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Online Next Activity Prediction Using ADWIN Concept
Drift Detection and Prefix Trees

Thaddeus Kosciuszek

Eindhoven University of Technology, (TU/e)

Abstract. Existing research in process mining yields efficient means of de-
tecting concept drift as well as making incremental updates to process mod-
els, thereby improving performance in predicting the next event in a business
process. This study explores the improvements presented by combining ex-
isting state of the art methods of both incremental process model updates
and concept drift detection in a realistic simulated streaming environment
whereby the process model is updated on the fly as changes in the form of
drifts are detected. Using metadata from the detection of such drifts, a frame-
work is presented that performs on par with or better than existing methods
in terms of accuracy when tested on the 10 datasets included in this analysis.

Keywords: process mining · incremental learning · event prediction · busi-
ness process · concept drift · online processing

1 Introduction

Process mining is a field that involves using modeling techniques to quantify, char-
acterize, predict, and make estimates regarding events that occur in a specific type
of flow through a business process. Former research has looked further into the up-
dating of these models when changes are detected in the underlying business pro-
cess by using a method called incremental updating [1]. Other research has devel-
oped frameworks to build an efficient representation of processes using tree struc-
tures [2]. This paper seeks to combine these two methods listed in an on the fly
manner as events are observed. This way, drifts can be detected and accounted for
when updating a process model. Using tree structures to detect drifts combined
with incremental updates to the model, the combination works to maintain op-
timal performance of the model. Once changes are detected new updates are be
made. As variation in incoming data stabilizes after a concept drift, updates and
training are considered to be less important for maintaining accuracy until new
changes are identified and the model is again updated to reflect such changes.

1.1 Problem Formulation

While much of the existing research covers extensive applications in the field of pro-
cess mining, no studies were found which combine the online detection of concept
drifts with dynamic setting of training parameters. There is a significant amount of



T. Kosciuszek Online Next Activity Prediction: ADWIN & Prefix Trees

research that has detailed methods used to represent business processes efficiently
alongside other analyses identifying changes in such processes [2, 3, 4, 5]. [2] in-
cludes online methods for analyzing event streams which we will discuss in Sec-
tion 2.4. However, searching through previous work yielded no results for dynam-
ically setting parameters or utilising the identification of concept drifts to update
underlying next activity prediction models. Exploring the combination of the meth-
ods of incremental updating and online prediction may yield improved accuracy
with optimised running times. This analysis is setup to explore the combination of
these two methods to determine if results follow such expected improvements. Ad-
ditional digging led to the discovery that Pauwels et al [1] only skimmed the surface
of the importance of certain design choices in their processes and how such choices
impact the evaluation results of such a process model.

1.2 Contribution

This report combines the existing methods presented by Pauwels et al. [1]and Huete
Guzmán, J. S. [2]. In doing so, the main goal of this analysis is to identify factors that
influence overall performance when retraining next activity prediction models in
an online environment. The result is a framework that performs well in correcting
for concept drift in datasets with known drifts. In the experiments of [1], calculation
of drifts was carried out ahead of time and could not be considered to mirror the
performance of online computation while identifying and correcting for drifts. The
advantage of previous studies provided for instantaneous knowledge of when drifts
occur after precalculating drifts across an entire dataset. Our results show improve-
ments upon those results alongside drifts which have been corrected for in "real-
time" as they occur naturally in an event stream which is introduced in Seciton 2.4.

1.3 Research Questions

This analysis is setup to determine if there are any means by which concept drifts
and associated metadata of the identified drifts can be utilised to improve perfor-
mance of a next activity prediction model. The developed methods are created to
dynamically alter input parameters to an algorithm which makes incremental up-
dates to some prediction model. Dynamic updating methods are used to deter-
mine whether the presented generalised framework can optimize the running time
across many datasets while maintaining or improving upon accuracy. Below, the
specific research questions guiding this explorative analysis are introduced.

1. How do the inputs to a concept drift detection algorithm affect its performance
with respect to number of drifts detected and the amount of time needed to
detect such drifts [2]?

2. How does the frequency with which we update a process model impact its per-
formance [1]?

3. How does the training size with which we update the model impact its perfor-
mance [1]?

2
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4. Are we able to combine update frequency and training size into a dynamically
updating, generalised framework that performs well across datasets?

5. How does such a framework perform compared to baselines immediately after
identifying a concept drift?

We first introduce the context of process mining within which this framework
is presented. The literature and research context of this analysis are covered in Sec-
tion 2. The Preliminaries Section begins with some key terms such as events, activ-
ities, and traces which are key to understanding the very core building blocks upon
which process models operate. We then build upon this foundation with stream-
ing processes and concept drift. Tying this all together, we cover the state of the art
in process mining. The most recent literature found covers prefix tree concept drift
detection, incremental updates, and the SDL model selected for use in this analysis.

Next we move on to the development of the Methods of the proposed framework
in Section 3. Development is shown using 8 datasets for exploration and ideation.
Deeper exploration into research questions 1, 2, and 3 are detailed in the Meth-
ods (Section 3) where the relevant findings are shown. We also present here a link
to survival and reliability analysis with the use of the Weibull distribution (Section
2.10).

In the Evaluation (found in Section 4), we layout the findings and answers to
research questions 4 and 5. To test the performance of our developed solution, we
test across all 8 datasets used in the development phase. We additionally provide
results for a test against a newly created merged dataset made up of data from de-
velopment. Lastly we use one external, untested dataset to validate on unseen data.

3



T. Kosciuszek Online Next Activity Prediction: ADWIN & Prefix Trees

2 Preliminaries and Literature Review

2.1 Process Mining:

There are typically a few main reasons to utilise process modeling techniques to
mine an underlying process from some dataset. Common objectives include pre-
dicting what the next activity is, or how long until the next activity takes place [6].

Approximations of the next event can in the case of an unknown process be used
to estimate the ordering and flow of the underlying process. This predictive process
provides value in the sense that businesses or other entities are able to streamline
their operations with a better understanding of what the next step in some process
might be. As such these entities are better able to allocate resources to accommo-
date expected requirements [7]. By estimating these values, businesses and other
entities can make better predictions of expected timing, flow, and events which will
occur within their business processes.

Another example is from Spenrath Y. et. al’s work regarding online prediction
of consumer behavior [8]. When a business is able to keep up with changing con-
sumer behavior and preferences about wider ranges of consumers, it can adapt to
new trends and avoid stagnating. One final example where process mining provides
helpful insight is that of locating bottlenecks in online event streams [9]. Identifying
bottlenecks where flows through a business process stop at some point can help to
identify inefficiencies and pain points in the customer experience. Next, common
vocabulary in the field of process mining is introduced.

2.2 Event

An event e is the individual row-level record that holds m attributes (a1, a2, ..., am )
which are captured at the time of the event occurrence. Hassani et al [3] provides a
concise mathematical representation of an event as:

e = (c , r, a , t ) (1)

The event is described here as a tuple which contains multiple attributes. For the
purpose of this analysis, events have been abridged to only include the case c , the
role of the department completing the event r , activity or event type a , and the
time at which the event occurred t . We also note the total space of all events as E .
The overall set of events is stored in a multiset which is referred to as a process log
[3]. Continuing to build upon the definitions provided by Hassani, we will refer to
functions which project each of the attributes as follows: c (e ) = c , r (e ) = r , a (e ) = a ,
t (e ) = t .

2.3 Trace

Moving forward from the foundation of an event, we define a trace (sometimes also
referred to as a case) as a set of events which is temporally ordered by t , all sharing
the same case identifier c [3]. Formalizing the definition of a trace, we present the
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character <meaning "directly follows". When two events e1 = (c1, r, a , t1) and e2 =
(c2, r, b , t2) are correctly ordered according to their timestamps t (e ): t1 < t2 where
c1 = c2 (corresponding to the same case/being of the same trace) and no e3 exists
where t1 < t3 < t2.

2.4 Process Log and Streaming Processes

A process log is the overall record containing all of the events (and as such traces) in
process data. A log file not only consists of many events but also many traces. The
log is ordered by time and can be considered a mapping S :N→E defining an event
stream. When examining any two events e1 and e2 where S (m ) = e1 and S (n ) = e2,
the mapping holds if t (e1)< t (e2) for m < n [3]. This can be simplified through the
following representation of an eventstream:

S =< e1, e2, ...> (2)

Streaming process logs provide the ability to be analysed in real time as the data is
acquired as opposed to previously recorded data whereby all the available data is
known at the time of analysis.

2.5 Concept Drift:

Concept drift is the phenomenon of the constant changing of the underlying pro-
cess behind a model. "Processes can change with respect to three main process
perspectives: control-flow, data, and resource" [2]. [4] presents two points needed
to successfully deal with concept drifts: capturing the characteristics of those traces
as well as identifying when those characteristics change. Drifts create difficulties in
classifying future information as the accuracy in predictions output by the model
lose their relevance and performance as time progresses. This occurs as the cur-
rent observed time t (ei ) grows farther from the time the model was last updated
t (eup d a t e ) There are four different classifications of drifts according to [5]: sudden
drift, gradual drift, recurring drift, and incremental drift. We give brief explanations
of these types of drifts below:

1. Sudden drift: corresponds to substituting an existing process with a new pro-
cess as an instantaneous change

2. Gradual drift: is when the current process is replaced by a new process. Both
processes can coexist at the same time while the first is gradually discontinued.

3. Recurring drift: occurs when processes reappear and disappear, oscillating back
and forth. This can demonstrate seasonal influence that may or may not be pe-
riodic.

4. Incremental drift: is a substitution between two processes via small incremen-
tal changes, normally undergoing sequences of quality improvement.

One topic of concern when working with process models is that of catastrophic
forgetting [10]. The newly trained data corrects for concept drift over time as the
performance of a process model p̂ decreases. However, when asked to recall the
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same predictions seen far before the newly trained time, the accuracy suffers and
it is unable to provide the same performance as seen before. This is considered to
be the downfall of "forgetting" previously trained data.

Due to the heavy resources invested in acquiring data, training a model, and
predicting results, catastrophic forgetting is undesirable. To identify previously seen
trends such as in the case of a recurring drift, models must be retrained if catas-
trophic forgetting occurs, leading overall to more resources being used to maintain
performance. Catastrophic forgetting is a phenomenon process models generally
hope to avoid. However, catastrophic forgetting must be taken into consideration
when building and checking the performance of such a model.

2.6 Prefix Trees

Background literature reveals that extensive work has gone into determining the
most efficient ways to represent a process. Intuitively, the more optimised the stor-
age method of the process, the faster an algorithm can parse through and analyze
the underlying process. In the case of big data, it can become unreasonable to store
all historical data to build a representation of a process due to storage sizes, running
times, and efficiency of comparison to other processes. Recent literature details the
representation of such prefixes (or former events) in processes with many different
forms. Some have tried abstract domains to represent prefixes as multidimensional
polygons in the case of the apron library [11, 12, 13]. Others have used a tree struc-
ture as seen in [2]. Huete Guzmán, J. S. developed such a tree comparison structure
for use in identifying concept drifts. In collaboration with the TU/e, he named this
method PrefixTreeCDD [2]. This tree method is considered to be the state of the art
in representing a process model in an efficient way, yet still having detailed meta-
data regarding the underlying process. We detail the specifics of using prefix trees
for concept drift detection below.

A prefix tree can be used to represent the possible outcomes that some modeled
process p̂ can follow. In applying this back to the idea of concept drift, two trees are
maintained with respect to some time t in the event stream, with the number of
leaves (in this case referred to as nodes with no children) signifying the number of
possible outcomes which a trace can follow. Two examples of different prefix trees
are shown in Figure 1. To construct such trees, the algorithm uses what is known as
an adjustable window, also known commonly as ADWIN methods. The adjustable
window is used to define which subsections of events to examine when comparing
to subsets of an event stream. This is discussed further below in section 2.7. [2] de-
scribes a formal representation of the prefix tree as composed of nodes n holding
the following attributes:

n = (i , a , p , p L , c h , f ) (3)

Whereby n is the prefix tree, i is a random unique identifier for the node, a is the
activity label, p is the parent node or predecessor, p L is the list of parents up until
the root node, c h is a dictionary of all children nodes of this node, and f is the
frequency of this node (being the amount of times this event has been seen) [2].
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a1

a2
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Fig. 1: Two Examples of Prefix Trees (Adapted from [1])

2.7 Adjustable Windows & Concept Drift Detection

Adjustable windows, otherwise known as ADWIN methods are an additional tool
which allow for comparisons within two subsets of events known as windows. The
method compares the two windows, denoted as: Wi−1, Wi within the same stream
over time. By joining an adjustable window with the methods of a prefix tree (from
Section 2.6), a "distance metric" is created through which a concept drift can be
identified. The value of this distance metric determines how significant a change
from the previously modeled process has occurred, with larger distances signifying
a greater change in the process.

The function of an adjustable window operates in a way such that two windows
are compared to each other with a prefix tree representing the process observed
from the events contained in each window. If no differences are identified between
the two windows when using statistical tests for comparison, the test window grows
until it hits the maximum size of the test window parameter. This parameter is set
by the user in the PrefixTreeCDD algorithm. When no changes are identified and the
window size of the test window has already reached the maximal set parameter, the
test window begins sliding forward in time. The sliding action drops events from the
beginning of the test window which expire as they leave its context.
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Once a change is identified at any point in this process, a new reference win-
dow is created at the point of the change and the testing window moves beyond
the identified change and is set back to the minimum window size. The reasoning
is that the longer it takes for a change to be detected, the more gradual the change
is expected to be (although not necessarily). On the contrary, once a change is de-
tected, another may occur very quickly and be missed if the test window is too large.
A visualization of this is displayed in Figure 2.

Wmi n Wmi nWma x

Fig. 2: Adjustable Window Procedure (Figure adapted from [3])

Methods to detect concept drift are well studied with many different approaches
to detecting and dealing with drifts present in the literature. PrefixTreeCDD’s simple
yet efficient operation in representing and comparing traces in process mining has
led us to select this method for detecting drifts for the purpose of dynamic model
updates. Huete Guzmán found that although PrefixTreeCDD was not able to out-
perform the ProDrift algorithm in terms of identification delay when a drift occurs,
it far surpasses ProDrift and many others in terms of accurate and efficient identi-
fication of drifts.

While the underpinnings of how Guzman’s framework was developed is not the
immediate concern of this paper, we do quickly give a brief overview of its oper-
ation. Using the f value found in the node attributes of the prefix trees covered in
Section 2.6. Huete Guzmán, J. S. was able to identify drifts by looking for differences
between the prefix trees created in two windows. To test for drifts a statistical test
is then run to determine if the observed values in the first and second windows dif-
fer more than some threshold value. We utilise the resulting distance metric that is
the output of the statistical test when comparing the frequency f and ordering of
nodes in two trees.

2.8 Incremental Updates

Incremental updating is the process of fitting new data to a previously trained model
without having to retrain the model again. This process involves using data which
is coming from a test set in the case of a static model or from the actual incom-
ing data for which there is now a known outcome for. When retraining a model, all
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of the previous computation is lost when it is overwritten by a new model. On the
contrary, when performing incremental updates, there is the opportunity to incor-
porate new data into the seen context of the model by updating the weights which
have been learned by the previously trained model. Not only does this take signifi-
cantly less time than full retraining, but it also means that the most recently fitted
data has become the most relevant (leading to more accurate predictions). [1] tests
the performance of both incremental updates and retraining with respect to accu-
racy and running time. The findings suggest that incremental updates provide a
boost in performance in both metrics. One key point missing from Pauwels et al.’s
work however, was the optimization and dynamic setting of these parameters. Their
work predetermined the drift points on a static dataset and presented the improve-
ments of updating the model exactly at those drift points. We propose a solution to
address these shortcomings below in Section 3 through combining Pauwels’ meth-
ods with those of Huete Guzmán, J. S.’s PrefixTreeCDD.

Concept Drift
Detection

Preprocessing

Concept Drift
Detection

Preprocessing

Concept Drift
Detection

Preprocessing

Concept Drift
Detection

Preprocessing

Concept Drift
Detection

Preprocessing

Concept Drift
Detection

Preprocessing

Wi−5 Wi−4 Wi−3 Wi−2 Wi−1 Wi

Drifts Tree Dist. Drifts Drifts Tree Dist.Tree Dist. Drifts Drifts Tree Dist. Drifts Tree Dist.Tree Dist.

Trained
Model

Trained
Model

Trained
Model

Trained
Model

Trained
Model

Trained
Model

p̂i−5 p̂i−4 p̂i−3 p̂i−2 p̂i−1 p̂i

Fig. 3: Incremental Updating of Concept Drift - Ideal Conditions
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2.9 Single Dense Layer Network

The Single Dense Layer (henceforth referred to as "SDL") is a neural network de-
veloped by Pauwels et al. specifically for process models [1]. Pauwels et al. specif-
ically developed these SDL methods for the purpose of providing a light and thus
fast framework to facilitate an accurate process model. SDL performs on par with
other similar methods such as long-short term memory (LSTM), DBN, and CNN
which lag in comparison by means of either lower accuracy or higher runtimes. As
such Pauwels et al. [1] concluded that SDL was all around the state of the art for
process mining and prediction based on its optimised runtimes and accuracy in
prediction. We now present a brief explanation of the workings of the SDL neural
network model. The SDL is made up of a number of input layers which are fed into
a concatenation layer, then a dense layer (hence the name), and finally a softmax
layer. The softmax layer predicts the probability of each of the categorical outputs
in the layer. In this case the categorical outputs are the number of unique activities
#a (e ) which an event can assume in the data. The event with the highest output
probability is then selected as the predicted event in the process. An illustration of
this concept can be seen in Figure 4. Pauwels’ work uses an input with a k = 10
concept prefix. The concept prefix is set such that inputs to the model include the
events and other meta-data such as role, and time of event for the current event
and k = 10 previous events. As such, each input to the SDL model is given the cur-
rent attributes for: activity, role, and time alongside the last k = 10 for each of these
attributes within each trace.

2.10 Survival, Reliability, & Weibull Function

Here we introduce some of the foundations of survival and reliability analysis. While
initially its relevance may seem obscure, we will clear up the connection to the field
in the Methods found in Section 3. A brief introduction into survival and reliabil-
ity analysis yields us a series of tools to use to develop a formula in parallel with
what we expect from the data. In 1958 Edward L. Kaplan and Paul Meier published
a report on using incomplete observations to develop estimates of probabilities of
population survival [14, 15]. These estimates came to be known as the Kaplan Meier
survival curve and are still widely used today to examine differences between two or
more populations when analyzing individual factors relating to survival of different
groups. One function very commonly used in survival and reliability analysis is the
Weibull distribution due to its versatility. Within its distribution it is able to take on
the form of the exponential function while also offering the flexibility to accommo-
date a number of other curve shapes. The two most common forms of this function
are shown below in Formulas 4 and 5 [16]. Additionally Table 1 has been provided
to describe the definitions of different parameter values within the equations

F (t ) = 1−exp(−(
t −τ
α
)β ) (4)

F (t ) = 1−exp(λ(t −τ)) (5)
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Fig. 4: Single Dense Layer Network Diagram (Adapted from [1])

For some more background information on the Weibull distribution, we intro-
duce some former applications whereby it has been used effectively. In Chen et. al.
the Weibull function was used to determine the survival curves of Lysteria mono-
cytogenes at different hydrostatic pressure levels [17]. The survival curve models
the amount of time that has passed before some percentile of the observed pop-
ulation has died. A more formal definition states the following; The survival curve
can be created assuming various situations. It involves computing of probabilities
of occurrence of event at a certain point of time and multiplying these successive
probabilities by any earlier computed probabilities to get the final estimate. [18].

Other applications of the Weibull distribution are closer to the field of process
mining. For instance, Velu uses the Weibull distribution in modeling the amount of

Table 1: Parameter Definitions for Weibull Formulas
Parameter Definition

α The scale parameter
β The shape parameter
τ The location parameter
λ A combination scale and shape parameter λ=α−β

t The value for time (x axis)

11
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time a firm survives given a specified amount of business model innovation [19].
The message we can take away is that such innovations in a firm could also be con-
sidered as changes to the underlying processes that occur at such a firm. With this
in mind, we move on to setup the foundation for the framework by which we dy-
namically set the input parameters for updating of p̂ .

12
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3 Methods

Here we layout the procedures used to develop our framework, which we name Dy-
naTrainCDD before moving on to Section 4 whereby we run the experiments and
test its performance. In the following subsections, we introduce the different pa-
rameters used for optimization of incremental update accuracies and timings. The
framework developed is a combination of the drift detection methods developed
by Guzman et al. in [2] as well as the incremental updating process utilizing an SDL
model developed by Pauwels et al. [1]. In tuning the drift detection parameters we
look at the effect of changing the window size, tree size, and lambda. For altering the
SDL models, we examine the effects of changing the update frequency and training
size which is fed into each update.

Table 2: Development Datasets: Statistic Overview

Dataset Total Train Test

Parameter: #cases #events #activities #cases #events #activities #cases #events #activities

Helpdesk 4,580 21,348 14 2,286 10,674 14 2,295 10,674 13
BPIC11 1,143 150,291 624 593 75,146 507 549 75,145 467
BPIC12 13,087 190,827 23 6,604 9,414 23 6,484 9,413 23
BPIC15.1 1,199 52,217 398 701 26,108 289 579 26,109 327
BPIC15.2 832 44,354 410 490 22,177 315 432 22,177 324
BPIC15.3 1,409 59,681 383 778 29,840 304 675 29,841 286
BPIC15.4 1,053 47,293 356 589 23,646 296 581 23,647 244
BPIC15.5 1,156 59,083 389 641 29,542 288 587 29,541 302

Duration #days #weeks #months #days #weeks #months #days #weeks #months
Helpdesk 1,451 207 47 673 96 22 778 111 25
BPIC11 1,172 167 38 623 89 20 549 78 18
BPIC12 155 22 5 86 12 2 79 11 2
BPIC15.1 1,761 251 57 776 110 25 985 140 32
BPIC15.2 1,709 244 56 895 127 29 814 116 26
BPIC15.3 1,889 269 62 1,075 153 35 814 116 26
BPIC15.4 1,933 276 63 1,188 169 39 745 106 24
BPIC15.5 1,926 275 63 1,088 155 35 838 119 27

13
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3.1 The Function of Drift Detection Parameters

Digging deeper into the function of the parameter inputs for PrefixTreeCDD we look
to answer our first research question. Namely, it would be helpful to know how the
inputs to PrefixTreeCDD affect its ability to detect drifts and overall running time.
Table 4 shows the results of the changes to parameters used in the algorithm to
detect concept drifts developed by [2]. Notably, locking all other parameters except
for the window size, reveals that a larger window size leads to an increase in run
time. Doing the same for tree size reveals that a larger tree size has the opposite
effect, with lower run times experienced for runs with larger trees. Looking towards
the lambda values, we again notice a decrease in run time for the otherwise same
settings due to fewer historical events becoming relevant in determining location
of drifts. To determine the effectiveness of the changes in identifying drifts, Table
3 shows how many drifts were identified in each variation. One stand out finding
is that on all runs, Helpdesk experienced very few detected drifts with at most one.
On the other hand the BPIC11 dataset has the most cumulative identified drifts.

In analyzing the Table the same way as used for the timings, it appears that for
window size, there is a peak in detection around window size 10 while increasing
prefix tree sizes decreases the number of drifts detected. As for lambda, there there
is not one stand out correlation that appears across the datasets with mixed re-
sults as the values of lambda are adjusted. In choosing the desired parameters for
the drift detection algorithm, we first analysed the impact of changing the window
size, tree size, and lambda. The results from this show us the varying drifts detected
under each setting and how these settings affected the running times. In his thesis,
Huete Guzmán, J. S. describes the default recommended parameter settings [2]. He
notes that the chosen value of window size is 1000, number of prefix trees as 10,
and a value of lambda of 0.25. These parameters were determined as those which
maximised the observed F1 and Recall scores within Huete Guzmán, J. S.’s experi-
ments, while minimizing the running times. We accept these default settings as the
preferred settings of his PrefixTreeCDD algorithm and use them as a baseline for
building our framework. While these settings help with efficiency, it is important
to note that Huete Guzmán, J. S. also found that increasing the max Window prefix
tree size led to fewer events before a detected drift: a shorter delay between when a
drift occurs and when it is detected. However, by increasing the window prefix tree
size, it led to lower accuracy in the form of false positive drifts being detected and
longer run times [2].

3.2 Effect of Update Frequency & Training Size

Research questions 2 and 3 seek to provide insights into the adjustment of parame-
ters of Pauwels’ algorithm using incremental updates. Looking at the results shown
in Table 6, the relationship between update frequency, train size, and total runtime
is established. Specifically: increases in the update frequency (in number of events)
correspond to decreases in overall runtime. Train size increases correspond to in-
creases in runtime naturally as higher values cause more data to be fitted in each
update to the model.

14
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Table 3: Identified Number of Drifts by Parameter Combination

Window Size PrefixTreeSize Lambda Helpdesk BPIC11 BPIC12 BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5

8 500 0 1 16 11 7 3 5 3 6
8 500 0.15 0 11 4 4 6 5 5 6
8 500 0.25 1 20 15 9 6 5 4 2
8 800 0 0 7 8 2 3 1 3 3
8 800 0.15 0 5 4 2 3 5 3 3
8 800 0.25 0 12 12 2 4 4 3 3
8 1000 0 1 11 6 2 1 2 2 2
8 1000 0.15 0 6 1 1 1 2 2 2
8 1000 0.25 1 12 5 1 2 2 2 2

10 500 0 1 21 17 6 5 5 5 7
10 500 0.15 0 12 7 6 7 6 4 6
10 500 0.25 1 25 16 8 7 6 4 5
10 800 0 0 11 9 3 4 3 4 3
10 800 0.15 0 4 4 2 4 1 4 3
10 800 0.25 0 12 10 3 4 3 3 3
10 1000 0 0 17 6 1 2 0 2 6
10 1000 0.15 0 5 1 1 1 2 2 5
10 1000 0.25 0 17 5 1 0 4 2 4
12 500 0 1 21 14 7 8 6 5 6
12 500 0.15 0 10 4 8 9 7 5 8
12 500 0.25 1 22 14 9 9 10 6 6
12 800 0 0 12 9 1 2 4 3 4
12 800 0.15 0 7 3 2 4 4 4 4
12 800 0.25 0 13 14 2 5 4 5 4
12 1000 0 0 15 8 2 3 2 3 4
12 1000 0.15 0 4 4 2 1 2 3 3
12 1000 0.25 0 16 10 1 3 2 3 2

In relating this Table back to the work of [1], the experiments run in the frame-
work introduced by [1]vary based on the dataset depending on the number of recorded
events in each month of every dataset respectively (Table 6). They used batch sizes
of one month and window sizes of both 1 and 5 (unit in months). One month of
events ranges from between 1500 to around 2200 events for the subsets of the BPIC15
dataset. The analysis presented in this paper allows for much more granular level
of fine-tuning with a discretely defined event number as opposed to months. When
using months as a unit, the number of considered events can change between each
dataset. However, months does provide a nice reference point as identifiable busi-
ness changes are likely implemented over time. If observing the data is too granular,
there may be unnecessary processing occurring when drifts are not.
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Table 4: Running Time of Drift Detection by Dataset (Total Time in seconds, Best in
bold, Second Best underlined, Worst italicised)

Update Freq Train Size Helpdesk BPIC11 BPIC12 BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5

200 200 110.001 3362.824 985.806 578.738 500.505 616.747 439.771 641.358
200 500 125.212 7129.185 1135.369 1048.712 882.474 1070.823 758.654 1123.648
500 200 46.083 1345.023 396.146 234.850 197.522 254.000 186.809 262.323
500 500 51.182 2875.557 452.463 425.418 358.726 443.971 309.589 453.777

1000 200 22.186 692.263 199.579 117.661 101.422 126.166 102.037 141.091
1000 500 25.388 1467.718 233.292 215.698 184.171 218.945 165.997 242.348
1000 1000 30.644 2703.788 276.130 375.692 318.639 379.232 271.027 400.889
1000 5000 57.890 12243.376 661.383 1535.580 1269.520 1537.219 1047.840 1599.840
5000 200 6.362 158.929 44.837 26.551 21.831 29.782 32.131 41.605
5000 500 6.515 325.700 51.410 49.506 39.505 51.752 41.675 66.440
5000 1000 8.061 598.865 60.588 83.787 67.599 85.052 65.104 108.757
5000 5000 17.910 2768.874 147.393 365.866 305.194 361.286 273.975 447.839
7500 200 3.829 164.780 31.009 17.801 13.515 21.557 18.464 32.585
7500 500 4.358 327.110 37.229 31.980 24.385 37.521 30.690 50.746
7500 1000 5.397 590.841 41.886 57.203 43.056 63.256 44.240 81.743
7500 5000 12.349 2546.206 98.579 254.665 192.335 266.446 190.796 348.508

10000 200 3.833 138.316 29.001 12.867 13.447 18.349 16.991 29.692
10000 500 4.305 271.732 33.085 24.430 24.592 30.846 22.805 44.954
10000 1000 5.443 487.628 37.457 43.190 42.818 51.214 35.806 72.113
10000 5000 11.882 2060.252 89.896 195.796 187.550 220.187 151.610 295.527

With the information presented in Table 6 there are two obvious optimizations
that could be implemented with respect to the evaluation metrics. One of these
optimizations is seeking to maximize accuracy at the price of the runtime. The other
optimization is to approach with the goal of minimizing runtime while sacrificing
the least amount of accuracy as a result. This framework seeks to do the former
by maximizing the resulting accuracy with slightly higher running times expected.
The detected drifts including their index and severity can be utilised alongside the
current parameters of update size and training size to estimate the most desirable
update size and training size parameters for the next batch.

When a detected drift is caught it triggers a drift recovery curve run. This drift
recovery curve in turn seeks to correct for the drift and return accuracy to expected
levels. We seek to achieve a higher accuracy than the accuracy observed by Pauwels’
work [1]. Doing so implies that for at least some number of updates performed un-
der the framework, we need to have a window size lower than the window size used
in each batch update than each dataset had in [1]’s methods. In all of Pauwels’ ex-
periments, the update window was the same as training size and the dataset with
the lowest values for each of these parameters was Helpdesk with roughly 1000
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events. To determine the optimal settings for the new algorithm, we run a series
of static window size tests across the datasets to observe which parameters return
the best accuracies and running times. The results of these implementations are
shown in Tables 5 and 6 respectively. The associated figures corresponding to these
tables are located in the Appendices in Figures 11, 12, 13, and 14.

Table 5: Static Updating Varied Parameters Average Accuracy (Best in bold,
Second Best underlined, Worst italicised)

Update Freq Train Size Helpdesk BPIC11 BPIC12 BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5

200 200 0.842 0.555 0.770 0.774 0.769 0.776 0.805 0.778
200 500 0.839 0.556 0.767 0.777 0.773 0.787 0.814 0.788
500 200 0.841 0.537 0.759 0.734 0.733 0.740 0.759 0.723
500 500 0.842 0.564 0.770 0.770 0.767 0.781 0.797 0.777

1000 200 0.833 0.513 0.744 0.690 0.674 0.707 0.688 0.661
1000 500 0.837 0.551 0.762 0.741 0.723 0.756 0.763 0.728
1000 1000 0.838 0.573 0.774 0.762 0.746 0.779 0.791 0.761
1000 5000 0.838 0.574 0.770 0.762 0.748 0.784 0.797 0.765
5000 200 0.808 0.445 0.710 0.520 0.549 0.531 0.481 0.502
5000 500 0.816 0.506 0.742 0.567 0.603 0.612 0.591 0.602
5000 1000 0.819 0.535 0.757 0.606 0.649 0.646 0.651 0.638
5000 5000 0.818 0.572 0.778 0.641 0.657 0.697 0.709 0.676
7500 200 0.806 0.127 0.631 0.517 0.451 0.495 0.426 0.449
7500 500 0.810 0.160 0.697 0.561 0.503 0.587 0.551 0.526
7500 1000 0.800 0.191 0.718 0.597 0.570 0.618 0.606 0.572
7500 5000 0.804 0.220 0.753 0.625 0.600 0.669 0.680 0.621

10000 200 0.773 0.121 0.597 0.458 0.4270 0.470 0.370 0.403
10000 500 0.775 0.157 0.685 0.488 0.486 0.574 0.500 0.504
10000 1000 0.776 0.186 0.713 0.5380 0.510 0.596 0.568 0.534
10000 5000 0.774 0.220 0.748 0.589 0.547 0.650 0.643 0.579

From the perspective of maximizing accuracy with no regard for required com-
putational resources: altering the update frequency to a lower, and thus, more fre-
quent value and increasing the training size could yield impressive results as seen
in Figures 11, 12, 13, and 14 (Located in the Appendices). However, it is important
to note that in the runs these were tested on, experimental settings never tested val-
ues above 500 for train size when the frequency was lower than 1000 due to the ex-
treme computational times expected to achieve an output result. Including higher
training sizes may lead to even higher results, however it is unknown at this time
what that outcome would be or whether the trade off for significantly more com-
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Table 6: Static Update Varied Parameters: Total Train Time (secs, Best in bold,
Second Best underlined, Worst italicised)

Update Freq Train Size Helpdesk BPIC11 BPIC12 BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5

200 200 108.211 3375.452 978.335 578.738 500.505 616.747 439.771 641.358
200 500 122.992 7190.742 1130.794 1048.712 882.474 1070.823 758.654 1123.648
500 200 43.643 1374.482 399.310 234.850 197.522 254.000 186.809 262.323
500 500 49.774 2870.678 453.163 425.418 358.726 443.971 309.589 453.777

1000 200 21.297 682.182 199.922 117.661 101.422 126.166 102.037 141.091
1000 500 25.228 1469.858 231.592 215.698 184.171 218.945 165.997 242.348
1000 1000 29.784 2703.074 283.938 375.692 318.639 379.232 271.027 400.889
1000 5000 60.082 12367.273 681.508 1535.580 1269.520 1537.219 1047.840 1599.840
5000 200 6.104 189.536 44.569 26.551 21.831 29.782 32.131 41.605
5000 500 7.080 387.883 52.061 49.506 39.505 51.752 41.675 66.440
5000 1000 7.729 706.860 63.362 83.787 67.599 85.052 65.104 108.757
5000 5000 17.796 3056.633 151.810 365.866 305.194 361.286 273.975 447.839
7500 200 3.829 164.780 31.009 17.801 13.515 21.557 18.464 32.585
7500 500 4.358 327.110 37.229 31.980 24.385 37.521 30.690 50.746
7500 1000 5.397 590.841 41.886 57.203 43.056 63.256 44.240 81.743
7500 5000 12.349 2546.206 98.579 254.665 192.335 266.446 190.796 348.508

10000 200 3.833 138.316 29.001 12.867 13.447 18.349 16.991 29.692
10000 500 4.305 271.732 33.085 24.430 24.592 30.846 22.805 44.954
10000 1000 5.443 487.628 37.457 43.190 42.818 51.214 35.806 72.113
10000 5000 11.882 2060.252 89.896 195.796 187.550 220.187 151.610 295.527

putational resources would be worth the potentially higher accuracy. Additionally
important is that while the results presented in Figures 11, 12, 13, and 14 (See Ap-
pendices) reveal a general best performance from an update frequency of 200 and
training size of 500, the BPIC11 dataset which has significantly more drifts than any
of the other datasets does not experience the same performance with parameters
of 500 and 500 respectively beating out the others. This could be due to the higher
number of possible activities in this dataset, leading Pauwels’ SDL framework to
struggle to classify the predicted next activity.

3.3 Developing the Dynamic Framework

With the insights provided in Sections 3.1 and 3.2, we now progress to develop the
Dynamic Framework which we intend to use to answer research questions 4 and 5
introduced in Section 1.3. In making a determination as to how severe a drift is, we
propose the development of two heuristics; one heuristic each to set the dynamic
value for the update frequency as well as the training size, both introduced above
in Section 3.2.
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Initial research into the creation of these heuristics led us to explore the con-
nections we could draw to distributions available from the field of survival and re-
liability analysis. At surface level, survival and reliability may not appear to overlap
significantly with process mining, however, we present the view that the the meta-
data regarding drifts can be utilised in a way that determines the "reliability of the
information" based on the number of events since the last drift. When a drift has
not been observed for some time, intuition is that less frequent updates and smaller
update sizes are needed to maintain the performance of p̂ . With less frequent drifts,
we can place more trust in the trained model and hold the expectation that we can
increase the timing between updates (update frequency) and decrease the amount
of data used in each of those updates (train size).

Taking our learnings from the exploration of update frequency and training size
from Section 3.2, we introduce a Weibull function used to set each of the stated pa-
rameters dynamically. This Weibull function can be considered to track the relia-
bility of the model as it experiences drift over time. The intuition in developing this
model is as follows: the more time since the last drift, the more lenient the values
of update frequency and train size can be. Parallels can be made to the adjustable
window approach whereby the window expands until its maximum size and then
continues sliding until another drift is found which we covered in the Preliminar-
ies in Section 2.7 [1, 2, 3]. In this case, however, the Weibull function is utilised to
help dynamically loosen the "reigns" on our algorithm parameters as increasing
amounts of data are trained and the model is considered to be more trustworthy
due to a lack of drifts.

This framework itself will not be allowed to remain unchecked, however. Within
this framework safeguards are built to make incremental updates to the model with
the parameters umi n , tmi n ,uma x , and tma x . Through the implementation of these
ranges, the minimum and maximum number of events between updates as well as
the minimum and maximum number of events that must be included in the train-
ing of each update to p̂ are explicitly set. More information on these parameters
and other calculated parameters for the algorithm can be seen in Table 7.

3.4 Drift Recovery Formula & Setting of Algorithm Parameters

Moving back to the concepts introduced by the Weibull distribution in Section 2.10,
we present a drift recovery formula through which values can be chosen for both the
update frequency and training size. Using the parameters shown in Table 7, two ar-
rays of integers are created seen in Equations 6 & 7. Each array contains all integers
between and including minimal and maximal values respectively for both update
frequency and train size. Important to note is that the training size is in reversed or-
der from maximal to minimal. This reversal is significant in that the parameters in
the leading part of both arrays represent values for when drift is present and mod-
els are considered less trustworthy while the trailing half contains values used when
the process model is considered more trustworthy; at this point the model no longer
requires such frequent and large updates.

up d a t e Ar r a y =< umi n , umi n +1, umi n +2, ..., uma x −1, uma x > (6)
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Table 7: Algorithm Parameter Definitions

Parameter Definition

umi n The minimum number of events as an integer between model updates
uma x The maximal number of events as an integer between model updates
tmi n The minimal number of events as an integer to include in training data

used in model updates
tma x The maximal number of events as an integer to include in training data

used in model updates
d The number of events we set to hold the retraining values above the

threshold parameter
k The threshold parameter whereby we define what value we would like the

algorithm to remain above before relaxing the drift recovery formula to
our uma x and tmi n respectively.

t r a i n Ar r a y =< tma x , tma x +1, tma x +2, ..., tmi n −1, tmi n > (7)

We now define the dynammic drift recovery formula using the second Weibull func-
tion found in Formula 5. In creating this formula, we want an equation which begins
at a value of 1 indicating the need for maximal correction after a drift, then trailing
off to our minimal value of 0 indicating the ability to relax our parameters. The out-
put is a float in the range of [0, 1]which is then used to determine the parameter to
use by multiplying this value by the length of the updateArray and trainArray from
Equations 6 & 7. By multiplying these two, we identify the index of the parameter
chosen as input in updating p̂ at time t , with t being the number of events after
the most recent drift is identified. As we want all of our values to start from time
t = 0 after a drift occurs, there is no need to use the location parameter τ. We can
set τ to zero and remove it from Formula 5. We are now left with the equation seen
in Formula 8 whereby the only remaining parameter we need is λ as t is set auto-
matically by the number of events which have passed since the last drift divided by
uma x such that the value for t is never greater than 1.

R e c o vd r i f t = 1−exp(λt ) (8)

In choosing a value for λ we consider first what we know regarding [2]’s work
whereby there is an expected delay in reporting of an identified concept drift. [2]’s
research indicates that we should expect around a 3500 event delay with the default
parameters for the PrefixTreeCDD algorithm. With this in mind, we know that once
a drift has been identified, it likely holds some level of history which can be used to
update p̂ the process model.

To create the final formula we will use as the drift recovery curve in our frame-
work we must find the value of λ. To do so, we take the chosen value for d (which
must be lower than our uma x ) parameter and formulate the equation by filling in t
with our d

uma x
. This essentially sets d as a number of events to maintain the integrity

of retraining of the model above the parameter k. In this case we have chosen k as
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a value of 80% or 0.8 as we feel that after holding the drift recovery curve output at
80% until d events have passed, this should yield favorable results with respect to
accuracy.

To set the value of our λwe layout the equation filled in as follows:

1−expλ(
d

uma x
−1) = k (9)

Then solving for λwe can calculate lambda such that we have an equation that has
outputs which start at 1 and end at 0 going through the point d

uma x
at the value k .

ln (1−k ) =λ(
d

uma x
−1) (10)

λ=
ln (1−k )

( d
uma x

−1)
(11)

Algorithm 1 Drift Recovery Calculation

1: drifts← list of drift objects containing drift location, severity
2: for every event in dataset do
3: lastDrift← 0
4: if CDDAlgo detects drift at event then
5: drifts← drifts+drift
6: lastDrift← 0
7: if length of drifts < 5 then
8: DriftRecCurveInput← 0
9: else

10: DriftRecCurveInput← quantile(d r i f t , d r i f t S e v e r i t i e s )
11: if lastDrift > uma x then
12: DriftRecCurveInput← 0.75

Now we have our final equation which we have determined by making mea-
sured decisions which will serve as the foundation for dynamically changing u f r e q

and ts i z e . When integrating this together with the values we have for u f r e q and ts i z e

as well as our arrays up d a t e Ar r a y and t r a i n Ar r a y we use the input index pa-
rameters ∈ [0, 1] to retrieve values form these arrays. To calculate the input to send
to the drift recovery function, we utilize the tree distance metric from PrefixTreeCDD
[2]. In the case that we have identified fewer than 5 drifts in a given dataset, the in-
put to the drift recovery function is set to 1 and considered to be the most severe.
After 5 drifts have been detected, the sixth and all subsequent drifts are compared
against the existing stored library of drifts and their tree distance metrics and a per-
centile is calculated of where it falls within the distribution of those drifts to serve as
the input to the drift recovery function. In the case that a drift is not detected yet the
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value for uma x events since the last training event has been reached, we run an up-
date anyway with the input to the drift detection formula set at a value of 0.5 which
can be viewed as half severity. The algorithm for this can be seen in Algorithm 1.

Ultimately the values chosen for umi n , uma x and tmi n , tma x were as follows:

Table 8: Parameter Choices

umi n uma x tmi n tma x

200 500 500 750

The above listed parameters were chosen due to accuracies observed across
datasets in Table 5. Maintaining update and training sizes between 200 - 500 and
500 - 750 respectively appeared to provide the best results while not leading to ex-
cessive running times which were presented in Table 6. As we have 500 for the value
of uma x , the value of 490 is chosen for the parameter d as holding this value as
close to 500 as possible will maximize accuracy based on the formulation of the
d r i f t r e c o v e r y formula.

In Appendix B, Figures 15 & 16 show the idealised and actual plots for the Drift
Recovery Formula. We find that the selected parameters are the ones which are ex-
pected to perform the best on the data given what is known about the datasets from
the Tables 5 & 6 as well as their associated plots in Appendix A.

The output of the Drift recovery function is a value∈ [0, 1]which is then multiply
by the number of elements in the arrays up d a t e Ar r a y and t r a i n Ar r a y before
rounding to a whole integer to determine the index in the respective array of the
u f r e q and ts i z e values for the current batch. These batches are then updated as
would normally be done during Pauwels’ Incremental Update methods [1].

3.5 Summary Of Methods

Figure 5 shows the progression through the overall methods and how the presented
research ties together in this analysis. Next, the Experimental Evaluation in Section
4 details the conditions formulated to run the experiments and lists the observed
results.
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Fig. 5: Framework Structure and Workflow

4 Experimental Evaluation

We now layout the experimental conditions and results in the following subsec-
tions. First we review the datasets used in our experiments in Subsection 4.1. Then
the preparation and processing used on these datasets is laid out in Subsection 4.2.
In the Experimental settings in Section 4.3 we discuss the conditions under which
we run the experiments. Evaluation metrics are reviewed in Section 4.4 whereby we
discuss the means of measuring the performance of the developed methods. Our
results and discussion surrounding overall performance are presented in Section
4.5 where Research Questions 4 and 5 from Section 1.3 are explored. We then con-
clude the findings of our experiments in Section 4.6.

4.1 Datasets

The data used in this analysis are from sets commonly used in process mining re-
search as a benchmark. The BPIC15 dataset is one made of loan applications with
5 separate files, each from different Municipalities within The Netherlands. The in-
formation included within the datasets is comprised of event logs with a times-
tamp, event name identifiers (also called activities), trace identifiers (also referred
to as a cases), as well as other fields relating to what administrative departments
have processed the events and whether or not the event has been completed among
other recorded datapoints. Additionally utilised in the experiments are the datasets
BPIC11 [20]which includes process event information relating to a Dutch academic
hospital, BPIC12 [21] recording another loan application process, and Helpdesk [22]
which details the ticketing system for an Italian software company. For validation,
we include two other datasets. Namely: BPIC17 [23] and BPIC15 (merged) [24] are
included for the purpose of validating our developed results. For the merged BPIC15
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all datasets 1-5 have been appended to one another with the dates shifted such that
the start date of the next set occurs on the end date of the previous one. In this way
we are able to create one coherent dataset with the existing drifts included in each
subset. Additionally, the changes experienced between each subset are considered
to be sudden drifts which we have covered in Section 2.5. This inclusion allows us
to validate the performance of PrefixTreeCDD [2] when faced with the challenge of
identifying the different types of drifts.

4.2 Processing

To create a functional experimental environment, all of the .xes files initially ob-
tained from [20, 21, 22, 24] were converted into CSV files. Much of the preprocess-
ing noted in [1] is replicated except for alterations which allowed for the incre-
mental updating processes to be executed from a CSV file such that the Prefix-
TreeCDD framework from [2] could be utilised in tandem. New events are read into
the pseudo-streaming environment line by line from the csv. Additionally, after pars-
ing from csv, the event stream was sorted based on event timestamp such that they
are viewed by the algorithm in the order that they occur, and not only in chronolog-
ical order aggregated by trace as output from the .xes converter which was utilised
for the task [25].

Table 9: Validation Datasets Statistic Overview

Dataset Total Train Test

Unique records: #cases #events #activities #cases #events #activities #cases #events #activities
42,995 1,202,267 66 746 30,057 55 30,764 1,172,210 66

Duration: #days #weeks #months #days #weeks #months #days #weeks #months
397 56.71 13 19 2.71 0.63 379 54.14 12.63

One notable finding following the methods laid out in [1] involves changing all
of the unique names of events or activities in the data into distinct integer values.
While it is generally advisable to expand these columns out into one-hot encoded
columns using binary indications as to whether or not a specific record is iden-
tified as one type of event or activity, doing so caused significant problems when
trying to integrate the methods of one hot encoding into the existing framework,
thus this preprocessing was left as it was presented in [1]. With one-hot encoding,
inputs to the model would have been a sparse matrix with each event having 0 val-
ues for events, activities, and roles that they are not, while having values of 1 for any
event that they are considered to be. Given the high numbers of possible activities
as seen in Table 2 & 9, attempting to utilise one-hot encoding would have made the
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input space significantly larger and required an entire reworking of the entire SDL
framework which was developed by Pauwels [1].

One final change made from the methods used in Pauwels’ work is that his
Incremental Update and Last Drift methods were reformulated for use under our
developed DynaTrainCDD framework. Since Pauwels’ work operated based on a
monthly aggregated time to determine batch size, it was not compatible with our
batch sizes determined by a unique number of events. To account for this, we cal-
culated the batch sizes that Pauwels used by averaging the number of events per
month over each individual dataset by dividing the total events in each dataset by
the number of months which we have presented in Tables 2 & 9. The resulting aver-
age serves as the window size w = 1 which is comparable to the methods adopted
by Pauwels [1]. The calculated averages are displayed in Table 10.

Table 10: Average Monthly Events by Dataset

Helpdesk BPIC11 BPIC12 BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5 BPIC15_Merged BPIC17
Avg Monthly Events 1000 7150 87400 2000 1500 2000 1500 2200 1000 92500

4.3 Experimental Settings

Hardware Specifications The details of the hardware used to obtain the results
detailed in this report are listed below

Operating System: Mac OS 12.4
Model A1989; MacBookPro15,2; MacBook Pro (13-inch, 2019, 4 ports)
CPU 2.4 GHz Quad-Core Intel Core i5
Memory 8 GB 2133 MHz LPDDR3
Graphics Intel Iris Plus Graphics 655 1536 MB

The methods to be compared are as follows:

1. DynaTrainCDD
2. IncrementalUpdate (w = 1) [1]
3. IncrementalUpdate (w = L a s t D r i f t ) [1]
4. No Retrain

The developed DynaTrainCDD method is to be compared against Pauwels’ meth-
ods of IncrementalUpdate (w = 1), IncrementalUpdate (w = L a s t D r i f t ), as well as
against no retraining after the initial training of a model. In the IncrementalUpdate
methods, the value of w determines the window size of both the update frequency
and the training size. For w = 1 this means a value of 1 month of aggregated data
while for w = L a s t D r i f t this is all data between the current drift and the last
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observed drift [1]. The only difference with w = L a s t D r i f t is that the update fre-
quency remains every month, however the training size can extend all the way to
the value of the last drift (or beginning of time if no drift has been observed).

All datasets except for BPIC17 are trained into an SDL model initially (which
was introduced in Section 2.9) with 0.5 of the data as training data and the remain-
der of the data is left to the respective methods to evaluate their performance. For
the validation set of BPIC15 (merged), initial training size is set to be equal roughly
the same number of events as an individual BPIC15 dataset with a training size of
0.1 of the total merged data. This way we can see how the method performs when
experiencing sudden drifts with new, never before seen data.

4.4 Evaluation Metrics

To evaluate the efficacy of the proposed solution, a combination of running time
and accuracy are considered. Each method is run on each dataset to determine
overall performance in each individual application. Specifically, to calculate the ac-
curacy, the output of predicted next activity from the SDL model will be compared
against the actual next activity. Then these boolean values of True or False correct
predictions are run through a window averaging function to determine the accu-
racy at some given point within the output set such that they can be plotted over
time. A total average is also reported in tabular format. The running time is deter-
mined by summing the total cumulative retraining duration for the SDL model. This
recorded time is non-inclusive of the intial train or concept drift detection formula
on each of the datasets as the performance of the concept drift detection and initial
train are considered out of scope in this analysis. We purely seek to evaluate perfor-
mance on retraining and updating of existing models with information we receive
from the PrefixTreeCDD methods [2].

4.5 Results and Discussion

We now present the results of the DynaTrainCDD framework we have proposed
in the Methods found in Section 3 compared with the above listed methods from
Pauwels’ Incremental Updates [1]. We will discuss the results first from the view-
point of accuracy before moving on to examine how the developed methods affect
the running time of the models. Lastly, we present the results using an external, un-
seen dataset (BPIC17) for the purpose of validating our methods before comparing
to the aggregated BPIC15 (merged) dataset which is also used for validation.

Development Data Results Looking at Table 11, we present the results of Dyna-
TrainCDD alongside the methods used by [1]. Our method is denoted by Dyna-
TrainCDD. We see that for every dataset except for BPIC11, BPIC12, and Helpdesk,
DynaTrainCDD was able to outperform the others. Particularly with the BPIC15
data, we see significant improvements of around 1-2% more accuracy on average.
For BPIC11, BPIC12, and Helpdesk we note some interesting findings. On Helpdesk,
DynaTrainCDD only performed 0.0049 worse than the IncrementalUpdate (w =

26



T. Kosciuszek Online Next Activity Prediction: ADWIN & Prefix Trees

1) method. On BPIC11, DynaTrainCDD performed 0.173 worse than No Retrain
whatsoever. Overall all methods on BPIC11 suffered with respect to accuracy. This
can be attributed due to the significantly higher number of unique activities which
each next event can take on (seen in Table 2). With more activities, the expected
performance decreases as the baseline of the random selection in these cases be-
comes 1

To t a l N um b e r o f Ac t i v i t i e s . As such the probability of correctly randomly se-
lecting one activity is much lower than in datasets with fewer activities. On BPIC12,
DynaTrainCDD performs the worst, however all methods perform worse than No
Retrain. This result suggests that this dataset may experience some recurring drifts
in a way such that the baseline trained model is able to effectively identify the pos-
sible outcomes (see Section 2.5 on drift types).

Table 11: Average Accuracy of Developed Experimental Methods (Best in bold,
Second Best underlined, Worst italicised)

Method Helpdesk BPIC11 BPIC12 BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5

DynaTrainCDD 0.8377 0.2473 0.7473 0.7615 0.7538 0.7816 0.7888 0.7671
IncrementalUpdate (w = 1) 0.8426 0.2282 0.7502 0.7447 0.7445 0.7613 0.7773 0.7406
IncrementalUpdate (w = L a s t D r i f t ) [1] 0.8323 0.2280 0.7474 0.6743 0.6572 0.7127 0.7161 0.6977
No Retrain 0.7642 0.2646 0.7930 0.2425 0.2843 0.2981 0.2592 0.2428

Figures 6 & 7 show plots of the accuracy over each development dataset. We ob-
serve that as expected based on Table 11 that for all datasets except for Helpdesk,
BPIC11, and BPIC12, DynaTrainCDD performs better overall with smaller and more
frequent, dynamically set updates. We bring to attention two notable points. The
first point being that on the BPIC15 data, we observe faster recovery from drifts
which occurred in the training. This is likely attributable to the more frequent up-
dates able to accommodate for faster recovery times than those used by [1].

When looking at where our methods did not perform the best, we turn to BPIC12
for some very interesting findings. In BPIC12 the best performance is observed when
the model is not retrained at all after initial training on half of the overall data.
The difference is very minimal (see Table 11), however still noticeable. This is very
quickly followed by Pauwels’ methods and then DynaTrainCDD which performs
the worst in comparison (although still generally very well). We believe the rea-
soning behind the results observed with BPIC12 are caused by the reasons listed
above, mainly relating to the recurring type of drifts that we expect are present in
this dataset. This is what we believe causes the variation between no retraining and
DynaTrainCDD presented in this report.

In an online setting we are unsure when or if drifts are occurring as the event
stream is constantly incoming. Running a model with the assumption that drifts
will not occur, assuming that a business process will never change, is unrealistic.
While never retraining would be ideal in terms of running time, assuming we need
to spend no time in training updates leaves a model highly vulnerable to unex-
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pected drifts. Any drift encountered by a model which is not updated (dynami-
cally or not) could cause the accuracy to unexpectedly plummet. Thus utilising the
method whereby no retraining occurs could be risky in the case a future drift is en-
countered, leading to a lower expected accuracy.

Table 12: Total Training Time (seconds, Best in bold, Second Best underlined, Worst
italicised)

Method Helpdesk BPIC11 BPIC12 BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5
DynaTrainCDD 44.439 2830.526 444.673 407.256 348.296 426.515 299.566 438.440
IncrementalUpdate (w = 1) [1] 29.784 3680.473 167.456 360.305 293.987 353.182 262.477 397.981
Last Drift [1] 120.137 3535.270 120.895 2430.327 2122.920 1567.416 1376.079 1474.330
No Retrain [1] - - - - - - - -

Next, we examine the running times. In Table 12. We see that while the Incre-
mental Update methods run faster on the Helpdesk, BPIC12 as well as all BPIC15
datasets, DynaTrainCDD outperforms other methods on BPIC11. Specifically, we
note only about 1.5 times running times of the fastest training times on the BPIC15
dataset. Not only did accuracy increase on the BPIC15 dataset, however we also ob-
serve minimal increases in running times.

Validation Data Results Next we present the results observed on an external vali-
dation set. This dataset: BPIC17 is formatted in the same way as those used to de-
velop our methods, with events, traces, timestamps, and resource attributes. Sim-
ilarly to some of the other BPIC datasets, it concerns loan applications again. The
makeup of the data is detailed in Table 9. We now discuss our observations when
running our methods on the validation dataset. Another validation dataset we have
chosen to include is BPIC15 (merged) which is a dataset comprised of all the other
BPIC15 subsets appended into one long dataset with sudden drifts occurring be-
tween each of the subsets.

When looking at Figure 8 and Table 13, we notice that No Retrain performs the
best. The second best performance is DynaTrainCDD followed by Pauwels’ Incre-
mentalDrift methods respecitvely [1]. This is also reflected in Table 13 where all
the results for accuracy and running time are displayed for our two validation sets.
However, this doesn’t tell the full story. As noted earlier when discussing the results
for BPIC12, we suggested that any unexpected drift would cause the baseline model
to become unreliable and lose accuracy. Around the 450k event mark, we notice
exactly that whereby the accuracy starts falling from 0.85 to 0.7 on the No Retrain
methods and IncrementalUpdate (w = 1).

Interestingly, both DynaTrainCDD and the IncrementalUpdate (w = L a s t D r i f t )
remain above 0.8. This leads to a large difference in accuracy that is extremely un-
desirable when highest accuracy is preferred. We believe that overall, the perfor-
mance shown in Figure 8 reflects very few drifts until around 450k events. At the
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Fig. 6: Results on Development Datasets (1 of 2)

point when a drift does occur, both DynaTrainCDD and static incremental updates
show their strength in maintaining accuracy.

In looking towards the BPIC15 (Merged) Dataset we see that DynaTrainCDD
performs the best with respect to accuracy around 4% higher than its nearest com-
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Fig. 7: Results on Development Datasets (2 of 2)

petitor (being IncrementalUpdate (w = 1) with 0.191). Overall the accuracies expe-
rienced across the BPIC15 (merged) dataset are significantly lower than any other
accuracies we have seen in our results. We attribute this to the extremely high num-
ber of activities to predict, similar to the results seen on the BPIC11 dataset in Table
11. The number of unique activities is the sum of all unique activities present in
the BPIC15 datasets combined. As previously mentioned, this makes the probabil-
ity that the SDL model is able to determine the correct next activity significantly
lower. Since the training set for BPIC15 only included data from BPIC15_1, the re-
sults we see in Figure 9 make sense as each time a new dataset with its respective
drift point is encountered in the testing data, accuracy drops while the model strug-
gles to keep up until it has been retrained a few times.

While accuracy provides one part of the overall picture, we must also consider
running time. Looking back to Table 13 we note that DynaTrainCDD performs bet-
ter than IncrementalUpdate (w = L a s t D r i f t )BPIC15 (merged) but not on BPIC17.
The higher running time of DynaTrainCDD is justified in accuracy for BPIC17 how-
ever, as it performs better overall for everything except for the No Retrain method.
As we previously mentioned, it is not reasonable to leave a dataset without updates
as the chance of a drift occurring leaves the model open to large risks for accuracy
if a drift does occur. Thus we still believe that DynaTrainCDD presents the best so-
lution in this case. In BPIC15 (merged), DynaTrainCDD displays significantly bet-
ter accuracy than any other method, thus we also conclude that although it has a
higher running time than IncrementalUpdate (w = 1), it still remains the best choice
overall.

Lastly, in Figure 10 and associated Table 14 we examine the results of the BPIC15
(merged) dataset and answer research question 5 in looking to compare the de-
veloped methods to a baseline. We note that DynaTrainCDD is the best performer
when observing the overall results in the period of 20 thousand events following
each sudden drift. Surprisingly, not retraining at all is the second best performing
method. The results in Table 14 further show the strength of DynaTrainCDD follow-
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Fig. 8: External Data Validation (1 of 3)

Table 13: Validation Results (Best in bold, Second Best underlined, Worst italicised)

BPIC15 Merged BPIC17

Method Accuracy Total Update Train Time Accuracy Total Update Train Time

DynaTrainCDD 0.234 3460.941 0.843 3335.099
IncrementalUpdate (w = 1) [1] 0.191 2701.935 0.842 2656.926
IncrementalUpdate (w = L a s t D r i f t ) [1] 0.165 10240.607 0.836 1539.348
No Retrain 0.133 - 0.845 -

Table 14: BPIC15 Merged Post-Drift Performance (Best in bold, Second Best under-
lined, Worst italicised)

Method Drift 1 Drift 2 Drift 3 Drift 4
DynaTrainCDD 0.192 0.260 0.220 0.248
IncrementalUpdate (w=1) 0.130 0.203 0.152 0.197
Last Drift 0.124 0.197 0.144 0.175
No Retrain 0.184 0.255 0.182 0.217

ing a (known) sudden drift as those which have been created in merging all subsets
of the BPIC15 dataset.
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Fig. 9: External Data Validation (2 of 3)

4.6 Experimental Conclusion

Overall the results presented show that our DynaTrainCDD methods provide great
value to the existing solutions in maximizing accuracy of process models. Addition-
ally, the presented results suggest that even increasing the frequency with which
updates are made could yield an easy way to increase accuracy of models while
not requiring much time to develop such a solution. However, where our presented
framework provides significant value is in higher accuracy without massive increases
in running times when concept drift detection is necessary in streaming process
event streams. With the developed DynaTrainCDD methods, we are able to take
into account drifts as they occur and prioritize when more computation is a valid
means to increase accuracy.
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Fig. 10: External Data Validation (3 of 3)

5 Limitations

In the development of the procedures to combine the incremental updates as pro-
posed by Pauwels [1] and the Prefix Trees as introduced by Huete Guzmán, J. S. et
al. [2] certain assumptions needed to be made based on how those methods them-
selves were implemented.

It must be assumed that the it is possible to determine from a business process
perspective when a trace has been marked as complete. This primarily means that
it is possible to determine when there are no more events expected in the specific
trace. In the case of the BPIC15 data used in this analysis, this entails going through
and finding the last seen event in each trace and marking that as the end of each
trace. This is necessary for the purpose of notifying the prefix trees used for concept
drift detection as to when they should remove the events only seen in older traces
from the prefix trees once their relevance is outdated or obsolete.

Additionally an assumption is made regarding the processing of events ahead of
time. Namely, this entails knowing the last 10 events in each trace that is currently
being tracked due to the inputs needed for the modeling methods used by the Single
Dense Layer (SDL) to generate predictions.

We also assume that one-hot encoding adds no significant improvement or detri-
ment to results over changing categories to arbitrary integers as initially imple-
mented in [1]. This implementation uses ordinal encoding as opposed to one-hot
encoding which is found to perform better when processing input data to neural
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networks [26]. However, other alternatives do exist as described in [26] which also
provide even better accuracy than one-hot encoding and this could lead to better
results in future work.

It is assumed assumed that there is access to real-time performance on accuracy
for all predictions previously from p̂0 until time p̂t for the purpose of determining
if some undetected drift has occurred.

The drift recovery curve which has been developed is assumed to be the best
way to change the parameters of retraining the underlying predictive model. This
proposed solution may not be the best solution and other more appropriate solu-
tions may exist that were unknown at the time of this experimentation.

6 Conclusions

We have examined the context within process mining and relevant applications for
incremental or dynamic retraining of process models. After laying out the steps for
developing a dynamic framework we have shown the effectiveness and efficiency
of retraining partial amounts of data. From our findings, we conclude that the use
of such partial updates leads to comparable or better accuracy as well as accept-
able running time performance on all datasets we have tested. Further research is
needed on relevant fields such as whether there exists a better drift recovery for-
mula as presented in this paper. Additionally, it would be helpful to examine more
closely which types of drifts the drift detection algorithm chosen for this analysis
(PrefixTreeCDD) is able to identify and determine if other identification methods
may be better suited for this framework.
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Appendix A Methods Plots

Fig. 11: Average Accuracy Results By Dataset (1 of 4)
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Fig. 12: Average Accuracy Results By Dataset (2 of 4)
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Fig. 13: Average Accuracy Results By Dataset (3 of 4)
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Fig. 14: Average Accuracy Results By Dataset (4 of 4)
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Appendix B Drift Recovery Plots

Fig. 15: Idealised Drift Recovery Formula Plot

Fig. 16: Chosen Parameter Drift Recovery Formula Plot
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