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Abstract

Recently, there has been an increasing demand for explainable Artificial Intelligence (AI) which

aims to develop algorithms that are interpretable for humans by using a framework of ethical

principles and societal rights and therewith increase reliability of such algorithms. The context of

this study is reinforcement learning as this is one of the main areas of origin for many of these al-

gorithms. One of the subproblems of developing more reliable AI systems is to accurately quantify

a system’s uncertainty, which can be done using Bayesian inference methods. In this study, the

focus lays on assessing the influence of Bayesian non-identifiability as a source of misestimation of

uncertainty on several Bayesian uncertainty quantification methods, namely Hamiltonian Monte

Carlo (HMC), No U-Turn Sampling (NUTS), Metropolis, Automatic Differentiation Variational

Inference (ADVI) and Stein Variational Gradient Descent (SVGD). Prior-posterior overlap is used

as a measure of non-identifiability. This is analyzed qualitatively and quantitatively by proposing

an algorithm for calculating the exact prior-posterior overlap and by providing prior-posterior

density plots to qualitatively determine the extent of said overlap. Additionally, the perform-

ance of each method is assessed by extracting the best negative log-likelihood and by providing

visualizations of the method’s uncertainty. Results show that Bayesian non-identifiability has a

clear negative influence on the methods’ ability to accurately quantify uncertainty. However, even

when Bayesian non-identifiability is eliminated, most of the methods are still not able to provide

approximations that are accurate enough. As this negatively affects the optimization process of

a reinforcement learning agent and therewith decreases reliability of the AI system, it is vital

to investigate what influences the accuracy of such uncertainty quantification methods besides

Bayesian non-identifiability.
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Chapter 1

Introduction

In recent years, there has been an increasing demand for explainable Artificial Intelligence (AI)

(Yalcin, 2020; Wells and Bednarz, 2021). Explainable AI aims to develop algorithms that are in-

terpretable for humans and focuses on the three ethical principles of transparency, interpretability

and explainability together with the societal right to explanation of algorithmic decision-making

processes (Wells and Bednarz, 2021; Goodman and Flaxman, 2017). Although there are different

reasons for this demand, they all relate to reliability of AI and machine learning algorithms. The

potentially catastrophic consequences linked to low reliability of AI systems in sensitive areas like

self-driving cars, are one of the reasons for the high demand for more explainable and more reliable

AI (Yalcin, 2020; Turek; Abdar et al., 2021). Many of these systems originate from the area of re-

inforcement learning, which is the context of this study (Wells and Bednarz, 2021). Reinforcement

learning refers to a self-learning agent, like a neural network, trying to find the optimal solution

to a certain problem by trial and error.

In this study, the focus lays on uncertainty quantification within the field of reinforcement

learning. Therefore, several Bayesian uncertainty quantification (UQ) methods, that is Hamilto-

nian Monte Carlo (HMC), No U-Turn Sampling (NUTS), Metropolis, Automatic Differentiation

Variational Inference (ADVI) and Stein Variational Gradient Descent (SVGD), are assessed and

compared both empirically and theoretically by conducting experiments and a literature review.

The goal of this assessment and comparison is to identify the strengths and weaknesses of these

methods regarding the Bayesian non-identifiability problem as well as their performance in a

reinforcement learning context. Ideally, these ideas form a starting point for improving the per-

formance of the analyzed uncertainty quantification methods and therewith increase reliability.

If uncertainty is incorrectly estimated but nonetheless used for improving the decision-making

process of the agent, it is likely this agent-optimization process is suboptimal as it is based on

incorrect information. That is, if the uncertainty quantification method provides erroneous in-

formation on what parts of the reinforcement learning environment are unexplored, indicated by

high epistemic uncertainty, gathering more data on the parts with assumed high epistemic uncer-

tainty are unlikely to improve the reinforcement learning agent’s decision-making process, as there

is sufficient data available already. So, for optimizing the agent in an efficient way and making the

model’s explanations informative, therewith increasing reliability and explainability of the system,

it is vital to provide accurate estimations of the uncertainty of the decisions made by the agent.

One of the main causes of misestimation of uncertainty is non-identifiability (Yacoby et al.,

2021; Wang et al., 2021; Papamarkou et al., 2021). In a general sense, non-identifiability of

a model means that there are two or more parametrizations that are observationally equivalent

(Koopmans, 1949; Rothenberg, 1971). Then, it is not theoretically possible to learn the true values

of a model’s underlying parameters with an infinite number of observations. In other words,

Unreliable Uncertainty 1



CHAPTER 1. INTRODUCTION

with non-identifiability, different parameter values produce equivalent probability distributions

of the observed variables (Koopmans, 1949; Rothenberg, 1971). There are many forms of the

non-identifiability problem, including Bayesian or posterior non-identifiability, which is especially

relevant for the type of neural network, that is a Bayesian neural network with latent variables

(BNN-LV), used in this study. However, in the context of reinforcement learning the topic of

non-identifiability is still underexposed. Hence, the central research question in this study is:

How does posterior non-identifiability in a Bayesian neural network with latent variables influ-

ence the performance of different sampling methods for uncertainty quantification in the context

of reinforcement learning?

To answer this research question, the most important theory and concepts are first described

in Chapter 2. This is followed by a description of the used methods and the experimental set-

up, after which each experiment and the corresponding sub-questions are specified in Chapters 3

and 4 respectively. Then, in Chapter 5 important results of the experiments and answers to the

experiment-specific research questions are provided. In the chapter that follows, these results are

further analyzed and interpreted.
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Chapter 2

Theoretical Framework

2.1 Reinforcement learning

Reinforcement learning, one of the three machine learning (ML) paradigms, is concerned with

finding optimal or near-optimal solutions in an interactive framework. Reinforcement learning

focuses on sequential decision-making in a specific environment. This process is based on the

concept of a Markov Decision Process (MDP) (Yi et al., 2020). That is, the formal definition of

an MDP is the tuple {S,A, T ,R, p(s0), γ}, which includes a transition (T ) and reward function

(R) in the environment. The general idea is as follows: at each time step t, some state st ∈ S
is observed and an action at ∈ A is chosen, after which the next state (st+1) and the associated

scalar reward (rt) are returned by the environment. Repeating this process leads to a trace.

Since for each possible choice the rewards are not identical, a policy is created, which serves as

a guideline for the decision-making process of the agent (Yi et al., 2020; Puterman, 2005; Abdar

et al., 2021; Depeweg et al., 2019). That is, the goal is for the agent (decision-maker) to learn the

policy (strategy) that maximizes the cumulative reward (feedback based on the agent’s actions)

(Yi et al., 2020; Puterman, 2005; Abdar et al., 2021; Depeweg et al., 2019).

In general, there are two reinforcement learning approaches: model-based and model-free. In

model-based learning, the agent learns an approximation of the environment, which can then be

used to determine which action to take next (Swazinna et al., 2022). In model-free learning on

the other hand, the agent only learns the states it has been in and the actions taken so far and

generalizes inference to unexplored states, so that when the agent revisits a certain state, it is likely

to base its decision on the action that leads directly to a good outcome (Swazinna et al., 2022). In

other words, it starts with an arbitrary policy which it then aims to improve in an iterative way

without learning the actual dynamics in the environment (Yi et al., 2020; Puterman, 2005). Since

model-based reinforcement learning learns about the environment, therewith increasing sample

efficiency, less data is required to learn a policy, which is not the case for the model-free approach

(Swazinna et al., 2022). This also allows for simulating a sequence of actions rather than performing

them in the actual environment, which means that the learning process is more generalizable. So,

model-based reinforcement learning learns to predict the dynamics of the environment instead of

a single policy that leads to a good outcome. This knowledge can then also be used for solving

other tasks in a similar environment (Yi et al., 2020; Puterman, 2005). However, model-based

reinforcement learning is more prone to error and more computationally expensive compared to the

model-free approach because it learns the policy as well as a model of the environment dynamics

(Swazinna et al., 2022). Since the focus lays on quantifying the uncertainty of a predictive model

that is at the basis of the agent’s decision-making process, model-based reinforcement learning is

more suitable as context for analysis, because model-free reinforcement learning does not base its
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2.2. UNCERTAINTY QUANTIFICATION CHAPTER 2. THEORETICAL FRAMEWORK

decisions on the learned approximation of the transition probabilities as it uses the ground-truth

transitions of the environment.

Yi et al. distinguish between different types of model-based reinforcement learning to better

identify the different challenges each type needs to cope with. In this study, the distinction of

model-based reinforcement learning categories made by Yi et al. is used to further specify the

context (Yi et al., 2020). Accordingly, the context is specified as model-based reinforcement

learning with a learned model (Yi et al., 2020; Sutton, 1991). That is, both the model and the

policy or value are learned. This differs from model-based reinforcement learning with a known

model, which uses a predefined model to learn the policy or value (Yi et al., 2020; Silver et al.,

2017).

2.2 Uncertainty quantification

In addition to reinforcement learning, the concept of uncertainty (quantification) is also funda-

mental to this study. Uncertainty in machine learning refers to the use of incomplete or flawed

information which causes a predictive model to be unsure. To make machine learning models

more explainable and reliable, it is crucial to construct an accurate representation of the model’s

uncertainty, which is often done by modeling the uncertainty using probability theory (Hüllermeier

and Waegeman, 2021). In machine learning, the more conventional method of modeling the un-

certainty in a single probability distribution is still frequently used (Hüllermeier and Waegeman,

2021; Abdar et al., 2021). However, in light of the demand for reliable models, it is increasingly

advocated to distinguishing between different types of uncertainty (Senge et al., 2014; Kull and

Flach, 2014; Varshney and Alemzadeh, 2016; Kendall and Gal, 2017). The most common classi-

fication is aleatoric versus epistemic uncertainty, but multiple classifications have been proposed

in recent years (Kläs and Vollmer, 2018; Booker and Ross, 2011; Zhang et al., 2016). Kläs et

al. argue that the aleatoric versus epistemic classification is potentially problematic for practical

application because “their boundaries are not sharp” (Kläs and Vollmer, 2018). However, by

providing a clear definition of both forms of uncertainty and applying this within the boundaries

of each model this problem can be circumvented (Kiureghian and Ditlevsen, 2009). Hence, aleat-

oric uncertainty is defined as “the variability in the outcome of an experiment which is due to

inherently random effects” and epistemic uncertainty as “the ignorance of the agent or decision

maker” (Hüllermeier and Waegeman, 2021). Aleatoric uncertainty refers to the irreducible part of

uncertainty because the source of this uncertainty is the stochastic dependency between instances

and outcomes. Epistemic uncertainty, on the other hand, is reducible, because it emerges from

model and approximation uncertainty, which both refer to the lack of knowledge about the most

suitable predictor (Hüllermeier and Waegeman, 2021).

Bayesian uncertainty quantification

There are several Bayesian techniques for uncertainty quantification. All these techniques use

Bayesian inference to update the probability of a certain hypothesis as more information becomes

available (Depeweg et al., 2019; Abdar et al., 2021; Depeweg et al., 2018). More specifically,

Bayesian Neural Networks (BNN) or Bayesian Deep Learning (BDL) are used to model the pre-
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CHAPTER 2. THEORETICAL FRAMEWORK 2.2. UNCERTAINTY QUANTIFICATION

dictive uncertainty of a model. In other words, BDL allows for interpreting the model parameters.

Additionally, these techniques are generally robust to overfitting and are trainable on both small

and big data sets (Abdar et al., 2021; Kucukelbir et al., 2017). Some of the most widely used

techniques are variations of Monte Carlo (MC) dropout, Markov chain Monte Carlo (MCMC),

Variational Inference (VI), Bayesian Active Learning (BAL), Bayes by Backprop (BBB), and

Variational Auto-Encoders (VAE) (Abdar et al., 2021). MC dropout uses dropout as regulariza-

tion term to compute the predictive uncertainty, and hence is used for approximating the posterior

inference (Gal and Ghahramani, 2016). MCMC also approximates inference, but uses a stochastic

transition operator for which the outcome distribution converges to the exact posterior after re-

peating the process for a certain number of times (Kupinski et al., 2003). VI, on the other hand,

is a method that approximates the posterior distribution over the weights of the BNN. So, VI

methods transform the Bayesian inference problem to an optimization problem to train the neural

network (Swiatkowski et al., 2020). BAL uses unlabeled samples to learn, while BBB aims to

learn a distribution over the weights of the NN by utilizing unbiased gradient estimates of the cost

function (Hossain et al., 2017; Blundell et al., 2015). Lastly, VAEs aim to map high-dimensional

input samples to low-dimensional latent variables and approach the learning representations for

high-dimensional distributions as a VI problem (Ghosh et al., 2019).

Two examples of variational inference methods are Automatic Differentiation Variational In-

ference (ADVI) and Stein Variational Gradient Descent (SVGD). ADVI is a subclass of mean-field

variational inference, where the goal is to approximate the posterior distribution by the variational

posterior. Both of these distributions are normal distributions, such that the approximation is

a mean-field approximation (Kucukelbir et al., 2016; Roeder et al., 2016; Kingma and Welling,

2014). SVGD, on the other hand, is based on Kernelized Stein Discrepancy, where the main idea

is to move noisy particles so that they fit the target distribution as close as possible (Liu and

Wang, 2016; Liu et al., 2017). While ADVI’s objective is to maximize the Evidence Lower Bound

(ELBO), SVGD’s objective is to minimize the Kullback-Leibler divergence (Kucukelbir et al., 2016;

Liu and Wang, 2016). So, both these methods have an optimization objective. Contrarily, MCMC

methods like Metropolis, No-U-Turn Sampler (NUTS), and Hamiltonian Monte Carlo (HMC) use

direct sampling of the posterior (Monnahan et al., 2017; Hoffman and Gelman, 2014). Metropolis

simulates a stationary distribution π for each chain. Then, at each step in the chain, a new state is

accepted or rejected depending on a dynamically calculated probability (Gundersen, 2019). Since

HMC adopts physical system dynamics to propose future states allowing faster convergence, it is

seen as more efficient than Metropolis. However, NUTS is considered the superior MCMC sampler,

because it is a more robust version of HMC as it performs automatic tuning and therewith avoids

random walk altogether (Monnahan et al., 2017; Hoffman and Gelman, 2014).

According to Depeweg et al., there is one major drawback to the standard Bayesian modeling

approach: ”Supervised learning methods that utilize Bayesian modeling, such as GPs or BNNs,

only model the epistemic form of uncertainty [...] [T]o our knowledge there is no method that

both models epistemic uncertainty via a Bayesian modeling approach and can model complex

noise patterns with a high level of generality”(Depeweg et al., 2019). Depeweg et al., therefore

propose a novel BNN, namely BNN with latent variables (BNN-LV), which allows for modeling

and distinguishing between epistemic and aleatoric uncertainty. This is done by approximating

the entropy, which represents a quantity of inherent variation. Entropy is approximated because

Unreliable Uncertainty 5



2.3. NON-IDENTIFIABILITY CHAPTER 2. THEORETICAL FRAMEWORK

the posterior in the BNN-LV architecture is of unknown form.

2.3 (Bayesian) non-identifiability

Even though the BNN-LV architecture is considered an improvement of the standard BNN’s, the

issue of non-identifiability remains (Yacoby et al., 2021; Wang et al., 2021; Shi et al., 2017; Kurle

et al., 2021; Pourzanjani et al., 2017; Papamarkou et al., 2021; Romeijn and Williamson, 2018).

As described earlier, in a general sense, non-identifiability of a model means that there are two or

more parametrizations that are observationally equivalent (Koopmans, 1949; Rothenberg, 1971).

It is then theoretically impossible to learn the true values of a model’s underlying parameters with

an infinite number of observations. In other words, with non-identifiability, different parameter

values produce equivalent probability distributions of the observed variables (Koopmans, 1949;

Rothenberg, 1971).

One subproblem is non-identifiability of the likelihood, meaning that the likelihood function is

unidentifiable due to different parameters being observationally equivalent (Allman et al., 2008;

Wechsler et al., 2013). So, parameters θ1, θ2 ∈ Θ with θ1 ̸= θ2 generate observationally equivalent

likelihoods L : L(θ1) = L(θ2) (Schmidt et al., 2020; Cole, 2020). The cause of this form of

non-identifiability can be prescribed to the architecture of Bayesian neural networks themselves,

making it hard to completely eliminate the problem: the weights of the network can be swapped

internally without changing the likelihood (Cole, 2020; Shi et al., 2017; Kurle et al., 2021).

Another form of non-identifiability is Bayesian or posterior non-identifiability, which refers

to non-identifiability of the posterior distribution of the model (Wang et al., 2021; Cole, 2020).

That is, there are equivalent posterior distributions for different parameter values: θ1, θ2 ∈ Θ

with θ1 ̸= θ2 generate f(θ1|y) = f(θ2|y). Additionally, when the latent variables of a model

are unidentifiable, posterior collapse occurs, which means that the likelihood function does not

depend on the latent variable(s) and is also referred to as a form of practical non-identifiability

(Wang et al., 2021; Cole, 2020). Posterior collapse refers to the posterior distribution of the latent

variables being equal to the prior distribution. So, if a substantial overlap between the prior

and posterior exists, the prior may be dictating the posterior distribution (Wang et al., 2021;

Youngflesh, 2018; Razavi et al., 2019). Even though this is not always considered problematic,

it may have a negative influence on quantifying uncertainty of the model as it affects Bayesian

inference (Cole, 2020).
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Chapter 3

Methods

3.1 The methodological framework

Figure 3.1: The adapted scientific
method framework used in this study

This study is a theoretical and empirical comparat-

ive analysis of Bayesian uncertainty quantification tech-

niques in the area of reinforcement learning, for which

the scientific method is used as the overarching method-

ological framework. Even though there are differences

in the practical application of the framework in vari-

ous research areas, the overall process is generally sim-

ilar: after making an observation or raising a question

and performing exploratory analysis on the topic, one or

more hypotheses are formulated and empirically tested,

after which the data is analyzed and conclusions are re-

ported (Gauch, 2003). Since it is likely that new ques-

tions are developed during the process, or that errors

occur in any of the phases, the scientific method is an

iterative framework rather than a sequential one. That

is, in any of the phases it is possible to go back to one of the earlier stages to make adjustments.

For example, during experimentation it might become clear that the hypothesis tests are wrongly

formulated, which can then be adjusted by going back to (re)formulating the hypotheses, or even

by doing more research on the topic and then adjusting the hypotheses. To make the findings more

reproducible, the aim is to provide reproducible experiments and findings by developing explicit

hypothesis tests and elaborate analysis of the results (Forde and Paganini, 2019; Pineau et al.,

2021).

Besides the empirical analysis, different Bayesian techniques have also been assessed theoret-

ically by means of a literature review. On the one hand this theoretical comparison has formed

the basis for the experiments, on the other hand, it has been part of the analysis phase after con-

ducting the experiments, as the theoretical assessment has helped discovering potential errors and

validating empirical findings. The results of both the theoretical and the empirical analyses have

then been used to answer the research question. While the theoretical comparison has taken into

account computational expensiveness to some extent, this has not been the case for the empirical

part of this study directly. Computational expensiveness has however been indirectly part of the

empirical assessment due to the constraints posed by the computational limitations for some of the

models. In Figure 3.1, a sketch of the adapted scientific method framework, including the most

important iterative procedures, is visualized. As multiple research questions have been defined,
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3.2. EXPERIMENTAL SET-UP CHAPTER 3. METHODS

the procedure illustrated in the framework has been performed for each separate question. The

most important findings gathered throughout each procedure have then been combined to provide

an elaborate answer to the overarching research question.

3.2 Experimental set-up

The architecture that has been used for conducting the experiments is a pre-implemented BNN

with latent variables (BNN-LV) based on the architecture described in “Decomposition of Uncer-

tainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning” (Depeweg et al., 2018;

Callen et al., 2020). The key components of this architecture are: 1) two hidden layers, with 20

nodes per layer; 2) ReLU (Rectified Linear Unit) activation functions for the hidden layers; 3)

a standard deviation of 1 for the noise Σ on each model output and a standard deviation γ of

1 ∗ dimensionality for the noise of each latent input. Since both benchmarks have been designed

to be two-dimensional, the standard deviation for the noise of each latent input equals 2 for all

experiments. In Figure 3.2, an outline of the architecture is visualized in a simplified form. To

decompose the uncertainty, entropy has been approximated by using the single nearest neighbor

method as described by Depeweg et al. (Depeweg et al., 2018).

Figure 3.2: BNN-LV architecture with two hidden layers with ReLU activation functions and
additive Gaussian noise

3.3 Benchmarks

To account for robustness of the methods and to assess the generalizability of the results, multiple

data sets have been used in the experiments. Since the context of this study is reinforcement

learning, the data used in the experiments are two reinforcement learning benchmarks: Wet-

chicken and Lunar-lander. The Wet-chicken problem refers to a canoeist (the agent) trying to

paddle as close to the waterfall at the end of the river as possible but without falling down the

waterfall. This problem contains both heteroskedastic and bimodal noise dynamics which makes

it complicated to solve for model-based reinforcement learning methods, hence there is always

uncertainty involved (Depeweg et al., 2017). In this study, the river has been represented as

a 3 × 5 grid with a (waterfall) boundary at the end, or bottom, of the grid (see Figure 3.3).

The agent can take four actions: do nothing (indicated by (0, 0)), move left (indicated by (−1, 0)),

move right (indicated by (+1, 0)), or move upward (indicated by (0,+1)). The applied Wet-chicken

benchmark has been designed in such a way to allow easier assessment of the correctness of the
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uncertainty quantification and its decomposition. For the epistemic uncertainty, by assigning the

action taken to be ’none’ each time, there is less data gathered by the model in the lower left part

of the river. Additionally, the right-hand side of the river has been designed to be deterministic (so

without randomness) and the left-hand side of the river to be completely random, which influences

aleatoric uncertainty.

Somewhat similarly to the Wet-chicken benchmark, the objective of the Lunar-lander bench-

mark is for the agent to safely land a spacecraft in a given area on the moon without crashing.

Since the original problem does not easily allow for quantifying uncertainty, this problem has been

redesigned by hand in a slightly simplified fashion. Like the Wet-chicken benchmark, the environ-

ment has once again been represented as a grid and the agent can take the same four actions. Here,

the grid is 5× 4 with the landing area being in the middle column on the bottom row (see Figure

3.4). Since the original problem’s environment contains randomness in the form of turbulence, this

has also been added in the simplified design. Similar to the Wet-chicken benchmark, the left-hand

side of the environment has been designed to be completely random, which gradually transforms

to be completely deterministic on the right-hand side. Additionally, the agent has once again been

assigned to not take any action, so that there is less data gathered on the left-hand side.

These two benchmarks have been used to assess the performance of uncertainty quantification

of five sampling methods: HMC, NUTS, Metropolis, SVGD, and ADVI. These sampling methods

have been selected as they are among the most frequently-used methods and classes of methods,

namely variational inference and Markov Chain Monte Carlo. By implementing random seeds, all

samplers use the exact same neural network and data sets as basis for their approximations to

allow for better comparison between the methods and between the identifiable and non-identifiable

variants of each method. As indicated before, in both environments the agent is assigned not to

take any action, which refers to the policy for generating data of each episode. So, the policy for

both benchmarks is (0, 0). For both benchmarks, the number of episodes has been set to 100 with

a maximum number of steps per episode of 20. The number of episodes refers to the number of

reiterations of the game and the number of steps per episode refers to the maximum number of

iterations allowed within each game before a new episode starts, provided that the agent has not

fallen off the waterfall or crashed or that it has not achieved the objective.

Figure 3.3: Sketch of Wet-chicken Figure 3.4: Sketch of Lunar-lander

Unreliable Uncertainty 9
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3.4 Eliminating non-identifiability and model tuning

The focus of this research lays on non-identifiability of the posterior (from now on referred to

as ’non-identifiability’) and posterior collapse as an indication of non-identifiability, which can

be eliminated by changing the distribution of the priors (Wang et al., 2021; Cole, 2020). In this

study, this means that the prior distributions of the weights and latent variables have been adjusted

from uniform to normal distributions (see Listings A.1, A.2, and A.3). To make sure differences

in results are only accounted to the absence or presence of non-identifiability, all potentially

influential parameters and hyperparameters have remained the same. Since the workings of the

methods differ from each other even though they belong to the same classes, either MCMC or VI

(see Chapter 2), the hyperparameters and their values differ across methods. However, the tuning

process has had the same goal for all models - to achieve the best performance given the available

time and computing power. The exact hyperparameter configurations are shown in Table 3.11.

Table 3.1: Configurations for each method

Draws Optimizer Learning
rate

Tuning
samples

Target accept
rate

Maximum
tree depth

Tune
interval

ADVI 30 000 Adam 0.01 - - - -
SVGD 1 000 Adagrad 0.2 - - - -
Metropolis 20 000 - - 20 000 0.99 15 1 000
NUTS 400 - - 500 0.9 (0.5 for

non-id.)
15 -

HMC 2 500 - - 4 000 0.99 15 -

1the relevant code written for this research can be found here: https://github.com/Lieve2/nonidentifiabili
ty-and-UQ.git (Göbbels, 2022).
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Chapter 4

Experiments

As indicated in the previous chapter, in order to be able to analyze the influence of non-identifiability

on the performance of the uncertainty quantification methods, these methods have been compared

in two environments of which one contains non-identifiability and the other does not, and that

are otherwise identical so that the difference in performance can solely be attributed to the as-

pect of non-identifiability. Firstly, the existence of non-identifiability has been empirically proven

with the aim of verifying what was already proven theoretically (see Section 2.3). After this, the

performance of each uncertainty quantification method has been assessed and compared. This is

followed by an experiment to test whether non-identifiability has been eliminated successfully, after

which the performance of each uncertainty quantification method has once again been assessed

and compared.

Algorithm 1: Prior-Posterior Overlap (PPO)

Input: p, q, n, with arrays p and q and n the number of bins
Output: overlap coefficient r

1 c1 = 0
2 c2 = 0
3 a = min((min(p),min(q))) // lower bound of integration range

4 b = min((max(p),max(q))) // upper bound of integration range

5 w = b−a
n // bin width

6 l = a // lower bound for bin

7 for i = 0 to n− 1 do
8 h = l + w // upper bound for bin

9 for j = 0 to length(p)− 1 do
// count frequency of values in p within bin

10 if p[j] > a ∧ p[j] ≤ h then
11 c1 = c1 + 1

12 pr = c1
length(p)−1

13 for k = 0 to length(q)− 1 do
// count frequency of values in q within bin

14 if q[k] > a ∧ q[k] ≤ h then
15 c2 = c2 + 1

16 qr = c2
length(q)−1

17 r[i] = min((pr, qr)) // store lowest frequency on i
18 l = h

19 r =
∑n−1

i=1 r[i] // sum frequencies on entire interval

20 return r
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4.1 Experiment 1: empirical proof of non-identifiability

This experiment centers around the first subquestion: Is there posterior non-identifiability for each

of the sampling methods? Whether there is posterior non-identifiability (or posterior collapse) has

been assessed using a (density) plot and a calculation of the prior-posterior overlap (PPO). If the

overlap is significant, wherefore the standard threshold of (>)35% has been used, it is considered

that there is posterior collapse and posterior non-identifiability (Cole, 2020; Youngflesh, 2018).

Accordingly, the hypothesis central to this experiment is that the PPO is larger than 0.35 for all

models.

Since it is impossible to get an exact value of the PPO by just using plots, an algorithm has

been constructed to calculate the exact overlap, which is shown in the pseudocode in Algorithm 1

and in Listing B.1. Depending on how many bins are used, the value might diverge slightly from

the true value. Considering that the posterior (predictive) distribution ranges approximately from

-4 to 8 (see for example Figures D.1 and D.2), and after deliberate testing of different numbers of

bins, the number of bins has been set to 100 in order to result in a PPO value that is close enough

to the true value, while keeping the running time and memory use as low as possible.

4.2 Experiment 2: performance in the presence of non-

identifiability

For answering the second sub-question, How do the sampling methods perform in the presence

of non-identifiability?, the performance of each method has been assessed by plotting the (de-

composed) uncertainty quantification. Additionally, the negative log-likelihood (NLL) has been

computed to quantitatively analyze the performance. Therefore, data from the likelihood distribu-

tion y ∼ N(µ, σ|Y ) has been used. The implementation of this calculation in Python can be found

in Listing C.1. Together with the results gathered from Experiment 4, this has allowed for compar-

ison of performance on two levels: between the different methods and between the identifiable and

non-identifiable variants of each method. In this experiment, there is no explicit hypothesis, but

there is an overarching hypothesis that concerns both this experiment and Experiment 4: there is

a difference in performance depending on the presence or absence of non-identifiability.

4.3 Experiment 3: eliminating non-identifiability

The central question answered with the third experiment is: Is non-identifiability of the posterior

successfully eliminated? This experiment is mainly intended to verify the successful elimination

of the non-identifiability in order to be able to conduct the following experiment (Experiment

4) correctly and to be able to compare the results from Experiment 4 with those acquired in

Experiment 2 in a sound way. Similar to the first experiment, a plot and calculation of the prior-

posterior overlap (PPO) have been used to assess the non-existence of posterior non-identifiability.

However, as opposed to Experiment 2, the goal in this experiment has been to prove that for all

models, the PPO is equal to or lower than 35%. So, the hypothesis central to this experiment is

that the PPO is equal to or lower than 35% and thus there is no non-identifiability.
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4.4 Experiment 4: performance in the absence of non-

identifiability

In the fourth and final experiment, the goal has been to gather results on the performance of

the methods in the absence of non-identifiability that allow for justly assessing the difference in

performance depending on the presence of non-identifiability. Hence, this experiment has been

used to answer the fourth sub-question: How do the methods perform in the absence of non-

identifiability? The first part of the experiment is similar to Experiment 2: the performance of

each method has been assessed by plotting the (decomposed) uncertainty quantification and the

minimum negative log-likelihood has been computed to quantitatively analyze model performance

and to allow for comparison of the performances. After gathering the results, they have been

qualitatively (plots of the uncertainty quantification) and quantitatively (negative log-likelihoods)

compared with the results from Experiment 2.

Unreliable Uncertainty 13



Chapter 5

Results

In this chapter, the main findings of the experiments are described with the aim to gather all

necessary information to answer the experiment-specific research questions. For each of these

subquestions, a brief answer and a description of the validity of the hypothesis is provided.

Figure 5.1: PPO of non-identifiable NUTS
on the Wet-chicken benchmark (99.5% over-
lap)

Figure 5.2: PPO of identifiable NUTS on
the Wet-chicken benchmark (3.3% overlap)

Figure 5.3: Uncertainty quantification plot
of non-identifiable NUTS on the Wet-
chicken benchmark

Figure 5.4: Uncertainty quantification plot
of identifiable NUTS on the Wet-chicken
benchmark

5.1 Empirical findings

In the first experiment, it is shown that all five models of the samplers with uniform priors with

narrow bounds are non-identifiable due to a prior-posterior overlap coefficient that is larger than

0.35 (see Tables 5.1 and 5.2, middle column of top part). That there is severe overlap between the
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Table 5.1: PPO and NLL of the sampling
methods on the Wet-chicken benchmark

Method PPO NLL
Non-identifiable

Metropolis 0.840 127 978.7
HMC 0.834 127 971.5
NUTS 0.995 158 012.2
ADVI 0.995 157 013.3
SVGD 0.994 157 025.8

Identifiable
Metropolis 0.059 6240.7
HMC 0.036 1605.1
NUTS 0.033 507.8
ADVI 0.035 7624.5
SVGD 0.038 2860.1

Note: ’Non-identifiable’ refers to Experiment 1
and ’Identifiable’ to Experiment 3.

Table 5.2: PPO and NLL of the sampling
methods on the Lunar-lander benchmark

Method PPO NLL
Non-identifiable

Metropolis 0.866 191 265.3
HMC 0.853 197 131.3
NUTS 0.995 239 571.4
ADVI 0.995 226 546.7
SVGD 0.995 239 513.6

Identifiable
Metropolis 0.038 11 882.9
HMC 0.067 3122.0
NUTS 0.041 1874.0
ADVI 0.060 17 162.8
SVGD 0.046 7395.1

Note: ’Non-identifiable’ refers to Experiment 1
and ’Identifiable’ to Experiment 3.

prior and posterior density distributions is also visible in Figures 5.1, D.1, D.3, D.7, D.9, D.11,

D.13, D.15, D.17, and D.19. Additionally, the results from the third experiment show that each

model of a sampler with normally distributed priors has a PPO coefficient that is significantly

lower than 0.35 (see Tables 5.1 and 5.2, middle column of bottom part).

Considering the results of the first experiment, the corresponding hypothesis can be accep-

ted as the PPO for each method is larger than 0.35, indicating that there is indeed posterior

non-identifiability for each of the sampling methods. This finding then answers the first sub-

question: Is there posterior non-identifiability for each of the sampling methods? Regarding the

third experiment, the results are exactly opposite as the PPO is lower than 0.35 for each of the

sampling methods. Therewith, the hypothesis that for all sampling methods, the PPO is equal to

or lower than 0.35 can also be accepted. Hence, the answer to the respective subquestion is that

non-identifiability is indeed successfully eliminated.

In the second experiment, the results from the performance of each uncertainty quantification

method have been gathered. These results show that all models have a negative log-likelihood that

falls in the range of 1.2 · 105 to 2.4 · 105 for both data sets (see Tables 5.1 and 5.2, right column of

top part). The decomposed uncertainty quantification as a qualitative measure of performance is

visualized in the plot-pairs in Figures 5.3, E.1, E.3, E.7, E.9, E.11, E.13, E.15, E.17, and E.19. In

the fourth experiment, the results of the performance of each uncertainty quantification method

have been gathered once again, but this time from the identifiable variant. These results are shown

in Tables 5.1 and 5.2 (right column of the bottom part), and in Figures 5.4, E.2, E.4, E.8, E.10,

E.12, E.14, E.16, E.18, and E.20. Here, the negative log-likelihood values are substantially lower

than those from the non-identifiable variants. For both benchmarks, the ranking of the methods

regarding the negative log-likelihood is the same, with NUTS having the best results, HMC being

the second-best and SVGD being the best variational inference method. In light of these results,

the hypothesis that there is a difference in performance in the absence of non-identifiability can

be accepted.
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Chapter 6

Discussion

In this chapter, interpretations of the main findings of both the theoretical analysis and the exper-

iments are described with the aim to gather all necessary information to answer the experiment-

specific research questions. This provides the basis for developing an answer to the main research

question.

6.1 Theoretical implications of the used methods

In theory, the NUTS sampler is considered superior over Metropolis and HMC as it is able to

automatically tune the settings preventing U-turns or random walk (Hoffman and Gelman, 2014).

Especially Metropolis is seen as an outdated method, because it is sensitive to the choice of proposal

distribution and hence requires trial and error when it comes to tuning the model to perform de-

cently. The main problem of Metropolis is that it is too random, causing the method to re-explore

the same parts of the target and, unless tuned well, rejects a lot of proposals (McElreath, 2017;

Monnahan et al., 2017). So at the very least, it is considered computationally inefficient. Instead

of making random proposals, both HMC and NUTS approach the sampling and approximation

as a physics simulation where the vector of parameters is a particle in a space with n dimensions

and a frictionless surface (e.g. a parabola). This surface represents the target distribution. In

each iteration, the particle is released in a random direction in the space and eventually returns in

such a way that information is gathered on the shape of the surface (McElreath, 2017). A major

drawback of HMC is that it makes U-turns if the number of steps is not configured right, causing

the method to be relatively inefficient as is re-explores local spaces. NUTS tries to avoid this

by adaptively finding a suitable number of steps (Hoffman and Gelman, 2014; McElreath, 2017).

However, the problem of re-exploring local spaces remains for some of the more complex targets,

like multimodal targets or Neal’s funnel (McElreath, 2017; Wijono, 2020). Another drawback of

NUTS is that it computes the gradient at each step, which makes it a computationally expensive

and not scalable sampler (Wijono, 2020; Liu and Wang, 2016).

Since VI methods like SVGD and ADVI reframe the objective into an optimization problem,

they can be used on big data sets, which is impossible when using NUTS due to its high com-

putational costs. The main difference between (mean-field) ADVI and SVGD is that ADVI uses

mean-field approximation with the objective to maximize ELBO while SVGD does not (PyMC3,

2021a,b). However, ADVI can be easily redesigned to a full-rank version (Kucukelbir et al.,

2016). This version has nonetheless not been implemented in this study due to time constraints.

A drawback of ADVI is that it is generally not able to deal with multimodality and is more

prone to random walk compared to SVGD and NUTS. The main drawback of SVGD is that it

is computationally more expensive than ADVI (PyMC3, 2020). So, overall VI methods are more
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computationally efficient than MCMC methods but this comes at the cost of performance. While

MCMC methods are usually preferred due to better performance, VI methods are considered su-

perior when it comes to large data sets, since MCMC methods are computationally expensive and

therewith incompatible with big data.

6.2 Analysis of the empirical findings

Regarding the experiments concerning assessment of the prior-posterior overlap as a measure

of non-identifiability, when comparing the prior-posterior distributions from the non-identifiable

variants of the methods with those from the identifiable variants, there is a clear difference in the

shape of the posterior. This indicates that the prior dictates the posterior as described in Section

2.3. Additionally, similar to what is described in the theoretical analysis, it appears that both

Metropolis and ADVI do not seem to be able to capture multimodality compared to the other

methods as they have fewer peaks than HMC, NUTS and SVGD (see Figures D.12, D.14, D.16,

D.18, and D.20).

To determine what the lack of capturing multimodality means for the ability to quantify the

uncertainty and to compare the performance of the methods with and without non-identifiability,

both the qualitative results and the quantitative results can be used. For the qualitative results, it

means that the uncertainty quantification plots need to be interpreted in comparison with the ideal

plot. As described in Chapter 3, regarding epistemic uncertainty there ideally is high uncertainty

on the left-hand side of the grid from y = 1 to y = 4 for the Wet-chicken and y = 1 to y = 3 for the

Lunar-lander benchmark respectively, and low uncertainty for all other positions. For aleatoric

uncertainty, the optimal plot has high uncertainty on the left-hand side which gradually decreases

for each step to the right.

The results of the second experiment show that none of the methods containing non-identifiability

are able to come close to this ideal. This poor performance is also visible in the negative log-

likelihood, which is the quantitative measure used: with the lowest negative log-likelihoods being

1.3 · 105 and 1.9 · 105 on the Wet-chicken and Lunar-lander benchmark respectively, the non-

identifiable variants of the five methods can all be considered to have poor performance. In the

last experiment, on the other hand, the identifiable variants of NUTS, HMC, and SVGD seem to be

able to capture the uncertainty to a certain degree in some cases. More specifically, NUTS is able

to represent the ideal plot-pair for the Wet-chicken benchmark and has a decent approximation of

the aleatoric uncertainty for the Lunar-lander benchmark. HMC, on the other hand, comes close

to the true epistemic uncertainty regarding the Lunar-lander benchmark and has good estimations

of both epistemic and aleatoric uncertainty regarding the Wet-chicken benchmark. SVGD, being

the best-performing variational inference method, provides good approximation of the aleatoric

uncertainty but misestimates both types of uncertainty in the Lunar-lander environment.

Metropolis and ADVI have the worst qualitative and quantitative performance results for both

benchmarks in Experiment 4. This may be due to their inability to capture multimodality, which

seems especially important in the Lunar-lander environment. Considering this, in combination

with the given that both methods are considered problematic in theory, it can be concluded

that these methods are not suitable when it comes to quantifying uncertainty in the context of

reinforcement learning. In addition, besides the performance of identifiable NUTS in the Wet-
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chicken benchmark, none of the other performance results are desirable when it comes to reliable

uncertainty quantification. This may be due to the limited number of draws used for training

the methods or it may be due to the implementation of the single nearest-neighbor algorithm

to approximate and decompose the uncertainty, as this is a relatively frail method. However,

increasing the sample size or changing the decomposition with a more complex, yet more robust

algorithm would demand even more computing power, making it less utilizable.
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Chapter 7

Conclusion

This study has assessed five uncertainty quantification methods, HMC, NUTS, Metropolis, ADVI,

and SVGD, to investigate the effects of Bayesian non-identifiability on the performance of these

methods in the context of reinforcement learning. Additionally, these methods have also been com-

pared with each other to identify the strengths and weaknesses of these methods. Results show

that Bayesian non-identifiability has a clear negative influence on the ability to accurately quantify

uncertainty for each of the methods. However, even when Bayesian non-identifiability is elimin-

ated, most of the methods are still not able to provide accurate enough approximations to the true

uncertainty. As this negatively affects the optimization process of a reinforcement learning agent

and therewith decreases reliability of the AI system, it is vital to investigate what influences the ac-

curacy of such uncertainty quantification methods besides Bayesian non-identifiability. Regarding

this, further research could for instance focus on investigating the influence of other types of non-

identifiability, like likelihood non-identifiability, to further identify what improvements are needed

to acquire well-performing methods. Despite the probability of other types of non-identifiability

negatively influencing the performance of the five investigated methods, part of the misestimation

could be a result of the limited number of samples used in the conducted experiments. Addition-

ally, the decomposition of uncertainty could also be miscalculated at times due to using the single

nearest-neighbor method instead of a more robust algorithm.

This research shows that Bayesian non-identifiability negatively influences the ability to accur-

ately quantify uncertainty for both variational inference class models and Markov Chain Monte

Carlo methods in the context of reinforcement learning, which may cause problems when trying to

efficiently optimize reinforcement learning agents and provide reliable AI systems. As the topic of

non-identifiability has remained underexposed in the context of reinforcement learning, this study

highlights the importance of eliminating (Bayesian) non-identifiability and serves as a starting

point to further investigate the effects of and solutions to other types of non-identifiability to

ultimately develop efficient and accurate Bayesian uncertainty quantification methods.
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Appendix A

Python code snippets of the priors

p mu = 0

p sigma = 5

l s i gma = 0.25

lv gamma = 2

# Pr io r on w ( same shape as MLE)

w pr io r = pm. Normal (name=’w ’ , mu=p mu , sigma=p sigma , shape=bnn . weights . shape )

# Latent va r i ab l e p r i o r ( same shape as number o f datapo int s )

l v p r i o r = pm. Normal (name=’ z ’ , mu=0, sigma=lv gamma , shape=(X tra in . shape [ 0 ] , 1 ) )

Listing A.1: Priors of identifiable variants

p mu = 0

p sigma = 5

l s i gma = 0.25

lv gamma = 2

# Pr io r on w ( same shape as MLE)

w pr io r = pm. Uniform (name=’w ’ , lower=−0.01 , upper=0.01 , shape=bnn lv ch i cken .

weights . shape )

# Latent va r i ab l e p r i o r ( same shape as number o f datapo int s )

l v p r i o r = pm. Uniform (name=’ z ’ , lower=−0.01 , upper=0.01 , shape=(X tra in . shape [ 0 ] , 1 )

)

Listing A.2: Priors of non-identifiable NUTS, ADVI, SVGD

p mu = 0

p sigma = 5

l s i gma = 0.25

lv gamma = 2

# Pr io r on w ( same shape as MLE)

w pr io r = pm. Uniform (name=’w ’ , lower=−0.05 , upper=0.05 , shape=bnn lv ch i cken .

weights . shape )

# Latent va r i ab l e p r i o r ( same shape as number o f datapo int s )

l v p r i o r = pm. Uniform (name=’ z ’ , lower=−0.05 , upper=0.05 , shape=(X tra in . shape [ 0 ] , 1 )

)

Listing A.3: Priors of non-identifiable Metropolis, HMC
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Appendix B

Python function for calculating

the PPO

import numpy as np

from tqdm import tqdm

# func t i on f o r PPO ca l c u l a t i o n

de f PPO( arr1 , arr2 , nbins ) :

# Determine the i n t e g r a t i o n range

min value = np . min ( ( ar r1 . min ( ) , a r r2 . min ( ) ) )

max value = np . min ( ( ar r1 .max( ) , a r r2 .max( ) ) )

# Determine the bin width

bin width = (max value − min value ) / nbins

# For each bin , f i nd minimum frequency

lower bound = min value # Lower bound o f the f i r s t bin i s the lowest va lue o f

both ar rays

lower = np . empty ( nbins ) # Array f o r s t o r i n g lowest f requency f o r each bin

f o r b in tqdm( range ( nbins ) ) :

higher bound = lower bound + bin width # Set the h igher bound f o r the bin

# Determine the share o f samples in the i n t e r v a l

f r eq1 = np .ma. masked where ( ( ar r1 < lower bound ) | ( ar r1 >= higher bound ) ,

a r r1 ) . count ( ) / l en ( ar r1 )

f r eq2 = np .ma. masked where ( ( ar r2 < lower bound ) | ( ar r2 >= higher bound ) ,

a r r2 ) . count ( ) / l en ( ar r2 )

# Conserve the lower f requency and proceed

lower [ b ] = np . min ( ( f req1 , f r eq2 ) )

lower bound = higher bound

pass

re turn lower . sum( )

Listing B.1: PPO calculation
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Appendix C

Python code snippet for

calculating the NLL

# l i k e l i h o o d ( part o f sampler model i n i t i a l i z a t i o n )

y = pm. Normal (name=’y ’ , mu = bnn . forward (X = X train , i npu t no i s e = l v p r i o r ,

weights=w pr io r ) , sigma = l s igma , observed = Y tra in )

# ex t r a c t i n g the log l i k e l i h o o d and trans forming i t to NLL

obs logp = pm model . y . logp

l o g l i k e l i h o o d = np . array ( [ obs logp (p) f o r p in t r a c e . po in t s ( ) ] )

n l l = −1 ∗ l o g l i k e l i h o o d

# ex t r a c t i n g the best va lue

min n l l = min ( n l l )

round ( min nl l , 3)

Listing C.1: NLL calculation
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Appendix D

Plots of the prior-posterior

overlap

D.1 Wet-chicken benchmark

Figure D.1: PPO of non-identifiable HMC
on the Wet-chicken benchmark

Figure D.2: PPO of identifiable HMC on the
Wet-chicken benchmark

Figure D.3: PPO of non-identifiable Metro-
polis on the Wet-chicken benchmark

Figure D.4: PPO of identifiable Metropolis
on the Wet-chicken benchmark
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D.1. WET-CHICKEN APPENDIX D. PPO PLOTS

Figure D.5: PPO of non-identifiable NUTS
on the Wet-chicken benchmark

Figure D.6: PPO of identifiable NUTS on
the Wet-chicken benchmark

Figure D.7: PPO of non-identifiable ADVI
on the Wet-chicken benchmark

Figure D.8: PPO of identifiable ADVI on
the Wet-chicken benchmark

Figure D.9: PPO of non-identifiable SVGD
on the Wet-chicken benchmark

Figure D.10: PPO of identifiable SVGD on
the Wet-chicken benchmark
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APPENDIX D. PPO PLOTS D.2. LUNAR-LANDER

D.2 Lunar-lander benchmark

Figure D.11: PPO of non-identifiable HMC
on the Lunar-lander benchmark

Figure D.12: PPO of identifiable HMC on
the Lunar-lander benchmark

Figure D.13: PPO of non-identifiable Met-
ropolis on the Lunar-lander benchmark

Figure D.14: PPO of identifiable Metropolis
on the Lunar-lander benchmark

Figure D.15: PPO of non-identifiable NUTS
on the Lunar-lander benchmark

Figure D.16: PPO of identifiable NUTS on
the Lunar-lander benchmark
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D.2. LUNAR-LANDER APPENDIX D. PPO PLOTS

Figure D.17: PPO of non-identifiable ADVI
on the Lunar-lander benchmark

Figure D.18: PPO of identifiable ADVI on
the Lunar-lander benchmark

Figure D.19: PPO of non-identifiable SVGD
on the Lunar-lander benchmark

Figure D.20: PPO of identifiable SVGD on
the Lunar-lander benchmark
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Appendix E

Plots of the decomposed

uncertainty quantification

E.1 Wet-chicken benchmark

For each pair of plots, epistemic uncertainty is presented in the left plot and aleatoric uncertainty

in the right plot. Yellow indicates high uncertainty, and dark purple low uncertainty.

Figure E.1: UQ of non-identifiable HMC on
the Wet-chicken benchmark

Figure E.2: UQ of identifiable HMC on the
Wet-chicken benchmark

Figure E.3: UQ of non-identifiable Metro-
polis on the Wet-chicken benchmark

Figure E.4: UQ of identifiable Metropolis on
the Wet-chicken benchmark
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E.1. WET-CHICKEN APPENDIX E. UQ PLOTS

Figure E.5: UQ of non-identifiable NUTS on
the Wet-chicken benchmark

Figure E.6: UQ of identifiable NUTS on the
Wet-chicken benchmark

Figure E.7: UQ of non-identifiable ADVI on
the Wet-chicken benchmark

Figure E.8: UQ of identifiable ADVI on the
Wet-chicken benchmark

Figure E.9: UQ of non-identifiable SVGD
on the Wet-chicken benchmark

Figure E.10: UQ of identifiable SVGD on
the Wet-chicken benchmark
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APPENDIX E. UQ PLOTS E.2. LUNAR-LANDER

E.2 Lunar-lander benchmark

For each pair of plots, epistemic uncertainty is presented in the left plot and aleatoric uncertainty

in the right plot. Yellow indicates high uncertainty, and dark purple low uncertainty.

Figure E.11: UQ of non-identifiable HMC
on the Lunar-lander benchmark

Figure E.12: UQ of identifiable HMC on the
Lunar-lander benchmark

Figure E.13: UQ of non-identifiable Metro-
polis on the Lunar-lander benchmark

Figure E.14: UQ of identifiable Metropolis
on the Lunar-lander benchmark

Figure E.15: UQ of non-identifiable NUTS
on the Lunar-lander benchmark

Figure E.16: UQ of identifiable NUTS on
the Lunar-lander benchmark
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E.2. LUNAR-LANDER APPENDIX E. UQ PLOTS

Figure E.17: UQ of non-identifiable ADVI
on the Lunar-lander benchmark

Figure E.18: UQ of identifiable ADVI on the
Lunar-lander benchmark

Figure E.19: UQ of non-identifiable SVGD
on the Lunar-lander benchmark

Figure E.20: UQ of identifiable SVGD on
the Lunar-lander benchmark
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