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Abstract

Nowadays process mining has different applications in multiple industries
such as building process models, identifying bottlenecks in processes and
improving on them, such that the optimal output is reached. In this project
we work with data about the touch points a user has with a software which
evaluates his programming skills. This data could be analyzed to reveal useful
insights about user behavior. However real world data is often unstructured
and needs to be transformed and labeled in an appropriate manner such that
process algorithms work. We attempt to design an approach that deals with
duplicate labels in an event log. We focus on analyzing the task execution
as a specific subset of the entire process, the one which is related the most
to user behavior. By filtering out only necessary events and using the order
in which they come in an event log we manage to build a Directly-follows
graph that shows the sequence in which tasks come and the average time
users spent on them. An arising issue is that the break times of users cannot
be identified, thus not revealing the intrinsic time spent.
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Chapter 1

Introduction

1.1 Context and Topic

In today’s technological society the interactions between service providers
from countless industries and their customers have been digitized to a great
extent. The amount of services that can be offered online ranges from meeting
people who are on the other side of the planet to ordering of goods and
making payments. All of these activities which customers engage in on the
web leave a digital “footprint” with some associated timestamp which are
collected and stored in some data warehouse. A collection of many such
customer footprints is data which if processed and analyzed profoundly may
reveal many insights about the customer journey, help analyze user behavior
and answer many industry-specific questions to service providers. Process
mining is a sub-field of data science which consists of a set of data modelling
techniques to discover processes, check compliance, discover bottlenecks and
suggest improvements. It uses event log data where each event refers to
some activity (also called ”tasks”), or well-defined step in some process and
is related to a particular case, or process instance. Many events belonging to
the same case and ordered chronologically represent one run of the process.
The aim of process mining is to create from an event log a consistent and
explicit process model which captures the dynamics of the process at hand
[13].

Theoretically, building a process model using an event log sounds straight-
forward, however unfortunately the reality is more complex. In order for the
algorithms that built these models to run successfully, they make the assump-
tion that the labels of events are precise and consider that each label is a
unique event represented by a single task node in the model. This means that
each unique activity that has occurred in one or more user cases is mapped



to its own node in the model and thus, represents some stage of the customer
journey. The issue with real word data is that usually it is unstructured and
could contain inaccuracies or missing values. By unstructured we mean it is
not easy to search in it, because it does not have a recognisable structure.
The saying ”garbage in - garbage out” in a data science context translates
that if you input messy and unorganized data into some algorithm the output
will be as messy and unclear and most likely inaccurate, rendering it useless.
Therefore, it turns out that one of the most difficult tasks for data scientists
is to pre-process their data such that it can produce clear and sound results
when some algorithm is applied on it.

There are many companies on the market which can improve their services
if they could only understand better their customer behavior and such a
company is "GrepS”. It is in the technological sector and its purpose is
to develop innovative and accurate software for evaluation of programming
skills in the ”Java” language. In this project we work with data from GrepS,
which is a collection of event ”footprints” from users which have been given
to solve a set of tasks and associated sub-tasks. Unfortunately, it is not in
the typical event log format. Firstly, the length of traces varies greatly, since
it is a test and each user may submit it whenever they want. Furthermore,
there are activities with duplicated names in many traces. For example the
activity "Task Downloaded” occurs multiple times in each case as can be
seen on Table 1.1. The multiple occurrences of the same label for the same
item in a case do not mark the same activity, but indicate different stages of
a task. The label appears when a user starts working on it, begins a sub-task,
finishes it, gives feedback to it and receives his results from it. This leads
to case heterogeneity which means the event log contains traces of various
length with diverse and unstructured behavior [5]. In this project tasks are
not viewed as individual exercises, rather we look at them as a sequence and
examine the order in which they come in the test. In other words we look at
the exercises as First exercise, Second exercise, ..., Last exercise and examine
which specific items occurred at each possible position.

In the data there are many events which are not done by users, but from
the system and happen internally, such as latency measures, loading pages or
calculation of results. These events as well constitute a part of the customer
journey and could provide useful information on the users, such as extracting
user location from latency measures or using the grades which the system
calculates to follow user performance during the journey. However, as these
events happen internally within the system, reaching a maximum of a couple
of seconds, we shift our focus from them. They increase the complexity of the
event log and make it even harder for process discovery algorithms to produce
useful results. Conversely, the user-initiated activities indicate action from
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H Case 1D Timestamp Label [tem H
1 01-01-20 15:00:35 Begin test Logged in
1 01-01-20 15:02:10 | Task Downloaded | item 42
1 01-01-20 15:15:18 | Task Downloaded | item 42
1 01-01-20 16:01:01 | Task Downloaded | item 42
1 01-01-20 16:45:18 | Feedback Given item 42
1 01-01-20 17:00:38 | Task Downloaded | item 85
1 01-01-20 17:23:18 | Task Downloaded | item 85
2 01-13-20 09:00:35 Begin test Logged in
2 01-13-20 09:02:20 | Task Downloaded | item 20a
2 01-13-20 10:25:13 | Task Downloaded | item 20a
2 01-13-20 10:30:32 | Feedback Given item 20a
2 01-14-20 15:32:38 | Task Downloaded | item 14
2 01-14-20 16:13:18 | Task Downloaded | item 14
2 01-14-20 17:06:02 | Task Downloaded | item 42

Table 1.1: A subset of the data which has duplicate labels for the task event.
The length of both traces is different because they have different number of
given tasks and the label " Task Downloaded” appears for every task.

the developer which could reveal insights about his behavior. One of the aims
of this project is to formulate a high-level model of the process which users
undergo and attempt to understand their behavior. The way to accomplish
this is to deal with data inconsistencies and irregularities. We assume that if
appropriate labels are added and activities which are initiated by the system
are disregarded, complexity will be reduced and process discovery algorithms
may reach more comprehensible and useful results.

1.2 Research Question

The research question which will be of interest for this project is: How to
re-label duplicate labels of heterogeneous customer journey data
in order to make it suitable for process mining techniques?

A sub-question of interest would be:

e How to deal with duplicate labels of the same activity in event log
data?

e How to identify when a user is taking a break during the test?
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1.3 Approach

For the execution of the project we will use data provided by GrepS. Since it
is in an unstructured form we will transform it such that we gather insights
about the journey of a developer. If we want to do analysis on timestamped
data, it needs to be transformed into an event log. Initially, we look at
the data from a high-level perspective and observe the entire process with
all of its activities. The dataset contains too many unique events and each
node corresponds to an event, we need a simpler model to observe what is
happening internally in the process, specifically in the execution of tasks.

We shift the focus on events which are related to some tasks, such as the
beginning, submission, execution of sub-tasks, etc. From these events we are
able to construct a clearer, less-entangled map of the process, that illustrates
as closely as possible the reality of the customer journey.

In order to get a better understanding of what is happening during the
test, we will dive deeper into the events that are related specifically to tasks.
This includes all possible aforementioned sub-events of the task and from
them we attempt to create a process model only for the execution of the
tasks. For the sake of illustrating the process, we decide to look at the tasks
of the process as a sequence, instead of individual tasks, so that it is possible
to get a more general view of the performance of users. As an example,
consider Table 1.1 where item 42 appears as a first task for user with id
1, however in the case of user 2 it is given as a second exercise. Thus, we
abstract the notion of specific items and focus on the sequential order of the
exercises. The execution of the tasks are the events which are connected the
most with user behavior, so we narrow down only the activities related to the
tasks. Furthermore, we perform an additional analysis on the feedback which
users give to themselves and interpret the average scores they receive. The
scores can be used to divide users in different clusters and examine differences
between the groups in terms of time, performance and customer journey as a
whole. Another idea is to investigate the difficulty for the different exercises
and identify which of them proved to be the most difficult for users, judging
from their feedback.

1.4 Findings

By re-labelling labels of activities related to tasks, we managed to built a
DFG which represents the sequence of their execution. It turns out in 99%
in the cases users are given 5 main tasks and the presence of sub-tasks is
relatively determined, i.e. it is not mandatory for a user to get a task with



multiple sub-tasks. We perform a rudimentary evaluation of the difficulty of
the exercises based on the time people have spent on them. We determine it
as "rudimentary” because , due to difficulties we do not account for breaks,
which could take a wide range of time. Besides the task which is given at the
first position and takes considerably less time, all other ones seem to have
been equal in difficulty judging only by the time.



Chapter 2

Background & Preliminary
Knowledge

2.1 Understanding Event Logs and Visualiz-
ing the Process

Process Mining Preliminaries

To understand the essence of the project a comprehension of what comprises
an event log is needed. It is a collection of events and all of them are re-
lated a single process. We assume that each single event is associated with
a single process instance. Moreover, we assume that each event is related to
some activity. In the subsequent chapters when we say “activity” we refer
to a member of the set of all possible events which are captured in the event
log [12]. All events belonging to the same case and ordered chronologically
comprise a single trace of a process, thus the timestamp is a crucial attribute
as well [11]. Tt is possible to have other attributes that give additional in-
formation such as cost or resource. Figure 2.1 illustrates an example event
log about handling compensation requests. All of the events are grouped by
“Case id” and as an additional attribute to distinguish between activities, we
have an event id. It serves the purpose to distinguish activities, e.g. activity
“Check ticket” with event id 35654425 from ”Check ticket” with event id
35654485. A representative trace for the process in Figure 2.1 is <Register
request, Check ticket, Examine thoroughly, Decide, Reject Compensation>.
There are 3 main types of process mining that can be applied on event logs:

e Process Discovery where algorithms such as a-miner, inductive miner,
heuristic miner take as input event logs and produce a model from it.



e Conformance is the process in which we compare an existing process
model and some event log for the same process. This way one can check
if reality documented in the event log matches the created model and
investigate if discrepancies are present.

e Enhancement is the part where the model is improved after finding
bottlenecks and room for development after performing conformance.

Caseid  Eventid Properties
Timestamp Activity Resource  Cost
1 35654423  30-12-2010:11.02  Register request Pete 50
35654424 31-12-2010:10.06  Examine thoroughly  Sue 400
35654425  05-01-2011:15.12  Check ticket Mike 100
35654426 06-01-2011:11.18  Decide Sara 200
35654427  07-01-2011:14.24  Reject request Pete 200
2 35654483 30-12-2010:11.32  Register request Mike 50
35654485  30-12-2010:12.12  Check ticket Mike 100
35654487  30-12-2010:14.16  Examine casually Pete 400
35654488  05-01-2011:11.22  Decide Sara 200
35654489  08-01-2011:12.05  Pay compensation Ellen 200
3 35654521 30-12-2010:14.32 Register request Pete 50
35654522 30-12-2010:15.06  Examine casually Mike 400
35654524 30-12-2010:16.34  Check ticket Ellen 100
35654525  06-01-2011:09.18  Decide Sara 200
35654526  06-01-2011:12.18  Reinitiate request Sara 200

Figure 2.1: Extraction of a sample of event log data for handling some com-
pensation requests [12]. Each row represents an event that has an associated
activity, is connected to a unique case and occurred at a specific time.

The data collected in our project consists of the steps taken by developers
during the execution of a test. We focus on process discovery and try to find
a model which describes as accurately as possible our process at hand. In a
business context, process mining can reveal multiple insights not only on the
mechanisms of the model but on the users which take part in it.

Directly-Follows Graph

In order to visualize how the model looks like and get a deeper understanding
of the user behavior, we will use a Directly-follows graph (DFG). They are
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a variant of transition systems [13]. The difference is that the shift between
states in transition systems is atomic and for DFGs this shift takes time [9].

An example DFG can be seen on Figure 2.2. The nodes of the map sub-
stitute the different events of the event log and the directed edges represent
the order in which the events come. We make some modifications to the gen-
eral template of the graph and add additional attributes to the edges such
as the participation of the cases in the connection between nodes and as well
the average time it takes to get from one node to another. For instance, on
Figure 2.2 event A is followed by event B and this order is present in £% of
the cases and it takes on average some amount of time. We use DFGs in a
similar fashion as Customer Journey Maps [3], because we try to understand
the process at hand and describe what really happened to the users that have
undergone the process.

Y
Y

h 4

time time time f
Event A Event B Event ... EventN |———» End
100 % k% k % k % \‘

Figure 2.2: Example Directly-follows graph containing N events

Petri Nets

Another renowned modelling method for illustrating process models are Petri
nets [13]. They improve on the drawback of Directly-follows graphs and
can handle concurrency. A Petri net is a bipartite graph (Figure 2.3) that
consists of places and transitions. A sound Petri net is one that there are no
two connected adjacent place or transition nodes. The places can contain a
token and a marking is the configuration of the graph based on distribution
of tokens over the places. The tokens can be fired from one place to another
and since the firing is non-deterministic, Petri nets allows for concurrent
behavior [1].

2.2 Challenges with event log data

Bose et al. [5] make a high-level systematic identification of process charac-
teristic issues that can manifest in an event log. The ones we are interested
in are: case heterogeneity and event granularity. Case heterogeneity
refers to flexibility of event logs. This means the event log consists of traces
of various length and scenarios which lead to unstructured behavior. This
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Figure 2.3: An example Petri net [13] representing the event log on Figure
2.1

is possible to occur in cases where the number of steps in a process is not
strict and subject to change over time due to new legislation, seasonal effects
and other force-major effects [5]. Take for example scenarios where the user
can finish the process whenever he decides to or if the data is gathered by
systems that support a wide range of variety like medical support ones [5].
A proposed approach to deal with case heterogeneity is trace clustering. Its
objective is to partition traces into homogeneous sets of cases. Those traces
which share similar characteristics (length, structure, etc.) are put into the
same cluster and those who are dissimilar are in different clusters [4].

The main challenge is event granularity which occurs when there is a
substantial number of unique activities in the event log and sub-activities,
leading to the so-called spaghetti process models [5]. In our data this problem
refers to those activities which are nested and have duplicate labels. In Table
2.1 you can see a sample of the dataset which serves as an example for nested
activities and duplicated labels. Such events are the item/task ones and the
latency measures, as mentioned earlier, and assigning users to a virtual cloud.
Each of the labels need to be re-labelled such that the initialization of a task,
its finish, break time and the feedback to it can be distinguished. In order to
deal with this issue, you have to search for common execution patterns across
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cases. For instance for each specific item there is a fixed number of activities
per case. Usually, these sequences are not random and share some domain
relationship [4] as we will see later. One way to deal with them would be to
simplify them and look at such sequences from a high-level viewpoint which
simplifies the process model. To be more exact, the sub-items we refer to are
the different steps of a task - beginning, doing sub-task, submitting, logging
out, etc.

H Case 1D Timestamp Label Item H

70 11-01-2020 15:25:35 | Task Downloaded | item 20a
70 11-01-2020 15:48:40 | Task Downloaded | item 20a
70 11-01-2020 16:10:46 | Task Downloaded | item 20a
70 11-01-2020 16:13:58 | Feedback Given | item 20a
70 11-01-2020 16:30:04 | Task Downloaded | item 14
70 12-01-2020 09:00:35 | Task Downloaded | item 14
70 12-01-2020 09:34:41 | Feedback Given item 14
83 03-02-2020 22:00:12 | Task Downloaded | item 85
83 03-02-2020 22:40:53 | Task Downloaded | item 85
83 03-03-2020 08:12:31 | Task Downloaded | item 85
83 03-03-2020 08:44:30 | Feedback Given item 85

Table 2.1: This sample of the dataset is an example of nested activities
and duplicated ones. There are several activities which refer to a specific
item/task for developers with id 70 and 83, such as beginning the task,
completing a sub-point, ending it and giving feedback to it.

To know how to deal with duplicate tasks we first need a clear definition
of them. In the paper of Duan and Wei [8] which is a systematic review of the
methods to handle duplicated tasks, 3 types of duplicate tasks are identified:

e Tasks which have the same label
e Tasks which appear more than once in a trace
e Tasks which are enabled in different contexts

The third category is of utmost interest to us. Tasks which have identical
labels but are enabled in different contexts are the cause for a lot of con-
fusion in process mining algorithms. Consider the following case in Figure
2.4 where activity 7A” is followed again by activity ”A” [5]. It is unclear
whether a new occurrence of activity ”A” marks the beginning of a new
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Figure 2.4: An occurrence of duplicate tasks. Both events ”A” could belong
to the same instance of activity 7A” or it is possible they belong to different
instances of the activity ”A” [5]. The circular nodes represent events in an
event log and the square ones are sub-parts of process ”A”. The question is
whether the second occurrence of activity ”A” denotes the beginning of the
same activity or does it indicate the end of the previous one?

event or it denotes the end of the previous occurrence of ”A”. This un-
certainty stops process mining algorithms which discover processes to reach
sound results. The separate events could mean the same thing however their
meanings change depending on the context they are enabled in.

Duan and Wei [8]do not refer to loops, i.e. they exclude cases in which the
same type of the process is executed repeatedly. In our case however, there
are occurrences which can be identified as loops, such as when a subject has
refreshed the web page which leads to some activity being executed more than
once. In the paper of San Pedro and Cortadella [7] the precision of the process
model manages to increase from 50% to 90% after dealing with duplicated
labels. While many authors agree there are ways to detect duplicated labels,
they reach the conclusion that there does not exist a single generic way to
deal with them [8] [7]. Despite this, Lu et al. [10] describe an approach which
does not make use of some specific algorithm that refines the labels in their
internal mechanism [14] but work directly on the event log.

2.3 Background on GrepS

GrepS is a company based in Norway which develops a system for authentic
skill-analysis of software engineers. The test they have created not only helps
companies when making a decision if they should recruit a new developer by
letting him do the test, but is also useful for people who just want to have
an adequate evaluation of their skills. The test is meant for highly-skilled
individuals and the evaluation method is what makes it special. They define
“skill” as a specific type of ability, where each individual has his own unique
distinguishing features. In their measurement model, the developers in GrepS
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assume that variables for skill, task performance, time and quality are needed
to calculate the final outcome “true skill”. Particularly, they rely on the
Rasch measurement model which is an item response theory model (IRT)
that combines an additive conjoint structure with probabilities [2]. Generally,
IRT models present items/tasks to an individual and formulate an estimate
of his abilities based on the sum-scores of the item responses. Additionally,
they rely heavily on estimates for the difficulty of the task given and the
responses across people. A method based on maximum likelihood function is
used in order to estimate the difficulty of the task and the ability of the person
performing it. Unlike the original dichotomous Rasch model where only two
score categories are available (correct, incorrect), the test of GrepS uses a
polytomous Rasch model which permits multiple score categories 0. .. M;
where M; is the maximum score for item 1.

The need for this type of evaluation comes from the fact that software
quality is not unitary concept [2]. There are different levels to it and some
solutions which arrive to the same output may have different quality when
if you compare their inner-mechanisms. Furthermore, another factor which
is considered when evaluating skill is the trade-off between quality of the
solution and the time taken to reach it. If you have to compare the solutions
of two developers and their solutions are of equal quality, but one of them
has reached it within less time, then this will indicate higher performance.
However, comparing a high-quality solution which took a long time versus a
low-quality solution which took less time is not an easy task. In the paper of
GrepS two main strategies are used to deal with this issue [2]. They combine
both strategies and use item-specific scoring rules to calculate the score for
the developer.
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Chapter 3

Problem Exposition

3.1 Context/Business Understanding

The data which GrepS has gathered about the journey of their customers
contains all the touch points a developer has had with the system. Unfortu-
nately, it is unstructured and there are many activities which have duplicated
labels and are nested. The heterogeneity of the data comes from the fact
that it contains different types of values, such as strings, integers, floating
numbers, etc. Furthermore, we classify the events in two main categories:
user-initiated and system-initiated ones. Since we are focusing on observing
the behavior of the people performing the test, we include only events which
are initiated by them. Therefore, to make a proper analysis and re-labelling,
some domain-specific specifications and assumptions need to be made. To
construct a story out of a trace from all the separate 26 activities we need
to stand in the shoes of the participant. What is more, the participant ex-
periences only a user interface which displays only the tasks and saves all
the internal system processes such as latency measures, score updates, etc.
This is why for the main analysis we focus only on user-initiated events and
disregard system-initiated ones.

When a developer begins the test he logs into the system and is taken
to the virtual test environment where he is given on average a set of 5 tasks
(also called ”items”) to solve, out of 8 possible. The items appear in different
positions in the test. Therefore, it is possible for all of the items to appear
in any of the positions from 1 to 6, since the maximum amount of tasks a
developer has in our data is 6. Considering this, we decide to focus on the
tasks not as single items, but rather as parts of a sequence that is formed by
consecutive tasks. In other words, we look at some task not as ”item X” but
as being the first task, second task, etc.
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A phenomenon which constitutes a part of every test are breaks. Breaks
are the time a developer has been logged out of the system and not worked
on the task he has began. Users have the right to be offline while have started
the test for more than 24 hours. Thus, breaks could greatly influence the
time spent per task. For this reason, they need to have a separate activity
in the event log which marks the beginning of a break. Unfortunately, the
data does not contain a specific event which marks the logging out of a user.
The multiple task events for a specific item which occur between the events
which mark the beginning and the end of the item in a case could be because
of multiple reasons: refreshing the web page, beginning a sub-point of the
exercise or logging back is possible, as well. This makes the identification of
a break period difficult to realize. One way to identify break periods would
be to investigate tasks on which the user has spent more than some amount
of hours. However, we cannot be certain what fraction of this time the user
has actually been idle. For example if a user has spent 20 hours on some
task, we cannot say with certainty how much time has he actually worked
and how much has been a break. Another approach would be to investigate
the logging in events which appear between task ones. Presumably if a user
logs in the middle of the test, he either took a break or the system has failed
and requested from the user to log in. On Figure 3.1 you can see an example
trace where a user most likely took a break. The developer began the first
sub-task in 10:02 AM and his next touch point with the system is at 17:00
when he logs in. In the 7 hours between the events the developer finishes the
task, however it cannot be derived how many of these hours did he rest.

10:00:00 10:02:20 17:00:00
Begin Task X » Begin sub-task X.1 > Log in/
9 >|=ed i ”l  (Break?)

Y

P Log in/ P - ¥
End Task X < (Break?) Begin sub-task X.2
22:20:04 22:04:04 17:01:54

Figure 3.1: An example trace where most likely a break occurred. The time
above the nodes indicates the time of start of the event. The ”"Log in” event
appears 7 hours after beginning the first sub-task and minutes right before
beginning the next sub-task. The real time during which the user has worked
on the first sub-task cannot be defined.
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For the scope of the project, we assume all users are in the same time
zone and we will use the UTC time zone as reference for the results to avoid
confusion (see Section 3.2 for details).

Next, prior beginning the test participants are given 5-10 minutes to
familiarize themselves with the tasks [2]. This guarantees that there is no
effect of a person’s reading speed on his results. The provided data is from
the moment people downloaded the code to the moment the last solution is
submitted. These assumptions facilitate in understanding as much as possible
the reached results.

3.2 Data Understanding

The initially provided data is in a format which cannot be analyzed, thus
needed to be transformed such that it has a structure similar to an event log.
In the beginning, we created the following attributes:

e Company ID which connects each developer to a specific company.

e Category which identifies whether the case is B2B or B2C. In the B2B
case it means that some customer of GrepS is using the test, most likely
for recruiting purposes. In the B2C some developer is making use of
the test for himself.

e Developer ID which is a unique identifier for developers and can be used
as a case identifier.

e Timestamp
e Label which is the activity label.
e Type which identifies the type of the event occurring.

e Message which contains additional information on the different events.

The data contains the minimum required columns an event log should have-
case id, timestamp, activity label. However, the labels which are related to
the tasks have duplicated names thus, need to be reformulated such that they
indicate at which part of the task the developer is at currently. This plays a
similar role as the ’life cycle status’ column which an event log generally has.

There are a total of 200 developers in the dataset, however out of these
200 only around 60 of them actually begin the test. The other 140 only
register themselves without actually giving it a try to solve anything. You
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can see on Table 3.1 a trace where the user did not engage into the test.
He only registered and began the test without actually doing any exercise.
Furthermore, more than 90 % of the cases fall into the B2B category, thus
we can assume the results for the developers have been used for recruiting
reasons. The total number of unique activities is 27 which includes both
system- and user-initiated ones. Despite having so many different activities,
the average number of exercises a developer is given is 5.

Case 1D Timestamp Type Label

10 2021-03-21 12:09:07 | state Registered

10 2021-03-21 12:09:46 | latency | Latency Measured
10 2021-03-21 12:10:06 | latency | Latency Measured
10 2021-03-21 12:10:40 | latency | Latency Measured

10 2021-03-21 12:11:45 | subject Logged in
10 2021-03-21 12:12:10 | state ready to start
10 2021-03-21 12:13:07 | state started

Table 3.1: In this sample of the data the developer did not perform any
actions on the exercises and only registered to the system.

We mentioned that we will account only the ones which the user has
initiated, since the main focus is on his behavior and the number is decreased
to 8 distinct events. The events which we classified as user-initiated ones are:
registered, logged in, ready to start, task downloaded, feedback given, item
completed and test completed. The events which were considered as system-
initiated ones are latency measures, assigning the user to a database server
and updating/sharing the user results. The problem with tasks which have
duplicated names that we showed on Figure 2.4 occurs here, since we cannot
distinguish between the different steps of the activity ”"Task Downloaded”.
When a new occurrence of the activity happens, we do not know if it the
user has began a new task or he is continuing the previous one.

Initially, the timestamps in the data are not specific dates or hours, but
rather in each timestamp cell there is some amount of seconds that at first
glance looks arbitrary. However, it turns out all of the events have a common
origin in time and simply if we convert the amount of seconds to days and add
these days to an origin of our choice, we will get specific dates. You can see
a sample of the data which shows the original timestamp values in seconds
and the converted time. Due to not having any geographical location data
on the users in advance, there is no certainty about from how many different
parts of the world users access the test. Thus, we convert the timestamps to
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days and choose as an origin date 15 January 2021. When we discuss dates
and time we refer to the UTC timezone ,as mentioned in Section 3.2.

Case ID | Timestamp(before conversion) | Timestamp(after conversion) Label
2 4028947 2021-02-16 16:09:07 Registered
2 4486716 2021-02-21 23:18:36 Begin test
2 4486718 2021-02-21 23:18:38 Task Downloaded
2 4487560 2021-02-21 23:32:40 Feedback given
2 4487585 2021-02-21 23:33:05 Task Downloaded

Table 3.2: A sample of the data which contains the timestamps in their
original form and their converted values using as origin 1st January 2021.

The "Message” column contains additional data on the activities like spe-
cific values for latency measures, information on updates of the score of some
exercise or you can also find the answers to the feedback questionnaire which
developers have given after every completed item. Moreover, as mentioned
earlier, the rasch score is a measurement which is an additive conjoint struc-
ture, i.e. the scores are updated after every exercise and the scores on 6 dif-
ferent dimensions are present in the ” Message” column. The ”"Type” column
contains a word which describes on a high-level the activity which occurred.
You can see a sample of the data on Table 3.3 where we include both columns
to illustrate the contained in them. This additional information can be used
for instance to track the performance change of developers throughout the
test and find parts of the test where users faced more difficulty than with
other.

Case ID Type Label Message
3 State Registered registered
3 Latency | Latency Measured region=azure-eu-west-1, average=31.0, limit=80
3 Subject Logged in Logged in: Web page
3 state Started Started
3 Task Task Downloaded Task event: taskDownloaded, item 20a, timeUsed
3 Feedback Give Feedback item 20a, response: [0=1,1=3,2=2|, comments length: 67

Table 3.3: A sample of the data that shows the "Type” and ”Message”
columns.

What is more, after every submitted question the system presents a ques-
tionnaire for the user to fill in. The questions asks developers not only to
evaluate the quality of the task they have just done, but evaluate their own
performance. By analyzing this information we may get some idea of the
average score people give to themselves.

The software system also updates the score of the user after every ques-
tion he has done and evaluates him on 6 different dimensions. These scores
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are saved in the dataset as a separate activity and allow for tracking the
performance change. However, this analysis goes a bit out of the scope of
the paper, so it will not be looked into.

Since our data is gathered from users doing a test, the length of the test
for different users varies. Most people solve 4-5 exercises, whereas others quit
after some of the first ones or immediately after logging in. There is not a
general process pattern which applies to all cases.

3.3 Naive Method

In the beginning we use all activities present in the event log, including
system-initiated ones, in order for better illustrating the entire process a
developer goes through with the test. The DFG in our project captures all
the touch points a developer has with the software. The map can be seen
on Figure 3.2 and on Table 3.5 you can see a trace which corresponds to the
DFG. Nodes represent activities and the edges show connections between
activities. Generally, the greater the number of activities, the more difficult
it gets for the map to be understood and this applies for our case as well. We
have a total of 27 different activities, which results in an entangled, spaghetti-
like DFG [6]. Apart from the numerous activities, the connections between
some of the events adds complexity in understanding what is happening. It
appears all activities have a connection with the ”Logging in” node. This
implies that users either refreshed the page and it sent them back to the page
of the website to log in or they had taken a break and this is why they have
to log in again.

We tried to make the graph clearer, so we aggregated some activities
which are similar and occur consequently. For example all the task events
which indicate that a user is a some specific task were aggregated in one node
- "Task”, due to the reason that the number of tasks across different users
vary. On Table 3.4 you can see a sample of the data which is aggregated into
the " Task” node. Most of the cases have the following execution of activities:
In the beginning everyone registers/signs in the system during the test. All
the tasks done by users are aggregated into the node ”Task”. Afterwards,
they wait for their evaluation after completing the test. There are some
cases which have ended straightly after finishing the tasks and scores events
are omitted. Others have ended just after logging in which means they did
not attempt the test. Initially, we thought ties pointing to ”Logging In”,
excluding "register” mean that the user has refreshed the page. It turns out
however, that besides refreshing the label for logging in could also indicate
the continuation of the test after taking a break. To be able to confirm this
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we need to look closer into the time difference between some exercise and a
consecutive "Log in” event. If the time difference is greater than a couple
of minutes, we can assume that in the majority of cases people have taken a

break.

H Case 1D Timestamp Label [tem H

70 11-01-2020 15:25:35 | Task Downloaded | item 20a
70 11-01-2020 15:48:40 | Task Downloaded | item 20a
70 11-01-2020 16:10:46 | Task Downloaded | item 20a
70 11-01-2020 16:13:58 | Feedback Given | item 20a
70 11-01-2020 16:30:04 | Task Downloaded | item 14
70 12-01-2020 09:00:35 | Task Downloaded | item 14
70 12-01-2020 09:34:41 | Feedback Given item 14
70 03-02-2020 22:00:12 | Task Downloaded | item 85
70 03-02-2020 22:40:53 | Task Downloaded | item 85
70 03-03-2020 08:12:31 | Task Downloaded | item 85
70 03-03-2020 08:44:30 | Feedback Given item 85

Table 3.4: Sample data which is aggregated into a single node - ” Task”

In order to go more in depth we can dissect nodes which are aggregated
and look at them as a separate process. Since the aim of the entire test is
to evaluate the programming skills of users, the node of interest is the task
one. It is possible that it can give information task-specific experiences, such
as which task seems to be the hardest or if the system has crashed and the
user has refreshed multiple times.
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Figure 3.2: Directly-follows graph of the journey a developer takes on the
GrepS test. The multiple connections between some of the activities and the
presence of many nodes makes the map difficult to read.
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H Case 1D Timestamp Label Item H
11 11-01-2020 13:00:00 Registered Registration
11 11-01-2020 13:02:11 Latency measure Measure latency
11 11-01-2020 13:04:11 Log in Logged in
11 11-01-2020 15:25:35 Task Downloaded item 20a
11 11-01-2020 15:48:40 Task Downloaded item 20a
11 11-01-2020 16:10:46 Task Downloaded item 20a
11 11-01-2020 16:13:58 Feedback Given item 20a
11 11-01-2020 16:30:04 Task Downloaded item 14
11 12-01-2020 09:00:35 Task Downloaded item 14
11 12-01-2020 09:34:41 Feedback Given item 14
11 03-02-2020 22:00:12 Task Downloaded item 85
11 03-02-2020 22:40:53 Task Downloaded item 85
11 03-03-2020 08:09:30 Log in Logged in
11 03-03-2020 08:12:31 Task Downloaded item 85
11 03-03-2020 08:44:30 Feedback Given item 85
11 03-03-2020 09:00:00 Test completed Finished test
11 03-03-2020 09:00:22 Waiting for scores waiting for scores
11 03-03-2020 09:01:01 Share results sharing results
11 03-03-2020 09:02:00 | Waiting for activity report | waiting for report
11 03-03-2020 09:02:45 Finished finished

Table 3.5: Sample data that shows an example trace of the DFG on Figure

3.2.
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Chapter 4

Approach

4.1 Time Analysis

The aim of the project is to re-label the labels of activities which have dupli-
cated names and build a model which describes the journey of a developer
in the GrepS software. Like previously explained, a trace in our event log is
about users undergoing a test and the exercises which are given vary across
cases. Furthermore, we know there is a set of 8 unique exercises, each with
its own corresponding sub-parts. The fact that a specific item (e.g. ”item
42") can be given as the last task in one trace and as second exercise in
another trace, makes the building of a sound process model even more com-
plicated. The same holds true for all items, thus we decide to change our
perspective of them. Instead of viewing tasks as unique items, we look at
them depending on the order in which they come in the test, being a first
task, second one, etc. To illustrate what we mean you can check Table 4.1.
This is how we would like the data in our event log to look like. Every event
can be connected to a specific case and every activity done by the user is
connected to an item, where items are specific exercises from the test. An
example trace of the event log of Table 4.1 is: < Register, Log in, Begin test,
Begin 1st task, Begin 1st sub-task, Give Feedback, End 1st task, ..., Begin
last task, Finish last task, end test>.

We take a couple of steps in order to transform and re-label the labels such
that we make the event log suitable for process discovery algorithms. The
first step is to disregard the system events and leave only the ones that are
related to the execution of a task. Now we are left with only the user-initiated
events (check Section 3.2 to see which are the exact events which are user-
initiated ones). We need to recognize for each user which tasks are the first,
second until the last task. We can use the information in the ”Item” column
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H Case 1D Timestamp Label [tem H
70 11-01-2020 15:25:35 Register Register
70 11-01-2020 15:48:40 Log in Log in
70 11-01-2020 15:51:46 Begin test Begin test
70 11-01-2020 15:53:58 Begin 1st Task item 20a
70 11-01-2020 16:30:04 | Begin 1st sub-task item 20a
70 12-01-2020 09:00:35 | Begin 2nd sub-task item 20a
70 12-01-2020 09:34:41 Feedback Given item 20a
70 12-01-2020 09:40:00 Finish 1st task item 20a
70 14-01-2020 22:00:12 Log in Resume test
70 14-01-2020 22:03:53 Begin 2nd task item 85
70 15-01-2020 00:12:31 Feedback given item 85
70 15-01-2020 02:44:30 Finish 2nd task item 85
70 15-01-2020 03:57:11 Begin 3rd task item 42
70 15-01-2020 04:30:10 | Begin 1st sub-task item 42
70 15-01-2020 07:00:00 Log in Resume test
70 15-01-2020 07:02:10 | Begin 2nd sub-task item 42
70 15-01-2020 08:08:10 Finish 3rd task item 42
70 15-01-2020 08:10:01 Finish test End test
80 19-01-2020 10:00:10 Register Register
80 19-01-2020 10:03:10 Log in Log in
80 19-01-2020 10:08:11 Begin test Begin test
80 19-01-2020 10:09:55 Begin 1st task item 20a
80 19-01-2020 10:32:10 | Begin 1st sub-task item 20a
80 19-01-2020 11:01:20 | Begin 2nd sub-task | item 20a
80 19-01-2020 11:17:08 Give Feedback item 20a
80 19-01-2020 11:20:10 Finish 1st task item 20a
80 19-01-2020 11:23:19 Begin 2nd task item 17
80 19-01-2020 12:56:23 Give feedback item 17
80 19-01-2020 13:00:09 Finish test End test

Table 4.1: This is the format we want our data to take. The ”Label” column
should indicate the progress of a developer in the test. Every task which the
user engages in is documented and each sub-task can be distinguished within
cases using the item number.

to be able to make a connection between the candidate for re-labelling the
corresponding position it appears in. We filter the first and last occurrence of
each item, for each case which leaves us with the moment a developer begins
an exercise and the one where he submits it, disregarding the moments they
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give feedback. On Table 4.2 we have highlighted the events which we are
left with after filtering. We are left with 2 events for each item per case and
the maximum number of exercises given to a developer is 6. This implies
the maximum possible events in a case is 6 multiplied by 2 events for a task
which is 12 events in total. If the events are sorted by timestamp within
cases, then we can re-label them based on the order in which they appear in
a trace. In other words, the first event of a case will always be ”Begin 1st
Task”, the second - "End 1st Task”, the third - ”Begin 2nd Task” and so on
until the last possible task.

H Case ID Timestamp Label Item
70 11-01-2021 12:00:00 Log in Logged in
70 11-01-2021 15:25:35 | Task Downloaded | item 20a
70 11-01-2021 15:48:40 | Task Downloaded | item 20a
70 11-01-2021 16:10:46 | Task Downloaded | item 20a
70 11-01-2021 16:13:58 | Feedback Given item 20a
70 11-01-2021 16:30:04 | Task Downloaded | item 14
70 12-01-2021 09:00:35 | Task Downloaded | item 14
70 12-01-2021 09:34:41 | Feedback Given item 14
83 03-02-2021 17:11:01 Log in Logged in
83 03-02-2021 22:00:12 | Task Downloaded | item 85
83 03-02-2021 22:40:53 | Task Downloaded | item 85
83 03-03-2021 08:12:31 | Task Downloaded | item 85
83 03-03-2021 08:44:30 | Feedback Given item 85

Table 4.2: The events which are highlighted mark the beginning and the
submission of the items they correspond to.

On Table 4.3 you can see the format our data has after transformation
and changing the labels. All this information can be used to give feedback
to GrepS to improve the user experience. Many companies use the software
as an additional opinion for recruiting purposes. Furthermore, the test could
also serve in the B2C case for developers who want to know their level of
programming capabilities.

4.2 Identifying Break Times

To get an understanding what is the actual time people spent on the exercises,
the break periods have to be identified. The difficulty of doing this comes
from the fact that there is not a specific event which marks that the user is
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H Case 1D Timestamp Label Item H

70 11-01-2021 15:25:35 | Begin 1st Task | item 20a
70 11-01-2021 16:10:46 | End 1st Task | item 20a
70 11-01-2021 16:30:04 | Begin 2nd Task | item 14
70 12-01-2021 09:00:35 | End 2nd Task | item 14
83 03-02-2021 22:00:12 | Begin 1st Task | item 85
83 03-03-2021 08:12:31 | End 1st Task item 85

Table 4.3: This is how the data looks like after transformation.

taking a break. Furthermore, an event which is connected with the logging
out of the user from the system is not present either. The only label which
is connected in a way with the user being idle are the "Log in” events which
appear in stages of the test different from the beginning. We assume that a
"Log in” event that occurs some hours after an exercise is started signifies
that the user was taking a break. However, it is also possible the case that
when the user refreshes the web page, this activity is also saved in the event
log with label "Log in”. We hypothesize that the time differences between
the different exercises will estimate the periods when users are being idle.
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Chapter 5

Evaluation

5.1 Objective

In this project we focused on the problem of reformulating the labels of
activities in an event log which have duplicated names. This re-labelling is
essential if we want to apply a process discovery algorithm on the data which
builds a model of all the touch points which a customer has with the product
of GrepS. The aim of creating a model is to get a better understanding
of the customer journey which a developer undergoes in the programming
evaluation software.

5.2 Setup

The provided data from GrepS was in an unstructured form and needed
to be transformed such that it is suitable for applying a process discovery
algorithm on it. We formulated our strategy around the fact that the items
in the test come in different order for different users. This made us decide
to focus on building a sequential-order task model. This means we abstract
ourselves from the notion of specific exercises and view them from the order
in which they come in the test (first task, second task, etc.). We view the
process from the perspective of the user, hence exclude system activities. We
compare the initial DFG which contains all 27 activities, including system
ones, and a DFG which includes only the start and end of the tasks.

The two constructed DFGs differ in many ways from one another. Firstly,
the amount of nodes the task-specific map has is twice as less than the initial
one. Secondly, the every event in the task-specific map has its own node,
there are no aggregated events such as the ones in the other map. Next, the
elimination of system events and leaving only those who are connected to
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the user gives a clearer picture about the user behavior. Furthermore, the
smaller amount of events which are left after disregarding users who have
not began the test after logging in helps to give a more realistic idea what
happens during the execution of the tasks which is of interest for the project.

5.3 Execution

In the beginning, we construct the modified DFG on Figure 3.2 in ””Rstudio”
using all of the data we have an aggregating some of the duplicate label
events. There are some major steps which need to be executed that transform
the data into the appropriate event log format. Firstly, the data needed to be
converted such that it is in a dataframe format, i.e. with columns and rows.
Secondly, we identified the minimum set of columns to construct the event
log, namely: casel D, timestamp, activity label. From this event log we build
an initial DFG which has many unclear connections between events and also
the presence of numerous activities included in it make it hard to read and
understand whatsoever. We filter out only the task-related events that are
initialized by the user. After that, we re-label the activities to correspond to
the order in which they come in the test. This means the first event for a
developer is the beginning of the first task, the second event is the end of the
first task, third event is beginning of second task and so on. The maximum
tasks which a user could get in a test is six, thus the maximum number of
events for a user is 2% 6 = 12 events. From here we iterate over the data and
build a rule which re-labels the activity on every row based on the number
in which it appears in a case.

5.4 Results

Task-specific DFG

The DFG on Figure 3.2 has too many events included which makes it difficult
to gather information from it. Thus, we focused on the Task node from
the DFG. We simplified it by removing system-initiated events and mainly
focusing on the execution of the tasks and reached a new DFG which is shown
on Figure 5.1. We abstract ourselves from the specific item number and look
at the tasks as a sequence of items. This means we represent the events in the
following way: <initialize first task, end first task, initialize second task, end
second task, etc.>. Most of the developers did only 5 tasks. The maximum
number which only a few of them have had to done is 6 tasks. It seems the
most time spent is on the second task- around 17 hours and the task where
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Figure 5.1: A graph filtered from the DFG produced from the transformed
data. It is clearer to see the time spent as a whole on tasks and notably the
time between tasks is relatively small - around 2 minutes. The users which do
not finish a the test are sent directly to the "End” node and the process just
finishes for them. Check Appendix A to see the originally produced DFG
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people spent the least time is the first one- 12 minutes. The average time
for the other tasks is around 5-6 hours. However, the process map does not
account for breaks, they are a separate item for investigation.

Something to note is that the time between the shift from one task to
another is on average 1-2 minutes. One would expect that after doing a
certain task, a developer should take a break before continuing, but it seems
this is not the case. This time would barely be enough to even fill the
questionnaire, thus we assume that there is some kind of auto start after the
submission of a task. The automatic transition leads us to the thought that
if developers took breaks, then they would not be counted towards the time
between the tasks, but would be added towards the time of the next task
which is given.

Analysis of Item Positions

Initially, we assumed each different item can come in every possible position
in the test, however when we looked more carefully into the data we realized
our assumption might be false. If you look at Table 5.1 which has information
on the frequency of each item at each possible position, you can see that for
every item there is some position which dominates all the other ones. For the
15t exercise ”item 20a” is given 100% of the time. The same holds for ”item
38”7 and "item 14”7 which respectively fill the first and the second position,
with a few occurrences which are exceptions. For the 3¢ position "item 36"
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is given the most (with "item 85” appearing a couple of times). We decided
to look more carefully into the time distributions for the different exercises
positions and they can be observed on the boxplot on Figure 5.2. A boxplot
is a suitable visualization, since it can illustrate symmetry and skewness of
the data.

H Item number ‘ Most frequent position ‘ count ‘ Total times the item is given H

item 20a 1st pos. 19 19
item 38 1st pos. 24 25
item 14 2nd pos. 32 34
item 36 3rd pos. 22 31
item 85 4th pos. 17 28
item 42 5th pos. 9 15
item 24 5th pos. 2 2
item 34 5th pos. 2 2

Table 5.1: The frequency of every item at each possible position in the test
with the total number of times the item was given.

In the end, by making simplifications and assumptions about the cus-
tomer journey, we managed to re-label duplicated task labels and build a
CJM which gives a better illustrations of the process which developers un-
dergo. From observing the CJM, we deducted that on average developers
spend the most time on the second task.

We decided to also look at the time spent on specific item numbers and
check if there is some relation between it and the time spent on tasks as a
sequence. On Table 5.3 you can see the average time people have spent on
every possible task from 1 to 5. Task position 6 is not included because only
1 person had to do more than 5 tasks and we cannot make sound conclusions
based on such a small sample. Additionally, you can see the item which has
appeared the most for every separate position. We see that for the 2"¢ task
on which the most time was spent, item 14 had appeared the most times.
The average time for the 2"¢ one is 1060 minutes or about 17.6 hours and on
Table 5.2 you can see that for item 14 the average time spent is 240 minute.
The difference is more than 4 times, which would imply that there could be
some outliers which skew so much the time on this second task. The task
that took less time from the people is number 3 and the average time spent
on it is approximately the same as the average time of item 36 which is the
most frequently appearing item at that corresponding position. The 4" task
is interesting because it took around 348 minutes (5.8 hours) to complete,
however item 85 which appears most often at the position, took around 13020
minutes (217 hours). We checked the relative frequency of item 85 on the
4™ position and it occurred more than 60% of the cases, therefore the skew
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Figure 5.2: The time distribution for every task position in minutes.

in the average time for task number 4 should have been affected by item 85.
However, when we observed more carefully the cases where item 85 was in
this position, we saw that the biggest difference which is present is about 620
minutes (10.3 hours). Thus, we can say for item 85 that the average time
which is indicated in Table 5.2 is affected by some outlier and most certainly
the it includes breaks. If we check the boxplot on Figure 5.2, we can confirm
that the time for position 4 is skewed to the right.

H Item number | Average time spent (mins.) H

item 85 13020
item 24 774
item 34 714
item 36 408
item 14 240
item 42 144
item 38 60
item 20a 20

Table 5.2: The average time spent per specific item in the test in minutes.

As for position 5, it takes less than 5 hours (294 mins.) and the item
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corresponding to it is 42 and its average is about twice as less - 144 minutes.
The boxplot shows that it is skewed to the right, hence outliers are affecting
the distribution. Finally, the least time is spent on the 1%¢ task, around 12
minutes, and item 38 along with item 20a are given equally many times. Item
38 takes around 60 minutes to solve and item 20a about 20 only. Judging by
the time, it seems people did not have much trouble with items 38 and 20a.
It took them considerably less time to solve the 1% exercise. The distribution
for this first position seems normally distributed, therefore we can say that
reality is not far apart from what is shown on the plot. All of the others seem
to be equal in difficulty if we have to determine from the time. The skew for
the 2"? position is probably formed, because someone took a couple of days
break from the test and that influenced the result.

H Position number | Average time spent (mins.) ‘ Most frequent item at position H

2nd Pos. 1060 item 14
3rd Pos. 355 item 36
4th Pos. 348 item 85
5th Pos. 294 item 42
1st Pos. 12 item 38/item 20a

Table 5.3: The average time spent on a specific position in the test and the
item which appears the most at each position.

Feedback Analysis

After every submitted question, the developer is asked to answer a question-
naire which gives feedback to GrepS. The questions which are asked can be
seen on Figure 5.3.

Each of the questions has a set of 5 possible answers ranging from ” Strongly
Agree” to ”"Strongly Disagree”. We decided to look at the overall feedback
and compared the compared the answers based on the frequency of answers
given to each question. The barplot on Figure 5.4 compares the frequency of
each answer to each of the 3 questions posed by the questionnaire. Looking
at the chart more than 30% of the people agree that it was easy for them
to understand the task (question 1) and 25% strongly agreed with the same
premise, whereas less than 20% disagree. Overall, more than 45% think they
performed well on the tasks and less than 30% disagree that they did well.
Finally, around 50% share that the tasks were interesting to solve and only
10% are on the opposite opinion.
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Figure 5.3: Questions asked to developer for feedback after every task

We also looked at the feedback of the questionnaires at an individual task
level. The motivation for doing this is that it can help reveal flaws in the
tasks which can be improved. There is 1 task, namely "item 42”, which only
30% agree that they understood what was wanted to do and 40% disagree
with the statement. Again, for the same task only 28% believe they did
well against 56% which were not so confident with their performance. These
results suggest that "item 42”7 is the most troublesome exercise, nevertheless,
there are 2 tasks - ”item 36" and "item 38” for which there were only 2
respondents. Because of the little amount of information about these tasks,
we cannot derive whether one of the is the harder or not than the rest.

5.5 Discussion

There are further matters to investigate in the task process. It turns out that
the time distribution of the tasks has to be handled with care if we want to
calculate the real time people spent on exercises. We assume that the break
times influence greatly the skewness of the time distribution of our data, thus
they are crucial if we want to understand the reality behind the process. The
first step would be to include ”Log in” events in the process model, however
our approach does not allow to account for them, since they do not have a
pre-determined position in the process, rather it changes depending on the
specific case. Another drawback of the method we applied is that we do not
account for sub-exercises which is valuable information on its own. The work
we have done lays the foundation for potential future work like investigating
further the aforementioned flaws of the project.

We assume the tasks on which people spend more than 5 hours include
the breaks in them as well. If the time for breaks is identified and disregarded
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Figure 5.4: Barplot which compares the relative frequency of each answer to
all 3 questionnaire questions
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we will probably have even a more accurate DFG. Furthermore, we do not
account for tasks which have several sub-tasks in them, instead we consider
them as one whole task. Maybe, if we look at specific sub-tasks we can find
more insights about the user behavior. Unfortunately, to reach sounder and
more solid results, we would need more data to work on. The task-specific
process model is built on the journeys of only 67 developers out of all the 202
which are included in the data. Around 130 people did not engage into the
test which is a lot of information rendered useless. However, if GrepS would
include more data about developers which have undergone the entire set of
exercises, they might find useful insights about their system and identify
steps at which people face problems. If they were to do the exact opposite
and focus on system events and disregard user ones they could find phases at
which their system has issues. This would help them find out what to improve
in order to make the user experience more pleasant for their customers.

Evaluating the complexity of the exercises based only on the time spent
on them is one way of doing this. Something which could be added for a more
precise evaluation are the rasch scores of the participants at each question

35



and observing the average change in performance. The combination of the
scores with the time used will be a better estimator to the true difficulty of
the test.

In the beginning we aimed at re-labelling every task node such that the
different components of it can be distinguished as separate events but dis-
covering only its beginning and end was the furthest we managed to reach.
More work is needed such that every break time, sub-task, score update and
feedback are added as unique activities. We could apply trace clustering to
partition the users in different clusters depending on some attribute of our
choice. One option is to use the feedback self-evaluation scores and divide
the participants in some way. Another proposal would be to cluster the cases
based on the time they have spent and compare different attributes between
groups such as scores received by the system. This may be a starting point
for the process of deducing some dependence between time spent and grades
given to developers.
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Chapter 6

Conclusion

In this project we worked with data from a company called ”GrepS” who
developed a software for evaluation of programming skills and gathered data
about the interaction of users with it. The data contained duplicate labels
for many of the different events and there were many nested activities whose
sub-activities needed to be recognized as separate ones. In the beginning,
we looked at the whole process from a high-level perspective, just to end up
finding it has a spaghetti-like view.

We decided to focus on the execution of the tasks because they are the
main component of a test and build a DFG which gives a representation of
the sequence of the tasks through which users of the test undergo. By re-
labelling every task activity we mapped them to the beginning or end of a
sequence of 6 tasks and constructed the DFG on Figure 5.1 and found out
that 99% of the people have 5 tasks, with only 1 case having 6 tasks to solve.
Furthermore, we derived that on average every task takes approximately the
same time, besides the first one, which takes around 12 minutes to complete.
We compared time spent per position and the time spent for specific items
to check if there is a connection between the two. It turns out it is hard
to make a connection between the 27¢ task on which people spent the most
time and the time of item 14 which appeared the most in this position. These
gaps come from the break time. Unfortunately, evaluating the tasks based
only on the time people have spent on them is misguiding, due to the same
reason of not including the time for breaks in it. Breaks were not identified
because they happen at random times or more precisely, in times which the
developer wishes to rest. Furthermore, we know that the transition from one
exercise to another happens automatically, therefore break time is counted
towards the entire time spent on a task. Identifying breaks and being able to
account for them will weave more precise results on the time spent per task
and consequently, evaluating the difficulty of a task. It turns out that we
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need a different approach to identify breaks, since just looking at the time
distribution and time difference between exercises is not enough. If breaks
were included in the event log by a separate activity, then a process model
algorithm could be applied to the data and yield some insightful model.
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