
 Eindhoven University of Technology

BACHELOR

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

Loxha, Jona

Award date:
2023

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/19199775-7188-4965-bdf3-d9a986ebd30e

Using Counterfactual
Explanations to Suggest
Fault Mitigation in Smart

Building Operating
Systems

Jona Loxha
j.loxha@student.tue.nl

1453327

Department of Mathematics and Computer Science

Supervisors:
Isel Grau Garcia, TU/e
Zaharah Bukhsh, TU/e
Yll Haziri, KODE Labs

Eindhoven, January 2023

Abstract

Fault Detection and Diagnosis (FDD) is critical for ensuring the smooth operation of complex sys-
tems, such as smart building systems. In this thesis, we explore the use of Machine Learning (ML)
approaches for the purpose of detecting issues within Smart Building Systems. We compare and
evaluate the performance of Supervised and Unsupervised ML methods for Fault Detection, and
examine the suitability of these methods for the given data and purpose. We also investigate the
use of Counterfactual Explanations in the domain of FDD, where the potential benefits and limit-
ations of using Counterfactual Explanations for Fault Mitigation or root cause analysis in Smart
Building Systems are discussed. Overall, the results show that both Supervised and Unsupervised
ML approaches can be effective for Fault Detection in Smart Building Systems, depending on the
specific characteristics of the data and the fault scenarios, while also considering the drawbacks
of each method. We also find that, given an accurate Fault Detection model, Counterfactual Ex-
planations can be useful for developing strategies for Fault Mitigation and possibly identifying the
root cause of an issue. However, for now, human intervention is still necessary in deciding which
suggestions made are most coherent and appropriate.

ii Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

Contents

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 The Problem . 2

1.1.1 Description . 2
1.1.2 Definition . 2

1.2 Scope . 3
1.3 Outline . 3

2 Literature Overview 4

3 Data & Domain Description 6
3.1 Overview . 6
3.2 Obtaining the data . 7

4 Fault Detection Model 10
4.1 Methodology . 10

4.1.1 Evaluation Metrics . 10
4.2 Data Preparation . 12

4.2.1 Data Filtering . 12
4.2.2 Resampling . 12
4.2.3 Feature Engineering . 12
4.2.4 The Main Dataset . 14

4.3 Experimental Setup . 14
4.3.1 Supervised Approach . 14
4.3.2 Unsupervised Approach . 15

4.4 Evaluation & Results . 18

5 Counterfactual Explanations 20
5.1 Approach . 20
5.2 Configuration . 21
5.3 Results . 22

6 Discussion & Conclusions 27
6.1 Summary . 27
6.2 Limitations & Future Work . 28

Bibliography 30

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

iii

CONTENTS CONTENTS

Appendix 31

A More Counterfactual Explanations examples 32

iv Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

List of Figures

3.1 Diagram of an AHU-VAV based system . 6

4.1 AUC score plot of four different models after 5-fold CV. 19

5.1 Suggestions generated and local importance attribution for the Randomized and
Genetic Search methods based on the example on Table 5.1. 24

5.2 Global importance attribution for the Randomized and Genetic Search methods. . 25

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

v

List of Tables

3.1 Obtained points and their descriptive statistics . 8

4.1 Evaluation metrics of the Supervised models’ performance on the test set, sorted
descending by Sensitivity. The scores were rounded to the nearest whole, and the
execution time includes both training and prediction spans. 15

4.2 Evaluation metrics of the Unsupervised models’ performance on the test set, sorted
descending by Sensitivity. The scores were rounded to the nearest whole, and the
execution time includes both training and prediction spans. 17

4.3 Summary of the models’ Sensitivity and Precision after 5-fold CV, sorted by des-
cending Sensitivity scores. The scores are rounded to the nearest whole. 19

5.1 Counterfactual Explanations generated using all the model-agnostic methods for a
random specific data point. 22

A.1 Original instance is labeled as a Fault because of rule no. 1 32
A.2 Original instance is labeled as a Fault because of rule no. 2 33
A.3 Original instance is labeled as a Fault because of rule no. 3 33
A.4 Another example where the original instance falls under rule no. 3 33
A.5 Original instance is labeled as a Fault because of rule no. 4 34

vi Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

Chapter 1

Introduction

Out of the total global energy consumption, 35% is accounted for by the building sector [7]. Seeing
as heating, ventilation, and air conditioning (HVAC) units are estimated to use up to 50% of the
total energy in buildings [24], it is important that issues within these units do not go unnoticed. In
order to address this challenge, building engineers conduct regular machine maintenance check-ups
as a means to prevent any possible faults that may arise throughout the equipment’s life span.
Faults may be in installation mistakes, poor design, discrepancies between desired settings and
actual performance, or general equipment wear which might not only increase energy consumption
but also degrade indoor comfort. Moreover, numerous case studies show that detecting and fixing
HVAC unit flaws may result in considerable energy and comfort savings [27, 20]. Thus, early
detection and identification of faults within a Building Operating System (OS)1 remains a crucial
aspect of the industry.

As manual equipment monitoring continues to pose feasibility and cost challenges, increas-
ingly more building managers are trying to introduce automated Fault Detection and Diagnostics
(FDD) methods into their Building OS. The possibility of automated precautionary detection and
diagnosis of faults in HVAC systems suggests that abrupt failures and gradual equipment degrad-
ation can be addressed quickly, as well as preventative upgrades or maintenance can be scheduled
efficiently [29].

KODE Labs is a company whose mission is to build intuitive, easy to use real estate software
products that enable sustainability, operational efficiencies and comfort. On this note, one of their
main features is FDD. Currently, within their platform, events2 are recognized by an existing
rule-based tool. Rule-based FDD compares measured building performance to a set of relational
rules that describe proper building operation [8]. When one of those rules is violated, an alarm
is triggered and the information related to the event is stored in a database. Rule-based FDD
approaches can be effective when there is a clear understanding of the system and its behavior,
and when the rules are well-defined and accurately capture the characteristics of the system.
However, there exist multiple disadvantages within rule-based systems [8]. First of all, they may
be limited in their ability to detect and diagnose complex or unexpected failures, leading to an
increased number of false alarms or unnoticed issues. Furthermore, they may require significant
effort to develop and maintain the rules set, as well as considerable engineering expertise, which
may dissipate with their leave. In addition, rule-based approaches may be sensitive to changes in
the system or its operating conditions, as the rules may need to be updated or revised to reflect
these changes. One way to avoid such drawbacks is to move from a completely rule-based Fault
Detection process to a Machine Learning (ML) based one.

1A Building Operating System (OS) is the core software platform which creates a bridge between the equipment
of a building and the applications that will be used by building managers and occupants.

2Otherwise referred to as faults.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

1

1.1. THE PROBLEM CHAPTER 1. INTRODUCTION

1.1 The Problem

1.1.1 Description

Fault Detection and Diagnostics (FDD) serves as a tool to help building managers be proactive in
the detection and mitigation of fault patterns within Building OS [8]. It continues to be a persist-
ent challenge in this industry because of the complexity and interconnectivity of said systems [26].
The attempts to automate this process, using ML models, are met with hesitation by stakeholders
in the industry also because of the lack of interpretability, especially when using black-box models.
When considering FDD as a customer-oriented product, it is especially important to provide in-
terpretability to the generated outcomes. While a Fault Detection model is able to determine
whether an instance is faulty or not, identifying the cause of a fault and proposing ways of dimin-
ishing it are two other key features which need to be considered.

In light of this, Counterfactual Explanations is a technique used to obtain ML interpretab-
ility, describing the smallest perturbations needed to apply to an observation, to change the
outcome [21]. The alternative scenarios offered by Counterfactual Explanations, give insight into
the causal relationship between the dependent and independent variables, while also serving as
suggestions for actions to be taken. In this project, we propose using Counterfactual Explana-
tions as a novel approach to the interpretation of Fault Detection models and as a basis for Fault
Mitigation suggestions.

1.1.2 Definition

Considering all of the above, this project will be divided into two main parts. The first part
concerns the development of a ML model which will serve as a Fault Detection tool. Its aim
is to determine whether given data fall into the category of Fault (1) or Non-Fault (0), based
on real labeled or unlabeled data obtained from devices within a Building OS. This part can be
represented with the following question:

• How do Supervised and Unsupervised Machine Learning compare when it comes to Fault
Detection in Building Operating Systems?

There are several aspects or trade-offs to consider and explore regarding the two mentioned ML
methods. In order to apply a Supervised approach in Fault Detection, we need to have access
to labeled data. However, labeled data on HVAC issues are not usually available. Moreover, the
anomalous class is often underrepresented and different equipment modes cannot be fully set apart
[26].

In the case of Unsupervised approaches, outlier detection methods are going to be considered.
Here, the main assumption is that issues within HVAC units occur less frequently than normal
behaviour and there is a notable difference between the two cases.

The second part of the project covers Counterfactual Explanations. After having developed a
model which has the ability of detecting whether given data is faulty or not, through Counterfac-
tual Explanations, not only can we see what variables are most important towards a classification
decision, but we can also find out what changes can be made to those variables in order to change
the classification from a Fault (1) to a Non-Fault (0). Thus, Counterfactual Explanations will be
used to answer and explain two main sub-questions:

• What variables have the most impact towards a predicted value of 1 - Fault?

• What are the smallest perturbations that we can cause to the modifiable variables in order
to change the outcome to a 0 - Non-Fault?

2 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 1. INTRODUCTION 1.2. SCOPE

1.2 Scope

It is useful to mention a few points that aid in defining the scope of this thesis. Firstly, we are
going to be working with one primary subsystem of HVAC units. Taking the timeline of the
project into consideration, it was decided that the scope should be narrow enough to complete the
necessary implementation and analysis on time, but simultaneously wide enough in order to be
able to draw conclusions on the possible scalability of the work. Thus, the focus is put on only one
part of an HVAC unit. Secondly, except for working on one subsystem, the data will be extracted
from only one building covering a span of one month, specifically July of 2022.

Moreover, the company expressed their desire in implementing a ML-based FDD tool using an
Unsupervised approach. However, in this project both Supervised and Unsupervised approaches
are explored in order to potentially determine the trade-offs in Fault Detection within Building
OS between both methods.

1.3 Outline

The structure of this thesis is organized as follows. In Chapter 1, we went through the description
and purpose of the project. Next, Chapter 2 gives an overview on the relevant research papers
discussing prominent methods and approaches within the industry. Chapter 3 will give an explan-
ation of the data concerning the domain and how was obtained as well as how it will be used in
the project. In Chapter 4, we explore two potential approaches towards Fault Detection, where
specifics of the experimental process are also given. In Chapter 5, Counterfactual Explanations
are considered and discussed as a means of anomaly interpretation in FDD. Finally, the conclusion
in Chapter 6 gives an overall illustration of the results of this thesis, along with its limitations and
possibilities of future work.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

3

Chapter 2

Literature Overview

In 2005, Katipamula et al. conducted a review of existing methods for Fault Detection and
Diagnostics (FDD) in Building Operating Systems (OS) [15]. The authors categorize diagnostic
techniques into three groups: process history-based, qualitative model-based, and quantitative
model-based. The aforementioned rule-based approach belongs to the qualitative model-based
category. In recent years, research on automated FDD has picked up speed. Although rule-based
approaches have been established for many years with great success, recent improvements in com-
puting power have made way for more sophisticated processing methods that could produce more
precise results.

In 2019, Zhao et al. write about advances in automated FDD using Artificial Intelligence (AI)
and Machine Learning (ML) methods [32]. Here, the methods are separated into two groups:
knowledge-driven and data-driven methods. About 79% of all deployments in the industry fall
into the latter group. Supervised and Unsupervised learning techniques have received a lot of
attention within the context of data-driven methodologies, making use of supporting techniques
like Principal Components Analysis (PCA), which is frequently employed as a means of prepro-
cessing [3]. In the category of knowledge-driven methodologies, physical principles and engineering
knowledge are used for FDD, encompassing the rule-based approach.

Pertaining to Supervised ML techniques, Han et al. were able to reach a 95% accuracy for
multiple different faults on chillers using Support Vector Machines (SVM) [11]. Moreover, using
SVMs, Yan et al. developed an auto-labeling method to account for the lack of faulty data when
applying FDD in real buildings [30]. Neural Networks (NN) were broadly employed as well. In
2020, Sipple proposed a method that creates faulty samples from the observed normal samples,
and trains a NN classifier to distinguish between the two classes. This method had an AUC score
of 93% on Smart Building data [26]. Apart from the NN, a Random Forest (RF) was also used for
the purpose of detecting device failures. After applying the negative-sampling, the RF reached an
AUC score of 95% on the same dataset.

Given the challenge of obtaining labeled fault data for FDD model training, the Unsupervised
ML-based FDD has found its way easier into deployment compared to Supervised classification.
Generally, the applied Unsupervised methods for FDD consist of PCA and clustering algorithms
[3]. Li et al. made use of a combination of density clustering and PCA to build on the single-PCA
model approach [16]. This combined approach resulted in an improvement on detection ratio of
29.8% and diagnosis ratio of 27.9% over the classical PCA approach. Other works include those
of Yang et al., which used the k-shape clustering algorithm, to forecast building energy usage
patterns using daily consumption datasets from an SVM model [31]. As well as the work of Guo
et al. [10], who developed a Gaussian Mixture Modeling (GMM) approach to model failure modes
of a refrigerant flow air-conditioning system. The model was used to predict refrigerant over and
under-charge, outdoor unit fouling, and four-way reversing valve faults. Using this approach, it

4 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 2. LITERATURE OVERVIEW

was found that as the number of features increases, the GMM was able to result in accuracy
greater than 99%.

Although not a new field, a widespread interest for eXplainable Artificial Intelligence (XAI)
and interpretable ML has emerged in the past years [9]. In 2020, Molnar summarized the most
widely adopted methodologies to make ML models interpretable in his book ”Interpretable Ma-
chine Learning” [21], where one of the chapters covers Counterfactual Explanations. Initially, the
concept of Counterfactual Explanations in the context of ML was introduced as an optimization
problem by Wachter et al. in 2017 [28]. There are four main criteria taken into consideration
when generating Counterfactual Explanations. As explained by Molnar, these are: a counter-
factual instance produces the predefined prediction as closely as possible, it should be as similar
as possible to the instance regarding feature values, a counterfactual should provide with diverse
suggestions, and it should have feature values that are likely [21]. The proposed method by
Wachter et al. had the disadvantage of taking into account only the first two criteria. Later in
2020, Dandl et al. propose a method which takes into account all of the stated criteria [4]. The
same goal was reached by Mothilal et al., defining optimization objectives using all four of the
criteria [22]. Their focus was on generating a diverse set of Counterfactual Explanations based
on determinantal point processes, implementing both model-agnostic and gradient-based methods.

The use of Counterfactual Explanations in the domain of FDD within HVAC systems has not
been explored or addressed in accessible literature. In the 2020 paper, Sipple shows how Integrated
Gradients can be used as a way toward anomaly interpretation in the Internet of Things (IoT),
covering Smart Building data [26]. With the use of Integrated Gradients on a trained NN, it was
possible to attribute the anomaly to specific dimensions within the anomalous state vector, as well
as provide expected value suggestions to result in another outcome.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

5

Chapter 3

Data & Domain Description

3.1 Overview

Before delving into the description of the data, it is important to at least be familiar with the
overall structure and relationships of the entities which are going to be considered and examined
throughout this paper. However, we will not go into much detail regarding the functions and
purposes of each (sub)system as that is not the focus of the project.

When talking about HVAC systems, there is a plethora of different systems and relationships
which need to be taken into account. For the sake of data understanding, we will give a short
overview of the main subsystem considered for the goals of this project. In Figure 3.1, you can
see what a typical Air Handling Unit (AHU) and Variable Air Volume (VAV) based system looks
like [23]. The AHU is the heart of central air conditioning, therefore making it an important part
within HVAC units [19]. It collects outside and inside air, removes dust along with other particles
from the collected air, and adjusts the temperature as well as the humidity. In a VAV system,
the AHU is responsible for providing a constant volume of conditioned air to the building. This
air is then distributed to individual zones or areas of the building through a network of air ducts
and VAV boxes. The VAV boxes are equipped with dampers that can adjust the flow of air to
each zone in order to maintain a consistent temperature and air quality within the zone. Thus, it
is clear that these these two units are interdependent, and their interaction with each-other can
play a role in a building’s overall functionality.

Figure 3.1: Diagram of an AHU-VAV based system

6 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 3. DATA & DOMAIN DESCRIPTION 3.2. OBTAINING THE DATA

Each device in such a system has sensors or points from which measurements concerning its
performance are collected, and in most cases are then stored in a database management system
(DBMS). In our case, real-time data is stored in ClickHouse 1. Observed values from the sensors
are saved in the database whenever the change in the observed value surpasses a certain defined
threshold.

The existing rule-based FDD tool provides us with event data, which relate to information
about the issues that occurred within the device or system of devices. The data consists of the
start and end time of the event, the points used, their measurements at the time of the occurrence,
as well as other information regarding the particular building and device. Regardless of this, it
was decided that the current event data is not to be used for the purpose of this thesis. This
choice was made, in part, because there exists the possibility that the rules within the existing
FDD tool may be defined incorrectly. This would then lead to mislabeling of the events, and the
data would not be suitable in model development and future prediction. Further, the existing
rules were defined so that they are able to encompass all potential issues within a system. This
involves the use of a large number of features and constraints simultaneously, which could make
the Fault Detection potentially more prone to error. Moreover, problems could have arisen due to
the fact that there was not enough event data related to the specific system of devices meant to be
considered in the project. These are also some of the reasons as to why Unsupervised approaches
were initially proposed.

Therefore, in agreement with the company’s side, the conclusion was to extract the desired
data as an unlabeled timeseries dataset. Afterwards, we proceed to defining a few simple rules
which can be used for labeling the given data.

3.2 Obtaining the data

To obtain the necessary data, an existing service within the KODE Labs OS platform was used,
which will be referred to as an Adapter. As stated before, devices within buildings possess points
which provide us with particular measurements, however, there are many point variations across
devices. For instance, below are some variations only for Zone Temperature Setpoint:

• Effective Cooling Temperature Setpoint [AND] Effective Heating Temperature Setpoint

• Occupied Cooling Temperature Setpoint [AND] Occupied Heating Temperature Setpoint

• Zone Temperature Offset [AND] Zone Temperature Setpoint

• Effective Zone Temperature Setpoint

All of the variations of points listed above pertain to the same information. An Adapter is used
as a tool to support these variations. It has required slots by ML features, where each slot accepts
multiple points as an input and maps them to a single output using a custom function. The first
step to creating an Adapter is to select a device or system of devices which we want to include in
our analysis. After that, for each device inside the system, points are selected to get the needed
measurements. After defining the parameters we want to use on the Adapter, the data is then
gathered from ClickHouse as a timeseries. In the end, we have one CSV (comma-separated values)
file containing all of the data2.

The first step towards obtaining the data was deciding what system we want to build the
model on. The AHU-VAV system was introduced earlier above, which is also what was used in

1ClickHouse is a column-oriented database management system (DBMS) for online analytical processing of
queries (OLAP), the performance of which exceeds all other column-oriented database management systems. Doc-
umentation can be found at https://clickhouse.com/.

2As agreed with the company’s side, the organization whose data we are using will not be shared in any way or
mentioned in the thesis.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

7

3.2. OBTAINING THE DATA CHAPTER 3. DATA & DOMAIN DESCRIPTION

mean std min 25% 50% 75% max
zone air temperature sensor 72.13 3.20 -0.24 71.09 72.60 73.37 1500.00
calculated cooling setpoint 73.71 10.36 3.00 75.00 75.00 76.00 423.00
calculated heating setpoint 67.71 10.36 -3.00 69.00 69.00 70.00 417.00
discharge air flowrate sensor 316.16 422.14 0.00 18.49 107.34 469.83 2897.82
discharge air flowrate setpoint 436.99 537.08 0.00 0.00 200.00 686.53 2500.00
discharge damper percentage command 38.75 38.00 -100.00 0.00 26.01 69.62 208.40
parent discharge air temperature sensor 64.99 7.77 32.40 62.51 65.77 70.25 79.40
parent calculated discharge cooling setpoint 67.99 4.41 48.00 48.00 56.35 57.91 60.00
parent calculated discharge heating setpoint 53.99 4.41 62.00 62.00 70.35 71.91 74.00
parent discharge air pressure sensor 0.56 0.39 0.00 0.03 0.75 0.83 1.94
parent discharge air pressure setpoint 0.81 0.08 0.75 0.75 0.76 0.85 1.00
parent discharge fan speed percentage command 41.52 29.79 0.00 0.00 52.33 61.42 100.00

Table 3.1: Obtained points and their descriptive statistics

the Adapter. After defining the desired system, where an AHU is specified as the parent of one
or more VAV’s, we establish which points we want to include in our data. The decision was made
based on the company’s expertise and desires.

The chosen points are for the VAV are: zone air temperature sensor, zone air temperature setpoint,
discharge air flowrate sensor, discharge air flowrate setpoint, discharge damper percentage command,
occupied mode.

As for the AHU: discharge air temperature sensor, discharge air temperature setpoint,
discharge air pressure sensor, discharge air pressure setpoint, discharge fan speed percentage command,
compressor cooling stage command.

Then, using the Adapter, timeseries data is extracted from those VAV’s and their parent AHU’s
which have measurements for all of the stated points. In the end, we have one month worth of
data from one specific building. The dataset is made up of 11,913,824 rows and the following first
13 columns:

• organization id (particular organization)

• building id (particular building)

• building name

• building tz (timezone)

• region

• area id (area within the particular building)

• area name

• device id (the particular child device (VAV))

• device name

• ref id (the parent (AHU) of the particular child device)

• date time (date and time of the measurements)

• occupied mode (boolean, indicates whether the device was working or not)

• parent compressor cooling stage command (boolean, indicates whether the cooling function
was on or off)

8 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 3. DATA & DOMAIN DESCRIPTION 3.2. OBTAINING THE DATA

The first 10 columns contain information relating to the specific organization chosen, along with
names and ID’s for the building, areas and devices included. The columns pertaining to sensor
or point measurements are shown in Table A.5, along with their respective descriptive statistics.
Thus, in total there are 25 columns. For each child device in the system, which in this case is the
VAV, measurements are stored along with those of its parent AHU. If a column has ”calculated”
at the start of its name, it means that the exact value is not provided but instead calculated based
on its equivalent point. For instance, the VAV has a point zone air temperature setpoint, which
represents the target temperature value at which a device attempts to maintain within the space.
Usually, it is useful to know or have access to an upper and lower bound of a setpoint. In this
case, for both the VAV and AHU, calculated cooling and heating setpoints are extracted using a
threshold of ±5◦F.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

9

Chapter 4

Fault Detection Model

4.1 Methodology

In Section 1.1.2, the two main parts of the project were established. Here, we are concerned with
the first part - developing a ML model which can perform Fault Detection. With this purpose in
mind, we will look into two approaches: Supervised and Unsupervised ML.

Prior to feeding the data into a ML model, it needs to go through a few steps of preprocessing.
This will entail specific filtering and selection, since not all columns from the obtained data are
necessary for a prediction model. Moreover, some of the features contain values which lie outside
of their respective expected ranges, therefore these data issues are filtered out. Apart from the
filtering and selection, new features based on a set of rules are created in order to label the data,
as well as other features which provide additional insight to the models. After the preprocessing,
the data can be fed into the chosen approaches, and the process of developing the Fault Detection
model begins.

With respect to the Supervised approach, a couple of classifying models were considered. We
explore a method J. Sipple used in the 2020 paper, ”Interpretable, Multidimensional, Multimodal
Anomaly Detection with Negative Sampling for Detection of Device Failure” [26]. In this pa-
per, hereon referred to as MADI, they propose a negative-sampling based approach for detecting
anomalies in the Internet of Things (IoT), using Integrated Gradients as a means of anomaly
interpretation. The focus was put on anomaly detection within climate-control and power meter
devices, and uses a similar dataset to what we have obtained. The difference between the datasets
is the fact that they developed a method of generating labeled data, whereas we are considering
real timeseries data which will be label based on a few rules.

As for the Unsupervised approach, we act under the assumption that in general faults or
issues within systems occur less often than desired behaviour. Hence, faults can be considered
as outliers. Considering this, it was necessary to first look into existing outlier detection models
and their use cases. In 2019, Y. Zhao, Z. Nasrullah, and Z. Li introduced PyOD, a new Python
toolbox for performing outlier detection on multivariate data [33]. It offers models which detect
outliers based on varying categories. Consequently, it was decided to test multiple models from
different categories on the same data, compare their performances and determine which are most
suitable for the given problem.

4.1.1 Evaluation Metrics

When it comes to evaluating the performance, each model undergoes K-fold Cross Validation (CV).
This procedure allows us to better examine how a specific model performs on unseen data. Metrics
commonly used in evaluation of Classification problems are considered. Despite the fact that the

10 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 4. FAULT DETECTION MODEL 4.1. METHODOLOGY

Unsupervised approach assumes unlabeled data, since the data will be labeled, the following
metrics can still be applied:

• Sensitivity = TP
TP+FN

– Also known as Recall or True Positive Rate (TPR). It shows the model’s ability for
detecting an actual Fault.

– A high Sensitivity value means that the model can distinguish Class 1 (Fault) instances
well.

• Precision = TP
TP+FP

– Portrays Class 1 (Fault) accuracy.

– This metric allows us to know what portion of Class 1 (Fault) classifications was actually
correct.

• AUC Score

– AUC measures the entire two-dimensional area underneath the entire ROC curve from
(0,0) to (1,1), where the ROC curve portrays the True Positive Rate (TPR) and False
Positive Rate (FPR).

– Ranges in value from 0 to 1. A model whose predictions are 100% wrong has an AUC
of 0, whereas one whose predictions are 100% correct has an AUC of 1.

In the case of Fault Detection, we decide to put more emphasis on Sensitivity and Precision.
This is because it is important that the number of False Negatives (FN) and False Positives (FP)
is low. However, having a low number of FN is concluded to be of higher priority than a low
number of FP.

Regarding FN, it is desirable that when a fault occurs it does not go unnoticed since there
arise a few consequences if that happens. For instance, if there exists an issue within a system
and it does not get picked up by the tool, then the continuance of that issue could potentially
affect comfort, as well as other building operations and costs. As for the FP, while it is important
that the number is low, reporting a fault when it has not actually occurred is regarded to not be
as severe as not detecting it. To give an example, in the case that the tool mistakenly reports a
fault, the worst case scenario would be if an engineer goes on site to deal with an issue that does
not exist. Therefore, when comparing the models, slightly more attention is paid to Sensitivity
than Precision.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

11

4.2. DATA PREPARATION CHAPTER 4. FAULT DETECTION MODEL

4.2 Data Preparation

4.2.1 Data Filtering

First preprocessing step taken on the data was extracting only instances which had the feature
occupied mode set to False. This feature indicates whether the child device (VAV) is working or
not. For now, we deal with only one mode of operation, namely when the device is on. Thus, we
remove instances where there exist sensor measurements (e.g. zone air temperature sensor) while
main considered device is not operating.

Next, instances that contain measurements which lie outside expected ranges are discarded.
Filtered out are the following cases where:

1. Any temperature related measurement is not inside the range of [20, 90]

2. The cooling setpoint value is smaller than the heating setpoint value

3. The air pressure value is smaller than or equal to 0

At this point, the dataset consists of 5,797,775 rows. Next, we need to make a decision on what
features should be given as input to the Fault Detection model. All columns containing general
information (the first 10 columns listed in Section 3.2) are discarded because they should not
contribute to the fault assigning process. The column occupied mode is also removed, since it now
contains only one unique value and therefore does not provide any insight.

4.2.2 Resampling

The given dataset is a timeseries of point measurements which are stored at inconsistent intervals.
Because of this, it was decided to conduct resampling on the data. The resampling is conducted
on unique combinations of child and parent device, by grouping them together prior to the res-
ampling. This is because the measurements of particular devices are unique to their settings and
parent-relation, and thus should not be linearly combined when applying the resampling technique.

For each unique combination of child and parent device on the dataset, resampling is firstly
applied using measurement averages in intervals of one minute, and then it is resampled once more
in intervals of 15 minutes. Resampling is done firstly using a one minute interval in order to better
smooth out the data. This step accounts for cases where within one minute there are multiple
measurements stored, leading to more consistent time intervals within the dataset as well. If the
feature is of type boolean, then instead of the average, the mode was taken. In the end, after
resampling, the dataset is made up of 646,111 instances.

4.2.3 Feature Engineering

For the purpose of labeling, several features needed to be extracted from the given data. The
rules1 determining the fault labeling were the following:

1. ”Zone Air Temperature and Discharge Airflow Rate are not within the setpoints, and the
Damper Percentage Command is less than 15”

2. ”Zone Air Temperature and Parent Discharge Air Temperature are not within the setpoints”

3. ”Zone Air Temperature and Parent Discharge Air Pressure are not within the setpoints”

4. ”Discharge Airflow Rate is not within the setpoints and the Damper Percentage Command
is less than 15”

1The rules were formulated in cooperation with the company’s side.

12 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 4. FAULT DETECTION MODEL 4.2. DATA PREPARATION

These rules allow us to satisfactorily detect a majority of, if not all, functionality issues within the
data used in this project. In order to label the data with the stated rules, four features were added
to the data. It should be mentioned that these features were used for the purpose of labeling only,
and were not used in the model training process. The following equations relay how each of those
feature values were determined:

zone temp within setpts =

{
True, if CHS ≤ ZTS ≤ CCS

False, otherwise
(4.1)

Where CHS = calculated heating setpoint, CTS = zone air temperature sensor,
ZTCS = calculated cooling setpoint.

discharge flowrate within setpts =

{
True, if |DAF −DAFS| > 0.1 ∗DAFS

False, otherwise
(4.2)

Where DAF = discharge air flowrate sensor, and DAFS = discharge air flowrate setpoint.

parent discharge temp within setpts =

{
True, if PCHS ≤ PDTS ≤ PCCS

False, otherwise
(4.3)

Where PCHS = parent calculated discharge heating setpoint, PDTS = parent discharge air temperature sensor,
PCCS = parent calculated discharge heating setpoint.

parent discharge pressure within setpts =

{
True, if |PDAP − PDAPS| > 0.1 ∗ PDAPS

False, otherwise

(4.4)
Where PDAP = parent discharge air pressure sensor, and PDAPS = parent discharge air pressure setpoint.

Using the features extracted above, the rules can be easily applied using conditional statements
which determine whether a data point is a Fault or not.

Next, features specifying the distance between the true measurement values and their respective
setpoints are added. This addition can provides useful insight to the models since the majority
of device issues reside in not meeting their corresponding predefined settings. These columns are
continuous, in the range of (−∞,+∞). As we have two setpoints (heating and cooling) for the
temperature, the differences between each of setpoint and true value is first calculated. These
differences were defined as:

heat setpt temp diff =

{
0, if CHS − ZTS ≥ 0

CHS − ZTS, otherwise
(4.5)

cool setpt temp diff =

{
0, if CCS − ZTS ≥ 0

CCS − ZTS, otherwise
(4.6)

The same approach was taken with the heating/cooling setpoint and true sensor value differ-
ences of the AHU parent, using PCHS, PCCS and PDTS. Afterwards, we define and calculate the
following:

• temp setpt diff = heat setpt temp diff + cool setpt temp diff

• parent temp setpt diff = parent heat setpt temp diff + parent cool setpt temp diff

• flowrate setpt diff = discharge air flowrate setpoint - discharge air flowrate sensor

• parent pressure setpt diff = parent discharge air pressure setpoint - parent discharge air pressure sensor

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

13

4.3. EXPERIMENTAL SETUP CHAPTER 4. FAULT DETECTION MODEL

4.2.4 The Main Dataset

In the end, one main dataset is obtained and considered throughout the rest of the project. It
has a size of 646,111 rows and 18 columns. The columns are the original raw data columns, along
with the created features, where 16 are numerical and 2 are boolean:

• zone air temperature sensor

• calculated cooling setpoint

• calculated heating setpoint

• temp setpt diff

• discharge air flowrate sensor

• discharge air flowrate setpoint

• flowrate setpt diff

• discharge damper percentage command

• parent discharge air pressure sensor

• parent discharge air pressure setpoint

• parent pressure setpt diff

• parent calculated discharge air temperature sensor

• parent calculated discharge cooling temperature setpoint

• parent calculated discharge heating temperature setpoint

• parent temp setpt diff

• parent discharge fan speed percentage command

• parent compressor cooling stage command

• class label

Out of the total number of data instances, 84,809 or approximately 13% belong to Class 1
(Fault), and 561,302 or about 87% of the instances belong to Class 0 (Non-fault).

It is also worth mentioning that other time-related columns, indicating the hour of the day
and day of the week, were investigated. Additionally, features representing rolling averages of the
points in different time intervals were considered. However, later in the model analysis we notice
that they do not provide any improvement in the prediction. Thus, they were removed altogether.

4.3 Experimental Setup

4.3.1 Supervised Approach

The analysis regarding the Supervised ML approach began with Sipple’s method in MADI, where
the objective was to draw a conclusion on whether this method is an appropriate approach to the
problem and data considered in this thesis.

In MADI, negative-sampling is applied to the data, after which two Supervised ML models are
adapted. The Supervised models are a Random Forest (RF) and a Neural Network (NN), which
following negative-sampling (NS) are referred to as NS-RF and NS-NN. The implementation was
done using the provided code by MADI, with a few minor adjustments made so that the methods
fit for the specific given data.

At this stage the data was split into a training and a test set, with stratification on the label
to ensure that both sets have the same proportion of examples of each class that is present in
the data. The NS-NN and NS-RF were fitted on the training set, where it then undergoes the
procedure of negative-sampling as described in the paper by Sipple [26]. Apart from altering some
of the parameters used, the method of normalization used needed to be adjusted because there
were problems when considering the categorical or boolean feature. The models were also tested
using raw unnormalized data, as well as using scaling methods. Eventually, it was concluded that
using the initial normalization adjusted for our dataset is the better option.

As can be seen in Table 4.1, the NS-NN and NS-RF do not seem to be suitable for the given data
and problem. For the NS-NN, the AUC score is at 70% indicating that the model has a moderate

14 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 4. FAULT DETECTION MODEL 4.3. EXPERIMENTAL SETUP

Model Sensitivity Precision AUC Score Execution Time
NS-NN 40% 40% 70% 7 min.
NS-RF 83% 50% 75% 15 min.
RF 98% 96% 98% 2 min.

Table 4.1: Evaluation metrics of the Supervised models’ performance on the test set, sorted
descending by Sensitivity. The scores were rounded to the nearest whole, and the execution time
includes both training and prediction spans.

discriminative ability between the two classes. However, the score of 40% for the Precision means
that 40% of the predictions made by the model are correct. Whereas the score of 40% for the
Sensitivity implies that 40% of the actual positive cases are correctly predicted by the model. It
can be derived that when applying negative-sampling and using a NN for Fault Detection, it is
highly likely that faults may not be properly distinguished. Leading to a higher number of FP
and FN than desired.

As for the NS-RF, the AUC score indicates a moderate discriminative ability similar to the
NS-NN. However, in this case the model seems to be better at distinguishing the actual positive
cases correctly, as can be seen by the Sensitivity score of 83%. There is still a considerable amount
of FP, indicated by the score of Precision at 50%.

Sipple introduces negative-sampling in MADI as a way of compensating for the low number
of instances belonging to Class 1, leading to simulated examples of potential faults. For now,
this method cannot be considered suitable for our given data. Generally, the approach seems
to be tailored to their needs and thus may not be straightforwardly applicable to the problem
considered in this thesis without more specific adjustments, considering as we are using a few
more points or features as well. Because of time constraints, instead of continuing with improving
the existing method of MADI, it was decided to examine the performance of a simple ML classifier.

The Random Forest (RF) classifier was used since it can handle large amounts of data with
numerous varying variables [14]. It can also automatically balance datasets when a class is more
infrequent than another in the data, which applies to our case. Seeing as NS-RF has a reasonably
good performance, it indicated that potentially, without the negative-sampling, the RF would be
appropriate for the given data.

The data was split into a training and a test set, using a 80-20 split, respectively. Initially,
no hyperparameter tuning was conducted on the RF, and the data remained the same. In Table
4.1, performance metrics of the RF are shown. Compared to the models using negative-sampling,
the RF has a noticeably better performance. This indicates that the data and labels without no
negative-sampling applied are more easily separable than when applying the negative-sampling as
provided by MADI.

4.3.2 Unsupervised Approach

In a lecture given by Dr. Thomas Dietterich [5], which was part of a series named ”MSR AI
Distinguished Lectures and Fireside Chats” provided by Microsoft [2], he explains that in order to
apply outlier detection algorithms to a dataset, the fraction of points that are anomalies should be
at most 5%. In PyOD, however, outlier detection models can be fitted on data containing at most
50% outliers. Therefore, we proceeded to try out Unsupervised outlier detection using both the
original outlier fraction (13%), and an undersampled version of the dataset in which the fraction
of anomalies is at most 5% in order to determine if there is a difference in results.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

15

4.3. EXPERIMENTAL SETUP CHAPTER 4. FAULT DETECTION MODEL

Bearing in mind that the given dataset does not satisfy the mentioned requirement by Dr.
Dietterich, and thus applying an outlier detection method is not immediately possible, the un-
dersampling of the data and testing of the Unsupervised models was conducted in the following
manner.

First, the dataset was separated into one dataset containing only Faults (1), D1, and another
one containing Non-Faults (0), D0. Duplicates were removed from D1, as they would not provide
any new insight. This caused the size of D1 to shrink to 30,982, which makes it approximately
5.24% of the current total dataset. Next, D1, was shuffled so that the data is no longer sorted based
on time, providing an element of randomness. Since the fraction of outliers is slightly larger than
the upper bound needed, D1 was split in two equal parts. Each of these chunks will then be separ-
ately added to D0, leaving us with 2 final dataset samples, with approximately 2.73% outliers each.

Within the PyOD library, there are more than 20 Unsupervised algorithms available. Over-
all, these algorithms belong to five main categories: probabilistic, proximity-based, linear models,
graph-based, and NNs. The library also offers outlier ensembles and combination frameworks.
Out of the main categories, it was decided to rule out NNs and graph-based algorithms. This was
because they currently lie outside the author’s abilities, considering also the time constraints of
the project.

Eventually, these algorithms were concurrently investigated:

• Four probabilistic algorithms:

– Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions
(ECOD)

– Angle-Based Outlier Detection (ABOD)

– Median Absolute Deviation (MAD)

– Gaussian Mixture Modeling (GMM)

• Four proximity-based algorithms:

– Local Outlier Factor (LOF)

– Clustering-Based Local Outlier Factor (CBLOF)

– K-Nearest Neighbors (KNN)

– Histogram-based Outlier Score (HBOS)

• Three linear models:

– Principal Component Analysis (PCA)

– Minimum Covariance Determinant (MCD)

– One-Class Support Vector Machines (OCSVM)

• One outlier ensemble method:

– Isolation Forest (ISO)

All the algorithms above were experimented on using different feature combinations, as well as
using both versions of the dataset, the one with the original fraction of the outliers and the un-
dersampled one. Analysis showed that the difference of outlier fractions had no effect on the
performance of the models. This is expected since, as mentioned, models within PyOD can take
up data with outlier fractions of at most 50%. This conclusion is also helpful since it confirms that
Unsupervised outlier detection can be used for Fault Detection without any type of undersampling
even when there is a high number of anomalies, as long as the fraction is at most 50%. Regard-
ing the features, these are the ones which had the most impact on the models and were therefore

16 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 4. FAULT DETECTION MODEL 4.3. EXPERIMENTAL SETUP

Model Sensitivity Precision AUC Score Execution Time
ECOD 71% 70% 93% 7 sec.
PCA 67% 68% 91% 0.5 sec.
ISO 65% 65% 90% 33 sec.
MCD 60% 60% 92% 43 sec.
GMM 59% 60% 89% 1 sec.
CBLOF 51% 52% 89% 5 sec.

Table 4.2: Evaluation metrics of the Unsupervised models’ performance on the test set, sorted
descending by Sensitivity. The scores were rounded to the nearest whole, and the execution time
includes both training and prediction spans.

used for the main analysis: temp setpt diff, discharge air flowrate setpoint, flowrate setpt diff, dis-
charge damper percentage command, parent compressor cooling stage command, parent temp setpt diff,
parent discharge air pressure setpoint, parent pressure setpt diff, parent discharge fan speed percentage command.

Taking into consideration not only the performance metrics, but also the time it takes for a
model to train and make predictions, we will show results for six of the aforementioned Unsuper-
vised outlier detection algorithms. The first one is Clustering Based Local Outlier Factor
(CBLOF). This algorithm works by calculating the anomaly score by first assigning samples to
clusters, in this case the number of clusters is two, and then using the distance among clusters
as anomaly scores [13]. For this algorithm, scaling the data before the fitting produced better
results. In the end, the model has a considerably high AUC score at 89%, as can be seen in Table
4.2, meaning that the model has good discriminative ability. However, this high score could be
explained by the fact that the data is highly skewed. The scores of 51% and 52% for Sensitivity
and Precision, respectively, mean that there is a high number of FP and FN within the predictions.

Outlier detection based on the probabilistic Gaussian Mixture Model (GMM), can be
used to find clusters in datasets where the clusters may not be clearly defined [1]. Additionally,
GMMs can be used to estimate the probability that a new data point belongs to each cluster or
class. While the AUC score does not differ from the CBLOF algorithm, it is shown on Table 4.2
that the scores on Sensitivity and Precision are around 8% higher. Here, the Sensitivity score
indicates that the model correctly identifies 59% of all anomalous data points. Whereas the Pre-
cision score lets us know that when it predicts a data point as anomalous, it is correct 60% of the
time. This outlier detection model also appears to be one of the faster methods.

Minimum Covariance Determinant (MCD) is a method used for estimating the mean
and covariance matrix as to minimize the impact of anomalous data points [12]. The principle
stands in estimating these parameters from a subset of the data that has been chosen to be free
of anomalies. The difference in performance between this model and the previous one, GMM, is
not substantial. This can be seen in Table 4.2. A noticeable factor is the execution time for both
training and prediction, which appears to be the highest among the listed Unsupervised models
in the table.

The next one is a widely used anomaly detection algorithm called Isolation Forest (ISO).
As the name suggests, Isolation Forest isolates observations by randomly selecting a feature, and
then randomly selecting a split value between the maximum and minimum values of the selected
feature [18]. While the execution time is second largest and the AUC score is 2% lower than that
of the MCD model, the Sensitivity and Precision metrics are around 5% higher.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

17

4.4. EVALUATION & RESULTS CHAPTER 4. FAULT DETECTION MODEL

Moving on, there is Principal Component Analysis (PCA), which is a linear dimension-
ality reduction using singular value decomposition of the data to project it to a lower dimensional
space [25]. When it is used for outlier detection, it projects the data to the lower dimensional
space and then uses the reconstruction errors as the anomaly scores. As shown in Table 4.2, it
is the fastest of the Unsupervised algorithms investigated, and second based on overall perform-
ance. Out of all the anomalous or fault data point, it is able to correctly identify 67%. Also, when
it does label a data point as Fault, it is correct 68% of the cases, as indicated by the Precision score.

Lastly, we examine a more recently developed method calledEmpirical-Cumulative-distribution-
based Outlier Detection (ECOD). It is a hyperparameter-free outlier detection algorithm
based on empirical cumulative distribution function (ECDF) functions [17]. For detecting out-
liers, it uses ECDF to estimate the density of each feature independently, and assumes that outliers
locate the tails of the distribution. Currently, it is the best performing model among the Unsu-
pervised ones. Although it is third in terms of execution speed, it has an AUC score of 93% along
with a Sensitivity of 71% and Precision of 70%.

In the end, three of the best models are as seen in Table 4.2 are subjected to a K-fold CV
procedure discussed in the next section.

4.4 Evaluation & Results

Having concluded on the Supervised and Unsupervised models in the precious sections, we con-
tinue into further narrowing the options by performing a validation procedure.

The models were validated using K-fold CV, with arbitrary K = 5. At the same time, different
combinations of features were tested out in order to see which ones give the models more useful
insight. When considering Unsupervised learning, different feature combinations showed varying
results in performance.

In Figure 4.1, AUC curves after the 5-fold CV are shown for the three best performing Un-
supervised models (ECOD, ISO, PCA) and the Supervised RF model. All four models show a
good discriminative ability of the two classes, with RF as the one with the best AUC score. Non-
etheless, when looking at their scores in Sensitivity and Precision, as shown in Table 4.3, different
conclusions can be made as a high AUC score does not necessarily imply good performance in
other aspects we consider. In the present settings, the Unsupervised algorithms produce lower
scores on average for the relevant metrics. The highest average among the Unsupervised models
considered is that of the ECOD outlier detection model, which has an average of 71% on both
Sensitivity and Precision after the 5-fold CV.

Lastly, it is important to mention the trade-off between the two methods. For the given data
and labels, a Supervised approach appears to have an overall better performance in determining
whether an instance belongs to Class 1 (Fault) or Class 0 (Non-Fault). However, as mentioned in
Chapter 1, there still exist drawbacks to using this method. Moreover, seeing as the metric scores
on the Supervised RF model are so high, it could be an indication of overfitting. These details
will be further discussed in Chapter 6.

On the other side, when considering the Unsupervised approach, the results show that when
using the current labels there will be more cases of FP and FN compared to the results of the
Supervised approach. For now, the a higher number of FP may not be regarded as a problem,
since the rules we have used for labeling may not cover all potential issues within the AHU-VAV
system. Thus, it can be argued that although there are FP within the predictions, those FP could
be faults which are not included within the rules considered. This assumption would allow for
using an Unsupervised approach as a means of Fault Detection. However, before doing so, one

18 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 4. FAULT DETECTION MODEL 4.4. EVALUATION & RESULTS

Figure 4.1: AUC score plot of four different models after 5-fold CV.

Model Avg. Sensitivity Avg. Precision Min. Sensitivity Min. Precision Max. Sensitivity Max. Precision
RF 98% 100% 98% 99% 99% 100%
ECOD 71% 71% 70% 71% 71% 71%
PCA 65% 63% 65% 62% 67% 68%
ISO 62% 63% 59% 61% 64% 64%

Table 4.3: Summary of the models’ Sensitivity and Precision after 5-fold CV, sorted by descending
Sensitivity scores. The scores are rounded to the nearest whole.

should thoroughly examine what was labeled as a FP or FN in order to find out how faults within
a system can be better defined.

In the next Chapter, we will be working on generating Counterfactual Explanations using the
Supervised RF model. Since currently none of the Unsupervised models were able to achieve
results which are as good as the ones obtained from the RF model, they will not be used in the
process of generating Counterfactual Explanations. Doing so would potentially lead to incorrect
suggestions of Fault Mitigation since the discrimination of the two classes is not as clear as when
using the RF. Thus, we are going to examine if using an accurate Fault Detection model, which
can easily separate the two classes, will successfully generate proper Counterfactual Explanations.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

19

Chapter 5

Counterfactual Explanations

The ability to interpret the output of ML models and their decisions is important not only in the
development stage, but for the prospective users as well [6]. When it comes to Fault Detection,
being aware of when an issue has occurred is not where the challenge ends, especially when con-
sidering a customer-oriented tool. It is also essential to be able to identify what has caused the
issue and how one can fix it. This is where the Diagnostics part of FDD comes in. As stated
in Section 1.1.2, Counterfactual Explanations will help in potentially determining what the root
cause of the issue is. To a user, this is important information since addressing and being attent-
ive of the root cause of the problems within a system does not only save time, but resources as well.

Counterfactual Explanations involve identifying the specific factors that led to a particular out-
come, such as a fault or malfunction in a system. This can include comparing the actual outcome
to a counterfactual outcome in which certain factors are changed or held constant. By doing this,
it is possible to identify the specific factors that contributed to the fault or malfunction, which
can help with FDD.

Moreover, Counterfactual Explanations are able to suggest what actions one needs to take in
order to mitigate the issue present. Alternative scenarios and possible action points provided by
the Counterfactual Explanations give the user insight on how the problem can be addressed. This
aspect is useful as it helps the user be more proactive towards problems within their Building OS.

5.1 Approach

Having decided on using the Supervised method for the purpose of Fault Detection, the aim in
this Chapter is to determine whether Counterfactual Explanations are a suitable means of Fault
Diagnosis and Mitigation. The Python library named DiCE (Diverse Counterfactual Explana-
tions) [22], will be used to generate Counterfactual Explanations which are diverse and can better
approximate local decision boundaries.

There are four important criteria when it comes to finding Counterfactual Explanations [21]:

1. A counterfactual instance should be able to produce the desired prediction as closely as
possible

2. Proximity - A counterfactual should be as similar as possible to the original instance regard-
ing feature values

3. Diversity - Generate multiple diverse counterfactual explanations so that the decision-subject
gets access to multiple viable ways of generating a different outcome

4. Feasibility - A counterfactual instance should have feature values that are likely

20 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 5. COUNTERFACTUAL EXPLANATIONS 5.2. CONFIGURATION

The DiCE library can be used to generate Counterfactual Explanations which satisfy all four of
the above criteria, offering the option of using model-agnostic or gradient-based methods. Addi-
tionally, it provides multiple customizable hyperparameters such as constraints on perturbation
of features or weights for individual features.

Counterfactual Explanations will be generated for multiple data instances, exploring different
configuration alternatives and making comparisons in order to conclude what methods are appro-
priate for the given problem. The quality of the generated Counterfactual Explanations will be
assessed manually by analyzing if the suggestions made are coherent. Furthermore, we will look
at local and global importances of the features, in order to potentially establish the root cause of
an issue or discover what causes faults to occur most commonly.

5.2 Configuration

There are a few parameters which need to be defined in order to find Counterfactual Explanations
through DiCE. Since a black-box classifier, namely the Random Forest, is being used for labeling,
model-agnostic methods within DiCE are applied. These methods, which are independent of the
model, sample points close to an input point while optimizing a loss function. The loss function is
based on the four criteria stated in the previous section. Currently, three model-agnostic methods
are supported in the library: Randomized, Genetic and KD Tree Search. All three methods will
be applied and analyzed on the given data.

One important parameter to be defined is features to vary. It indicates which of the features
within the data are mutable, and thus can be altered in order to find the Counterfactual Explan-
ations. For instance, within the given data, the feature zone air temperature sensor cannot be
considered as mutable. This is because actual sensor measurements cannot change, unlike their
respective setpoints. It is also important to define ranges for each of the mutable features. The
constraints on feature ranges also represent a form of feasibility, because if a feature suggestion lies
outside the expected feature range then the suggestion is not useful. Hence, the mutable features
and their respective ranges or premitted values are set to be:

• discharge damper percentage command: [0, 100]

• flowrate setpt diff: [−1000, 1000]

• parent temp setpt diff: [−10, 10]

• parent pressure setpt diff: [−1, 1]

• parent discharge fan speed percentage command: [0, 100]

• parent compressor cooling stage command: 0, 1

The features indicating the difference between a setpoint and sensor are chosen because they offer a
wider range of unique values. For example, while the feature parent discharge air pressure setpoint
has 472 unique values, parent pressure setpt diff has 7483. Thus, using the differences allows for
more diversity in finding alternatives. Moreover, they also provide a way of interpreting the
changes in the respective points. Assume a Counterfactual Explanation suggests that the par-
ent pressure setpt diff should be −0.5. Based on the way the difference features were constructed,
this would mean that the setpoint should be higher for a value of 0.5.

The features to vary parameter also relates to the necessity and sufficiency of the features.
Given an input x and the model output y, a feature value xi is necessary if changing xi changes
the model output, while keeping every other feature constant [22]. When determining the mutable
features in feature to vary, then the generated counterfactuals demonstrate the necessity of those
features. Likewise, a feature value xi is sufficient if it is impossible to change the model output

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

21

5.3. RESULTS CHAPTER 5. COUNTERFACTUAL EXPLANATIONS

y while keeping xi constant. Therefore, if features to vary is set to all features except xi, the
absence of any counterfactuals demonstrates the sufficiency of the feature.

Another aspect needed to be taken into consideration is the weights of proximity and diversity,
both of which are important in generating suggestions for Fault Mitigation. These two metrics are
taken into account when applying the Genetic and KD Tree Search methods. Proximity is used
to indicate the similarity between the counterfactual and original instance. Whereas diversity
is important for presenting different ways in which the desired outcome can be achieved. In
DiCE, the default weights for proximity and diversity are set at 0.5. In our case, it is decided that
slightly more consideration should be put on proximity, as we would like to generate Counterfactual
Explanations which do not require too large of a change in feature values. Thus, the proximity
weight is set at 0.7, while the diversity one stays at 0.5.

5.3 Results

In order to better present the results and show how we analyze the given Counterfactual Explan-
ations, one example will be considered and discussed in detail. More examples are given in the
Appendix of this paper. For each of these examples, Counterfactual Explanations are generated
and compared based on the three model-agnostic methods: Randomized, Genetic and KD Tree
Search.

As the name suggests, the Randomized Search method makes use of independent random
sampling to find counterfactuals for a given instance. Since the features are sampled randomly,
and therefore proximity and diversity weights are not taken into consideration, it is important to
clearly define permitted ranges for the features when using this method. Next, the Genetic Search
method is based on the genetic algorithm and it used to find the best counterfactuals close to the
given point. This algorithm is said to converge quickly, and promotes diverse counterfactuals. As
for the KD Tree Search method, its goal is to find the closest points in the dataset that give the
desired output. This is done efficiently by building KD trees for each of the classes present, and
querying the KD tree of the desired class to find the K-closest counterfactuals from the dataset.
Finding the closest points from the training data itself ensures that the counterfactuals generated
are feasible.

In Table 5.1, we consider a random instance belonging to Class 1 (Fault) and display a few of
the generated Counterfactual Explanations based on the three model-agnostic methods. All the
counterfactuals were generated using the parameter configurations discussed in Section 5.2. The
original instance is categorized as a Fault, based on the rules described in Section 4.2.3, because

Randomized Genetic KD Tree
Original Instance CFE1 CFE2 CFE3 CFE1 CFE2 CFE3 CFE1

calculated heating setpoint 71.00 - - - - - - -
calculated cooling setpoint 77.00 - - - - - - -
temp setpt diff -3.21 - - - - - - -
discharge air flowrate setpoint 220.00 - - - - - - -
flowrate setpt diff -0.05 -1.05 -1.05 -121.00 -0.90 1.00 5.00 220.00
discharge damper percentage command 48.35 49.05 49.05 49.05 40.00 40.00 40.00 100.00
parent calculated discharge heating setpoint 48.00 - - - - - - -
parent calculated discharge cooling setpoint 62.00 - - - - - - -
parent temp setpt diff -16.84 7.20 0.00 0.40 0.00 0.00 0.00 -0.90
parent discharge air pressure setpoint 0.96 - - - - - - -
parent pressure setpt diff -0.02 0.00 0.00 -1.02 0.00 0.00 0.00 -1.00
parent discharge fan speed percentage command 72.00 73.00 73.00 73.00 75.00 71.00 71.00 75.20
parent compressor cooling stage command 1.00 - - - - - - -

Table 5.1: Counterfactual Explanations generated using all the model-agnostic methods for a
random specific data point.

22 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 5. COUNTERFACTUAL EXPLANATIONS 5.3. RESULTS

it has issues with setpoint and sensor differences in Zone Air Temperature, Parent Discharge Air
Temperature and Parent Discharge Air Pressure. Empty cells containing a minus sign indicate
that the value for the respective feature did not change, either because it was not defined as mut-
able or it was not deemed necessary by the generation methods.

Let us first examine the Counterfactual Explanations generated using theRandomized Search
method. The feature temp setpt diff has a value of −3.21, indicating that the current temperature
is warmer than desired. We see that all counterfactuals generated indicate that the cooling func-
tion, parent compressor cooling stage command, should stay on. This suggestion makes sense since
the temperature needs to be cooler. Their values for parent discharge fan speed percentage command
are all at 73.00, meaning that the fan speed should be one percentage higher, which is not a major
change from the original value. When looking at parent pressure setpt diff, CFE1 and CFE2 sug-
gest a value of 0.00, implying that the Parent Air Pressure Setpoint should not change. This also
makes sense because they are saying that the difference between the setpoint and sensor should be
0.00, which means that the value of the Parent Air Pressure Sensor should be within the setpoints
as defined in Section 4.2.3. CFE1 suggests that the Parent Discharge Air Temperature Setpoint
should be lower for a value of 7.201. Specifically, this would mean that the heating setpoint,
parent calculated heating setpoint, should be at around 40.80, allowing for cooler air to flow out.
Suggestions made by CFE2 and CFE3 in this aspect seem to be more sensible, since they suggest
that the setpoint should not be changed or it should change very slightly. The alternatives provided
which relate to the feature discharge damper percentage command are the same among the three
counterfactuals. They all suggest using a marginally higher percentage. One noticeable difference
between the three counterfactuals is the value of flowrate setpt diff on CFE3. Differently from
CFE1 and CFE2, which suggest making the setpoint only slightly higher, CFE3 implies that the
setpoint should be higher for a value of 121.00. This, however, cannot be considered as a wrong
or unrealistic suggestion either. Overall, among the Counterfactual Explanations generated using
the Random Search method, CFE2 could be regarded as the most promising one. Not only does
it take into account the rules defined for labeling, the other suggestions require minimal changes
as well.

Moving on to the Counterfactual Explanations generated using Genetic Search, it can be
noticed that the three counterfactuals are relatively alike to each other, as well as the original
instance. This is accounted for by the involvement of the proximity and diversity weights defined.
Similarly to the counterfactuals generated using Random Search, these ones also suggest keeping
parent compressor cooling stage command on. One thing to note is that fact that all Counterfac-
tual Explanations suggest that the parent temp setpt diff should be 0.00, indicating that the Par-
ent Temperature Setpoints should stay as they are. The same holds for parent pressure setpt diff.
As a more comprehensible example, essentially, what CFE2 is suggesting is: ”If the Parent Air
Pressure and Parent Discharge Air Temperature align with the originally defined setpoints, and
the fan is moving at a speed 1% lower than originally, and damper is open at a value of 40% while
the Airflow Rate Setpoint is slightly lower than before. Then, the instance would not be categorized
as a Fault”. This is a satisfactory suggestion as it does not fall under the rules defined in Section
4.2.3, specifically it contradicts rules 2 and 3.

Lastly, for the example given on Table 5.1, the KD Tree Search method was able to find
only one Counterfactual Explanation. Compared to the previously discussed counterfactuals us-
ing the Random and Genetic Search methods, there are two features which are recognizable for
their difference. First, the suggested change for flowrate setpt diff is 220.00, meaning that the
setpoint should be lower2 than the original measurement for the said value of 220.00. Since the
setpoint is currently set at 220.00, it would not make sense to change it to 0.00. Seeing also as

1This is the case because of the way difference features were calculated. A positive value of difference indicates
that: a) the sensor should be higher, or b) the setpoint should be lower. Since sensors are not being regarded as
mutable features, we only consider case b).

2Refer to footnote above for better clarity.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

23

5.3. RESULTS CHAPTER 5. COUNTERFACTUAL EXPLANATIONS

Figure 5.1: Suggestions generated and local importance attribution for the Randomized and Ge-
netic Search methods based on the example on Table 5.1.

the discharge damper perecentage command is set at 100%, having a fully open damper and zero
airflow would not be a sensible action to take.

The local feature importance score, which has a range of [0, 1], ranks features by their frequency
of being changed in the generated counterfactuals. This score can be interpreted as a measure
of the necessity of a feature in causing a certain model output. Essentially meaning that if the
feature’s value changes, then it is likely that the model’s output class will change too. Therefore,
among all the features, necessary features are likely to be changed more often to generate proximal
counterfactuals and will thus be assigned a higher score. In Figure 5.1, we show local feature im-
portance for the example discussed from Table 5.1. The Randomized Search method regards all of
the mutable features as important or necessary. Out of the six, five of them are given a maximum
score, meaning that if any of those features changes, the model output will be prone to change as
well. Slightly lower importance score of 0.85 is given to parent compressor cooling stage command.
Meanwhile, when using the Genetic Search method, all of the mutable features are given the same
highest score of importance. In the charts, the center circles represent the desired model outcome.
The way to achieve this desired outcome is deducted by paying attention to the features with
highest importance score. Moreover, for each feature we see the original value and the suggested
value provided by the Counterfactual Explanation for the specific instance. As an example, the
notion ”48.35→40.00”, means that the original feature value was 48.35 and changing it to 40.00
would contribute towards a different outcome. If there is no arrow indicating a change in value,
then the feature should stay as it originally was. Local importances of the features can help in

24 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 5. COUNTERFACTUAL EXPLANATIONS 5.3. RESULTS

Figure 5.2: Global importance attribution for the Randomized and Genetic Search methods.

potentially determining the root cause of a Fault, where the feature with the highest score repres-
ents the root of the issue. In the cases where multiple features are assigned the same importance
score, the root cause could be determined using a method of hierarchy. For example, if both dis-
charge damper percentage command and parent compressor cooling stage are given an importance
score of 1.00, then the latter feature would be considered the root cause, since settings of a parent
AHU affect the child VAV.

As a way of validating the three model-agnostic methods, for each of them, 50 random in-
stances of the data are selected and they are set to find ten Counterfactual Explanations based on
the stated configuration of parameters for the same random instances. The Randomized Search
method was able to find countefactuals for 98% of the random instances. However, it was able to
find all ten of the required counterfactuals for 78% of those instances. The total process took five
minutes. Next, the Genetic Search method is substantially slower in generating Counterfactual
Explanations. The validation process took 25 minutes with an average of 30 seconds per random
instance. Still, it generated Counterfactual Explanations for 100% of the 50 random instances,
finding all ten of the required ones for 86% of the given instances. Lastly, with the given configur-
ations, the KD Tree Search method was able to generate counterfactuals for only one of the given
random instances. Even then, it was able to provide only one suggestion in total.

In Figure 5.2, the global importance attribution of the Randomized and Genetic Search
are shown. Given the set of the 50 random instances, the local importance score is aggreg-
ated to provide a global importance score. Firstly, the Randomized Search indicates that all

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

25

5.3. RESULTS CHAPTER 5. COUNTERFACTUAL EXPLANATIONS

six of the mutable features are necessary to the change in outcome. The highest score is as-
signed to flowrate setpt diff, meaning that this feature contributes to a change in model outcome
most out of the given six features. Secondly, the Genetic Search finds that five of the mutable
features are necessary in changing the outcome of an instance. The excluded feature is com-
pressor cooling stage command. The highest score of importance is given to flowrate setpt diff,
similarly to the Randomized method. One thing to notice is that the temp setpt diff feature is
assigned an importance score of 0.77. This is unexpected because this feature is not among the
defined mutable ones. One explanation for this occurrence could potentially be if there are cases
where the Genetic Search method cannot find Counterfactual Explanations which do not involve
changes in temp setpt diff, or there are flaws within the DiCE library which one needs to account
for.

26 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

Chapter 6

Discussion & Conclusions

6.1 Summary

Ultimately, in this thesis we explore and examine two main ML approaches towards Fault De-
tection, along with Counterfactual Explanations as a means of interpretation and mitigation of
the faults. With the imposed scope, the results of the project enable us to give the following
conclusions regarding the questions posed in Chapter 1.

How do Supervised and Unsupervised Machine Learning compare when it comes to
Fault Detection in Building Operating Systems?

The results from the Fault Detection model analysis, explored and discussed in Chapter 4, suggest
that for the given data, a Supervised approach is currently the most suitable way of detecting
faults within the AHU-VAV system. The Supervised Random Forest (RF) model achieves a Sens-
itivity of 98% and Precision of 96%. Nevertheless, the drawbacks of such an approach are still
present. The labels provided to the Supervised algorithm were based on a set of rules, which
need to be appropriately defined in order to be fed into a Supervised ML model. In essence, this
approach does not provide a substantial improvement from the rule-based FDD system. The same
disadvantages which were specified in Chapter 1 regarding the rule-based approaches, will hold
when employing a Supervised model.

On the other side, employing an Unsupervised outlier detection algorithm as a means of Fault
Detection would discard the mentioned disadvantages of the Supervised method. Considering the
given data, the best performing Unsupervised algorithm was Empirical-Cumulative-distribution-
based Outlier Detection (ECOD), with a Sensitivity of 71% and Precision of 70%. This implies
that the distinction between Class 1 (Fault) and Class 0 (Non-fault) is not great enough to provide
accurate outcomes. Moreover, because the number of FN is considerably high, for now, using this
Unsupervised approach would not be as advisable to use as the Supervised RF.

What variables have the most impact towards a predicted value of 1 - Fault?

As seen in Chapter 5, Counterfactual Explanations can be used for determining what variables
or features are most important in distinguishing a Fault (1) and a Non-Fault (0), both locally
and globally. Depending on the model-agnostic method used, varying importance scores were
attributed to different features, potentitally helping in determining the root cause of an issue.
When considering global importance, for example, although both Randomized and Genetic Search
attributed the highest score to flowrate setpt diff, the succeeding scores were assigned to different
features. In the cases where there are two features with the highest importance score, either
locally or globally, the root cause would be considered that feature which is higher in the system
hierarchy.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

27

6.2. LIMITATIONS & FUTURE WORK CHAPTER 6. DISCUSSION & CONCLUSIONS

What are the smallest perturbations that we can cause to the modifiable variables in
order to change the outcome to a 0 - Non-Fault?

Counterfactual Explanations generated were generally successful in providing suggestions for chan-
ging a Fault (1) to a Non-Fault (0). Again, suggestions varied depending on the model-agnostic
method used. Except for the KD Tree Search, under the defined parameters, the methods were
able to generate satisfactory counterfactuals. While the Randomized Search could generate sug-
gestions for 98% of the 50 random samples, the Genetic Search method could find alternative
suggestions for 100% of the samples. Although Genetic Search requires a longer time in order to
generate Counterfactual Explanations, another advantage of this method is the option of setting
weights to proximity and diversity of the counterfactuals. With all this in mind, it is still im-
portant to take the extra step of manually checking the Counterfactual Explanations generated
before acting based on the suggestions made. In a real use case, the user should be able to decide
which of the suggestions provided is best suited for the given instance, taking external factors into
account as well.

6.2 Limitations & Future Work

From the results presented in this thesis, there are a few things that could be discussed to take this
research further. Moreover, there are certain limitations or changes to this study as well as the
proposed solutions that should be mentioned. Firstly, the analysis was conducted on data from
one specific building, using measurements during only the month of July. When considering a
rule-based Supervised FDD, the rules and labels regulated for one building, will not always apply
to another one. Similarly, satisfactory performance of Supervised models using the data of this
month does not necessarily imply that similar results would be obtained using other data, not only
because of the possibility of overfitting, but the types and number of faults as well. An FDD tool
should be able to detect and assess issues spanning different circumstances and timeframes. This
would include detection using not only one month of data, but potentially yearly or seasonally,
depending on the desired use cases.

Throughout this thesis, we have been working on the given data while disregarding the aspect
of time. As mentioned above, this is an important aspect when considering a scalable FDD tool.
It encloses the mentioned potential seasonality or general time trends, as well as the life-span
of the occurring faults. Regarding the latter, before officially reporting a Fault, the FDD tool
should be able to ascertain how long the particular Fault has been occurring for and take that
into consideration when determining whether it must be reported or not. If in real-time the model
takes as input a faulty instance X1, and the next input X2, which is fed within a certain threshold
(e.g. 5 minutes) is classified as a Non-fault (0), then we conclude that in fact X1 should not be
reported. This would be the end result because the issue did not occur for longer than the set
threshold. While the time trends should be accounted for within the Fault Detection model, it is
possible for this latter matter to be taken into account after a prediction is made.

When it comes to the Unsupervised outlier detection approaches, there exist a few points of
improvement. Considering the aspect of time once again, there are time-based outlier or anomaly
detection methods which could be applied to the given problem, potentially leading to better
results. Moreover, more could be done with respect to the experimentation, as there are various
parameters and settings to change in each of the models. Because of time constraints, the project
could not focus deeper into model tuning, thus, improvements to Unsupervised models’ perform-
ance could be made with this in mind in the future.

Another interesting and possibly useful experimentation would be incorporating weather into
the parameters. The presence of an active Fault does not necessarily produce problematic beha-
vior within a building. For instance, if a damper is stuck closed when weather conditions indicate

28 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

CHAPTER 6. DISCUSSION & CONCLUSIONS 6.2. LIMITATIONS & FUTURE WORK

that it should indeed be closed, then there is no Fault present. This is a simple example of one of
the ways weather could contribute to Fault Detection, however, such conditions should be care-
fully examined before employing the model. Energy consumption comparison between faulty and
normal device behaviour within a building is also an interesting way of distinguishing between a
Fault and Non-Fault which could be investigated in the future.

Furthermore, this project could be extended to other systems or cohorts within the HVAC unit,
since we have been considering only the AHU-VAV system. Different devices or systems within
buildings also have varying modes based on external conditions, such as occupied/unoccupied.
This project dealt only with the occupied mode of operation, however, FDD should be extended
to other modes as well.

Regarding Counterfactual Explanations, for now the number of available and properly docu-
mented libraries is limited. The existing libraries either do not provide customizable parameters
which are necessary, such as feature to vary, or yield issues when trying to install them. Bear-
ing this in mind, the DiCE library has shown promising results. However, since the process of
generating counterfactuals is dependent on the Fault Detection model, any modification to the
model or approach will consequently have an effect on the process of generating counterfactuals.
Moreover, currently, the DiCE library works only with Supervised models. If the Fault Detection
model were Unsupervised, then a Supervised one would have to be trained on the labeled data
from the Unsupervised predictions in order to generate Counterfactual Explanations. Although
this is not necessarily a problem, a potential point for future work could be altering the source
code of the DiCE library to take as input Unsupervised models.

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

29

Bibliography

[1] Charu C. Aggarwal. Outlier analysis. Springer International Publishing, 2017. 17

[2] Microsoft Research AI. MSR AI Distinguished Lectures and Fireside Chats. 15

[3] Jianli Chen, Liang Zhang, Yanfei Li, Yifu Shi, Xinghua Gao, and Yuqing Hu. A review
of computing-based automated fault detection and diagnosis of heating, ventilation and air
conditioning systems. Renewable and Sustainable Energy Reviews, 161:112395, 2022. 4

[4] Susanne Dandl, Christoph Molnar, Martin Binder, and Bernd Bischl. Multi-objective coun-
terfactual explanations. pages 448–469. Springer International Publishing, 2020. 5

[5] Thomas Dietterich. Anomaly Detection: Algorithms, Explanations, Applications. 2018. 15

[6] Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of Interpretable Machine
Learning, 2017. 20

[7] Global Alliance for Buildings and Construction. Global Status Report. 2020. 1

[8] Stephen Frank, Michael Heaney, Xin Jin, Joseph Robertson, Howard Cheung, Ryan Elmore,
and Gregor Henze. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics
for Commercial Buildings: Preprint. 8 2016. 1, 2

[9] Randy Goebel, Ajay Chander, Katharina Holzinger, Freddy Lecue, Zeynep Akata, Simone
Stumpf, Peter Kieseberg, and Andreas Holzinger. Explainable ai: The new 42? In Andreas
Holzinger, Peter Kieseberg, A Min Tjoa, and Edgar Weippl, editors, Machine Learning and
Knowledge Extraction, 2018. 5

[10] Yabin Guo and Huanxin Chen. Fault diagnosis of vrf air-conditioning system based on im-
proved gaussian mixture model with pca approach. International Journal of Refrigeration,
118:1–11, 2020. 4

[11] Hua Han, Bo Gu, Yingchun Hong, and Jia Kang. Automated fdd of multiple-simultaneous
faults (msf) and the application to building chillers. Energy and Buildings, 43(9):2524–2532,
2011. 4

[12] Johanna Hardin and David Rocke. Outlier detection in the multiple cluster setting using
the minimum covariance determinant estimator. Computational Statistics Data Analysis,
44:625–638, 01 2004. 17

[13] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering Cluster-Based Local Outliers.
24(9–10), 2003. 17

[14] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on
document analysis and recognition, volume 1, pages 278–282. IEEE, 1995. 15

[15] Srinivas Katipamula and Michael R. Brambley. Review article: Methods for fault detection,
diagnostics, and prognostics for building systems—a review, part i. HVAC&R Research,
11(1):3–25, 2005. 4

30 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

BIBLIOGRAPHY BIBLIOGRAPHY

[16] Guannan Li and Yunpeng Hu. Improved sensor fault detection, diagnosis and estimation for
screw chillers using density-based clustering and principal component analysis. Energy and
Buildings, 173:502–515, 2018. 4

[17] Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George Chen. ECOD:
Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions. 2022.
18

[18] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation Forest. In 2008 Eighth IEEE
International Conference on Data Mining, pages 413–422, 2008. 17

[19] Venus Lun and S. Tung. Air Handling Unit, pages 51–64. 01 2020. 6

[20] Evan Mills and Paul Mathew. Monitoring-based Commissioning: Benchmarking Analysis of
24 University Buildings in California. Energy Engineering, 111, 06 2014. 1

[21] Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022. 2, 5, 20

[22] Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning
classifiers through diverse counterfactual explanations. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency. ACM, jan 2020. 5, 20, 21

[23] Andrea Mott. Variable Air Volume (VAV) Systems Operations and Maintenance. 2021. 6

[24] Luis Pérez-Lombard, José Ortiz, and Christine Pout. A review on buildings energy consump-
tion information. Energy and Buildings, 40(3):394–398, 2008. 1

[25] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and Liwu Chang. A novel anomaly
detection scheme based on principal component classifier. 01 2003. 18

[26] John Sipple. Interpretable, multidimensional, multimodal anomaly detection with negative
sampling for detection of device failure. In International Conference on Machine Learning,
pages 9016–9025. PMLR, 2020. 2, 4, 5, 10, 14

[27] M. Verdict, Wei Guanghua, Jillian Martinez, David Claridge, J. Baltazar, and W. Turner.
The Business and Technical Case for Continuous Commissioning for Enhanced Building Op-
erations - A Case Study: Alamo Community College District, San Antonio, Texas, USA. 01
2004. 1

[28] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without
opening the black box: Automated decisions and the gdpr. 2017. 5

[29] Sam West, Ying Guo, Rosalind Wang, and Joshua Wall. Automated Fault Detection And
Diagnosis Of HVAC Subsystems Using Statistical Machine Learning. 01 2011. 1

[30] Ke Yan, Chaowen Zhong, Zhiwei Ji, and Jing Huang. Semi-supervised learning for early
detection and diagnosis of various air handling unit faults. Energy and Buildings, 181:75–83,
2018. 4

[31] Junjing Yang, Chao Ning, Chirag Deb, Fan Zhang, David Cheong, Siew Eang Lee, Chandra
Sekhar, and Kwok Wai Tham. k-shape clustering algorithm for building energy usage patterns
analysis and forecasting model accuracy improvement. Energy and Buildings, 146:27–37, 2017.
4

[32] Yang Zhao, Tingting Li, Xuejun Zhang, and Chaobo Zhang. Artificial intelligence-based fault
detection and diagnosis methods for building energy systems: Advantages, challenges and the
future. Renewable and Sustainable Energy Reviews, 109:85–101, 2019. 4

[33] Yue Zhao, Zain Nasrullah, and Zheng Li. PyOD: A Python Toolbox for Scalable Outlier
Detection. Journal of Machine Learning Research, 20(96):1–7, 2019. 10

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

31

Appendix A

More Counterfactual Explanations
examples

In this Appendix, we show more examples of Counterfactual Explanations generated for various
data points, enclosing the different rules stated in Section 4.2.3. Only Randomized and Genetic
Search are shown because the KD Tree Search method did not provide counterfactual suggestions
for any of the given instances. The Counterfactual Explanations generated were assessed manually
as described in Chapter 5.

Randomized Genetic
Original Instance CFE1 CFE2 CFE3 CFE1 CFE2 CFE3

calculated heating setpoint 72.00 - - - - - -
calculated cooling setpoint 78.00 - - - - - -
temp setpt diff 8.00 - - - - - -
discharge air flowrate setpoint 250.00 - - - - - -
flowrate setpt diff -985.00 92.00 -6.50 -4.00 440.00 115.00 -95.00
discharge damper percentage command 0.00 - - 21.10 58.00 28.40 50.00
parent calculated discharge heating setpoint 48.00 - - - - - -
parent calculated discharge cooling setpoint 62.00 - - - - - -
parent temp setpt diff 0.00 - - - -8.30 -8.30 -9.00
parent discharge air pressure setpoint 1.00 - - - - - -
parent pressure setpt diff 0.00 - - - - - -
parent discharge fan speed percentage command 78.20 2.80 79.00 79.00 58.34 43.00 48.10
parent compressor cooling stage command 1.00 - - - 0.00 0.00 0.00

Table A.1: Original instance is labeled as a Fault because of rule no. 1

32 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

APPENDIX A. MORE COUNTERFACTUAL EXPLANATIONS EXAMPLES

Randomized Genetic
Original Instance CFE1 CFE2 CFE3 CFE1 CFE2 CFE3

calculated heating setpoint 69.00 - - - - - -
calculated cooling setpoint 75.00 - - - - - -
temp setpt diff -0.40 - - - - - -
discharge air flowrate setpoint 0.00 - - - - - -
flowrate setpt diff 0.00 - - - - -1.10 -260.00
discharge damper percentage command 0.00 - - 63.90 - - 60.00
parent calculated discharge heating setpoint 48.00 - - - - - -
parent calculated discharge cooling setpoint 62.00 - - - - - -
parent temp setpt diff -10.20 5.50 2.40 3.00 9.00 6.70 5.00
parent discharge air pressure setpoint 1.00 - - - - - -
parent pressure setpt diff 0.00 - - - - - -
parent discharge fan speed percentage command 72.00 - - - 70.00 0.00 90.00
parent compressor cooling stage command 1.00 - - - - - -

Table A.2: Original instance is labeled as a Fault because of rule no. 2

Randomized Genetic
Original Instance CFE1 CFE2 CFE3 CFE1 CFE2 CFE3

calculated heating setpoint 71.00 - - - - - -
calculated cooling setpoint 77.00 - - - - - -
temp setpt diff 10.00 - - - - - -
discharge air flowrate setpoint 530.00 - - - - - -
flowrate setpt diff 530.00 - -104.00 -34.50 -1000.00 -1000.00 -1000.00
discharge damper percentage command 100.00 - 63.00 - - - -
parent calculated discharge heating setpoint 48.00 - - - - - -
parent calculated discharge cooling setpoint 62.00 - - - - - -
parent temp setpt diff 0.00 -9.30 - - - - -10.00
parent discharge air pressure setpoint 0.95 - - - - - -
parent pressure setpt diff -0.10 -1.00 -1.00 -1.00 0.00 0.00 0.10
parent discharge fan speed percentage command 66.00 16.00 - 92.00 73.00 100.00 80.00
parent compressor cooling stage command 1.00 - - - - - 0.00

Table A.3: Original instance is labeled as a Fault because of rule no. 3

Randomized Genetic
Original Instance CFE1 CFE2 CFE3 CFE1 CFE2 CFE3

calculated heating setpoint 57.00 - - - - - -
calculated cooling setpoint 63.00 - - - - - -
temp setpt diff -9.00 - - - - - -
discharge air flowrate setpoint 1000.00 - - - - - -
flowrate setpt diff 366.00 -732.00 -411.00 117.00 -276.00 -471.00 -291.00
discharge damper percentage command 100.00 42.00 8.00 16.00 50.00 23.00 63.00
parent calculated discharge heating setpoint 48.00 - - - - - -
parent calculated discharge cooling setpoint 62.00 - - - - - -
parent temp setpt diff 0.00 - - - - 2.50 8.50
parent discharge air pressure setpoint 1.00 - - - - - -
parent pressure setpt diff -0.20 -1.00 -1.00 -1.00 0.00 0.00 0.00
parent discharge fan speed percentage command 77.00 78.00 78.00 78.00 88.00 23.00 55.00
parent compressor cooling stage command 1.00 - - - - - -

Table A.4: Another example where the original instance falls under rule no. 3

Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

33

APPENDIX A. MORE COUNTERFACTUAL EXPLANATIONS EXAMPLES

Randomized Genetic
Original Instance CFE1 CFE2 CFE3 CFE1 CFE2 CFE3

calculated heating setpoint 68.00 - - - - - -
calculated cooling setpoint 74.00 - - - - - -
temp setpt diff 0.00 - - - - - -
discharge air flowrate setpoint 1300.00 - - - - - -
flowrate setpt diff 1300.00 - - 95.00 559.00 -296.00 -514.00
discharge damper percentage command 4.50 22.00 66.00 5.05 100.00 100.00 100.00
parent calculated discharge heating setpoint 48.00 - - - - - -
parent calculated discharge cooling setpoint 62.00 - - - - - -
parent temp setpt diff 0.00 - - - - - -
parent discharge air pressure setpoint 1.00 - - - - - -
parent pressure setpt diff -0.09 - - - 0.00 0.00 0.00
parent discharge fan speed percentage command 66.00 67.00 67.00 67.00 78.00 78.00 77.00
parent compressor cooling stage command 1.00 - - - - - -

Table A.5: Original instance is labeled as a Fault because of rule no. 4

34 Using Counterfactual Explanations to Suggest Fault Mitigation in Smart Building Operating
Systems

	Contents
	List of Figures
	List of Tables
	Introduction
	The Problem
	Description
	Definition

	Scope
	Outline

	Literature Overview
	Data & Domain Description
	Overview
	Obtaining the data

	Fault Detection Model
	Methodology
	Evaluation Metrics

	Data Preparation
	Data Filtering
	Resampling
	Feature Engineering
	The Main Dataset

	Experimental Setup
	Supervised Approach
	Unsupervised Approach

	Evaluation & Results

	Counterfactual Explanations
	Approach
	Configuration
	Results

	Discussion & Conclusions
	Summary
	Limitations & Future Work

	Bibliography
	Appendix
	More Counterfactual Explanations examples

