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Abstract- Autoencoders (AE) produce their results by computing 

an encoding of the underlining latent features of the data, in order 

to be able to recreate the original dataset. Ideally these encodings 

learn the most important underlining features of the data and 

output them in a latent space vector, describing each of the 

variables by their features. In this project a great effort was made 

to experiment and augment these encodings, in order to produce 

more unique and varied results than the original recreation of the 

AE. For this purpose, an Autoencoder was trained on 5 separate 

datasets, the latent space vectors of which have been used to train 

3 different generative algorithms which attempt to recreate, and 

augment said latent space vectors. These algorithms include 

VAE-GANs, Sum-Product Networks and RealNVP Normalizing 

Flows. These augmentations are conducted in order to produce 

more unique and varied recreations and to check if it is feasible, 

beneficial or even possible to do so. 
 

Keywords- latent space, autoencoders, sum-product networks, 

normalizing flows, VAE-GANs, generative models 

 

I. INTRODUCTION 

Generative models are statistical neural networks that learn a 

feature space of a dataset in order to be able to sample from it 

and output similar yet unique variables. These models are mostly 

applied to images, although they can be used in other fields as 

well. There are different types of generative models, such as ones 

that learn a probabilistic distribution, such as Sum-Product 

Networks (SPNs), Variational Autoencoders (VAEs), 

Normalizing flows (NFs), while others learn feature space 

vectors in a deep dense network, such as regular Autoencoders 

(AE) and General Adversarial Networks (GANs). Then there are 

models which combine both methods like the VAE-GAN 

network. All three types have one thing in common, which is 

they all compute a latent space representation that describes the 

features of the data given, in order to sample from it and produce 

unique recreations. This latent space is called a posterior 

estimation. It refers to how likely the latent variable is given the 

input, hence in training we want to learn a good posterior 

approximation, which explains the input dataset. The posterior is 

denoted by the probability of a latent variable 𝑧, given our input 

𝑥 variable – 𝑝(𝑧|𝑥), which is approximated by the model. The 

prior on the other hand represents how the latent variables 𝑧 are 

represented without conditioning on the input 𝑥, hence 𝑝(𝑧). In 

this project we would like to train an initial model that learns the 

posterior estimation of a dataset of images, then approximate and 

sample the distribution of this posterior estimation using 

generative models. This way we are altering the prior of the 

initial model to create new varying results. This method could 

also possibly be used to learn the prior of a generative model that 

doesn’t define it’s prior explicitly.  

II. BACKGROUND 

Autoencoders and Variational Autoencoders are a widely used 

unsupervised learning technique in which neural networks are 

used to learn a feature representation (latent space) of the input in 

order to recreate said input as closely as possible [1]. AEs and 

VAEs are composed of two neural network models, the encoder 

and the decoder. The encoder reduces the initial input’s 

dimensions and learns a latent space, or a feature vector, for each 

of the variables in the sample input. The decoder on the other 

hand has the task of recreating the input data that was fed to the 

encoder as closely as possible, given the computed latent space. 

This latent space has special properties, like the fact that if points 

close to each other in the latent space are drawn, they will 

produce very similar results after going through the decoder. This 

is called the continuity property. Another property of the latent 

space is that every point in it produces a meaningful output after 

it has been decoded. This is called the completeness property. 

These properties are true for both AEs and VAEs. The 

differences between the two, however, lie in the way the latent 

space is computed and in their loss functions. AEs encodes the 

input data into a latent space vector, while VAEs encode the 

input data into a Gaussian distribution by computing mean and 

variance vectors. The loss of an AE I simply a reconstruction 

loss, which measures the difference between the initial input and 

the generated output. The loss of a VAE is the reconstruction loss 

combined with a KL-divergence term, which encourages the 

estimated posterior distribution 𝑞𝜙(𝑧|𝑥) to match the prior 

distribution 𝑝(𝑧) for each z, which acts as a regularizer in 

training. 

 

Generative Adversarial networks are probably the most popular 

generative models, because of their impressive and creative 

recreations as well as the recent popularization of deep fakes [5]. 

It is a general dense deep network that is composed of two 

separate models, those being the generator and the discriminator. 

The generator model’s job is the same as an Autoencoder’s one, 

which is to capture the distribution of the data and to recreate the 

input data as closely as possible, however it achieves this in a 

different way as opposed to the AE. The input to the generator is 

not the input dataset, instead it is random noise vector sampled 

from a Gaussian distribution. The generator then learns the input 

data distribution with the help of the discriminator. The 

discriminator is a classifier that predicts whether an image is a 

generated one or a recreation of one. If the discriminator is not 

able to distinguish between the real and generated images, then 

the generator has learned the features of the input and can 

recreate them well. The two models therefore play a complicated 

minimax game as they learn the input. A powerful variation of 
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the GAN model is the VAE-GAN [3]. By replacing the standard 

generator of a GAN with an Autoencoder learned representations 

by the discriminator can be used for the VAE reconstruction, 

replacing element-wise errors with feature-wise errors to better 

capture the distribution. This model can also learn embeddings of 

high-level abstract visual features, which can be modified. 

 

Sum-Product Networks [2] are Directed Acyclic Graphs that 

represent complex probability distributions in a compact way. 

SPNs consist of the input variables as input at the leaves, sums 

and products as nodes and weighted edges. The product node 

simply takes the product of the nodes preceding it, while the sum 

node takes the sum of the nodes preceding it multiplied by the 

weights of each edge. The interesting part is that the leaves are 

actually probability densities and taking the product of two 

densities is the same as computing the factorization between 

them, while taking the sum of two densities multiplied by their 

respective weights is the same as taking the mixture of the two. 

This means that SPNs can describe very complicated 

distributions, very cheaply and efficiently. In order for SPNs to 

be valid they have to obey three rules. The first one is 

completeness, which implies that each sum node has children 

with the same scope. The second one is consistency, implying 

that no variable appears negated in one child of a product node 

and non-negated in another. The third and last one is 

decomposability, implying that the children of a product node 

cannot have the same scope. If these conditions are met the SPN 

is considered valid and its root note (distribution of the input 

variables) can be computed recursively. Training an SPN is 

similar to training any neural network, using gradients or 

Expectation Minimization on batches.  Once an SPN has been 

trained it can also be sampled from by computing the Most 

Probable Explanation for all input variables, given a random 

draw from the density distribution at the root node. 

 

Normalizing flow models are models that actually learn the true 

distribution of the input data [8][11]. Normalizing flows are very 

simple bijections, where invertible flow functions 𝑓(𝑥) are 

trained to map the complicated input distribution 𝑝𝑥(𝑥) to a pre-

determined base measure 𝑝𝑧(𝑧), usually a Gaussian distribution. 

The flow functions need to be invertible and differentiable, in 

order to make it possible to train and sample from the base 

measure using said functions. Training of the flow functions is 

done by maximum (log-)likelihood. A linear transformation can 

be a flow function, however linear flow functions are 

inexpressive, and the determinant could be 𝑂(𝑑3) and if d is 

large, like with pixels of images for example, this becomes very 

expensive to compute. For this reason, Coupling flows are 

preferred in generative normalizing flows. A Coupling flow is a 

general approach to construct non-linear flow functions, where 

the parameters are split into two disjoint subsets and invertible 

differential transformation is applied to only one of them. By 

changing the coupling splits and stacking a number of coupling 

flows one after the another we ensure full expressiveness. There 

are different coupling transformations, although the most 

significant one was first introduced in the RealNVP paper [9] and 

that is the affine transformation. With this transformation it is 

possible to learn the true distribution of complicated image 

datasets computationally inexpensively. Backpropagation is used 

to train these models which also makes them easier to implement 

than other generative models. 

III. METHODOLOGY 

DATASETS 

For the first half of the project the MNIST digits [17] dataset was 

used to get familiar with the techniques of generative models. 

This dataset contains handwritten numbers in the range of 0-9 in 

grayscale. It contains 70000 images with a 60000/10000 split for 

training and testing. The images have a shape of 28x28x1 pixels, 

each pixel having a value between 0 and 255, which is a black 

and white scale with 0 as black and 255 as white. This scale was 

normalized by dividing each pixel by 255, which produces float 

values between 0 and 1. The reason for choosing this dataset for 

the start of this project is because of its complexity, which makes 

it easier to train on and get quick results from simple tweaks in 

the models. In the second half of the project the models presented 

were tested on more complex datasets to see if they can handle 

variation bigger than the one present in the MNIST numbers 

dataset.  

The first more complex dataset was the Olivetti faces, which 

includes ten different pictures of 40 distinct subjects with varying 

lighting, facial expressions and facial details, summing up to 400 

unique pictures. Each image has a shape of 64x64x1 pixels, 

making them grayscale as well, however this time they come 

already normalized, with values between 0 and 1. The Olivetti 

faces dataset is a good representation of how the models handle 

human faces, without the added complexity of a complicated 

background.  

The next dataset that was implemented was the fashion MNIST 

dataset, which includes 70000 images of 10 distinct classes split 

into 60000 training and 10000 test images. These 10 classes 

include T-shirts, pullovers, dresses, coats. Sandals, shirts, 

sneakers, bags and ankle boots. Each image has a shape of 

28x28x1 pixels with each pixel having a value between 0 and 

255, which were normalize to values between 0 to 1. This dataset 

is good for benchmarking how well the models perform for 

images portraying a large variety of different unique shapes.  
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The second most complex dataset that was implemented is the 

CIFAR10 dataset [18], which includes 60000 images of 10 

distinct classes split into 50000 training and 10000 test images. 

These classes include airplanes, automobiles, birds, cats, deer, 

dogs, frogs, horses, ships and trucks. This is one of the hardest 

datasets to train on, because of the huge variety of each of the 

classes as well as the fact that the images are RGB, therefore it is 

expected for the results to be less accurate than the other datasets. 

The shape of the images is 64x64x3 pixels, with each RGB 

channel having values between 0 to 255, which were all 

normalized to values between 0 and 1. The last and definitely the 

biggest dataset implemented was the CelebA dataset [19], which 

contains more than 200000 high quality celebrity images each 

with a shape of 178×218x3 pixels. Needless to say, this is a huge 

step-up in computing complexity and for this reason a sample of 

15000 images were taken with a smaller reshaped size of 

64x64x3 pixels. Each image was also normalized to have values 

between 0 and 1 for each RGB channel instead of 0-255. Sadly, 

this is the only dataset for which the labels were not 

implemented, because the images were loaded from a mounted 

google drive folder containing the stored images, which doesn’t 

include image labels. 

INITIAL AUTOENCODER 

I order to produce the latent space vectors a convolutional 

autoencoder was trained to recreate the initial datasets as closely 

as possible. A great effort was made for the computed posterior 

to be as good as it can get before continuing to the 

augmentations. A big factor to consider is the size of the latent 

space vectors generated, since that plays a major role on the 

quality of the reconstructions. To demonstrate this an AE was 

trained on the MNIST digits dataset for different latent space 

sizes, namely 25, 100 and 490. The following results are ordered 

by rows, where the first row is the test set followed by 

recreations of the test set with a latent space vectors of size 25, 

100 and 490 respectively: 

The interesting thing is that the difference between recreations 

with latent space vectors of size 100 and 490 is not that big, 

which is very useful when trying to run complex models in 

reasonable time. For this reason, the initial Autoencoders have a 

bottleneck of 100. The AE is modeled in two parts, namely the 

encoder and decoder. The encoder is always set to reduce the 

shape of the input to a vector with earlier specified shape of 100, 

which is accomplished by taking advantage of the reduction of 

the image size and its transformation to a feature map as the 

input passes through the convolutional layers. This is illustrated 

in the architecture of the autoencoder. It is to be noted that a 

slightly different architecture was implemented to account for the 

larger input shapes of the Olivetti faces, CIFAR10 and CelebA 

datasets, as compared to those of the MNIST digits and fashion 

MNIST datasets. The architectures for the encoders are as 

follows:  

 
The encoders of the Olivetti and MNIST datasets, 

 
 

 The encoders of the CIfar10 and CelebA datasets 
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Each of the Convolutional layers has is a 3x3 kernel with a stride 

of 2 and a ReLu activation. Each of the MaxPooling layers have 

a 2x2 kernel with padding to preserve the shape in the output. 

The last Dense layer of the autoencoders have a sigmoid 

activation. The reason for this is to make the input for the models 

in the latter half of this paper have values between 0 and 1, which 

greatly benefits the accuracy of those models. A hyperbolic 

tangent activation was also experimented with for the last layer. 

This greatly reduced the accuracy of the initial autoencoder, 

defeating the whole purpose.  

The second half of the initial AE is the decoder. The decoder 

implements Transposed Convolutional layers that reverse the 

standard convolution by dimensions only. Alongside Up-

sampling layers, which are simple layers with no weights that 

double the dimensions of input, the layers of the decoder have 

the task to restore the initial shape of the images. Like the 

encoder the shape of the decoder varies between datasets in a 

similar manner. The architectures of the decoders are as follows: 

The decoders of the MNIST and Olivetti datasets 

 

 

The decoders of the CIfar10 and CelebA datasets 

In the decoder all the Up-sampling layers have a kernel size of 

2x2 and all the Transpose Convolutional layers have a kernel size 

of 3x3 with padding and a Sigmoid activation. This is because 

the last Dense layer of the encoder has a Sigmoid activation and 

setting them up like this produced the best results. The last 

Convolutional layer of the decoder has a filter with the number 

of channels of the initial images, 1 for grayscale images and 3 for 

RGB ones. The reconstruction loss function of choice was Mean 

Squared Error. As opposed to Binary Cross entropy, which is 

often the default choice for AEs, optimizing for MSE means the 

generated output intensities are symmetrically close to the input 

intensities. Cross entropy on the other hand is asymmetrical, 

meaning that values far away from the true 𝑦 will get penalized 

more harshly than with MSE. The Adam optimizer [7] was 

chosen for the initial AE 

EVALUATING RECONSTRUCTIONS OF IMAGES 

In order to be able to draw conclusions on the quality of results 

produced by generative models of any kind a metric that 

encompasses variability, creativity and similarity is needed. 

Mean Squared Error, Cross entropy and Euclidian Distance 

portray evaluate recreations only by the pixel difference between 
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actual image and reconstruction, failing to account for the fact 

that two images may be very similar in concept and shapes, yet 

very different numerically. For the purpose different versions of 

the Fréchet Distance were implemented for different generative 

models with the Fréchet Inception Distance (FID) [4],[10] being 

the most popular and widely used. Implementing the FID 

includes resizing, then computing embeddings of the two image 

datasets to be evaluated using the InceptionV3 model, then 

computing the Fréchet Distance of those two embeddings [12]. 

The FID was calculated for all models listed in this research, 

however there are some shortcomings to the FID. Firstly, it uses 

a pre-trained Inception model, which may not capture all 

features, resulting in a higher FID score. Secondly, the FID score 

is computed using limited statistics like the mean and covariance, 

which can result in two sets of images which look nothing alike 

to have very similar FID scores overall. And last, but not least, it 

can be computationally heavy, since a large sample of images is 

recommended, as well as the fact that the Inception model is 

trained on high quality images of 229x229, which can increase 

complexity for images much smaller like the MNIST dataset. 

VAE-GAN 

The VAE-GAN was the first model to be implemented on the 

learned posterior of the initial AE. The VAE-GAN was built 

from the ground up using TensorFlow. Because the inputs are not 

images, Dense layers were used for the encoder, decoder and 

discriminator of the model. Since a constant shape of 100 was 

decided for the latent space vectors for each dataset, the same 

VAE-GAN model was implemented for all datasets. The 

architectures for the encoder, decoder and discriminator 

respectively are presented as follows: 

 

The generator (VAE) uses a Gaussian prior to estimate its 

posterior distribution, which is indicated as Sampling in the 

architecture displayed above. Leaky ReLu activations with an 

alpha of 0.2 are spread out throughout encoder, decoder and 

discriminator parts of the model, because those are the 

activations used in the literature as well. The last Dense layer of 

the generator (VAE) has a Hyperbolic Tangent activation, while 

the last Dense layer of the discriminator has a Sigmoid layer that 

predicts if the recreated image batches are indistinguishable from 

the original ones or not. The model trains only the generator, as 

per any model with an adversarial nature leaves the discriminator 

untrained. Random batches were also manually implemented for 

each epoch, which implies that a large number of epochs need to 

be completed in order to make sure all input data passes through 

the model. The generator uses a Binary Cross Entropy loss to 

optimize its weights, while the discriminator uses a Mean 

Squared Error loss. To evaluate this model the FID was 

computed between the decoded recreations of the test sample and 

the actual test sample, as well as between a decoded random 

sample generated from the model and the training sample. 

SUM-PRODUCT NETWORK 

In the context of this project the Sum-Product Network should 

first model the joint probability distribution of our input 𝑋, 

namely the latent space vectors. We then need to sample from 

our learnt probability distributions, which entails trying to find 

the Most Probable Explanation for the distribution, in terms of all 

input variables 𝑋𝑖. Most of the time for this project was spent on 

trying to implement this specific SPN. Firstly, an implementation 

was attempted using the libspn library [15], which failed, 

because it uses Tensorflow1.x in its base code. This meant that in 

order to use libspn the whole project needed to be converted for 

an older version of TensorFlow, which when tried produced sub-

optimal results for some of the models because of the way they 

were implemented. Secondly, a very serios attempt was made to 

implement the desired SPN using the libspn-keras library [16]. 

Documentation for this library is sparce at best, although there 

were examples of sampling using a Convolutional SPN, which 

should imply that it is also possible to sample from a non-

convolutional SPN. That ended up not being the case, however. 

It was possible to learn the joint probabilities of the latent space 

vector using a loss of NegativeLogJoint and a 

OnlineExpectationMaximization optimizer, both provided by the 

library. The problem was the sampling. Because of the way the 

libspn-keras library is currently set-up it favors Convolutional 

SPNs which work differently than the standard SPN and sadly 

the sampling did not work for our trained SPN, even after 

following the sampling example provided. Lastly, an 

implementation of the desired SPN was possible using the 

SPFlow library [14]. The SPFlow library is able to learn a 

random structure SPN [6] given a specified 𝑋 vector, in this case 

the latent space vector. In this case every latent variable from the 

vector is modeled as a Gaussian. Given the class label 𝑌 of each 

input vector 𝑋, an SPN is trained to parametrically learn the joint 

distribution of the input variables 𝑋𝑖. This is done in order to be 

able to get samples with specific sets of classes, as well as the 

ability to create samples for each class separately. After the SPN 

is trained on each training sample of the dataset, 10 sets of 

samples with an identical class distribution to the test sample are 

computed. Each of the sample sets is first decoded through the 

original AE into images, then the FID between the recreated 

images from the sample set and the original test sample is 

computed. The sample set with the best FID score is returned 

from the network. This is done for two reasons. One, samples 

from an SPN can vary greatly in quality and this way of 

evaluating the sample sets reduces that variability. Two, and 

more importantly, is because of the shortcomings of the SPFlow 

library. The SPFlow library is slightly outdated, since it was 

developed for TensorFlow1.x, therefore some of the functionality 
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is also slightly outdated. One example is that it is impossible to 

optimize the weights of an SPN using TensorFlow, since the 

command uses functions of TensorFlow which are deprecated. 

Then there is the fact that the amount of time it takes to train a 

random SPN with input of 60000 samples of 100 latent space 

variables takes around 2 hours in Google Colab, which really 

stresses the importance of sampling repeatedly in order to 

produce the best results possible since the alternative entails 

many wasted hours. It is also to be noted that out of all of the 

datasets a different implementation of the SPN was implemented 

for the CelebA dataset, because of the lack of labels. Instead of 

the SPN learning the joint probability of each class, the SPN for 

this dataset learns a parametric SPN using just the latent vectors. 

Sampling is, therefore, completely random.  

REALNVP  

The RealNVP normalizing flow model was the last one to be 

implemented, therefore the least amount of time was spent on 

optimizing it. It was implemented from scratch from a keras 

example [13]. Still it is a far simpler model to implement, 

although the samples generated from it were random. The FID 

score will probably be affected by this, due to possible uneven 

distributions of classes between the test data and the generated 

samples 

IV. RESULTS 

After running all of 4 models on all 5 datasets the FID scores 

were computed, showed in the following table: 

 
Taking only into account the FID scores presented the initial AE 

is the model which recreates the initial test images more 

accurately than with the models that augment the latent space. 

This is to be expected, since the recreated latent space images 

cannot be better than the images produced by the original latent 

space. There are two outliers, however, namely the images 

decoded from the augmented latent space vectors of the SPN for 

the Olivetti faces dataset and those of the RealNVP for the 

CIFAR10 model. It is to be noted that the SPN-augmented latent 

variables generally produce good results according to the FID 

score and are most ofthen in second place for each dataset. The 

Normalizing flow also performs well in most cases. When 

checking to see what the recreations look like, however, the 

results don’t seem as promising. Following are the recreations for 

all models and datasets, starting from the initial test images on 

the first row, followed by the recreations from the initial AE, the 

VAE-GAN, the SPN and the RealNVP in that order. It is to be 

noted that the SPN and RealNVP produce random samples as 

opposed to recreations of specific images and therefore should 

not be compared like strict recreations of the initial image 

column-wise. 
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As it is clearly shown by the sample recreations the VAE-GAN 

is the model that produces the images to the testing set from the 

augmentation models. This is predictable, given that the VAE-

GAN has the task of recreating the latent vectors as close as 

possible and even though it does learn a latent representation as 

well it doesn’t sample from it. That being said, the most 

interesting results come from the SPN and the RealNVP 

normalizing flow, since they produce the most varied and unique 

results. The SPN, given the labels of the images, is able to draw 

samples that are in most cases very similar and representative of 

the specific class. The recreations of the CIFAR10 dataset are the 

worst overall, which can be attributed to the very complex nature 

of the dataset itself. The SPN and RealNVP perform very 

similarly for this dataset. This could be attributed to the large 

variability of each class in the dataset, as well as the previously 

discussed complexity which is an obstacle for the initial AE and 

again, if the initial AE has a low accuracy, the augmentation 

models will follow suite. Lastly the CelebA recreations are 

surprisingly good, however the SPN suffers greatly from the lack 

of class labels and ends up producing similar results to the 

RealNVP model, which also cannot take advantage of class 

labels and  both models end up generalizing to most-probable 

samples. For this reason, they have a bigger FID score as overall 

the samples they produce are closer to the average.  

V. DISCUSSION / FUTURE WORK 

 Given the results presented in the research, evidence suggests 

that it is possible to improve the recreations of generative models 

by implementing augmentation models that take a latent space 

representation as input in order to produce unique image 

recreations. By learning the posterior distribution of an encoding 

wider control is given over the way these encodings are 

generated and therefore a possibility to learn the prior of the 

initial generative model better is also a given. And while I wish 

that the results presented are of higher quality, given the fact that 

the SPN and RealMVP models are not well optimized, they still 

show great promise of modeling the prior of the datasets, even in 

their unoptimized states. Again a huge amount of time was spent 

on trying to implement a more proper version of the SPN model 

and I truly believe that if successful an SPN model can perform 

this task of augmenting a latent space with high fidelity and the 

ability produce class specific output. Meanwhile, Normal flows 

have even more potential to be amazing augmentation flows 

since they can learn the true distribution of the latent space and I 

truly regret not spending the time I wasted on libspn-keras, 

researching all types of Normalizing flows that research is being 

done on at the moment. RealNVM is not the most recent 

Normalizing flow and I believe that, if constructed correctly, a 

Normalizing flow model can produce the best results for this 

research and if more time was given this would become the focus 

of this research. Lastly the VAE-GAN, while good at recreating 

input has the least amount of potential for learning the prior of 

the initial encoding. That being said, a possible continuation 

would be learning a VAE_GAN to distinguish features of the 

data in the encoding using class labels. Because of its great 

reconstruction, if trained properly, it would be possible to 

recognize which parts of the latent space generate specific 

features. 
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