the calculation to get the score of
node ’A’ by using equation 5 and the newly obtained matrix and vector pre-
sented in 8 is as follows:

R0(A) =
1

N
= 0.167

Rt+1(A) = (a(Rt(B) ∗ ĀBA +Rt(C) ∗ ĀCA) + (1− a) ∗ EA))

R1(A) = (0.85(
1

6
∗ 1

6
+

1

6
∗ 2

3
) + (1− 0.85) ∗ 3

28
) = 0.134.

(7)

In the calculations for the successive iterations, Ā and E remain the same, but
R is updated with the newly obtained values, such that for other nodes in the
calculation, if R(A) is taken, the value will be 0.134 instead of 1

6 . The scores
of the other nodes will also be calculated in every iteration; otherwise, the new
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score of node ’A’ cannot be determined as the calculation uses the PageRank
scores of the other nodes. The PageRank vector after zero, one, and two itera-
tions are given in the table below.

PageRank Scores per iteration corresponding to figure 6
Node Iteration 0 Iteration 1 Iteration 2
A 0.167 0.134 0.112
B 0.167 0.173 0.227
C 0.167 0.131 0.117
D 0.167 0.203 0.266
E 0.167 0.336 0.235
F 0.167 0.023 0.041

In some cases, there is a big difference in scores between an iteration. At first,
these differences will be big, but they will get smaller and smaller. Eventually,
if the difference becomes so small that it is almost negligible, it is said that the
PageRank vector has converged. In a more mathematical sense, it is clearly ex-
plained by Mihalcea, R., & Tarau, P. (2004, July) [16]; There is an error rate for
vertex (node) Vi, which represents the difference between the actual PageRank
score S(Vi) and Sk(Vi), which is the PageRank score at a certain iteration k.
The problem is that the actual PageRank score is yet unknown. The difference
between two successive iterations will be taken to solve that issue. The equa-
tion for this is Sk+1(Vi)−Sk(Vi). If that value drops below the given threshold,
the vector has converged. By default, this threshold is set to 0.000001 by the
PageRank algorithm provided by Networkx in Python, which is also the value
used in this report.

18



4.3 Combining the Data and PageRank

Before jumping into how the coding for the specific hypotheses has been done,
it will be explained how the PageRank scores per period are obtained. These
PageRank scores are used for all hypotheses. If the data is fully prepared, it
is not hard to calculate the PageRank scores for the various algorithms. As
was explained before, an adjacency matrix was created, with edges representing
politicians that filed a motion together. The weights of these edges differ based
on how many motions the politicians worked on together. For the Standard
RandomWalk PageRank algorithm, the weights are disregarded. The adjacency
matrix for every period is given to the Networkx PageRank algorithm, with
weights being 1 if there is a connection. The values are stored for every politician
in a column in a Pandas DataFrame for the period. In this DataFrame, the
Personalized, Weighted, and Weighted Personalized PageRank scores will be
added to a new column. To obtain the Personalized PageRank scores, the
adjacency matrix is given to the algorithm again. However, now a dictionary is
added that stores for every politician how many motions they have filed. That
is all the information that the Personalized PageRank Scores will be based on
in this report. With this dictionary, the Networkx algorithm will automatically
transform the data into a helpful vector and calculate the scores. For Weighted
PageRank, all one has to do is say that the weights of the network must be taken
into account, and again the algorithm will ensure it is in the correct format. For
the Weighted Personalized PageRank, the dictionary containing information
about how many motions a politician has filed and the weights in the network
are given to the algorithm. The DataFrames per period now contain all the
information they need to contain to start working on hypothesis 1. Testing will
be done with the 4 algorithms and the outcomes of all 4 algorithms will also be
included in the results. This way, the various algorithms can be compared.

4.3.1 Coding for Hypothesis 1

The hypothesis was as follows: There is a strong correlation between the PageR-
ank score of a politician in a previous period and the politician’s current PageR-
ank score. This hypothesis is straightforward regarding programming. All one
needs are the various PageRank scores per algorithm per period, which are al-
ready available. One thing that still needs to be done is to remove data points
(politicians) from the data where no PageRank score was available in either of
the two periods that are to be compared because comparing their PageRank
scores where one of the scores is 0 will mess up a correlation, if there is one.

To better grasp how the PageRank scores are calculated, it will also be checked
whether the number of motions filed per politician and the number of motions
filed in the previous period play a significant role in their PageRank scores.
This data was also already available, as the dictionary containing the number
of motions filed per politician per period was already needed earlier. Taking
the data of motions filed in the previous period cannot be done for the first and
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last period, as no data exists for the period before the first period about how
many motions were handed in per politician. Also, the PageRank scores for the
following period cannot yet be calculated for the last period. Plots are created
to see whether there exists a correlation.

4.3.2 Coding for Hypothesis 2

Onto the second hypothesis, which is the following: There is a strong correla-
tion between the number of votes that a party gets and the summation of the
PageRank score of its politicians in the period before the elections. A problem
that instantly arises for this hypothesis is that it is impossible to account for
parties that did not have a seat in the House of Representatives but who do
enter the elections. No PageRank scores of those parties are known unless the
party has members who left their original party halfway through the previous
period, as the seats in the House of Representatives are distributed to people
who can choose to leave their party and go further as an independent fraction
[17]. In the last elections, eight seats were earned by new parties, as is shown in
section 4.1.1, and five seats were appointed to new parties in the 2017 elections.
If a plot is made for this data where on one axis the PageRank scores are drawn
and on the other the number of seats earned, those data points would be stuck
on the axis representing the PageRank score. Nothing can be done about this
problem without having extra data about the new parties.

For the coding, several data is needed. First, the various PageRank scores
per period per politician are needed. Fortunately, those are already available
as they were also needed for the previous hypothesis. How those scores were
obtained will not be explained again. Secondly, data is needed about which
party politicians represented during the specific periods. Sometimes it happens
to be the case that people step out of a party. The data did have some flaws
regarding what party politicians represent when filing a motion. If a party was
mentioned, it was the correct party, but quite often, no party is mentioned.
For this research, it is decided that politicians are appointed to the party they
filed the most motions for during the specific period. Suppose it happens to
be that the most occurring party for a politician is ’nan’ in the data, but the
second most occurring is a valid party. In that case, the politician is assigned
to this second party, as that prevents more loss of data. Now that parties are
assigned to the politicians, an algorithm is coded that sums up all the scores of
the politicians per party. With this data preparation, the first proper plot can
be created, which is a plot that shows the sum of the PageRank scores and the
seats. Such a plot helps determine whether there is a specific pattern between
the variables.

Because the PageRank scores should sum up to 1 and are thus a division, a pre-
diction of the seat distribution could be calculated by multiplying the PageRank
scores per party by 150, as there are 150 seats available. This prediction will
only be created for the 2017 elections. There is, of course, a very slight chance
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of succeeding in making a solid prediction, but it is still interesting to see how
it turns out. However, the sum of all the PageRank scores per party combined
turned out to be less than 1, as some politicians were removed from the data
because they did not represent a party. For that reason, the formulation for the
prediction of seats is as follows:

seats for party A =
Sum of PageRank scores of party A

sum of PageRank scores of all parties
∗ 150. (8)

This formula assumes a linear relationship, which might not be the case. Never-
theless, because this is not the main objective of the hypothesis, there will be no
further experimentation with other formulas. The total amount of seats given
away in the predictions will be 150 if the outcome of the equation is rounded.
This would still not be an entirely fair approximation, as this does not account
for the new parties. However, with the data about the last period, it would be
impossible to predict how many new parties would gain ground in the elections.
Sometimes the data needs some tweaking by hand. For example, in the period
2012-2017, there are still PageRank scores for the party ’GPV’, which was al-
ready fully merged with the ChristenUnie in 2003 [18]. For obvious reasons,
such scores will be added to the new party. The results are presented in a bar
plot, where the predictions are given in orange and blue, and the actual outcome
of the elections is in red. There are two predictors, as not only the data will be
taken over the whole period of 2012 up until 2017, but also just the last year
before the elections will be taken. This is to ensure that there are no significant
changes in the network during the last year. The mean squared error will be
taken for the various PageRank algorithms to measure how good the predictions
are.

4.3.3 Coding for Hypothesis 3

The third and final hypothesis was: There is a strong correlation between the
PageRank score of a politician in a prior period and the chances of getting a role
as a minister in a new cabinet. Here, the data also needs further preparation to
dive into testing and plotting. As explained in section 4.1, in the original data,
whether a politician had a function as a minister while filing a motion is also
stored. This data is used to find all politicians who, at one point, were ministers.
To be more precise, the names of the politicians are stored together with the
dates when they were first mentioned as a minister in the data. That way, it
can be seen in which specific period the politician became a minister for the
first time, and the PageRank score of this politician can quickly be taken from
the period before. Now that the minister’s data are ready, more data is needed
about the other politicians. Otherwise, one cannot determine whether there is
a difference in PageRank scores between a minister and a ’regular’ politician
within the House of Representatives and the coalition. As was explained before,
it is improbable to become a minister if one is not part of the coalition. Because
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every politician’s party was already stored for hypothesis number 2, all that
needs to be done is to check whether that party was in the coalition for that
specific period. Once all the data is ready for all the periods, plotting can begin.
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5 Results

5.1 H1

The first plots that will be shown compare the PageRank scores in a period
with the previous ones. This can be seen in figure 9. The PageRank scores of
the current period are on the x-axis and the PageRank scores of the previous
period are on the y-axis. It seems like the data is not normally distributed.
A histogram of the PageRank Scores for the same period is created for good
measurement, as shown in figure 10. All plots in this section for the results of
hypothesis one will be about the period from 2010 to 2012. The results for the
other periods will be included in a table.

(a) Standard Random Walk (b) Weighted

(c) Personalized (d) Weighted Personalized

Figure 9: PageRank Scores 2010-2012 versus PageRank Scores of the previous period

By looking at the scatter plots in figure 9, it seems there is no real correlation
at hand, but if a correlation exists, it might just be linear. An indicator of the
strength of the linear relationship between two random variables is the Pearson
Correlation Coefficient [19]. This coefficient would be helpful to check how good
the correlation between the two PageRank scores per period is. However, the
data is thus not normally distributed, which is one of the assumptions for a
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(a) Standard Random Walk (b) Weighted

(c) Personalized (d) Weighted Personalized

Figure 10: PageRank Scores 2010-2012 distribution

24



Pearson’s Correlation Coefficient test. However, studies suggest that assump-
tion violation has little effect on the outcome [20]; thus, this paper will still use
Pearson’s Correlation Coefficient. The value of the coefficient is always between
-1 and 1. A -1 indicates a perfect negative linear relationship and a 1 a perfect
positive linear relationship. The closer the coefficients get to 0, the less of a
linear relationship between the two tested variables. When a correlation can
be considered strong is up to debate. Different authors use different interpre-
tations of the coefficient, where some say the correlation is already strong after
reaching an absolute value above 0.5, and others stick to a higher value of 0.8
[21]. Considering that the normality assumption is violated for this report, it
will be said that a correlation is strong only after reaching a higher absolute
value than 0.8.

The Pearson Correlation Coefficient for the Weighted Personalized PageRank
algorithm in figure 9 is 0.671. The relation between the two PageRank scores is
thus moderately linearly positive but not strong enough to say that the previous
PageRank score can be seen as a solid predictor for the PageRank score in the
next period, as there is no strong linear correlation. The coefficients for the
other algorithms per period will be presented in a table.

To explain the results from the previous plots a bit better, the plots displayed in
figure 11 are made, where the PageRank scores are plotted against the number
of motions handed in in the same period. After looking at the plots, it becomes
clear that there is a correlation between the PageRank scores and the number
of motions filed. The Pearson Correlation Coefficient for Weighted Personalized
PageRank equals 0.950, suggesting a strong positive linear relationship between
the two. It just so happened to be the case that the correlation between motions
filed in the same period and motions filed in the last period has a way lower
Pearson Correlation Coefficient, with only 0.125. The plot for comparing the
amount of filed motions can be seen in figure 12.

The PageRank comparisons between the two periods probably fail to get a
strong correlation because the PageRank Scores seem strongly influenced by
the number of motions filed in that period per politician, and there seems to
be no strong correlation between the number of motions filed per politician for
these periods. Whether there is a causal relationship was not investigated, as
it is not needed to form a conclusion for this hypothesis. In the tables below,
the various Pearson Correlation Coefficients are given per algorithm per period
for the PageRank scores in the current period and the period before, and the
averages are given.
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(a) Standard Random Walk (b) Weighted

(c) Personalized (d) Weighted Personalized

Figure 11: PageRank Scores 2010-2012 vs number of motions filed in the same period
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Figure 12: number of motions filed for the period 2010-2012 vs number of
motions Filed for the period before 2010

Pearson’s Correlation Coefficient for PageRank Scores comparisons with previous periods
Period Standard

Random
Walk

Weighted Personalized Weighted
Personalized

2010-2012 0.564 0.671 0.571 0.671
2012-2017 0.729 0.751 0.754 0.751
2017-2021 0.364 0.297 0.388 0.317
2021- 0.536 0.548 0.645 0.629
Averages 0.548 0.567 0.590 0.592

From this table, it appears that, on average, the Weighted Personalized
PageRank algorithm yields the best correlation, but it is not a very strong cor-
relation, with only a value of 0.592. Notice also that for the 2010-2012 and
2012-2017 periods Weighted PageRank performs as well as Weighted Personal-
ized PageRank, and for the periods 2012-2017, 2017-2021, and 2021- Personal-
ized PageRank performs best. Hypothesis 1 was ”There is a strong correlation
between the PageRank score of a politician in a previous period and the politi-
cian’s current PageRank score”, but this hypothesis turned out to be false.
With the highest Pearson’s Correlation Coefficient on average for an algorithm
of 0.592, one cannot conclude that there is a strong correlation between the
PageRank scores.
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5.2 H2

With the seats per party, a plot can be made where, on the x-axis, the summed
Weighted Personalized PageRank scores per party are given, and on the y-axis,
the number of seats earned by parties in the next elections. Per election, a dif-
ferent colour is given to the data points. Not all colours have the same number
of data points because of the different parties that joined the elections and won
a seat over the years. The plot is shown in figure 13.

Figure 13: Weighted Personalized PageRank scores vs Seats earned per party

From figure 13 it can be seen that there is at least no strong correlation
between the Weighted Personalized PageRank scores and the seats earned per
party. If the different elections are disregarded, and the data points are all seen
as the same type, a different plot can be created with a linear trend-line, as is
displayed in figure 14. It is evident that the linear trend-line does not achieve
a good fit here, but it also becomes apparent that there seems to be no corre-
lation. Now, this is not necessarily a problem, as if there exists a correlation
between the separate elections and the PageRank scores, the information is still
valuable. The elections do not have to be generalized altogether.

Much better results are obtained if the elections are taken separately, for
example, for the 2021 elections, where with Standard Random Walk PageRank,
there seems to be a strong linear correlation. The Pearson Correlation Coeffi-
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Figure 14: Weighted Personalized PageRank scores

cient gets as high as 0.874. The Standard Random Walk trend-line is shown in
figure 15, along with the plots for the different algorithms for the 2021 elections.
The Standard Random Walk PageRank has a strong correlation, but this is im-
mediately the highest coefficient achieved over all elections for all the PageRank
algorithms. The results per algorithm per election are given in the table below.

Pearson’s Correlation Coefficient for PageRank Scores comparisons with Seats earned per party
Election year Standard

Random
Walk

Weighted Personalized Weighted
Personalized

2010 0.683 0.551 0.709 0.510
2012 0.749 0.642 0.677 0.459
2017 0.650 0.614 0.625 0.517
2021 0.874 0.798 0.772 0.636
Averages 0.739 0.651 0.696 0.531

The Standard Random Walk PageRank algorithm performs best for all elections
except the 2010 elections. It also performs best on average over all elections,
but if an absolute value of 0.8 or higher is taken as the requirement for a strong
correlation, only for the 2021 elections does there seem to be a strong correla-
tion. This means that hypothesis 2 is also false, as it would have to be a strong
correlation for every election.
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(a) Standard Random Walk (b) Weighted

(c) Personalized (d) Weighted Personalized

Figure 15: PageRank Scores per party for the period 2017-2021 vs number of seats
earned at the 2021 elections
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To illustrate that the correlation is not strong in a different manner, the seat
predictions are calculated as explained in section 4.3.2 with Weighted Personal-
ized PageRank for the 2017 elections. The results are shown in figure 16. The
predictions for some parties seem to be correct or close, but for others, they
are far off. Because the Weighted Personalized PageRank algorithm seems to
favour parties that have filed many motions, the PVV and VVD are, for exam-
ple, predicted to get fewer seats than they earned. Furthermore, PvdA, SGP,
and ChristenUnie are predicted to get way more seats. If the whole period of
2012-2017 is taken, the PVV filed 696 motions, which in comparison to D66
(1532), PvdA (1503), VVD (1229), and ChristenUnie (1072) is not that much.
From the plot and the number of motions filed, one can see that there is a
correlation between the motions filed and the predicted seat distribution, which
makes sense, as it was shown in hypothesis 1 that there is a correlation between
the number of motions filed per politician and their corresponding (Weighted
Personal) PageRank score. As for the difference between taking the whole pe-
riod before the elections (2012-2017), or just the year before the elections, there
is not that big a difference, which is interesting to see. It means that the PageR-
ank distribution for only the last year is almost the same as for the whole period.
The Mean Squared Error (MSE) for the prediction of the whole period equals
64.92, and for one year, the Mean Squared Error is 66.31, thus slightly favour-
ing the whole period as a predictor. As for the other PageRank algorithms, the
following MSE values are obtained for the 2017 elections:

Figure 16: Predictions for the 2017 election based on Weighted Personal PageR-
ank
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MSE for predictions of various PageRank algorithms for the 2017 elections
Data Used Standard

Random
Walk

Personalized Weighted Weighted
Personalized

1 year 74.92 69.69 62.46 66.31
whole period 59.38 54.31 58.92 64.92

Although Personalized PageRank for the whole period still has a high Mean
Squared Error of 54.31, it is the best option for this election. The fact that
Weighted Personalized PageRank is not the best algorithm, in this case, whilst
it is the most complex, most likely has to do with the fact that it favours parties
with many motions filed. It is interesting to see that data from the whole period
instead of only the last year is a better prediction, as one may guess that the
election outcome heavily depends on what happened in the last year.
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5.3 H3

The first plot to demonstrate the difference between the ministers and the reg-
ular coalition members is a box plot over all periods. This plot is figure 17. It
can be noticed that ministers seem to have a higher PageRank score on average
than the non-ministers. That is a good sign, as it could potentially mean that
it is possible to make a split on a specific PageRank score to classify politi-
cians that might become ministers. One thing that needs to be kept in mind is
that there are fewer ministers in the coalition than non-ministers. If the data
is presented in a different format, it becomes clear that it is hard to draw a
line on the PageRank scores to determine the difference between ministers and
non-ministers. Have a look at figure 18. This is data about the period up until
2010. The data points for ministers are in blue and purposefully made bigger
so that the data points of non-ministers are still visible even if they overlap.
Notice how many orange data points are to the left of the first minister, but
there are still way too many non-ministers grouped with the ministers to do
a good split. Unfortunately, this was already one of the nicer splits from the
data. A worse example is the data for the period 2012 until 2017. In this plot,
figure 19, one might as well flip a coin to determine whether someone became a
minister for the first time based on their PageRank scores in the previous period.

If all periods are combined into one plot for the Weighted Personalized
PageRank Scores, figure 20 is obtained. There seems to be no difference be-
tween the distribution of the ministers and the non-ministers. In this case, one
must remember that the PageRank scores depend on how many people are in
the network, and if more politicians are in the network, the scores need to be
distributed among more people. Because of that, PageRank scores plotted over
all periods like in figure 20 might not be representative, as it becomes harder
to get a higher score if more politicians are involved. Just like the results for
hypothesis 2, it would be no problem if the generalized data could not be split.
However, based on the plots about particular periods, no solid splits can be
made to decide whether one has an increased chance of becoming a minister in
the next period. Of course, one can find the optimal split, but as mentioned in
the objectives, the time and effort put into this hypothesis is significantly less
than for the other two hypotheses. No further tests were conducted to get pre-
cise numbers on the achieved plots and distributions. Nevertheless, from these
plots, it can already be concluded that hypothesis 3 is false. There is no strong
correlation between the PageRank score of a politician in a prior period and the
chances of getting a role as a minister in a new cabinet.
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Figure 17: Standard Walk PageRank Scores of ministers and non-ministers in
the previous period
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Figure 18: Weighted Personalized PageRank Scores of ministers and non-
ministers in the previous period for 2010

Figure 19: Weighted Personalized PageRank Scores of ministers and non-
ministers in the previous period for 2012-2017

35



Figure 20: Weighted Personalized PageRank Scores of ministers and non-
ministers from all periods combined

6 Discussion and Future Work

6.1 General

As mentioned before, it is debatable when a Pearson’s Correlation Coefficient
represents a strong relationship. The chosen value of 0.8 might be too high or
even too low regarding the used data. To come up with the value of 0.8, the
plots were taken into account. In figure 15, there seems to be a correlation for
the Standard Random Walk algorithm. In figure 9, a (linear) correlation seems
far-fetched for the Weighted Personalized PageRank algorithm. The coefficients
for those figures were 0.874 and 0.671, respectively. The decision was made that
because the correlation for Weighted Personalized PageRank in figure 9 seemed
weak, the score of 0.671 was too low to take as a threshold. For the Standard
Random Walk, though, it seemed there is a linear correlation, so the threshold
had to be under 0.874. Because other authors picked 0.8 as a threshold, this
was done in this report.

Also, in general, all hypotheses could have been tested for the data where only
the accepted motions are considered. It is mentioned in the description of the
data that information is present about whether a motion was accepted, but
testing has only been done on all motions. The reasoning was that now a more
extensive network is used, but that does not have to mean that it yields better
results than a smaller network. Time was spent on other parts of the research
instead of running the same analysis for only accepted motions.

Another bit that could be implemented for every hypothesis is the use of more
types of PageRank algorithms. The four types used in this paper are not the only
four PageRank algorithms. Algorithms such as Strongly Preferential PageRank
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or Dirichlet PageRank [22] can be programmed to fit on this network. Maybe
those algorithms will create stronger linear relationships between the data.

6.2 H1

Something that does not help the research is that the PageRank score is de-
pendent on how many politicians were in that period. It does not immediately
become a problem if only the period before the period currently being evaluated
is taken as then the proportions of the PageRank scores apply to all politicians.
However, creating a general (linear) formula that fits all periods is impossible.
What would help to get a more general formula would be to split the data into
years instead of periods. This way, the data should also achieve a fairer split in
size. It does not mean that the same number of motions are filed yearly; never-
theless, it will probably get much closer than the differences between the current
periods. If data is prepared per year, it might be possible to analyse whether the
number of motions filed the year before strongly influence the PageRank scores
in the next year. A time series could be created by taking the average number
of motions filed per politician and the average PageRank score over that year,
which can be calculated for every PageRank algorithm. This will certainly help
explain the network on a deeper level.

6.3 H2

There are various areas in which the current research lacks, thus multiple
chances for improvement. Regarding the correlation between PageRank and
seats earned, it might be better to compare based on individual votes in the
future. This data does exist [23], but it will take a while to mine and clean the
data, which is why it was not yet done for this report. This might also give a
weird distribution, though, as party leaders are likely to get more votes simply
because they are on top of the voting bill, but it is not necessarily the case that
the party leaders have the highest PageRank scores. It might be interesting to
use the number of social media followers per politician, where those statistics
can even be used for the Personalised PageRank algorithm instead of the num-
ber of motions filed per politician. The reasoning is that many people will get
an impression of politicians through social media instead of the motions they file.

As far as the prediction goes for actual seats earned per party, the model per-
forms way worse than the opinion polling made just before the 2017 elections
[24]. That cannot be called a surprise, as the opinion polling predictions are
based on more data types and thus form a more accurate prediction. In the
future, PageRank might have a place in the algorithm used at hand to come up
with the specific amount of seats predicted, but for now, the algorithm for the
opinion polling as it is performs quite well already.
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6.4 H3

It might also be possible to use the individual votes for this hypothesis. Either
from the previous elections or the current elections, after which the coalition
will form, and the minister roles will be distributed. Maybe a better split can
be done with this data instead of the split solely based on the PageRank scores
in the previous period. Perhaps a combination of the two could even work.
Social media activity could also be monitored to see whether that influences the
chance of becoming a minister in an upcoming coalition.
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7 Conclusion

In conclusion, it can be said that although there is some positive linear correla-
tion between the PageRank scores of politicians in the current period and the
scores of the previous period, there exists no solid linear positive correlation.
Weighted Personalized PageRank performed best but was still not good enough
to be a solid predictor. No PageRank algorithm used in this report gets a con-
stant strong linear positive correlation between the sum of the PageRank scores
per politician per party and the number of seats won per party in the upcoming
elections. Here, Standard Random Walk PageRank performed best, but it was
still not good enough. Furthermore, the PageRank scores are also not helpful
in determining which politicians have a shot of becoming a minister in the next
coalition. Research with PageRank on this data set still yielded some interesting
results. Maybe with some extra data like votes earned per individual instead of
per party, better results could be achieved in the future.
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[9] N. (nilüfer) gündoğan. Parlement.com. (n.d.). Retrieved May 19, 2022,
from https://www.parlement.com/id/vlgntc8p1yao/n nilufer gundogan .

[10] Alle Kamerleden. Tweede Kamer der Staten-Generaal. (n.d.). Re-
trieved May 19, 2022, from https://www.tweedekamer.nl/kamerleden en commissies/alle kamerleden
.

[11] Centraal Bureau voor de Statistiek. (2007, January 3). Verkiezingen;
Historische Uitslagen Tweede Kamer. Centraal Bureau voor de Statistiek. Re-
trieved May 19, 2022, from https://www.cbs.nl/nl-nl/cijfers/detail/37278 .

[12] Zetelverdeling Tweede Kamer. Parlement.com. (n.d.). Retrieved May
19, 2022, from https://www.parlement.com/id/vh8lnhronvx6/zetelverdeling tweede kamer
.

40



[13] Ministerie van Algemene Zaken. (2022, January 7). Kabinetten Sinds
1945. Regering — Rijksoverheid.nl. Retrieved May 19, 2022, from https://www.rijksoverheid.nl/regering/over-
de-regering/kabinetten-sinds-1945 .

[14] Yan, E., & Ding, Y. (2011, July). The effects of dangling nodes on
citation networks. In Proceedings of the 13th international conference on scien-
tometrics and informetrics (pp. 4-8).

[15] Boldi, P., Santini, M., & Vigna, S. (2005, May). PageRank as a function
of the damping factor. In Proceedings of the 14th international conference on
World Wide Web (pp. 557-566).

[16] Mihalcea, R., & Tarau, P. (2004, July). Textrank: Bringing order into
text. In Proceedings of the 2004 conference on empirical methods in natural
language processing (pp. 404-411).

[17] Kiesraad. (2020, August 12). Kan een kandidaat die is gekozen voor een
Bepaalde Partij Zich Na toelating tot het vertegenwoordigend orgaan afsplitsen?
Kiesraad.nl. Retrieved June 12, 2022, from https://www.kiesraad.nl/verkiezingen/vraag-
en-antwoord/kan-een-kandidaat-die-is-gekozen-voor-een-bepaalde-partij-zich-na-
toelating-tot-het-vertegenwoordigend-orgaan-afsplitsen .

[18] ChristenUnie. (n.d.). De geschiedenis van een beginselpartij. Geschiede-
nis - ChristenUnie.nl. Retrieved June 13, 2022, from https://www.christenunie.nl/page/85
.

[19] Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson corre-
lation coefficient. In Noise reduction in speech processing (pp. 1-4). Springer,
Berlin, Heidelberg.

[20] Havlicek, L. L., & Peterson, N. L. (1976). Robustness of the Pear-
son correlation against violations of assumptions. Perceptual and Motor Skills,
43(3 suppl), 1319-1334.

[21] Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish jour-
nal of emergency medicine, 18(3), 91-93.

[22] Gleich, D. F. (2015). PageRank beyond the Web. siam REVIEW, 57(3),
321-363.

[23] Kiesraad. (2021, May 10). Uitslag Tweede kamerverkiezing 17 maart
2021 Proces-Verbaal. Proces-verbaal — Kiesraad.nl. Retrieved June 22, 2022,
from https://www.kiesraad.nl/adviezen-en-publicaties/proces-verbalen/2021/03/26/uitslag-
tweede-kamerverkiezing-17-maart-2021 .

[24] Louwerse, T. (n.d.). Peilingwijzer, slotupdate maart 2017. Peilingwijzer.

41



Retrieved June 22, 2022, from https://peilingwijzer.tomlouwerse.nl/2017/03/ .

9 Python Libraries Used
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• math

• re

• numpy
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• matplotlib

• datetime

• ast

• scipy
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