
 Eindhoven University of Technology

BACHELOR

Visualization For Troubleshooting CSV Files

Mei, Jingxian

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/29c34561-9317-4a69-939a-a8f32af32a2b

1

Visualization For Troubleshooting CSV

Files
Data Science - Bachelor End Project

Jingxian Mei

Supervisor:
Dr. Ir. Stef van den Elzen

1 August 2022

2

Abstract

The paper illustrates the visualization of missing values and data type errors in a CSV file. This

report contains two types of visualizations, a table visualization and a pie chart. The purpose

of a table visualization is to provide users with an interactive way to correct errors in their CSV

files by providing them with guidance. The purpose of the pie chart is to determine which type

of error is most commonly occurring, out of two different types.

Keywords: interactive table visualization, errors in CSV, C#, CSVHelper.

3

Table	of	Contents

Abstract	..	2	

Introduction	..	4	

Related	Work	..	7	

Current	Methods	..	7	
					Issues	in	CSV	...	10	
Select	Errors	to	Visualize	...	7	

Visualization	Methodology	..	15	

Data	..	15	
					Mockup	..	16	
Design	Decisions	...	18	

					Tool	Support	and	Goals	...	20	

Implementation	...	21	

Attempt	1:	Python	..	21	
					Attempt	2:	C#	...	23	

Evaluation	..	33	

User	Experiment	Set	Up	..	33	
					Result	Analysis	..	33	

Conclusion	...	34	

Future	Work	...	35	

References	...	36	

Appendix	..	39	

A. Coding	...	39	
B. User	Experiment	Questionnaire	...	39	
C. User	Experiment	Result	..	41	
	

4

1. Introduction

Data analytics tools have made significant improvements for analytics and data management

(Kandel et al., 2011). Therefore, the file system plays an important role in the storage and

transmission of information, the value of information today is immeasurable. One of the most

popular file formats is the Character Separated Values (CSV) file, it has a simple structure to

store data and it can be used in different programming languages because of the simple storing

structures, processing, and transmitting of information, it can be used such as Python, EXCEL,

SQL, and Powershell (Abba & Hassan, 2018).

But the problem of troubleshooting files remains. Due to the simple storing structure, CSV files

can easily hide errors. When people load CSV files, they are not always correctly structured,

such as incorrect data types, unrecognized symbols, misspellings, duplicates, missing data, and

outliers. This will cause the loading process to fail and might lose valuable information. These

mistakes would discourage analyzers use CSV files (Abba & Hassan, 2018). Therefore,

repairing mistakes in the CSV files is vital in this case. Despite the fact that analysts can

manually check or fix it when they find errors, it is time-consuming. T. Dasy and T. Johnson

estimate that data cleaning accounts for approximately 80% of the time that data warehousing

projects take because it requires special scripts for programming languages such as Python and

Excel. Due to this inconvenient fact, some people avoid data analysis (Kandel et al., 2011).

The most common errors in CSV files are file size too large, matching(this could be cells don’t

match column names, the column name addresses but give email address), translation(format

does not translate correctly when it is opened on other platforms), values(data length is too long

or too short when importing CSV files, or unacceptable characters), missing data(some

information in the columns are missing), non-digestible formats(formats are not matched with

it should be) (Lahar, 2020) Incorrect CSV files bring unexpected problems when people

explore and analyze data. For instance, missing commas lead to the instance of CSV file

meaningfulness or unusable. Typing error gives wrong information and is not valuable. The

worst scenario is in the bank or university when people need to transfer money to a wrong

number or read students’ records as missing (Abba & Hassan, 2018).

On the other hand, problems associated with reformatting and validating data may be difficult

to correct manually. Analysts, for instance, do not have standard rules to evaluate errors that

5

occur when splitting the address and date of birth in records, and so their transformation may

not be fully accurate. Likewise, transforming coded values is a time-consuming process, which

is exhausting for analysts. When a person needs to find the FIPS code associated with a state

name in the United States, they need to combine data from several tables. It will be even more

challenging to modify the data if the data size and complexity grow (Carvalho et al., 2015).

In order to solve such problems, it is beneficial to provide techniques and tools for error

checking and correction. I propose a method for detecting and correcting errors in CSV files

using extensible table technology. In order to demonstrate the implementation of the table

technique, an application is developed.

Detecting errors in the CSV files can be accomplished in a number of methods. In the paper,

my approach is to develop an interactive visualization tool that can detect and correct errors in

the CSV files, which would be useful to improve data quality, allowing analysts to correct the

errors. Here is an overview of the tool. The application comes with a GUI which allows users

to visualize the errors in the CSV files. The tool is used as such:

● Upon uploading the files, users are directed to the first window, which displays a table

visualization and allows users to check the error position and edit the errors in the

specified cells, these errors are color-coded.

● The second window allows users to check general overview of the error distribution.

Hence, the research question of this paper is:

● What visualization provides a clear overview of CSV files in a way that errors can be

identified and corrected effectively?

And the sub-questions are:

● What are the suitable visualizations to represent errors?

● How does the tool help users to correct errors indicated by the visualization?

6

● What are the limitations of the tool?

In this paper, the structure is as follows: relevant work is discussed first, followed by an

overview of visualization methodology that includes an introduction to data, mockup design, ,

and design decisions. Followed by implementation and their results. The next section is an

evaluation of the tool. An illustration of a conclusion will be presented. As a final point, future

work will be discussed.

7

2. Related Work

2.1 Current Methods

There are various approaches to visualizing errors in CSV files. In this report, I would like to

discuss 5 methods here, they are Wrangler, Table Lens, Parser, and Regular Expression. I will

first talk about their definitions, and then make a summary to discuss if the method suitable for

this paper.

2.1.1 Wrangler

A declarative transformation language underlies the Wrangler solution, which generates a

mixed-initiative user interface. A list of basic transforms is suggested as a way to identify the

transformations that can be interactively transformed based on the user's selections of the data.

More specifically, the selection of data means that users can upload CSV files and they can

select rows, columns, and cells. In order to provide a high level of relevance to the possible

transformations, he develops a model that ranks the options based on their frequency, diversity,

and difficulty. To achieve high-quality data transformations, Wrangler provides users with

natural language descriptions - which they can customize with visual previews of interaction

parameters and transformation results. In contrast to using Excel, Wrangler's method decreases

the running time and encourages the use of transformations. In addition to being easy to use,

his method can be easily navigated by users, allowing them to complete the data cleaning tasks

in a timely manner. However, when users are unfamiliar with transforms, it takes a longer

period of time (Kandel et al., 2011). The method is therefore most suitable for people who are

familiar with transforms when it comes to cleaning data, although it cannot detect errors.

2.1.2 Table Lens

A CSV file of a small size is easy to understand. However, as the number of rows and columns

increases, a CSV file of a large size can be difficult to comprehend. Table Lens utilises a fisheye

method to visualize and understand large files, which is a solution for massive tables (Carvalho

et al., 2015). It can be shown a maximum of 660 cells at once on a size 19 inches screen in the

spreadsheet, while the Table Lens method can display 100 times of the spreadsheet, and handle

30 times of the spreadsheet. With Fisheye or focus + content (Ramana & Card, 1995), visual

8

distortion concepts are applied, meaning that the eyes are zoomed in on the center area while

the other areas are zoomed out (Carvalho et al., 2015). In other words, as a result of these

techniques, it is possible to interact with large information structures by dynamically distorting

the spatial layout of the structure in accordance with the different levels of interest of each part

(Ramana & Card, 1995). This characteristic can provide more details in the analytics and focus

on a part of a table (Carvalho et al., 2015). Other than that, Table Lens is a good approach to

looking for outliers and patterns in multivariate tables, it is specialized for numerical and

categorical data (Rao & Card, 1994). In conclusion, Table Lens is suitable for a large file and

can focus on a specific part of the file in error detection.

2.1.3 Parser
The definition of a parser is that it is a program that recognizes valid syntax, and it can be used

for all context-free grammar. Syntax specifications are used by the program parser as part of

the grammar specification. Grammars are the rules that define valid syntax (Abba & Hassan,

2018). In simple terms, parsers use grammar to check if there are any mistakes in the CSV files.

Nevertheless, it is not easy to define a suitable parser if the CSV files do not exist CFG.

Therefore, if people want to use Parser to do error detection, they have to prove the CSV files

have CFG (Abba & Hassan, 2018). This method is not suitable for doing error checking in this

paper, because this method needs two works - prove CSV files have a CFG and find a suitable

grammar to detect eros. Moreover, it is difficult to find suitable grammar for error detection.

2.1.4 Regular Expression
A common and powerful approach is Regular Expression. The regular expression can be used

to correct data such as address and date or to correct grammatical errors. However, this

approach can not detect hidden errors because of no standard writing formats. In the detail,

there are many formats in the CSV files but they have the same pattern with slight differences

in expression, regular expression can not detect the differences. The most common and popular

format is the RFC4180 standard. (Abba & Hassan, 2018). Based on the RFC-4180 standard,

the definition of CSV format can be as follows (Ge et al., 2019):

● File = [Header \n]Record \n ... \n Record Record=Field , ... , Field

● Field = Quoted | Unqoted

● Quoted = " Escaped...Escaped "

● Escaped = Char| " " | \n | , Unqoted = Char...Char

9

● Char = Any char except of " , \n , and ,

In summary, it is an option to detect simple pattern errors in this paper, but tested CSV files

should have the same format. Therefore, if it is possible to test data type errors with it, it would

be a good idea to do so. Data type errors are detected if there are any different data types in the

cell compared to the whole column. For example, the data type of student number is an integer,

but it detects one of the cells in the column exists a string data type. Here are some regular

expressions that can be tested for wrong data types in the CSV files:

(1) Detect integer errors : ^\d+$

(2) Detect float errors: [+-]?([0-9]*[.])?[0-9]+

(3) Detect string errors: /^[A-Za-z]+$/

2.1.5 Pie Chat

Another name for a pie chart is the circle chart (Khan & Khan, 2011). Pie charts are used to

make comparisons between parts and the entire picture (Sadiku et al., 2016). Pie chart circles

contain a number of sectors, each of which reflects a percentage in a whole number. Pie chart

controls are used to determine the size of data wedges as compared to other data wedges (Khan

& Khan, 2011). It is one of the goals of this paper to show each error's distribution for a whole

table, so that the users will be able to identify which error most frequently occurs. Due to this,

a pie chart can be compared with each error, whereas there is no error within the entire CSV

file, which is the characteristic of a pie chart. Additionally, Kiyono and his colleagues (Kiyono

et. al., 2020) developed models for grammatical error correction in the datasets, and when they

analyzed the error type distribution across different proficiency levels, they used the pie charts

to illustrate it.

In conclusion, each method has its strengths and specializations. Wrangler is specialized for

transforms, Table Lens is for large data sets, and it can especially analyze part of the data by

applying the Fisheye method, regular expressions is for pattern errors with the same writing

formats in the CSV files, Pie chart is for comparison between part and whole. In this paper,

regular expressions for data type errors will be tested. Pie charts will be used for comparing the

distribution of each error, no errors, within the whole table.

10

2.2 Issues In CSV

A discussion of common errors in CSV files is provided in this chapter. The studies
conducted by Döhmen (Döhmen, 2017) were based on an analysis of 80 CSV files randomly
chosen from data.gov.uk, which is one of the largest open data portals operated by the United
Kingdom government. In his analysis, Döhmen identified 16 errors, which were the
encoding issue, aggregated cell, visual table element, trailing whitespace, European thousand,
separator, empty column, footnote, ragged row, multiple tables, title, multiple header rows,
inconsistent data formatting, missing value qualifier, aggregated column, different variables
in the same column, title, footnote, hierarchical column headers, spanning cells, and same
variables in the multiple columns. It was stated by Döhmen that there are more errors
occurring in the files, but these errors are most frequently occurring in the samples.

The following are definitions of the 16 errors.

● Encoding Issue The encoding issue refers to the file that can be encoded in a variety

of versions, when people load it, it reads in different versions. This problem cause

incorrectly loading and leads to wrong assumptions. The most common encoding is

UTF-8, if all files are encoded as this, it will solve the problem. For example, as the

picture is shown in Figure 2.2.1, the £ sign was read as the Polish letter Ł, then people

would wrongly assume this is a Polish letter. This is because the file was ISO 8859-1

encoding, but read as encoding ISO 8859-16 (Döhmen, 2017). In addition, Mitlöhne

and his partners (Mitlöhne et. al., 2016), concluded that in the Open Data portals, only

100k out of 200k CSV files can be correctly opened.

● Visual Table Element A visual table element error can be defined as a row that

should not be in the table. This is because it disturbs users when they read the table and

disturbs them to detect the type of data when parsing the table. As an illustration in

Figure 2.2.2, an unnecessary white space row is in the first row (Döhmen, 2017).

● Trailing Whitespace This error refers to cells that have trailing whitespace to

align the values for visual convenience, but this is not meaningful when processing data

in the future (Döhmen, 2017).

● European Thousand Separator A thousand separators have different

meanings in America and the European area. European use dots to separate thousand,

11

while America uses dots to separate decimal numbers. In general, the American format

is the most commonly used, but some packages apply the format based on the local of

the system (Döhmen, 2017). It is possible for people to become confused by different

systems.

● Empty Column A whole column is empty, but some empty columns have headers,

which means that the information was not recorded correctly, the users should drop it

or keep it (Döhmen, 2017).

● Footnote It is unnecessary to be included in the tables because it can disturb detecting

data types (Döhmen, 2017).

● Ragged Row The rows have different numbers of delimiters (Döhmen, 2017). For

example, a row only contains one cell.

● Aggregated Cell This is an issue that several columns in the table contain sums,

and an additional row contains the sums of those columns. There is no need to include

this cell in the table as it disrupts its rectangular shape. After parsing, it is easy to

calculate totals or averages. An example is shown in Figure 2.2.2, ‘T531,445’ should

not be in there, it destroys the rectangular shape (Döhmen,2017).

● Multiple Tables A table contains more than one table. As shown in FIGURE 2.2.3,

the table has another table, it is most likely fail to detect data type (Döhmen, 2017).

● Title As shown in FIGURE 2.2.3, a title is a row, it is similar to footnote error, which

disturbs data type detection (Döhmen, 2017).

● Multiple Header Rows The table’s header is in ordered structure. As show in

FIGURE 2.2.3, "Air", "Rail", "Taxi/Car” belong to “Travel” (Döhmen, 2017).

12

● Inconsistent Data Formatting In a currency row, some cells have the currency

sign and some not, which is inconsistent formatting (Döhmen, 2017).

● Missing Value Qualifier Missing values in the cell, it can be denoted as “NA”,

“NaN”, “-999”, ‘-1’, and “-”. The detection of data types may be impacted if NA values

are not detected (Döhmen, 2017).

● Aggregated Column Cells have unnecessary information, which can be

produced after loading (Döhmen, 2017).

● Different Variables in the Same Column In the FIGURE 2.2.4, a column

contains different types of variables.

● Spanning Cells In most cases, spanning cells result from exports from formats that

support spanning cells (Döhmen, 2017).

● Same Variable in Multiple Columns This is an issue that a table has more
than one column that has the same content. For example, in Figure 2.2.4, the last row
has 2 two repeated columns, which are “headcount” and “Full-time equivalent”
(Döhmen, 2017).

FIGURE 2.2.1 ENCODING ISSUE AND AGGREGATED CELL (DÖHMEN, 2017).

13

FIGURE 2.2.2 RAGGED ROW/FOOTNOTE, TRAILING SPACE, VISUAL TABLE ELEMENT,

EUROPEAN THOUSAND SEPARATOR, AND EMPTY COLUMNS (DÖHMEN, 2017).

FIGURE 2.2.3 TITLE, MULTIPLE TABLES, MULTIPLE HEADER ROWS, INCONSISTENT DATA

FORMATTING, AGGREGATED COLUMNS, AND MISSING VALUE QUALIFIER (DÖHMEN, 2017).

14

FIGURE 2.2.4 TITLE, FOOTNOTE, AND DIFFERENT VARIABLE IN SAME COLUMN (DÖHMEN,

2017).

2.3 Select Errors to Visualize

There are lots of issues in the CSV files, here are selections of errors to visualize, they are

missing value qualifiers, and different variables in the same column. This section will explain

why these errors are chosen for this paper.

The reason for choosing the missing value qualifier is that, according to Döhmen, not properly

detecting NaN values will cause failure to detect data type. Moreover, missing values should

not be deleted just because this is a NaN cell (Döhmen, 2017). According to (Mitlöhne et. al.,

2016) parsing CVS statistics, NA values takes 23% of 200k CSV files. Therefore, I think this

is necessary to detect NA values.

The second error is different variables in the same column, based on Döhmen’s statement, if

this error exists, it is hard to decide the data type for the column (Döhmen, 2017). In addition,

according to (Mitlöhne et. al., 2016), a column consisting of multiple data types is not logical,

and this mistake is very common in the Open Data portals.

15

3. Visualization Methodology

3.1 Data

A total of 9 CSV files have been randomly selected to be tested, which come from Open Data
portal data.gov.uk, Kaggle, and stats.govt.nz. The majority of these CSV files exceed 10,000
rows in order to achieve the goal of handling large datasets. In terms of detect data type errors
and empty cell errors, selected files should at least contain those errors. In terms of size, the
largest CSV file is small business compete, which contains approximately 32,0000 rows with
18 columns. In terms of number of columns, rows and datatypes, which shows in TABLE 3.1.1.
According to (Mitlöhne et. al., 2016), they parsed 200k CSV files and found that data types of
distribution are numeric, date, and character strings. Therefore, numeric, date, and string are
checked. Data types are detected in the tool.

Details about checking data type will be discussed in the implementation chapter. In the table,
it shows the details of the CSV files are selected.

Most of file’s names are too long to display in the table below, here are the file names for
each file:

• File 1: Biotoxin+Results+2021+160322
• File 2: annual-enterprise-survey-2021-financial-year-provisional
• File 3: annual-enterprise-survey-2021-financial-year-provisional-size-bands
• File 4: bos2021ModC
• File 5: data
• File 6: error
• File 7: research-and-development-survey-2021
• File 8: time_series_covid19_confirmed_US
• File 9: time_series_covid19_deaths _US

 Number of rows Number of columns String Numerical Date
File 1 966 15 Yes Yes
File 2 47,175 10 Yes Yes
File 3 17,028 7 Yes Yes
File 4 13,489 6 Yes Yes
File 5 64,958 14 Yes Yes
File 6 323,418 18 Yes Yes Yes
File 7 27664 8 Yes Yes
File 8 3262 135 Yes Yes
File 9 3262 136 Yes Yes

TABLE 3.1.1 DETAILS ABOUT THE CSV FILES.

16

3.2 Mockup

This section presents a mockup of the GUI, which may not be the actual implementation. The
actual design can be found in the chapter on Implementation.

The first step in the process is to design a graphical user interface (GUI), which allows users

to navigate the tool. A mockup of the upload page is shown in FIGURE 3.2.1, to the left is a

relevant visualization picture, as Galitz (Galitz, 2007) explained that "When all aspects of an

image or object are relevant, present a picture or photograph of it." This is because pictures and

photographs can draw attention to the subject matter. You will also find a button on the right

side that allows you to upload a CSV file. As soon as the CSV file has been uploaded, the user

will see FIGURE 3.2.2, which shows the new window with two buttons and a title of "Error CSV

visualization". The first of button which is labelled 'Error Distribution', which presents the error

distribution of the cells in the CSV file. The number of cells for each error is displayed in a pie

chart, color-coded to indicate the most frequent errors out of selected errors to visualize. If the

user clicks on the 'Table View' button in FIGURE 3.2.3, a table visualization appears, in which

each color corresponds to a specific error. This can assist the user in identifying the error.

Furthermore, users have the option to modify errors directly on the GUI by clicking the cell

and entering the correct data. Once the errors have been modified, users have the option of

downloading the data as a CSV file. When the number of rows and columns increases, users

must scroll data to modify the data on the GUI, which can become very time consuming. The

solution is to click the cell in order to acquire the row number and column number, so they may

correct errors in EXCEL or other software applications. When row and column sizes increase,

users will be able to view a scaled table view on the right side, known as the grid view, as

shown in FIGURE 3.2.3. It represents the same meaning as the table view, but this is scaled

smaller.

17

FIGURE 3.2.1. UPLOAD WINDOW

FIGURE 3.2.2 PIE CHART WINDOW

18

FIGURE 3.2.3. TABLE VIEW WINDOW

3.3 Design Decisions

There are lots of methods to display the visualizations. In this section, I will discuss why I
designed a GUI, selected the scalable grid view, loaded data into the table, and the color scheme
for each error.

3.3.1 GUI
GUI can enhance the tool's effectiveness, a good GUI design can reduce the 25% of processing
time and decrease 25% of chance to make mistakes Galitz (Galitz, 2007). The GUI allows users
to construct visualizations without coding and require minimal knowledge (North et. al., 2002),
users just need to click buttons to upload file, visualize errors in the CSV files and edit cells.
Visualizations and uploading of files can be integrated in a GUI, which complys the goal 7 in
section 3.4.

The GUI is shown in FIGURE 4.2.1. Based on the design principle of Galitz (Galitz, 2007), GUI
has a background color can increase screen appeal, and different colors can separate the screen
components. The background colors should be harmony, which means the colors are not sharp
contrast to put together. Therefore, all backgrounds’ colors are light. Secondly, the buttons
should place into one group, therefore, “table visualization” and “error distribution” buttons
belong to visualization part, which are together above the visualization’s component, “Upload
File” and “Export File” belong to file level component, they are left next to the visualization

19

component. Other buttons below to edit visualization part, which are together below the
visualization’s component, the main visualizations are in the middle of the windows form.

3.3.2 Table Visualization

According to Hoffman (Hoffman, 2000), table visualization refers to the presentation of data
in the form of a table. In a table format, the information is arranged according to relationships
between rows and columns, in which the row refers to independent variables in records or
“Dimension”, and the column refers to dependent variables or records or “Variates”. In this
structure, rows represent records, and columns represent variables, depending upon attributes
and data. (Khan & Khan, 2011). Additionally, the table format can be used in the same manner
as Excel, which requires little knowledge, and users are familiar with Excel, complies with goal
6 in section 3.4, and allows users to correct errors in the GUI.

3.3.3 Scaled Table
There is a challenge to check errors as the number of columns and rows increase, because
scrolling down the CSV files in the GUI becomes time-consuming. Further, some users wish
to view the distribution of errors in the tables, but they are only able to see a small portion of
table. In addition, it might be overwhelming to look a large number of rows in a small GUI for
users. In order to support this, as shown in FIGURE 4.2.2, we require a scaled table.

3.3.4 Error Color Schema

It has been stated by Galitz (Galitz, 2007) that the most appropriate colors to discriminate are
red, yellow, green, blue and brown; the best colors to emphasize elements are white, yellow,
green, blue, and red, which is from the least order. It is best to emphasize with bright colors
in order to attract the viewer's attention. In this paper, error types are emphasized. Errors are
therefore colored blue and yellow. Tables and pie charts indicate no mistakes by white and
green, respectively. However, approximately 8 percent of males and 0.4 percent of females
are color blind, most of whom are unable to recognize green, red, and blue colors (Galitz,
2007). In consideration of the fact that some people may have color-blindness, each color is
labeled with the errors’ name, which does not prevent them from using this tool.

3.4 Tool Support and Goals
Plotly and Tkinter are used in the interactive visualization developed for Python.

C# uses an external library called CsvHelper, which is used for reading and writing CSV files.

This library is easy to use and can be used on most operating systems, it requires little memory

to run, and it is compliant with RFC 4180 to ensure compatibility across systems (Close, 2009).

20

The general objective of this project is to develop an interactive tool in which users can fix

errors in CSV files using these libraries. In addition, there are some sub-objectives for the

visualization:

1. Developing user-friendly code (clean, simple)

2. The visualization tool is open source

3. GUI design is easy to use

4. Designing an interactive tool capable of handling large CSV files.

5. Creating visualizations that can aid the user in correcting errors

6. Visualizing information in a way that is easy to consume, allowing users to spend a few

minutes or even obtain information with minimal knowledge.

7. Integrating upload file function and visualizations together

A variety of functions will be available in the visualization. First, a general overview is

provided of the errors in the CSV files, with errors of wrong data type and missing value

distribution. This uses a pie chart. A second function provides details of the errors. Each error

is a different color, this can help users to check where the error is because each cell is clickable.

For example, users can click on the cell, it shows column name, column number, and row

number. This can help users to find the error position and modify them in their own platform

if they want to. It is possible to determine which column or row has the error and fix it

accordingly. In addition, users could edit the mistake values in the tables, and they are able to

download it in CSV format.

21

4. Implementation

There are two attempts for this report, which are Python and C#. The first attempt Python

failed because the Tkinter library and Plotly library cannot be connected, which fail to

perform one of our goals – integrate upload files and visualizing it together. Therefore, only

table visualization is finished in Python attempt, including show clicked column number and

row number, edit cells, delete columns and rows, add columns and rows are implemented.

The following sections will describe the two attempts. In the first attempt, available functions

and GUI design are introduced. In the second attempt, firstly, I will talk about a summary of

libraries used. Then, I will list the provided functions and describe how to use these

functions. Finally, I will show the tool’s results.

4.1 Attempt 1: Python

FIGURE 4.1.1 shows the Upload file window which is created by the Tkinter library. As the first

step, we need to develop a GUI for users. It is possible to view the entire table on the GUI, as

shown in FIGURE 4.1.2. Each color represents an error, color orange means empty cell error and

color pink means data type error. Thus, users can clearly discern where errors are, as shown in

FIGURE 4.1.3, they will be able to click on the cell to view the actual column number and row

number. Furthermore, they will be able to modify their mistakes in the cell, accompanied by a

guide. Following visualization, FIGURE 4.1.2, there is a “Export” button, users may download

the modified file as CSV, which allows them to conduct further analysis, such as visualization,

data cleaning, machine learning, etc. In addition, users can delete rows and columns if they

click “x” button, they also could modify the column name.

22

FIGURE 4.1.1. UPLOAD WINDOW

FIGURE 4.1.2. TABLE VIEW WINDOW

FIGURE 4.1.3. SHOW SELECTED COLUMN AND ROW NUMBER

23

4.2 Attempt 2: C#

For C# attempt, the external library uses CsvHelper, which is a .Net library for reading and
writing CSV files. The CsvHelper is for reading csv files in this paper, and the CSV file is
loading into DataGridView windows form. To implement GUI part, no extra library is used,
since C# has its built-in functions that allow users to drag certain tool (such as button, label)
and put in the main windows form, which is very handy for APP design. And the background
color, font can be set in the “property” menu. The built-in tool is called toolbox. For the rest of
functions, only built-in functions are used.

Here is the main idea of detecting the type of data in a CSV file. Since we do not know the
details of each column, we cannot detect it by simply using built-in functions, such as typeOf().
In short, we loop the table and count the data type of each cell on that column, and if the count
is the highest, then that column is the data type. As an example, we set a variable named number
of integers as 0 and a variable named number of strings as 0, then we loop the column of each
cell to detect its data type and if one of the cells is integer, we set the number of integers plus
one repeatedly, the same for the number of strings, and finally we compare the number of
integers with the number of strings, and if the number of integers is greater than the number of
strings, then we set the data type as int. To check each cell’s data type, the built-in function is
used. In addition, as mentioned in Chapter 2.1.4, 3 regular expression are tested for detecting
data type, but this method fails. Moreover, the idea of detecting empty cell is using the built-in
function. Different variable in the same column error simplify to “Data Type error” in this
paper.

Here are available functions:

1. Load (large) CSV file.
2. Edit cell on the GUI
3. Add a row
4. Add a column
5. Delete a column
6. Delete a row
7. Show the selected row number and column number
8. Show table visualization
9. Show error distribution as a pie chart
10. Export corrected file as CSV format

Function 2, 3, 4, 5, 6 and 7 can help users to repair the CSV file. More specifically, 2, 3, 4,5,6
allow users to correct the mistakes for a small CSV file, such as 200 rows. While for large
data, they can check function and modify the errors in the EXCEL, which takes less time.

The tool can used as such:

24

• The first step is to upload the CSV file (Figure 4.2.1), if it uploads successfully, users
can see a table view and a grid view with the error color schema on the right side
(FIGURE 4.2.2).

• The second step is checking the error distribution, this can be done with clicking “Error

Cell Distribution” button. If users want to back the table visualization, they can click
“Table Visualization”.

• The third step is to edit the error cells, users need to first click the cell then click the

“Edit Cell” button, a message box will pop up and allow users to type the data. After
users modify the data, error types are checked, and this will be updated in the table
visualization and error cell distribution.

• The fourth step is to add column or a row, users can click button “Add Column” and

“Add Row” to do so, if it is “Add Colum”, then users will be requested to fill in a non-
empty column name. The users are allowed to delete rows and columns by their index,
they can click the box with up or down to decide the row or column index, or they could
input the index on that box. To clarify the index for delete row and column, (the index
box is called NumericUpDown in C#), the NumericUpDown right next to “Delete
Column” is for delete column and the NumericUpDown right next to “Delete Row” is
for delete row.

• The last step is export file, files can be exported only if all errors are corrected,

otherwise users will be informed by a message box.

Further, every time a user edits a table, including editing cells, deleting/adding columns,
deleting/adding rows, the inputs will be checked to ensure that they are correct, which can be
observed by looking at the table visualization and error cell distribution. If a user adds a
column, it is initially empty. By default, this column is colored as bule, which represents an
empty cell error. In the chart view, the number of empty cells will be shown.

The next section are the outputs of the tool, the order is the same as described as in the above
steps:

25

FIGURE 4.2.1. GUI

FIGURE 4.2.2. LOADING CSV AND SHOWING TABLE VISUALIZATION: RESEARCH-AND-

DEVELOPMENT-SURVEY-2021-CSV

26

FIGURE 4.2.3. DISPLAYING ERROR CELL DISTRIBUTION

FIGURE 4.2.4.1. EDITING ERROR CELL, CHANGE VALUE TO 78

27

FIGURE 4.2.4.2. EDITING ERROR CELL, SHOWING RESULT OF CHANGING VALUE TO 78

FIGURE 4.2.5.1. DELETE COLUMN OF INDEX 2

28

FIGURE 4.2.5.2. DISPLAYING THE RESULT: DELETE COLUMN OF INDEX 2

FIGURE 4.2.6.1. DELETE ROW OF INDEX 2

29

FIGURE 4.2.6.2. DISPLAYING THE RESULT: DELETE ROW OF INDEX 2

FIGURE 4.2.7. 1 ADD A COLUMN: NEW COLUMN

30

FIGURE 4.2.7.2 DISPLAYING THE RESULT: ADD A COLUMN NAMED NEW COLUMN

FIGURE 4.2.8 ADDING A NEW ROW

31

FIGURE 4.2.9 DISPLAYING ROW NUMBER OF COLUMN NUMBER OF CLICKED CELL

FIGURE 4.2.10.1 EXPORT FILE: CHANGE THE AGE TO 12

32

FIGURE 4.2.10.1 EXPORT FILE: CHANGE THE GENDER TO 1

FIGURE 4.2.10.3 EXPORT FILE: DISPLAYING THE RESULT

4.2.1 Runtime
For the purpose of testing performance, here are the running time for each file. The OS of
testing computer is Windows 11 Pro, the processor is 11th Gen Intel(R) Core(TM) with i7
system and 16 logical processors, the RAM is 32.0 GB. The TABLE 4.3.1shows the run time of
each file. “s” means seconds, “min” means minutes. From the table, we can see that for most
of files only take few seconds to run, only the file with around 320,000 rows need to take 2
minutes.

 Number of rows Number of columns Runtime
File 1 966 15 5
File 2 47,175 10 13s
File 3 17,028 7 10s
File 4 13,489 6 20s
File 5 64,958 14 2 min
File 6 323,418 18 13s
File 7 27664 8 15s
File 8 3262 135 13s
File 9 3262 136 13s

TABLE 4.3.1 RUNTIME

33

5. Evaluation

This chapter will discuss the evaluation of the tool using a qualitative approach. It will begin
by discussing the user experiment setup, followed by an analysis of the results.

5.1 User Experiment Set Up

The questions asked are the most important points for a questionnaire (Krosnick, 2018). To
evaluate if the tool satisfies the goals, the questions on the survey are generated based on the
goals in section 3.4, and most of them are Likert-scale. This is because Likert-scale is an
efficient approach to give feedback on assessment (Barua, 2013). To improve the tool for future
work, the suggestions from users will be asked as well. Results will be analyzed based on these
goals. In this survey, 3 people are invited to take it, 3 of them are data science students and
they have experienced with processing CSV files. The questionnaire is generated by Google
Form, and the questions can be found in the Appendix B. The survey results can be found in
Appendix C.

5.2 Result Analysis

According to the survey results, two out of three users are very happy with the GUI design, and
one person thinks the design is excellent. They all agree that the application is informative,
easy to use, and understandable, which meets goal 3. According to user feedback, the
application fulfills the goal of helping users correct errors through visualizations, so goal 5 and
6 are achieved. Additionally, the code is open source, so users can modify it themselves, and it
is easy to understand, thus fulfilling goal 2. It appears to be capable of loading large CSV files
and displaying them, although it is slow to do so. In this regard, goal 4 has been met. When
users use the tool, they have not encountered any bugs, according to user feedback.

There are three suggestions from the survey. As for the first suggestion, a person suggested
that the tool should be able to visualize more types of errors. The second suggestion is, another
people think that it should be able to visualize them in full-screen mode, the visualizations are
too small. The last suggestion is that there is a slowdown in the display of large files, which
creates a leggy experience for users. In the opinion of another person, the app should make use
of the resources available.

Overall, all goals can be achieved, but the tool has some limitations, which can be improved in

the future.

34

6. Conclusion

The purpose of the application is to assist users in visualizing errors in CSV files. In addition

to being easy to use, the visualization tool should have an informative GUI. The users are able

to interact with the table visualizations and correct the errors in the GUI or EXCEL. Once the

errors have been corrected, they are able to download the corrected CSV file. It takes longer

for the GUI to respond when editing the table for a large CSV file, e.g., 10k rows, which is a

limitation of the application. It has been tested to handle files with up to 320,000 rows of data

(the largest file tested was 320,000 rows). Despite the fact that the APP is only capable of

visualizing two types of errors, which are empty cell errors and different variable errors in the

same column, the paper selects them because empty cell errors can affect the data type detection

for other columns, and for different variable errors in the same column, this is due to the fact

that the error is quite common in CSV files.

The table visualization can provide information regarding errors within the cells. As a result,

users will be able to identify which error they are experiencing. As a means of guiding users in

repairing errors, each color represents an error. If users wish to correct errors in the EXCEL,

they may click on the error cell and check the column number and row number. By examining

the error cell distribution, they can identify which errors are most frequently occurring, which

allows them to modify the algorithm used to generate the data. A pie chart represents the error

cell distribution, which is an effective method for displaying the relationship between different

components.

There are several limitations to the visualization tool. First, only two types of CSV errors can

be detected, while as noted in chapter 2 related work, there are a number of different types of

CSV errors. The survey's suggestion also suggests to provide more errors. When loading a large

CSV file, the response time is prolonged. It responds very slowly when you edit the cell, add a

column, add a row, delete a column, delete a row from a table, and scroll down data in scaled

grid table. This is because every time when user edit the table, it needs to check the error and

generating the grid table again. In addition, according to the survey feedback, the visualization

should be in full-screen mode.

35

7. Future Work

Some improvements are still required for the tools. In this chapter, the future work will be

discussed.

To begin with, it will be able to visualize more types of errors in the future, such as aggregated

column or row errors and inconsistent data formatting errors. Depending on the results of a

survey, which is a survey asking the respondents what errors you expect to visualize, the error

selections can be made based on those results. People who are often involved in the processing

of CSV files will receive the survey.

There is a possibility to reducing the size of columns and rows in the GUI when users visualize

them. By the principle of the Fisheye method, only rows containing the error cells are chosen,

but original row numbers will not be changed. So, when users work with large file, such as 10k

rows, they take less time to scroll the file in the GUI since only error rows are displayed, they

can check the selected row number and column number, and correct errors in the CSV files on

EXCEL. For example, they are 10 rows, row indices 3 and 5 have errors, so only the row 3 and

row 5 are selected to be display, but they are still identified as row 3 and row 5, not row 1 and

row 2.

It will be possible for users to correct the errors more efficiently by using a machine learning

algorithm that will correct them by simply clicking the button. The algorithm can also be

interactively used by the users, for example, they can select which errors they want to see

visually, and then click on a button to fix those errors.

Additionally, the loading time will be reduced when a large CSV file is loaded, such as a CSV

file containing 32k rows. The results of the tests have shown that it takes around two minutes

for the program to generate a table visualization for a file with 32k rows, and take longer for

generating scaled table, which are not efficient. Therefore, it is anticipated that a new approach

will be taken to solve the issue of slow loading times in the future.

36

8. References

Abba, A. H., & Hassan, M. (2018). Design and Implementation of a CSV Validation

System. In Proceedings of the 3rd International Conference on Applications in

Information Technology, pp. 111-116.

Carvalho, P., Hitzelberger, P., Bouali, F., & Venturini, G. (2015). A Visual Technique

to Assess the Quality of Datasets-Understanding the Structure and Detecting Errors and

Missing Values in Open Data CSV Files. In International Conference on Data

Management Technologies and Applications, 2, pp. 134-141.

Cota, M. P., Rodríguez, M. D., González-Castro, M. R., & Gonçalves, R. M. M. (2017).

Massive data visualization analysis of current visualization techniques and main

challenges for the future. 2017 12th Iberian Conference on Information Systems and

Technologies (CISTI), pp. 1-6. 10.23919/CISTI.2017.7975704

Kandel, S., Paepcke, A., Hellerstein, J., & Heer, J. (2011). Wrangler: Interactive Visual

Specification of Data Transformation Scripts. In Proceedings of the sigchi conference

on human factors in computing systems, pp. 3363-3372. 10.1145/1978942.1979444

Lahar, S. (2020, November 5). 6 Common CSV Import Errors and How to Fix Them.

Flatfile. Retrieved June 5, 2022, from https://flatfile.com/blog/top-6-csv-import-errors-

and-how-to-fix-them/

Rao, R., & Card, S. K. (1994, April). The table lens: merging graphical and symbolic

representations in an interactive focus+ context visualization for tabular information.

In Proceedings of the SIGCHI conference on Human factors in computing systems, pp.

318-322.

Sadiku, M. N.O., Shadare, A. E., Musa, S. M., & Akujuobi, C. M. (2016). Data

visualization. International Journal of Engineering Research And Advanced

Technology (IJERAT), 02(12), pp. 11-16.

37

Khan, M., & Khan, S. S. (2011). Data and information visualization methods, and

interactive mechanisms: A survey. International Journal of Computer Applications,

34(1), pp. 1-14.

Ge, C., Li, Y., Eilebrecht, E., Chandramouli, B., & Kossmann, D. (2019, June).

Speculative distributed CSV data parsing for big data analytics. In Proceedings of the

2019 International Conference on Management of Data (pp. 883-899).

Döhmen, T. (2016). Multi-Hypothesis Parsing of Tabular Data in Comma-Separated

Values (CSV) Files (Doctoral dissertation, Master’s thesis, Vrije Universiteit

Amsterdam, www.cwi.nl/boncz/msc/2016-Doehmen. pdf).

Mitlöhner, J., Neumaier, S., Umbrich, J., & Polleres, A. (2016, August). Characteristics

of open data CSV files. In 2016 2nd International Conference on Open and Big Data

(OBD) (pp. 72-79). IEEE.

Galitz, W. O. (2007). The essential guide to user interface design: an introduction to

GUI design principles and techniques. John Wiley & Sons.

Close, J., (2009) CsvHelper https://joshclose.github.io/CsvHelper/

Kiyono, S., Suzuki, J., Mizumoto, T., & Inui, K. (2020). Massive exploration of pseudo

data for grammatical error correction. IEEE/ACM Transactions on Audio, Speech, and

Language Processing, 28, 2134-2145.

Hoffman, P. E. (2000). Table visualizations: a formal model and its applications.

University of Massachusetts Lowell.

North, C., Conklin, N., Indukuri, K., & Saini, V. (2002). Visualization schemas and a

web-based architecture for custom multiple-view visualization of multiple-table

databases. Information Visualization, 1(3-4), 211-228.

Krosnick, J. A. (2018). Questionnaire design. In The Palgrave handbook of survey

research (pp. 439-455). Palgrave Macmillan, Cham.

38

Barua, A. (2013). Methods for decision-making in survey questionnaires based on

Likert scale. Journal of Asian Scientific Research, 3(1), 35-38.

39

9. Appendix

A. Coding
https://github.com/JingxianM/Error-CSV-Visualization

B. User Experiment Questionnaire

40

41

D. User Experiment Results

42

43

44

