
 Eindhoven University of Technology

BACHELOR

Augmenting the latent space of generative models

Kermedchiev, Anastas M.

Award date:
2022

Awarding institution:
Tilburg University

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/10e429ab-df03-4697-8fa5-8aaa80ee2d21

 1

Augmenting the latent space of generative models

Anastas Kermedchiev 1282042

Data science, TU/e, Tilburg university

Bachelor end project report

Abstract- Autoencoders (AE) produce their results by computing

an encoding of the underlining latent features of the data, in order

to be able to recreate the original dataset. Ideally these encodings

learn the most important underlining features of the data and

output them in a latent space vector, describing each of the

variables by their features. In this project a great effort was made

to experiment and augment these encodings, in order to produce

more unique and varied results than the original recreation of the

AE. For this purpose, an Autoencoder was trained on 5 separate

datasets, the latent space vectors of which have been used to train

3 different generative algorithms which attempt to recreate, and

augment said latent space vectors. These algorithms include

VAE-GANs, Sum-Product Networks and RealNVP Normalizing

Flows. These augmentations are conducted in order to produce

more unique and varied recreations and to check if it is feasible,

beneficial or even possible to do so.

Keywords- latent space, autoencoders, sum-product networks,

normalizing flows, VAE-GANs, generative models

I. INTRODUCTION

Generative models are statistical neural networks that learn a

feature space of a dataset in order to be able to sample from it

and output similar yet unique variables. These models are mostly

applied to images, although they can be used in other fields as

well. There are different types of generative models, such as ones

that learn a probabilistic distribution, such as Sum-Product

Networks (SPNs), Variational Autoencoders (VAEs),

Normalizing flows (NFs), while others learn feature space

vectors in a deep dense network, such as regular Autoencoders

(AE) and General Adversarial Networks (GANs). Then there are

models which combine both methods like the VAE-GAN

network. All three types have one thing in common, which is

they all compute a latent space representation that describes the

features of the data given, in order to sample from it and produce

unique recreations. This latent space is called a posterior

estimation. It refers to how likely the latent variable is given the

input, hence in training we want to learn a good posterior

approximation, which explains the input dataset. The posterior is

denoted by the probability of a latent variable 𝑧, given our input

𝑥 variable – 𝑝(𝑧|𝑥), which is approximated by the model. The

prior on the other hand represents how the latent variables 𝑧 are

represented without conditioning on the input 𝑥, hence 𝑝(𝑧). In

this project we would like to train an initial model that learns the

posterior estimation of a dataset of images, then approximate and

sample the distribution of this posterior estimation using

generative models. This way we are altering the prior of the

initial model to create new varying results. This method could

also possibly be used to learn the prior of a generative model that

doesn’t define it’s prior explicitly.

II. BACKGROUND

Autoencoders and Variational Autoencoders are a widely used

unsupervised learning technique in which neural networks are

used to learn a feature representation (latent space) of the input in

order to recreate said input as closely as possible [1]. AEs and

VAEs are composed of two neural network models, the encoder

and the decoder. The encoder reduces the initial input’s

dimensions and learns a latent space, or a feature vector, for each

of the variables in the sample input. The decoder on the other

hand has the task of recreating the input data that was fed to the

encoder as closely as possible, given the computed latent space.

This latent space has special properties, like the fact that if points

close to each other in the latent space are drawn, they will

produce very similar results after going through the decoder. This

is called the continuity property. Another property of the latent

space is that every point in it produces a meaningful output after

it has been decoded. This is called the completeness property.

These properties are true for both AEs and VAEs. The

differences between the two, however, lie in the way the latent

space is computed and in their loss functions. AEs encodes the

input data into a latent space vector, while VAEs encode the

input data into a Gaussian distribution by computing mean and

variance vectors. The loss of an AE I simply a reconstruction

loss, which measures the difference between the initial input and

the generated output. The loss of a VAE is the reconstruction loss

combined with a KL-divergence term, which encourages the

estimated posterior distribution 𝑞𝜙(𝑧|𝑥) to match the prior

distribution 𝑝(𝑧) for each z, which acts as a regularizer in

training.

Generative Adversarial networks are probably the most popular

generative models, because of their impressive and creative

recreations as well as the recent popularization of deep fakes [5].

It is a general dense deep network that is composed of two

separate models, those being the generator and the discriminator.

The generator model’s job is the same as an Autoencoder’s one,

which is to capture the distribution of the data and to recreate the

input data as closely as possible, however it achieves this in a

different way as opposed to the AE. The input to the generator is

not the input dataset, instead it is random noise vector sampled

from a Gaussian distribution. The generator then learns the input

data distribution with the help of the discriminator. The

discriminator is a classifier that predicts whether an image is a

generated one or a recreation of one. If the discriminator is not

able to distinguish between the real and generated images, then

the generator has learned the features of the input and can

recreate them well. The two models therefore play a complicated

minimax game as they learn the input. A powerful variation of

 2

the GAN model is the VAE-GAN [3]. By replacing the standard

generator of a GAN with an Autoencoder learned representations

by the discriminator can be used for the VAE reconstruction,

replacing element-wise errors with feature-wise errors to better

capture the distribution. This model can also learn embeddings of

high-level abstract visual features, which can be modified.

Sum-Product Networks [2] are Directed Acyclic Graphs that

represent complex probability distributions in a compact way.

SPNs consist of the input variables as input at the leaves, sums

and products as nodes and weighted edges. The product node

simply takes the product of the nodes preceding it, while the sum

node takes the sum of the nodes preceding it multiplied by the

weights of each edge. The interesting part is that the leaves are

actually probability densities and taking the product of two

densities is the same as computing the factorization between

them, while taking the sum of two densities multiplied by their

respective weights is the same as taking the mixture of the two.

This means that SPNs can describe very complicated

distributions, very cheaply and efficiently. In order for SPNs to

be valid they have to obey three rules. The first one is

completeness, which implies that each sum node has children

with the same scope. The second one is consistency, implying

that no variable appears negated in one child of a product node

and non-negated in another. The third and last one is

decomposability, implying that the children of a product node

cannot have the same scope. If these conditions are met the SPN

is considered valid and its root note (distribution of the input

variables) can be computed recursively. Training an SPN is

similar to training any neural network, using gradients or

Expectation Minimization on batches. Once an SPN has been

trained it can also be sampled from by computing the Most

Probable Explanation for all input variables, given a random

draw from the density distribution at the root node.

Normalizing flow models are models that actually learn the true

distribution of the input data [8][11]. Normalizing flows are very

simple bijections, where invertible flow functions 𝑓(𝑥) are

trained to map the complicated input distribution 𝑝𝑥(𝑥) to a pre-

determined base measure 𝑝𝑧(𝑧), usually a Gaussian distribution.

The flow functions need to be invertible and differentiable, in

order to make it possible to train and sample from the base

measure using said functions. Training of the flow functions is

done by maximum (log-)likelihood. A linear transformation can

be a flow function, however linear flow functions are

inexpressive, and the determinant could be 𝑂(𝑑3) and if d is

large, like with pixels of images for example, this becomes very

expensive to compute. For this reason, Coupling flows are

preferred in generative normalizing flows. A Coupling flow is a

general approach to construct non-linear flow functions, where

the parameters are split into two disjoint subsets and invertible

differential transformation is applied to only one of them. By

changing the coupling splits and stacking a number of coupling

flows one after the another we ensure full expressiveness. There

are different coupling transformations, although the most

significant one was first introduced in the RealNVP paper [9] and

that is the affine transformation. With this transformation it is

possible to learn the true distribution of complicated image

datasets computationally inexpensively. Backpropagation is used

to train these models which also makes them easier to implement

than other generative models.

III. METHODOLOGY

DATASETS

For the first half of the project the MNIST digits [17] dataset was

used to get familiar with the techniques of generative models.

This dataset contains handwritten numbers in the range of 0-9 in

grayscale. It contains 70000 images with a 60000/10000 split for

training and testing. The images have a shape of 28x28x1 pixels,

each pixel having a value between 0 and 255, which is a black

and white scale with 0 as black and 255 as white. This scale was

normalized by dividing each pixel by 255, which produces float

values between 0 and 1. The reason for choosing this dataset for

the start of this project is because of its complexity, which makes

it easier to train on and get quick results from simple tweaks in

the models. In the second half of the project the models presented

were tested on more complex datasets to see if they can handle

variation bigger than the one present in the MNIST numbers

dataset.

The first more complex dataset was the Olivetti faces, which

includes ten different pictures of 40 distinct subjects with varying

lighting, facial expressions and facial details, summing up to 400

unique pictures. Each image has a shape of 64x64x1 pixels,

making them grayscale as well, however this time they come

already normalized, with values between 0 and 1. The Olivetti

faces dataset is a good representation of how the models handle

human faces, without the added complexity of a complicated

background.

The next dataset that was implemented was the fashion MNIST

dataset, which includes 70000 images of 10 distinct classes split

into 60000 training and 10000 test images. These 10 classes

include T-shirts, pullovers, dresses, coats. Sandals, shirts,

sneakers, bags and ankle boots. Each image has a shape of

28x28x1 pixels with each pixel having a value between 0 and

255, which were normalize to values between 0 to 1. This dataset

is good for benchmarking how well the models perform for

images portraying a large variety of different unique shapes.

 3

The second most complex dataset that was implemented is the

CIFAR10 dataset [18], which includes 60000 images of 10

distinct classes split into 50000 training and 10000 test images.

These classes include airplanes, automobiles, birds, cats, deer,

dogs, frogs, horses, ships and trucks. This is one of the hardest

datasets to train on, because of the huge variety of each of the

classes as well as the fact that the images are RGB, therefore it is

expected for the results to be less accurate than the other datasets.

The shape of the images is 64x64x3 pixels, with each RGB

channel having values between 0 to 255, which were all

normalized to values between 0 and 1. The last and definitely the

biggest dataset implemented was the CelebA dataset [19], which

contains more than 200000 high quality celebrity images each

with a shape of 178×218x3 pixels. Needless to say, this is a huge

step-up in computing complexity and for this reason a sample of

15000 images were taken with a smaller reshaped size of

64x64x3 pixels. Each image was also normalized to have values

between 0 and 1 for each RGB channel instead of 0-255. Sadly,

this is the only dataset for which the labels were not

implemented, because the images were loaded from a mounted

google drive folder containing the stored images, which doesn’t

include image labels.

INITIAL AUTOENCODER

I order to produce the latent space vectors a convolutional

autoencoder was trained to recreate the initial datasets as closely

as possible. A great effort was made for the computed posterior

to be as good as it can get before continuing to the

augmentations. A big factor to consider is the size of the latent

space vectors generated, since that plays a major role on the

quality of the reconstructions. To demonstrate this an AE was

trained on the MNIST digits dataset for different latent space

sizes, namely 25, 100 and 490. The following results are ordered

by rows, where the first row is the test set followed by

recreations of the test set with a latent space vectors of size 25,

100 and 490 respectively:

The interesting thing is that the difference between recreations

with latent space vectors of size 100 and 490 is not that big,

which is very useful when trying to run complex models in

reasonable time. For this reason, the initial Autoencoders have a

bottleneck of 100. The AE is modeled in two parts, namely the

encoder and decoder. The encoder is always set to reduce the

shape of the input to a vector with earlier specified shape of 100,

which is accomplished by taking advantage of the reduction of

the image size and its transformation to a feature map as the

input passes through the convolutional layers. This is illustrated

in the architecture of the autoencoder. It is to be noted that a

slightly different architecture was implemented to account for the

larger input shapes of the Olivetti faces, CIFAR10 and CelebA

datasets, as compared to those of the MNIST digits and fashion

MNIST datasets. The architectures for the encoders are as

follows:

The encoders of the Olivetti and MNIST datasets,

 The encoders of the CIfar10 and CelebA datasets

 4

Each of the Convolutional layers has is a 3x3 kernel with a stride

of 2 and a ReLu activation. Each of the MaxPooling layers have

a 2x2 kernel with padding to preserve the shape in the output.

The last Dense layer of the autoencoders have a sigmoid

activation. The reason for this is to make the input for the models

in the latter half of this paper have values between 0 and 1, which

greatly benefits the accuracy of those models. A hyperbolic

tangent activation was also experimented with for the last layer.

This greatly reduced the accuracy of the initial autoencoder,

defeating the whole purpose.

The second half of the initial AE is the decoder. The decoder

implements Transposed Convolutional layers that reverse the

standard convolution by dimensions only. Alongside Up-

sampling layers, which are simple layers with no weights that

double the dimensions of input, the layers of the decoder have

the task to restore the initial shape of the images. Like the

encoder the shape of the decoder varies between datasets in a

similar manner. The architectures of the decoders are as follows:

The decoders of the MNIST and Olivetti datasets

The decoders of the CIfar10 and CelebA datasets

In the decoder all the Up-sampling layers have a kernel size of

2x2 and all the Transpose Convolutional layers have a kernel size

of 3x3 with padding and a Sigmoid activation. This is because

the last Dense layer of the encoder has a Sigmoid activation and

setting them up like this produced the best results. The last

Convolutional layer of the decoder has a filter with the number

of channels of the initial images, 1 for grayscale images and 3 for

RGB ones. The reconstruction loss function of choice was Mean

Squared Error. As opposed to Binary Cross entropy, which is

often the default choice for AEs, optimizing for MSE means the

generated output intensities are symmetrically close to the input

intensities. Cross entropy on the other hand is asymmetrical,

meaning that values far away from the true 𝑦 will get penalized

more harshly than with MSE. The Adam optimizer [7] was

chosen for the initial AE

EVALUATING RECONSTRUCTIONS OF IMAGES

In order to be able to draw conclusions on the quality of results

produced by generative models of any kind a metric that

encompasses variability, creativity and similarity is needed.

Mean Squared Error, Cross entropy and Euclidian Distance

portray evaluate recreations only by the pixel difference between

 5

actual image and reconstruction, failing to account for the fact

that two images may be very similar in concept and shapes, yet

very different numerically. For the purpose different versions of

the Fréchet Distance were implemented for different generative

models with the Fréchet Inception Distance (FID) [4],[10] being

the most popular and widely used. Implementing the FID

includes resizing, then computing embeddings of the two image

datasets to be evaluated using the InceptionV3 model, then

computing the Fréchet Distance of those two embeddings [12].

The FID was calculated for all models listed in this research,

however there are some shortcomings to the FID. Firstly, it uses

a pre-trained Inception model, which may not capture all

features, resulting in a higher FID score. Secondly, the FID score

is computed using limited statistics like the mean and covariance,

which can result in two sets of images which look nothing alike

to have very similar FID scores overall. And last, but not least, it

can be computationally heavy, since a large sample of images is

recommended, as well as the fact that the Inception model is

trained on high quality images of 229x229, which can increase

complexity for images much smaller like the MNIST dataset.

VAE-GAN

The VAE-GAN was the first model to be implemented on the

learned posterior of the initial AE. The VAE-GAN was built

from the ground up using TensorFlow. Because the inputs are not

images, Dense layers were used for the encoder, decoder and

discriminator of the model. Since a constant shape of 100 was

decided for the latent space vectors for each dataset, the same

VAE-GAN model was implemented for all datasets. The

architectures for the encoder, decoder and discriminator

respectively are presented as follows:

The generator (VAE) uses a Gaussian prior to estimate its

posterior distribution, which is indicated as Sampling in the

architecture displayed above. Leaky ReLu activations with an

alpha of 0.2 are spread out throughout encoder, decoder and

discriminator parts of the model, because those are the

activations used in the literature as well. The last Dense layer of

the generator (VAE) has a Hyperbolic Tangent activation, while

the last Dense layer of the discriminator has a Sigmoid layer that

predicts if the recreated image batches are indistinguishable from

the original ones or not. The model trains only the generator, as

per any model with an adversarial nature leaves the discriminator

untrained. Random batches were also manually implemented for

each epoch, which implies that a large number of epochs need to

be completed in order to make sure all input data passes through

the model. The generator uses a Binary Cross Entropy loss to

optimize its weights, while the discriminator uses a Mean

Squared Error loss. To evaluate this model the FID was

computed between the decoded recreations of the test sample and

the actual test sample, as well as between a decoded random

sample generated from the model and the training sample.

SUM-PRODUCT NETWORK

In the context of this project the Sum-Product Network should

first model the joint probability distribution of our input 𝑋,

namely the latent space vectors. We then need to sample from

our learnt probability distributions, which entails trying to find

the Most Probable Explanation for the distribution, in terms of all

input variables 𝑋𝑖. Most of the time for this project was spent on

trying to implement this specific SPN. Firstly, an implementation

was attempted using the libspn library [15], which failed,

because it uses Tensorflow1.x in its base code. This meant that in

order to use libspn the whole project needed to be converted for

an older version of TensorFlow, which when tried produced sub-

optimal results for some of the models because of the way they

were implemented. Secondly, a very serios attempt was made to

implement the desired SPN using the libspn-keras library [16].

Documentation for this library is sparce at best, although there

were examples of sampling using a Convolutional SPN, which

should imply that it is also possible to sample from a non-

convolutional SPN. That ended up not being the case, however.

It was possible to learn the joint probabilities of the latent space

vector using a loss of NegativeLogJoint and a

OnlineExpectationMaximization optimizer, both provided by the

library. The problem was the sampling. Because of the way the

libspn-keras library is currently set-up it favors Convolutional

SPNs which work differently than the standard SPN and sadly

the sampling did not work for our trained SPN, even after

following the sampling example provided. Lastly, an

implementation of the desired SPN was possible using the

SPFlow library [14]. The SPFlow library is able to learn a

random structure SPN [6] given a specified 𝑋 vector, in this case

the latent space vector. In this case every latent variable from the

vector is modeled as a Gaussian. Given the class label 𝑌 of each

input vector 𝑋, an SPN is trained to parametrically learn the joint

distribution of the input variables 𝑋𝑖. This is done in order to be

able to get samples with specific sets of classes, as well as the

ability to create samples for each class separately. After the SPN

is trained on each training sample of the dataset, 10 sets of

samples with an identical class distribution to the test sample are

computed. Each of the sample sets is first decoded through the

original AE into images, then the FID between the recreated

images from the sample set and the original test sample is

computed. The sample set with the best FID score is returned

from the network. This is done for two reasons. One, samples

from an SPN can vary greatly in quality and this way of

evaluating the sample sets reduces that variability. Two, and

more importantly, is because of the shortcomings of the SPFlow

library. The SPFlow library is slightly outdated, since it was

developed for TensorFlow1.x, therefore some of the functionality

 6

is also slightly outdated. One example is that it is impossible to

optimize the weights of an SPN using TensorFlow, since the

command uses functions of TensorFlow which are deprecated.

Then there is the fact that the amount of time it takes to train a

random SPN with input of 60000 samples of 100 latent space

variables takes around 2 hours in Google Colab, which really

stresses the importance of sampling repeatedly in order to

produce the best results possible since the alternative entails

many wasted hours. It is also to be noted that out of all of the

datasets a different implementation of the SPN was implemented

for the CelebA dataset, because of the lack of labels. Instead of

the SPN learning the joint probability of each class, the SPN for

this dataset learns a parametric SPN using just the latent vectors.

Sampling is, therefore, completely random.

REALNVP

The RealNVP normalizing flow model was the last one to be

implemented, therefore the least amount of time was spent on

optimizing it. It was implemented from scratch from a keras

example [13]. Still it is a far simpler model to implement,

although the samples generated from it were random. The FID

score will probably be affected by this, due to possible uneven

distributions of classes between the test data and the generated

samples

IV. RESULTS

After running all of 4 models on all 5 datasets the FID scores

were computed, showed in the following table:

Taking only into account the FID scores presented the initial AE

is the model which recreates the initial test images more

accurately than with the models that augment the latent space.

This is to be expected, since the recreated latent space images

cannot be better than the images produced by the original latent

space. There are two outliers, however, namely the images

decoded from the augmented latent space vectors of the SPN for

the Olivetti faces dataset and those of the RealNVP for the

CIFAR10 model. It is to be noted that the SPN-augmented latent

variables generally produce good results according to the FID

score and are most ofthen in second place for each dataset. The

Normalizing flow also performs well in most cases. When

checking to see what the recreations look like, however, the

results don’t seem as promising. Following are the recreations for

all models and datasets, starting from the initial test images on

the first row, followed by the recreations from the initial AE, the

VAE-GAN, the SPN and the RealNVP in that order. It is to be

noted that the SPN and RealNVP produce random samples as

opposed to recreations of specific images and therefore should

not be compared like strict recreations of the initial image

column-wise.

 7

As it is clearly shown by the sample recreations the VAE-GAN

is the model that produces the images to the testing set from the

augmentation models. This is predictable, given that the VAE-

GAN has the task of recreating the latent vectors as close as

possible and even though it does learn a latent representation as

well it doesn’t sample from it. That being said, the most

interesting results come from the SPN and the RealNVP

normalizing flow, since they produce the most varied and unique

results. The SPN, given the labels of the images, is able to draw

samples that are in most cases very similar and representative of

the specific class. The recreations of the CIFAR10 dataset are the

worst overall, which can be attributed to the very complex nature

of the dataset itself. The SPN and RealNVP perform very

similarly for this dataset. This could be attributed to the large

variability of each class in the dataset, as well as the previously

discussed complexity which is an obstacle for the initial AE and

again, if the initial AE has a low accuracy, the augmentation

models will follow suite. Lastly the CelebA recreations are

surprisingly good, however the SPN suffers greatly from the lack

of class labels and ends up producing similar results to the

RealNVP model, which also cannot take advantage of class

labels and both models end up generalizing to most-probable

samples. For this reason, they have a bigger FID score as overall

the samples they produce are closer to the average.

V. DISCUSSION / FUTURE WORK

 Given the results presented in the research, evidence suggests

that it is possible to improve the recreations of generative models

by implementing augmentation models that take a latent space

representation as input in order to produce unique image

recreations. By learning the posterior distribution of an encoding

wider control is given over the way these encodings are

generated and therefore a possibility to learn the prior of the

initial generative model better is also a given. And while I wish

that the results presented are of higher quality, given the fact that

the SPN and RealMVP models are not well optimized, they still

show great promise of modeling the prior of the datasets, even in

their unoptimized states. Again a huge amount of time was spent

on trying to implement a more proper version of the SPN model

and I truly believe that if successful an SPN model can perform

this task of augmenting a latent space with high fidelity and the

ability produce class specific output. Meanwhile, Normal flows

have even more potential to be amazing augmentation flows

since they can learn the true distribution of the latent space and I

truly regret not spending the time I wasted on libspn-keras,

researching all types of Normalizing flows that research is being

done on at the moment. RealNVM is not the most recent

Normalizing flow and I believe that, if constructed correctly, a

Normalizing flow model can produce the best results for this

research and if more time was given this would become the focus

of this research. Lastly the VAE-GAN, while good at recreating

input has the least amount of potential for learning the prior of

the initial encoding. That being said, a possible continuation

would be learning a VAE_GAN to distinguish features of the

data in the encoding using class labels. Because of its great

reconstruction, if trained properly, it would be possible to

recognize which parts of the latent space generate specific

features.

REFERENCES

[1] Diederik P Kingma and Max Welling 2014, “Auto-Encoding Variational
Bayes” https://arxiv.org/abs/1312.6114

[2] Hoifung Poon and Pedro Domingos,” Sum-Product Networks: A New Deep
Architecture” University of Washington Seattle, WA 98195, USA

[3] Anders Boesen Lindbo Larsen and Søren Kaae Sønderby and Hugo
Larochelle and Ole Winther, Autoencoding beyond pixels using a learned
similarity metric, 2016, https://arxiv.org/abs/1512.09300

[4] Alexander Mathiasen and Frederik Hvilshøj, Backpropagating through
Fr'echet Inception Distance, 2021

[5] J. Goodfellow and Jean Pouget-Abadie and Mehdi Mirza and Bing Xu and
David Warde-Farley and Sherjil Ozair and Aaron Courville and Yoshua
Bengio, Generative Adversarial Networks. 2014,
https://arxiv.org/abs/1406.2661

[6] Gens, R. & Pedro, D.. (2013). Learning the Structure of Sum-Product
Networks. Proceedings of the 30th International Conference on Machine
Learning, in PMLR 28(3):873-880

[7] Diederik P. Kingma and Jimmy Ba, Adam: A Method for Stochastic
Optimization, 2017, https://arxiv.org/abs/1412.6980

[8] Danilo Jimenez Rezende and Shakir Mohamed, Variational Inference with
Normalizing Flows, 2016, https://arxiv.org/abs/1505.05770

[9] Laurent Dinh and Jascha Sohl-Dickstein and Samy Bengio, Density
estimation using Real NVP, 2017, https://arxiv.org/abs/1605.08803

https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1605.08803

 8

[10] Jean, Neal, Frechet Inception Distance, 2018

[11] Kobyzev_2020, Normalizing Flows: An Introduction and Review of
Current Methods, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Kobyzev, Ivan and Prince, Simon and Brubaker, Marcus, 2020

[12] How to evaluate GANs using Frechet Inception Distance,
https://wandb.ai/ayush-thakur/gan-evaluation/reports/How-to-Evaluate-
GANs-using-Frechet-Inception-Distance-FID---Vmlldzo0MTAxOTI ,
accessed (06/14/2021)

[13] Density estimation using RealNVP, accessed (06/14/2021),
https://keras.io/examples/generative/real_nvp/

[14] SPFlow: An easy and extensible library for Sum-Product Networks,
https://github.com/SPFlow/SPFlow

[15] LibSPN, https://github.com/pronobis/libspn

[16] LibSPN Keras, https://github.com/pronobis/libspn-keras

[17] The MNIST database of hanwritten digits,
http://yann.lecun.com/exdb/mnist/

[18] The CIFAR10 dataset, https://www.cs.toronto.edu/~kriz/cifar.html

[19] Large-scale CelebFaces Attributes (CelebA) Dataset,
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

https://wandb.ai/ayush-thakur/gan-evaluation/reports/How-to-Evaluate-GANs-using-Frechet-Inception-Distance-FID---Vmlldzo0MTAxOTI
https://wandb.ai/ayush-thakur/gan-evaluation/reports/How-to-Evaluate-GANs-using-Frechet-Inception-Distance-FID---Vmlldzo0MTAxOTI
https://keras.io/examples/generative/real_nvp/
https://github.com/SPFlow/SPFlow
https://github.com/pronobis/libspn
https://github.com/pronobis/libspn-keras
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

