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Abstract 
The construction industry generates a significant amount of waste that can have serious environmental 

and economic consequences. To address this problem, it is important to understand the factors that 

contribute to the generation of construction waste. This thesis aims to develop a machine learning 

prediction model that can help improve understanding of construction waste generation by analysing 

construction project variables and to propose suitable ML-algorithms for current contracting companies. 

To achieve this goal, several existing machine learning algorithms were applied and tested. The models 

were trained on a dataset that included information on construction projects, such as project size, 

location, type of construction, and materials used. The performance of each model was evaluated using 

metrics such as accuracy, precision, and recall. 

The results of the study showed that machine learning algorithms can effectively predict construction 

waste generation based on project variables. The ridge regression algorithm had the highest 

performance, with an r2 of 0,744. In addition to developing a prediction model, the study explored ways 

to improve the input data and use the output effectively. One approach involved to develop a tool to 

extract more data from the building information modelling (BIM) environment to create a more 

comprehensive dataset. Overall, this study contributes to the efforts to use ML-algorithms to predict 

construction waste, which is a first step towards identifying the key factors that contribute to waste 

generation and exploring ways to improve data collection and analysis.  

 

Keywords: Construction Waste, Predictive analytics, Construction Waste Management (CWM), 

Python, Construction Waste Generation (CWG), Performance measure, Machine learning. 
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Summary 
The thesis explores the effectiveness machine learning algorithms in construction waste prediction 

models. Construction waste was chosen as the topic related to CME, because it is a significant problem 

that needs to be addressed in order to achieve the 17 sustainable development goals. The construction 

industry is responsible for a large amount of waste, and current waste management practices have not 

yet found a solution to significantly lower the generation of construction waste. The inadequate 

knowledge in the sector results in resource depletion and in some cases even in significant 

environmental damage. 

The current analysis of construction waste prediction is quite limited to either a (large) national/regional 

scale or a (small) individual building/container. These analyses are often shallow and lack complex 

dynamics, making it mostly useful for national waste output projections, which are mostly related to 

increase in national GPD. Or a small-scale snap of a single building and the related waste output in full 

detail which is not a feasible approach to full scale construction projects. Both prove to be mostly for 

informative purposes rather than providing useable strategies/practices to significantly reduce 

construction waste. Logically the implementation of BIM (Building Information Modelling) and other 

general innovations in the construction industry have reduced the amount of construction errors and 

thus reducing construction waste, however the reduction of construction waste is more of a side effect 

rather than the main purpose. Furthermore, the use of modern data analysis and machine learning is 

limited in most construction companies worldwide. 

Digital modelling and engineering of construction project has reached most construction industries 

worldwide. BIM provides a digital foundation that hold all kinds of data, this makes it the perfect source 

to develop machine learning models. However, during this study it was found that locating the desired 

data and extracting it is limited and resource intensive making it less appealing for market parties to 

invest into the development of machine learning.  

The literature review covers the main theory regarding machine learning algorithms in general and 

examples of these algorithms specifically used for construction waste prediction purposes. The review 

found multiple cases where machine learning algorithms were able to predict the construction waste 

output with high accuracy. R2 values of 0.90+ were achieved by several types of machine learning 

algorithms. The study then covers the current knowledge of construction waste generation dynamics. It 

examines various factors that contribute to waste generation, such as project size, location, and type of 

construction. This information is used to develop six different machine learning prediction models to 

determine which ones show the most potential with the current project setup. 

The study finds that Artificial Neural Network (ANN) and Ridge Regression are the best-performing 

models, with R-squared values of 0.66 and 0.74, respectively. However, during the data collection and 

preparation stage, the study concludes that the available data that could be used as input variables were 

quite limited. Eventually only 6 input variables could be used. None of these variables contained 

information related to construction technical features, such as materials, spaces, methods, complexity, 

etc. This significantly limited the performance of the tested machine learning models and made it hard 

to extract complex and hidden dynamics related to construction waste generation. However, the output 

variable was based on a high-quality dataset and produced carefully to avoid losing valuable 

information, this makes it an accurate and unique in the current research field. Even though the 

developed prediction models only used the total generated waste for a residential construction project, 

the dataset did include generation variables of specific waste material groups. This in itself proved to 

be a valuable addition to the existing literature since only a handful of studies have used a similar 

dataset. 

To demonstrate that extracting more value data from the BIM environment is possible, a plugin for 

Revit was developed using C# that was able to extract space features in an early stage of the design. 
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This plugin was tested on a small residential construction project, clicking one button was enough to 

automatically extract a variety of spatial related data that could be used to improve the quality of input 

data for a machine learning model. 

The conclusion of this study consists of two main findings, first and foremost it concludes that even 

with a limited data source, machine learning can still provide acceptable results, that can benefit the 

waste management of a project. It also showed that with relatively little resources (1 fte) machine 

learning models can already be implemented and provide extra information that is likely to benefit the 

company itself and industry in general. Secondly is that data accessibility and structure need to be of 

high level in order to fully benefit from machine learning. This is a pre-requisite to competitively use 

machine learning and probably a more difficult task to execute since it considers the whole data 

environment used not only within the company itself but industry broad. This last topic is further 

described in the last section of this study.  
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Samenvatting  

De scriptie onderzoekt de effectiviteit van machine learning-algoritmes in modellen voor voorspelling 

van bouwafval. Bouwafval werd gekozen als het onderwerp gerelateerd aan CME, omdat het een 

significant probleem is dat aangepakt moet worden om de 17 duurzame ontwikkelingsdoelen te 

bereiken. De bouwsector is verantwoordelijk voor een grote hoeveelheid afval, en de huidige praktijken 

voor afvalbeheer hebben nog geen oplossing gevonden om de generatie van bouwafval aanzienlijk te 

verminderen. Het ontoereikende inzicht in de sector leidt tot uitputting van hulpbronnen en in sommige 

gevallen zelfs tot aanzienlijke milieuschade. 

De huidige analyse van voorspellingen van bouwafval is nogal beperkt tot ofwel een (grote) 

nationale/regionale schaal, ofwel een (kleine) individuele gebouw/container. Deze analyses zijn vaak 

oppervlakkig en missen complexe dynamiek, waardoor ze voornamelijk nuttig zijn voor nationale 

afvalprognoses, die meestal verband houden met de groei van het nationale BBP. Of het betreft een 

kleinschalige momentopname van een enkel gebouw en het bijbehorende afval in volledig detail, wat 

geen haalbare aanpak is voor grootschalige bouwprojecten. Beide blijken voornamelijk bedoeld te zijn 

voor informatieve doeleinden in plaats van het bieden van bruikbare strategieën/praktijken om 

bouwafval aanzienlijk te verminderen. Logischerwijs heeft de implementatie van BIM (Building 

Information Modelling) en andere algemene innovaties in de bouwsector het aantal bouwfouten 

verminderd en daarmee bouwafval teruggedrongen, hoewel de vermindering van bouwafval meer een 

neveneffect is dan het hoofddoel. Bovendien is het gebruik van moderne data-analyse en machine 

learning beperkt in de meeste bouwbedrijven wereldwijd. 

Digitale modellering en engineering van bouwprojecten heeft de meeste bouwindustrieën wereldwijd 

bereikt. BIM biedt een digitale basis die allerlei soorten gegevens bevat, waardoor het de perfecte bron 

is om machine learning-modellen te ontwikkelen. Echter, tijdens dit onderzoek is gebleken dat het 

lokaliseren van de gewenste gegevens en het extraheren ervan beperkt en resource-intensief is, 

waardoor het minder aantrekkelijk is voor marktpartijen om te investeren in de ontwikkeling van 

machine learning. 

De literatuurreview behandelt de belangrijkste theorie met betrekking tot machine learning-algoritmes 

in het algemeen, en voorbeelden van deze algoritmes die specifiek worden gebruikt voor het voorspellen 

van bouwafval. De review vond meerdere gevallen waarin machine learning-algoritmes in staat waren 

om de output van bouwafval met hoge nauwkeurigheid te voorspellen. Verschillende soorten machine 

learning-algoritmes behaalden R2-waarden van 0,90+ (R-squared, een maat voor de nauwkeurigheid 

van voorspellingen). Vervolgens behandelt de studie de huidige kennis over de dynamiek van 

bouwafvalgeneratie. Hierbij worden verschillende factoren onderzocht die bijdragen aan de productie 

van afval, zoals projectgrootte, locatie en type bouw. Deze informatie wordt gebruikt om zes 

verschillende machine learning-voorspellingsmodellen te ontwikkelen om te bepalen welke modellen 

het meeste potentieel tonen binnen de huidige projectopzet. 

Het onderzoek concludeert dat Kunstmatige Neurale Netwerken (ANN) en Ridge-regressie de best 

presterende modellen zijn, met respectievelijk R2-waarden van 0,66 en 0,74. Tijdens de fase van 

gegevensverzameling en -voorbereiding concludeert de studie echter dat de beschikbare gegevens die 

als invoervariabelen kunnen worden gebruikt, vrij beperkt waren. Uiteindelijk konden slechts 6 

invoervariabelen worden gebruikt. Geen van deze variabelen bevatte informatie over technische 

kenmerken van de bouw, zoals materialen, ruimtes, methoden, complexiteit, enzovoort. Dit beperkte 

aanzienlijk de prestaties van de geteste machine learning-modellen en maakte het moeilijk om complexe 

en verborgen dynamieken met betrekking tot de generatie van bouwafval te achterhalen. De 

uitvoervariabele was echter gebaseerd op een hoogwaardige dataset en zorgvuldig samengesteld om 

waardevolle informatie te behouden, waardoor het een nauwkeurige en unieke waarde heeft in het 

huidige onderzoeksveld. Hoewel de ontwikkelde voorspellingsmodellen alleen het totale gegenereerde 
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afval voor een residentieel bouwproject gebruikten, omvatte de dataset wel generatievariabelen van 

specifieke afvalmateriaalgroepen. Dit op zichzelf bleek een waardevolle toevoeging te zijn aan de 

bestaande literatuur, aangezien slechts een handvol onderzoeken een vergelijkbare dataset heeft 

gebruikt. 

Om te laten zien dat het mogelijk is om meer waardevolle gegevens uit de BIM-omgeving te halen, 

werd een plugin voor Revit ontwikkeld met behulp van C#. Deze plugin was in staat om in een vroeg 

stadium van het ontwerp ruimtekenmerken te extraheren. Deze plugin werd getest op een klein 

residentieel bouwproject, waarbij één knop indrukken voldoende was om automatisch verschillende 

ruimtegerelateerde gegevens te extraheren die konden worden gebruikt om de kwaliteit van 

invoergegevens voor een machine learning-model te verbeteren. 

De conclusie van dit onderzoek bestaat uit twee belangrijke bevindingen. Ten eerste concludeert het dat 

zelfs met een beperkte gegevensbron machine learning nog steeds acceptabele resultaten kan opleveren 

die het afvalbeheer van een project kunnen verbeteren. Het toonde ook aan dat met relatief weinig 

middelen (1 fte) machine learning-modellen al kunnen worden geïmplementeerd en extra informatie 

kunnen leveren die waarschijnlijk zowel het bedrijf zelf als de branche in het algemeen ten goede zal 

komen. Ten tweede blijkt dat toegankelijkheid en structuur van gegevens op hoog niveau moeten zijn 

om volledig te profiteren van machine learning. Dit is een voorwaarde om machine learning op een 

competitieve manier te gebruiken en waarschijnlijk een moeilijkere taak om uit te voeren, aangezien 

het de gehele dataomgeving betreft die niet alleen binnen het bedrijf zelf wordt gebruikt, maar ook 

breed binnen de branche. Dit laatste onderwerp wordt verder beschreven in de laatste sectie van dit 

onderzoek. 
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1. Introduction 
This chapter will first explain the meaning of construction waste and why this topic is closely related 

to the goals of creating a durable construction industry and how machine leaning can help with this. 

Construction waste and machine learning will be the two central topics for this thesis, developing an 

effective research plan is further explained in this chapter by setting up research questions and goals.  

1.1. Research Background 
Construction waste is a worldwide issue that impedes industry from achieving its sustainable goals. The 

construction sector in the European Union (EU) produces over 500 million metric tonnes of construction 

waste per year, accounting for 50% of all the waste produced in the EU (Vieira & Pereira, 2015). 

Considering the magnitude of the construction industry it will be a huge task to achieve the set goals by 

the Dutch government to use 50% less primary raw materials by 2030 than it did in 2016 and to be fully 

circular by 2050 (Ministerie van Infrastructuur en Waterstaat, 2020). This will require major change 

and adaptation of innovations however, the adoption of technology in the construction industry is 

accelerating at a slower pace when compared to industries like finance, entertainment, healthcare, and 

education (Akinosho et al., 2020). Figure 3 shows a simplified scheme representing the construction 

material cycle. The figure shows only waste generated at the end-of-life stage, however at each step 

visualized in the figure waste is being generated, from extracting the raw resources to placing the final 

products in the building, this waste can also be considered as construction waste. Three phases generate 

construction waste being the production of construction products/materials, the construction, and the 

demolition phase. This cycle shows that construction waste is either recycled or processed as unusable 

waste and dumped at landfills, burned, etc. The previously mentioned numbers are European broad, 

however the recycling rates vary widely within the European countries. Figure 1 shows the percentage 

recycled materials of the total used materials. This is not specific for construction waste, but it does 

show that the Netherlands is leading by a significant margin.  

 

Figure 1 Graph that visualizes the percentage recycled materials of all used materials per country (CBS, 2019). 

Within the Netherlands the construction industry has the highest percentage of using recycled materials, 

with 37,9% (see figure 2) its largely contributing to the 29% general recycling rate for the Netherlands. 

These numbers give a positive impression of the current status regarding circularity. However, in regard 
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to the earlier mentioned goals, it will be crucial for the construction industry to reduce the initial 

generation of construction waste rather than just increase recyclability (for all three phases).  

 

Figure 2 Graph that visualizes the percentage recycled materials of all used materials per industry in the Netherlands (CBS, 
2019) 

The term construction waste is a general term that leaves room for different interpretations. The research 

of Pearce (2003). proposed two definitions for the ‘construction’ industry, one narrow and one broad. 

The definition for construction waste is then the waste generated by either the narrow or the broad 

definition for the construction industry. The narrow sector is defined as “... those who construct, repair 

and maintain buildings or engineering works in situ ... including site preparation, construction of 

buildings and civil engineering works, building installation (e.g., electrical wiring, plumbing), building 

completion (e.g., painting, plastering) and renting of construction or demolition equipment supplied 

with an operator” (Pearce, 2003). The broad sector includes not only those who are already in the 

“narrow” sector, but also “those who quarry raw materials, plus those who manufacture and sell the 

materials, products, and assemblies used by contractors, plus those who supply professional 

management, design, engineering, and surveying services to the industry or its clients, plus construction 

and repair works undertaken by households and other non-contracting organizations” (Pearce, 2003). 

Both definitions are clear and could be used for research purposes however, in this thesis the term 

construction waste is neither one of the definitions described by Pearce. The construction waste that is 

involved in this thesis is only the waste which is directly generated by the contractor during the 

construction phase. This means that the definition of construction waste in this thesis is “all the waste 

generated solely during the construction phase of new residential projects”, so this doesn’t include 

demolition waste since virgin land is used or other third parties cleared the area before construction. 

The reason why this definition is chosen is because it accurately measured for individual construction 

projects and thus can be directly linked with project variables. This waste is also the most direct form 

of waste generation within the construction industry since the delay between the actions/design choices 

made for a particular building and the waste is generated by this is very small compared to end-of-life 

waste. This waste is also the responsibility of the contractor rather than the owner of the building. The 
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advantage of this is that a party (contractor) can directly benefit from information generated by this 

thesis. This results in a higher chance of adaptation of possible findings, which increases the relevance 

of this thesis.  

  

Figure 3 The typical life cycle for a building and which stages and processes are involved (Trafik-Og Byggestyrelsen, 2016). 
This figure is edited to emphasize that waste is generated at every stage and to highlight the waste and stage that this thesis 
is aimed at.  

The construction waste management (CWM) sector is mostly responsible to come up with new 

technologies and processes to reduce construction waste and increase reusability and recyclability. The 

significant role the CWM sector has in one of the most challenging problems in today's construction 

industry have resulted in increasing popularity among researchers in the scientific field. Most published 

papers can be subdivided among a couple of main topics. The study of Wang et al. (2015) states that 

the research field of waste minimizing design (WMD) can be generally classified into 4 categories, 

namely:  

(1) studies on the sources of construction waste generation (CWG) in the design phase.  

For instance, Faniran & Caban (1998) traced the most significant sources of construction waste to 

design modification and detailing errors and suggested the dimensions of materials and components 

should be carefully determined in the design phase to prevent waste generation.  

(2) Studies on the application of low-waste architectural technologies and methods.  

This involves a wide variety of study solutions that can help decrease construction waste for example 

prefabricated components (Tam et al., 2005), thin panel walls (Zang et al., 2012), and recycled hoarding 

and scaffolding (Poon et al., 2001).  

(3) Studies on the architect's attitude toward reducing construction waste.  

A study performed by Osmani (2008) researched the top 100 architect practices, the architects claimed 

that “waste is predominantly produced during on-site activities and rarely generated during design 

stages. Nonetheless, architects conveyed their willingness to work with consultants and contractors to 

design out waste if incentivised by clients, particularly if they gained an enhanced fee for waste 

minimisation feasibility and implementation studies”.  

(4) Studies on barriers to implementing WMD.   
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An example can be taken from the same study of Osmani (2008) which found out that the architects 

believed that there are several obstacles to designing out waste. Namely “perception of waste, unknown 

root causes of design waste, clients’ requirements, and poorly defined responsibilities. Legislation and 

financial rewards were seen as the major incentives that could have a major impact on design waste 

reduction practices” (Osmani, 2008).  

Another common topic is waste analytics (WA) which can be used to analyse construction waste 

streams. These findings can help to create a better understanding of the construction waste generation 

rate (CWGR). CWGR has been broadly used as an indicator to measure CWM performance (Bossink 

& Brouwers, 1996) (McDonald & Smithers, 1998) (Formoso, 2002) (Tam et al., 2007) (Lu et al., 2011). 

It can be used as key performance indicators (KPIs), based on which contractors can benchmark their 

CWM performance and in turn identify the best practice that can seek for continuous improvement. 

Previous studies on WGRs, which adopted research methods, for instance, literature review, case 

studies, interviews, site inspections and questionnaire survey, provided a subjective and limited 

understanding of the performances (Formoso, 2002) (Tam et al., 2007) (Lu et al., 2011) (Lin, 2006) 

(Gangolells, 2014). Most of the studies on CWM performance (measured by WGR) have a relatively 

small sample or sampled relatively small sites due to the difficulties involved in conducting a survey 

on large-scale projects over a relatively long period of time (Lu et al., 2011) (Katz & Baum, 2011). 

Consequently, these WGRs reportedly ranged from one study to another without any form of reliability. 

Results of such studies thus cannot be utilized with a high level of confidence as yardsticks for 

benchmarking. The importance but lacking reliability of CWGs for CWM is again mentioned in a more 

recent study performed by Hu et al. (2021), which states that “Modelling CWG is a prerequisite for 

effective CWM, but current practices face severe CWG measurement and prediction problems.”.   

 This led researchers to develop/research a set of more reliable KPIs/WGRs, an example of this is the 

study by Lu et al. (2021), where a big data set of 2 million waste disposal records generated by 5764 

construction projects in Hongkong was used to generate more reliable CWGR numbers and other CWM 

KPIs. However, most of the CWM community around the world relies on ‘small data’ collected via 

active solicitation such as sampling and ethnographic methods. As previously described is small data 

intrinsically limited by its inability to account for the totality of CWM and research findings generated 

from the small data cannot be accepted with a high level of confidence (Lu et al., 2018). In some cases, 

is small data enough to generate the desired information. However, big data can help certain facets of 

the industry evolve to the next level of data technology/analysis. Where big data can be used to improve 

existing practices or to reveal complex dynamics which were not known before. Finding the right uses 

for big data in the CWM industry is crucial to stay up to date and relevant in this ever-changing 

environment. This points out one of the main challenges and reasons why CWM is lacking innovation, 

namely the lack of utilizing big data within the industry. The study of Chen et al. (2016) once again 

emphasizes the importance of big data with the following statement ‘’The emerging big data has become 

a reality with a variety of prospects. Big data is defined as things one can do at a large scale that cannot 

be done on a smaller one, to create a new form of value in living, working, science and industry by 

changing markets, organizations, relationships between people, and more. This technology is becoming 

the frontier for innovation, competition and productivity. It has been argued that an organization should 

foster the data-driven decision-making culture for management revolution to improve management 

performance.’’ (Chen et al., 2016).   

Big data is a much-used term in the scientific literature, this resulted in different definitions and 

characteristics. Big data could be seen as an evolving term since its meaning changed year by year. The 

characteristics of big data vary from 3,5,7,10,17 to 29 V's (Poonam & Marken, 2021), this means that 

for this research the characteristics of the big data need to be clarified. Choosing from 29 characteristics 

before having a fully clear picture of the big data that will be used in this research is an uncertain task 

however at the start of the research a selection of V's will be made. Industry dynamics determine which 
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of the previous characteristics are most relevant for that specific big data source. One characteristic that 

distinguishes the construction industry from most other industries is the highly fragmented business 

environment. One of the reasons is the self-recruiting-subletting cost indifference curve for the 

construction industry, explained in the paper of (Langston & Wu, 2006). The high level of 

fragmentation combined with the high diversity of works involved in a construction project creates an 

environment with a high percentage of smaller and specialized companies.  This makes it a complex 

task to access all the data covering the whole construction cycle into an accessible big data source. So 

regardless of the (increasing) digitalization within the construction industry it is still problematic for 

organizations to efficiently use big data to their benefit. However, building information management 

(BIM) (Azhar et al., 2015) can play a crucial role in this, because of its purpose to create synergy and 

endogeneity within the construction industry. This has proven to be successful as most construction 

companies have implemented the BIM environment to manage their project. This makes the BIM 

environment which contains tenth or hundreds of GB's of data per project a great source of unprocessed 

big data (considering that a company like Heijmans has constructed hundreds of these projects over the 

past years). Big data can serve all sorts of developments, the paper of Bilal et al. (2016) describes 

possible opportunities, one of which is to use big data to improve the accuracy of construction waste 

predictions. Increasing the accuracy of CWG predictions can benefit automation, recycling, waste 

reduction and other facets of CWM. However, the euphoria of big data usage is yet to be seen in the 

waste management research community (Lu et al., 2018). 

 

1.2. Research Problem 
The CWM sector lacks accessible and centralized big data sources, one of the reasons for this is the 

high level of fragmentation through-out the industry (Senaratne & Rasagopalasingam, 2017). Not 

having a centralized database will result in incomplete data sources (e.g. multiple sub-contractors 

working on the same project but not exchanging all data after finalization) that either take significant 

resources to restore/complete or negatively affect the representativity of the result. For most other 

industries big data has been and still is a prerequisite for a lot of (digital) innovations. There are multiple 

reasons why the CWM is suffering from notoriously erratic ‘small’ data. One explanation for this is the 

temporary nature of construction projects, whereby once a project is completed it ceases to generate 

construction waste and the window of opportunity to collect the data closes (Senaratne & 

Rasagopalasingam, 2017). Thereby is the operational phase in most cases managed by a different party 

than the construction phase. This makes it harder to collect and merge data along the lifecycle.  Also, 

the ‘traditional’ data collection methods adopted by previous CWM studies involved sampling and 

ethnographic methods during construction processes, such as direct observation (Poon et al., 2001a); 

questionnaire survey (McGregor, 1993); sorting and weighing the waste materials on-site (Bossink & 

Brouwers, 1996) (Kazaz, 2018); collecting data through consultation with construction employees 

(Treloar, 2003); tape measurement (Skoyles, 1976); and truckload records (Poon et al., 2004). These 

data collection approaches are widely perceived as costly, non-value-added, and disruptive to the 

ongoing construction process. However, collecting and processing digitally stored data allows for 

different techniques which can be greatly automized and thus much more cost-efficient. An example of 

this is developing an algorithm that can extract specific data from digitally stored files or camera's which 

collect data by visually analysing a construction site (also making use of an algorithm). Logically, the 

data collected this way will be different to the data collected by using the previously listed ‘traditional’ 

data collection methods even when applied at the same source (for example checking the same waste 

container by personally sorting the waste and having a camera check all item that are being disposed in 

the container). Nevertheless, is this 'automatically-collected' data in some cases capable of solving the 

same problems by supplying similar information about processes more economically. However, some 

innovations/improvements require big data sources, which cannot be efficiently created using the 

'traditional' data collecting methods.  
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This shows that collecting big data is an important factor for advancing the construction industry and 

thus also for the CWM sector.  Within the construction industry, the BIM environment can be seen as 

an unprocessed big data source that holds a wide variety of information like material types, quantities, 

planning, costs, etc, all of which could have a relation with the CWG of a project. This means that the 

data stored in the BIM environment could be (partially) used as input data for a CWG prediction model. 

This data source is highly complex since it’s a bundling of all project information, combined with the 

high level of freedom when structuring the digital project, results in a rather non-uniform structure 

which makes it a labour-intensive task to extract the useful/desired data for a specific application or 

research. So even though big data is available within the construction industry its application is limited.  

As mentioned in the introduction is construction waste prediction one of the sub-fields within CWM 

that shows great potential to benefit from data-driven innovations. Current prediction models which use 

multiple linear regression are often used to explain the linear relationship between explanatory variables 

(total area, apartment floor plan area, number of floors, etc.) and WGRs but with relatively low 

prediction accuracy (Parisi Kern, 2015). Most of the traditional prediction models prove to not be able 

to predict construction waste generation, this has to do with the simplistic nature of the prediction 

model. However, developing a complex prediction model which, for example, uses ML technology will 

require different skills and knowledge compared to the current practices. The CWM industry and 

construction industry, in general, are lacking the knowledge and experience on how to utilize big data 

efficiently to implement innovative technologies, like ML technology. This is based upon the fact that 

the construction industry, in general, is more of an innovation adopter than an innovation creator (Yusof, 

2014) and on top of that is the construction industry relatively slow at adapting innovations compared 

to other industries (Akinosho, 2020). The scientific community should take a leading role in this 

however, the number of studies that researched more complex ways to predict CWG is limited. One of 

the exceptions is the PhD research of Akinade (2018), who studied this field thoroughly, unfortunately, 

is the output of the prediction model limited to the total weight of generated construction waste and not 

for specific waste material groups. Nevertheless, is this research a step in the right direction to improve 

this sector, which is also the goal of this research. This leads to the following summarized research 

problem which forms the motive of this research:   

 “The current construction waste prediction models have low accuracy and use ‘out-dated’ technologies, 

this results in limited knowledge about the CWG and holds back other innovations regarding collection 

and recycling of CW. Which in turn is one of the obstacles that have to be overcome to achieve the 

circularity goals in the construction industry.”  

Even though technologies like ML exist for several decades and are commonly used in the research 

field, the application in modern-day market parties is extremely limited, especially for minority 

departments/activities (like waste management in the construction industry) that generally receive less 

resources compared to the core-departments/activities. So, researching efficient ways to apply ML-

algorithms in current day practice has the potential to significantly improve construction waste 

predictions. The improved prediction can generate new and more knowledge about construction waste 

dynamics which in term can help towards the introduction of more effective waste-reducing 

measures/solutions. This shortly describes the essence of the research, the next chapters describe how 

the research will be executed.   

1.3. Research objectives & Questions   
The main research question will form the basis of the thesis, it is formulated as follows: 

• How can the construction industry effectively implement ML-algorithms to improve the 

prediction of construction waste generated during the construction phase of a residential 

construction project? 
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Translating this main question to a concrete objective will help achieving a well-considered answer to 

the research question. The main objective of this research is to create a structured dataset of the data 

provided by Heijmans and Renewi, which then will be used to develop and test the ML prediction 

model. Here Renewi will supply the collected waste from most construction projects in eight waste 

groups and Heijmans facilitates access to the BIM environment which contains the project data. The 

exact type of prediction model is chosen after the literature study phase. The model can generate new 

knowledge about CWG dynamics. This knowledge is then used to propose waste reducing and/or waste 

recycling measurements. The predictions of the developed ML model can help to estimate the practical 

effects of the proposed measurements. 

To outline the path towards answering the main question, sub-questions are set to track the research 

progress and make conclusions during this process. Besides this is the expectation that answering the 

sub-questions will provide necessary information required to fulfil answer the main research question.   

Sub-questions:  

• What causes construction waste generation? 

• What project variables are most promising for predicting construction waste?  

• How to extract and structure the available data in order to properly develop and build the ML 

prediction model?  

• Which (hybrid) ML-model(s)prove to be most promising for construction waste predictions? 

Sub-objects are extracted from the sub-questions, depending on the conclusions found for each sub-

question choices can be made regarding the next steps of the research. This allows to slightly readjust 

objectives and/or tasks towards the main objective. The sub- objectives are listed below, these 

objectives form the basis for the research questions.  

Research objectives:  

• Reviewing potential ML-algorithms suitable for construction waste prediction.  

• Most relevant project variables to predict each of the construction waste material groups.  

• Extraction and processing methodology to form the dataset (used to develop and test the 

 ML-prediction model) from the Heijmans, Renewi and Pre-zero datasets.  

• Developing and testing ML prediction models.  

• Propose a recommendation for the construction industry how to effectively start  
 implementing ML-algorithms for waste prediction.   

 

 

1.4. Research Approach 
This chapter will clarify how objectives are approached and which methodology is used to be 

accomplished, so far is this based on educational experience and scientific literature.   

The structure of the research is captured in a framework, this framework is shown in figure 4 and 

consists of multiple tasks and subtasks. The research is divided into three stages, being the 

practical/development phase (blue), the implementation strategy (orange) and the research evaluation 

(grey). The practical/development phase is divided into two main activities which are, the choice and 

development of the ML model and the processing of the data. These activities will be executed 

simultaneously and will require an exchange of information to make the data fit the AI-prediction 

model. The conclusions and objectives resulting from this phase form the basis for the next phase. The 
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implementation strategy will cover ways to process the data automatically to make it suitable for large 

scale implementation. Thereby will this strategy propose measurements that can CWG based on the 

knowledge/findings resulting from the AI-prediction model. The ML prediction model can in some 

cases be used to predict the practical effects of the measurements to estimate the reduced construction 

waste. The research evaluation is mainly assessing the ML-prediction model performance and the 

research's findings, this also includes the finalization of the research report. 

The research will start with a literature study that includes a variety of subjects regarding all stages of 

the research. In order to guide the literature reviewing process the PRISMA method is used (Prisma, 

2015). At first, the scientific literature is the leading component for the objectives, however during the 

research it will fulfil a more assisting role to complement created objectives and findings. Searching 

and evaluating the scientific literature will be mostly finished before the first objectives start, however 

some situations may require extra information so reviewing scientific literature is to a lesser extent an 

ongoing process. Then three tasks will start simultaneously, task one is investigating the data provided 

by Heijmans and Renewi this will determine which ML model structures best fit the available data 

and purpose of the model. The ‘investigation’ will include exploring the different characteristics (V’s) 

concerning Big Data. Task two is to study the different types of ML models to create a better 

understanding of the advantages, limitations and requirements. The ML-prediction model needs input 

data to generate a prediction accordingly. So, task three is to research project variables that have a 

significant influence on the construction waste generation for each of the eight material waste groups 

(the number of material groups can be reduced during the research). System dynamics models can 

help find those variables, these models ls are mostly developed to simulate a complex real-world 

system.  This research will analyse existing SD models provided by the scientific literature concerning 

construction waste. These models will provide a better understanding of the CWG dynamics and can 

help choosing the right prediction variables for each material group.  

After the machine learning model used in this research is chosen, the structure and content of input 

and output will be fixed. This data is needed to train the model successfully. This will determine how 

and what data will be extracted from the existing databases of Heijmans. The extraction of 

unprocessed data from the BIM environment is the first task (filtering), the second task is the pre-

processing of the extracted data to increase the practical usability. After is the construction waste data 

and collected project data subjected to exploratory data analysis to understand the distribution and 

structure of the data (this is a similar stage as used in the PhD research of Akinade (2018)). At last, 

this data set will be used to act as training and testing data for the ML model, it is at this task that the 

data processing will be finished. The ML model will be trained and tested after which it is evaluated.  

In case the model is not performing accordingly, or flaws are detected it's possible to revisit the design 

task of the ML model to make improvements that are beneficial for the continuation of the research. 

Even though the model requires significant amount of data and the process of acquiring this data is an 

extensive task it is still labelled as “small scale”. This is because the potential scale of extracting data 

will be much larger than what is done in this research however, to extract and process such amounts 

of data a high level of automation is required.  Automation will be explored to provide suggestions for 

future implementation however this research is not aimed to fully implement an ML system covering 

the whole BIM environment of a contractor's organisation. The goal is to explore its potential by 

developing a ‘small scale’ example (small scale is chosen to safeguard the feasibility of this thesis) 

that can result in more accurate prediction compared to current practices. If the first results are 

positive, then future large-scale implementation are likely to have even better results, following the 

theory of big data value earlier mentioned. Besides prediction the models could also provide input for 

waste reducing measurements/innovations. The actual research process was slightly adjusted and 

changed because of choices made during the execution of the research, in short was “AI” changed to 

ML since it's not concerned AI technology and the last step (orange) was cut. 
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Figure 4 Research approach 
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1.5. Company involvement 
Companies will be involved in this research to provide data when needed and to gain expert knowledge 

in the field of CWM. A partnership is made with a contracting company (Heijmans) to allow and 

facilitate access to the BIM environment to extract project data of all the residential construction 

projects. Having this agreement before the start of the research will be convenient because of the direct 

connection. Heijmans with all its sub-companies belongs to the top 10 contractors in the Netherlands in 

terms of size. The waste collection logs (waste data) are generated by the waste collectors however, the 

contractor stays the official owner of the data, which avoids further involvement of the waste processing 

companies.  

1.6. Reading guide 
The reading guide marks the end of the first chapter, the introduction. In this section the framework and 

continuation of the thesis is explained to provide the reader some structure during the reviewing process. 

Chapter 2 covers the literature review, this is the most extensive and comprehensive section of the 

thesis that covers three main topics, prediction models, ML and construction waste dynamics. The ML 

subchapter in specific will provide valuable information ranging from basic ML theory as well practical 

examples of ML in regard to CW. Chapter 3 covers the methodology used for this thesis, this is 

followed by Chapter 4 which describes the ML model development. This in term is the core result of 

the thesis since its combining theory and the real-world dataset. Chapter 5 contains the performance 

of these ML prediction models and compares it mutually to put it in perspective. Chapter 6 is an extra 

chapter added to discuss the potential of generation more data from the digital construction 

environment, this is tested with a self-developed plugin. Chapter 7 marks the end of the thesis, it 

provides the general conclusion by briefly revisiting the research questions. 
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2. Literature review 
The construction industry is known for generating significant amounts of waste, which can have 

negative impacts on the environment and public health. As sustainability becomes increasingly 

important, there is growing interest in finding ways to reduce construction waste. Machine learning is 

a field of artificial intelligence that has shown great promise in solving complex problems, including 

those related to waste management. This literature study focuses on exploring the current state of 

research on machine learning and construction waste. The study aims to provide a comprehensive 

understanding of the existing literature, identify research gaps and challenges, and suggest potential 

solutions and opportunities for future research. By examining the latest trends and developments in this 

area, the study can inform the development of effective waste management strategies in the construction 

industry. 

2.1. Prediction models   
This chapter will cover the literature review performed to gain more technical knowledge about topics 

related to the objectives and research questions. This knowledge is gathered by reviewing publicly 

available studies and company-related data. The literature review is divided into four subchapters, the 

first subchapter covers prediction models. This will include theoretical information about the 

functioning of the models, and also examples of practical implementations similar to what this research 

tries to achieve. Despite that, the prediction model developed in this research will make use of ML 

technology it’s still chosen to dedicate a part of the literature study to alternative prediction 

models/methods used in the construction industry. This can provide supplementary information about 

predicting construction waste which can benefit this research in general. The second subchapter is 

dedicated to exploring the construction waste dynamics. Whereas the previous chapter contains more 

generic information, this chapter contains niche information regarding construction waste. Construction 

waste generation rates (CWGRs), construction waste causes and construction waste types summarize 

the content. The third chapter focuses on the data environments in the construction industry and how 

this can be used as input for the prediction model. The data provided by Heijmans and Renewi (market 

partners) are limited to the existing internal data storage which (on the contractors’ part) is found to be 

quite cumbersome and user-unfriendly. Nevertheless, is the aim of this research also to make 

recommendations, for this broader data environment information is necessary. The last part investigates 

the existing literature for interventions that can benefit the CWM by either reducing the construction 

waste generation or increasing the CW waste recyclability. In particular, the interventions which benefit 

from increased accuracy in CW prediction or by using the generated insights of the CW dynamics.     

 

2.1.1. AI-based prediction models 
As previously mentioned, is the aim of this research to develop a prediction model which makes use of 

ML. The choice for ML is previously explained, the reasoning in short is that the existing literature 

emphasizes the potential improvement ML can bring to the construction industry as a whole and the 

CWM sector in specific. The term machine learning can be explained as follows “The field of study 

that gives computers the ability to learn without explicitly being programmed” (Samuel, 1959) This 

subchapter aims to gain sufficient knowledge regarding the ML algorithms used for prediction 

modelling so that the most suitable and promising algorithms can be selected to further develop in this 

research. Most of this subchapter is dedicated to the ML algorithms however, literature also shows 

alternative ways of predicting CW (Llatas, 2011). This is also covered since the theory will contribute 

to the research in general. Figure 6 visually shows the umbrella of artificial intelligence (AI) and what 

layers are included in order to achieve a system that is consider “AI". The first definition used for AI 

was “The science and engineering of making intelligent machines” (McCarthy, 1955). The figure shows 

the sub-topics like ML which has the ability to learn, methods that have the ability to reason and lastly 

technologies that form the physical enablement, which are sub-categories of each other. AI has the 
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following characteristics, AI automates repetitive learning and discovery through data, AI adapts 

through progressive learning algorithms, AI can find deeper more complex relations, all of this together 

makes it an advanced technology that has great potential of increasing prediction accuracy in the field 

of CWM (Deloitte Sweden, 2020). The following paragraphs will cover general theory regarding ML 

and statistics in order to make a well-considered choice and to better understand the related scientific 

literature. Examples of studies that are more related to the topic of the research (CW) are analysed to 

contribute to the choice of model and to outline the development phase/approach.    

   

Figure 5 Visualization of the sub-groups within AI (Deloitte Sweden, 2020). 

AI gained popularity among researchers within the construction industry during the past years. The 

significant increase in attention has two main reasons, first are the increased data volumes, accessible 

advanced algorithms and improvements in computing power and storage (SAS, 2021). A second reason 

is that the technology has proven to be very successful to solve and/or improving existing real-life 

challenges and/or processes. Industries, like healthcare, finance, entertainment and education, were the 

first to efficiently implement AI, this is partially due to the industry dynamics which allowed those 

industries to access large amounts of data relatively easily (Akinosho et al., 2020). Figure 6 shows that 

ML as a whole represents one of the branches of AI however, AI is more than solely ML. This is 

important to clarify since the CW prediction model will use ML algorithms to generate accurate 

predictions. To enable the full potential of AI technology which includes features like reasoning, 

planning, learning and sense in a ‘human’ way it will need an input feature to base its actions on. In 

theory the predicted waste output of a project could act as input (“sensors”) in an AI system that changes 

the construction design features to reduce the predicted construction waste. This would mean that the 

AI system can use reinforce learning to optimize the design. However, in order for this to come with 

proper results its crucial to have a ML prediction model that is able to generate accurate predictions. 

After all, one weak link in a system can decrease the quality of the whole system drastically. The thesis 

will not aim to shape an AI system based around project design and waste output, since this would be 

too complex and broad to fit in the project research period, however it's important to understand 

potential future uses of accurate prediction regarding construction waste and design. And that one 

improvement can cause a chain reaction which results in future innovation. 



   

 

  31 

 

 

 

 

Figure 6 diverse major facets under the AI umbrella (Castillo, 2008) 

Prediction models make use of predictive modelling, which in term predicts an outcome based on 

statistics (Geisser, 2019). In theory are almost all statistical models suitable for prediction purposes. 

The prediction model is one of the required steps towards active AI implementation in the CWM sector. 

Figure 6 visualizes branches within the AI spectrum, this thesis is limited to the ML branch, however 

as the figure shows is this just one of the features. ML can be simply described as a learning function 

(f) that maps input variables (x) and the following results are given in output variables (y). The 

‘machine’ learns from the training data to map the target function, but the configuration of the function 

is unknown. There are different types of ML algorithms, and these will make different conclusions 

about the function’s structure (Brownlee, 2020). Figure 7 shows the wide variety of existing ML 

algorithms. This makes it a complicated task to find the algorithm which is most effective at modelling 

the underlying function. ML models are parameterized so that their behaviour can be tuned for any 

given problem. The algorithm can have many parameters and finding the best combination of 

parameters will increase the accuracy of the model (Hu & Hao, 2013). The vast number of possible ML 

algorithms make it unfeasible to review all of them since this would exceed the resources reserved for 

the literature review. Nevertheless, will basic knowledge about statistics and machine learning 

combined with existing literature speed up the process of selecting the most promising ML algorithms 

for this research.  
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Figure 7 mind map showing ML algorithms organised by type (Brownlee, 2020). 

 

2.1.2. Parametric & Non-parametric 

ML algorithms can be divided into many groups since there are a variety of characteristics on which 

the classification can be based. There is not one correct way of doing this, it all depends on the intentions 

of the research and the purpose of the groups. However, a common way to categorize ML algorithms 

is by the degree of parametricity. This results in three categories, non-parametric, parametric and semi-

parametric. Parametric ML algorithms require the specification of parameters to make predictions (give 

an output). This type of algorithm makes specific assumptions regarding one or more of the population 

parameters that characterize the underlying distribution(s). Important to note is that the amount of data 

provided at a parametric ML algorithm will not change the number of parameters it thinks it needs. 

Making assumptions can greatly simplify the learning process however, it also limits the potential 

knowledge gained from the model (Sheskin, 2020). An example is a linear regression model with two 

input variables also known as predicting variables. This will result in two coefficients that shape the 

line, the data will determine the value for these coefficients. One of the most common approaches to fit 

this type of algorithm is known as ordinary least squares (OLS). There are also other ways for fitting 

the algorithm this will be discussed during the methodology. Other examples of parametric ML 

algorithms are logistic regression, linear discriminant analysis, perceptron and Naïve Bayes. The 

advantages of using these types of ML algorithms are in short, the mechanics are easier to understand, 

and the results are more interpretable. Besides this is the learning speed quite high which makes it more 

user-friendly. Another practical feature is that these ML algorithms can work well even with low 

amounts of data. There are also drawbacks attached to using these ML algorithms, in practice the chance 

is high that none of the methods will map the underlying function, which will result in a poor fit (Hu & 

Hao, 2013). Nonparametric ML algorithms don’t rely on any specific parameter settings which often 

results in more accurate results if used correctly. In general, will these ML algorithms involve fewer 

assumptions of structure and distributional form (compared to parametric models), which allows for 
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more flexibility, but usually contains strong independence assumptions. Two examples of non-

parametric algorithms are neural networks and support vector machines (Cox, 2006). Figure 8 shows 

two graphs containing the same data points, the top graph shows the result when using a parametric 

model (in this example linear regression) and the bottom graph shows a non-parametric model (more 

curvy line). In this example, it seems that the non-parametric model is better at learning/simulating the 

behaviour of the dataset. In order to choose between a parametric model and a non-parametric model, 

it's very important to gain as much knowledge as possible about the underlying function. 

 

Figure 8 Visualization of parametric and non-parametric modelling (Gurudath, 2020). 

   

2.1.3. Supervised, Unsupervised, Semi-supervised and Reinforcement learning 

 

Another feature of ML is the way it learns, this is also a commonly used feature to group ML algorithms. 

Figure 9, shows the three classes, supervised learning, semi-supervised learning and unsupervised 

learning, and the ML algorithms that are part of this category. Supervised learning means that the 

“learner” has access to labelled input data, this data consists of pairs, namely in- and output in the form 

of {xi, yi}. Here the xi represents a possible input and yi the correctly labelled output. The purpose of 

the learning algorithm in supervised learning is to learn the mapping from inputs to outputs. It is 

expected that the learning algorithm will generate a function f that accounts for the paired data used for 

training. When the output is discrete the function is called a classifier, when the output is continuous 

it's called a regression function. The purpose of the classifier/regression function is to accurately predict 

outputs for input different from the training data. The development process of a supervised algorithm 
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can be divided into 5 steps. The first step is to collect the data which will be used to train the model, 

important here is to critically think about the type of data needed and in what amounts, because the data 

needs to give a good representation of the real-world situation. The data available for development will 

be divided into two parts, training data and testing data, this step will be discussed in more detail in a 

later stage.  For most ML algorithms more training data will result in better performance, however in 

reality the amount of data collected will be limited by the available resources since, collecting and 

labelling data costs time and effort. The second step is to determine the feature vector, which represents 

the input for the model. Each feature in the vector is representing a characteristic of the event/object 

that has to be classified. Determining the number of features in the vector also called the size of the 

feature vector is a choice that has to be made. The size of the feature vector influences the accuracy of 

the ML algorithm. The complexity of the ML algorithm will increase significantly when choosing a 

large feature vector. A small feature vector on the other hand may contain too little information 

regarding the event/object, this can result in low classification accuracy. Step 3 is choosing the most 

suitable ML algorithm, in order to make a reasonable choice a few factors should be considered. The 

first factor is the amount and content of the available data, some ML algorithms require large numbers 

of training data to perform accordingly, so estimating the available data will help to rule out some ML 

algorithms (other ML algorithms work better with smaller datasets). Other factors to consider are 

potential noise in the system, labelling accuracy and the redundancy and heterogeneity of the input data. 

Step 4 is training the chosen ML algorithm with the training data to get the function with the highest 

accuracy. The last step is to evaluate the function generated by the ML algorithm, this is done by feeding 

the unseen testing data and calculating the performance for the testing dataset (Hu & Hao, 2013).    

Unsupervised learning is when the data used to train and test the algorithm is not labelled, this can occur 

when labelling the data is too time-consuming or if accurate labelling is hard to achieve. Unlabelled 

data means that there is no correct answer, the algorithm has to discover and present interesting 

structures in the data (Hu & Hao, 2013). In this case, will the learner aim to find inherent patterns in the 

data, these patterns are used to determine the output value for new input data. These ML algorithms 

assume that there is a structure in the input space, which makes certain patterns occur more frequently 

than others. This will provide information on what happens more often and whatnot, this is known as 

density estimation. This makes unsupervised learning more suitable to extract meaningful insights or 

information from data, rather than making an accurate prediction based on specific inputs. Since the 

goal of the research is to develop an accurate prediction model and that it’s likely for the data to be 

labelled (linked with the project variables) it will mean that unsupervised learning is less relevant in 

this research (Sarkar, 2017). Semi-supervised learning algorithms use both forms of data for training. 

Even though there is not a restricted range for the ratio of unlabelled/labelled data, it is most common 

that the labelled data is just a small percentage of the total training data. The advantage of this learning 

method is that it can improve supervised learning tasks by using readily available unlabelled data. 

Figure 9 doesn’t show any examples of this, however, some examples are, expectation-maximization 

(EM) with generative mixture models, self-training, co-training, graph-based models and transudative 

support vector machines. Another form of learning is called reinforcement learning, this is not shown 

in the figure 9, since its mechanics are different from supervised and unsupervised learning. In this case, 

a specific model will be trained over time to improve its performance in a specific environment. It will 

start with a set of strategies or policies and based on the performance it will receive rewards or penalties. 

This is an iterative process which if correctly done will improve the system over time (Sarkar, 2017). 
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Figure 9 branch/group visualization of machine learning algorithms (Hu & Hao, 2013). 

 

2.1.4. Evaluation of prediction models 

Evaluating prediction models can be done in many ways, a few examples are, the development 

complexity, training time, prediction accuracy. The priorities and goals of the research determine what 

feature of the prediction model is most important for the evaluation. In this research, most features are 

discussed when found necessary, however, to make a comparison between the different ML algorithms 

the correlation coefficient also known as the R2 value will be mostly used. This is chosen because 

almost all reviewed studies covering prediction models use this value in the published paper, this makes 

R2 an effective comparison feature. R2 is a statistical measure that represents the proportion of the 

variation in the dependent variable that is predictable from the independent variable(s). There are also 

other values similar to R2, like the root mean square error (RMSE), mean absolute error (MAE) and the 

absolute relative error (MARE). The number of input variables will influence the performance of the 

prediction model. In theory, each model can have the peak R2 with a different number of input variables, 

also the more input variables required the less freedom the model has. Comparison of the models can 

be done by determining the best-performing model for each number of input variables (e.g. which model 

has the highest R2 with one input variable and which with two input variables, etc.). Another way is to 

determine the highest possible R2 value for each model (by testing all possible amounts of input 

variables) and compare those results to determine the final model that results in the highest possible 

accuracy for this dataset. During the stage of testing and development the choice for evaluation will be 

made. 

 

2.2. ML algorithms in CWM 
This subchapter will discuss a variety of ML algorithms suitable to be used in prediction models. The 

selection is based on studies found in the scientific literature which are related to the construction 

industry or waste in general. Most found studies are directly related to CW, however, some ML 

algorithms were hardly used for modelling CWG. Those studies modelled mostly municipal waste 
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generation on a regional or national scale, this is different from the desired purpose of the model 

developed in this research (CW for projects). Nevertheless, provide these studies relevant information 

regarding the development and performance of the prediction model. Thus, making this part of the 

literature review a comprehensive mix of algorithm theory and practical performance. 

2.2.1. Multiple (Linear) regression model 

Multiple linear regression (MLR) is an extension of linear regression (LR), where LR uses one variable 

to predict the outcome, MLR makes it possible to use more than one variable to predict the outcome. In 

the case of CW where the generation rate is influenced by a variety of variables, it is most logical to 

choose MLR over a simple LR to increase the prediction accuracy. However, there are also situations 

one might choose LR over MLR, for example when less data is available or when a simpler model is 

desired. MLR is the most commonly used ML algorithm for prediction models in the field of 

(construction) waste management among the found literature. The theory is quite well-known and 

simple, so this will only be shortly discussed and followed by the results and approaches of relevant 

studies. It is important to check the data beforehand to make sure it is appropriate for the use of MLR. 

A total of eight assumptions has to be checked, the first one requires the dependent variable to be 

measured on a continuous scale. Secondly, the input variables or independent variables should be either 

continuous or categorical. Thirdly the independence of the observations has to be checked, this can be 

done with the Durbin-Watson statistic for example. Fourthly the type of regression must be chosen 

correctly, scatterplots and partial regression plots can help with this choice, some of the most common 

ones are, linear regression, polynomial regression, ridge regression, lasso regression and elastic net 

regression. Step five is to check if the data shows homoscedasticity, this means that the variance along 

the best fit is relatively equal along its way. Step six is to check if the data doesn't show multicollinearity, 

this is when two or more independent variables have a strong mutual correlation. Step seven is to check 

the data for outliners, these can have a negative effect on the regression line. Lastly, the distribution of 

the residual must be normal (Laerd Statistics, 2018). 

The study Domingo & Batty (2021) focussed on regression models to quantify the total CW generated 

by the construction of residential houses. The reason why MLR was used, is because the authors wanted 

to generate more information about the influence each predictor variable had on the total amount of 

generated CW. This information had a higher priority than prediction accuracy since the goal of the 

study is to reduce CW by improving design decisions. So here the prediction model is used as a tool to 

predict waste and use the generated information to alter the design and improve the CW performance 

(Domingo & Batty, 2021). The structure and type of residential houses are different across the globe, 

this study was performed in New Zealand where 90 per cent of the standalone residential buildings use 

timber framing (FTMA, 2018). This will result in a different regression function compared to other 

places in the world. In total two subsets of variables were used, the first set contained one predictor 

variable (total waste volume) and fifteen response variables, the second set contained the same predictor 

variable but only eleven of the fifteen response variables. The data included a date for each project, this 

way the trend of CWG over a period of five years could be analysed. The Ryan Joiner and Kolmogorov- 

Smirnov test was used to test the normality of the response variable. Eventually, only 5 predictor 

variables were considered suitable to be included in the final regression.  Both datasets were used as 

input for the ML algorithm to generate a function. The prediction functions had an R2 value of 0.55 and 

0.47 respectively, which seems relatively inaccurate. For this reason, the result is explained as follows, 

the prediction function is able to predict 79% (89% second dataset) of the cases within a +/- 35% range. 

28% (33% second dataset) of the cases were predicted within a range of +/- 10%. Formulating the 

performance of the prediction model in range intervals seems to be a practically useful method, that 

gives a realistic and practical reflection of its performance. 

Another study that used MLR was performed by Kern et al. (2015), the study analysed the CW 

generated from 18 large size high-rise buildings in South Brazil. The number of data points is quite low 
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compared to the previous example, only 18 data points are especially low for statistics, however, 

considering the size of the construction projects (projects range between 4.326-21.794m2 total 

construction area) it is hard to collect/find a database with hundreds of buildings within a specific 

region. This study also chose the total generated CW as the dependent variable and collected data for 

nine predictor variables. The data was manually collected by regular site visits. Interestingly, is that all 

of the independent variables had a very low R2 value when assessed in isolation with the CW. The 

highest determination coefficient was 0.32 which was for the independent variable 'total floor area'. 

This in itself is not a huge surprise since generally it is expected that more constructed m2 results in a 

higher total volume or weight of CW, so a high correlation between total floor area and CW can be 

expected in general. The best performing regression model that was found includes five of the nine 

predictor variables, figure 10 shows the function. With this regression function, the study was able to 

achieve a prediction accuracy value for r2 of 0.69. This is an improvement compared to the previous 

study when comparing r2 values, however many studies (Lee, 2016) (Cha, 2021) (Maués, 2020) 

consider MLR, not the ideal algorithm to predict CW because of the non-linear dynamics. This suggests 

that using a multi non-linear regression (MNLR) model for CW prediction could result in even higher 

r2 values. Another study used the same data as Kern et al. (2015) (partially the same author), however 

this time a MNLR model was developed resulting in a R2 value of 0.81 (De Carvalho Teixeira, 2020). 

Besides the prediction of total generated CW the study also developed a prediction of the generation of 

CW during a construction project (as a percentage of the total generated CW), this provides more insight 

into the CWG dynamics compared to only predicting the total generated CW for a project. The nonlinear 

relationship of CW and time (as the authors call it) is shown in figure 11 it shows a slight S-shaped 

curve which had an R2 value of 0.91, where the MNLR function included time in the first, second and 

third dimension, more dimensions were tested but not found to add value. It has to be mentioned that 

the waste/time relationship in figure 11 also shows a high level of linearity. Even though the slight S-

shaped curve may outperform linear regression in terms of prediction accuracy, it seems that a linear 

prediction function can also deliver acceptable prediction accuracy (the non-linear dynamics in the 

time-waste graph are minimal).  

 

Figure 10 Function of the best performing regression model (Kern et al., 2015). 
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Figure 11 Relationship of CW with Time (De Carvalho Teixeira, 2020). 

An even higher r2 value was achieved by Al-Salem et al. (2018), who also developed an MNLR, 

however not for CW but solid waste in Kuwait. One could raise the question whether the dynamics of 

solid waste are much different from those of CW. Considering that demolition and construction waste 

makes up 78.4% of the total solid waste generation in Kuwait (which is comparable with that of France, 

73.3% (Bernardo, 2016)). Poon et al. (2004) validates that these sectors show similarities during the 

modelling process for this reason it makes part of the review. The dependent variable is the total solid 

waste generation for Kuwait per year, this is a much more stable value compared to the total 

construction waste generated from a single construction project. This is because of the scale and source 

difference, so even though the dynamics differ, the prediction modelling process is still added value for 

this research. The dataset used for the research is of high quality, it consists of the solid waste generated 

in Kuwait on daily basis from 1996 till 2015. There are a total of four contributing waste source 

categories being, household, commercial, agriculture and B&C (building and construction) waste. The 

research developed a prediction model for each of the four categories, using six independent variables. 

B&C waste prediction model is the most relevant, the prediction function for this consisted of three 

independent variables, being the GPD of Kuwait, total constructed area and the total cost of 

construction. The resulting multi-variable regression model's R2 value was 0.993. This study shows 

that using MNLR can result in high accuracy for CW prediction, the rich dataset and scale of the 

prediction model prove to be favourable research conditions for using MNLR. Linear regression would 

not be the right tool to predict a multi-decade increasing trend (exponential behaviour). This emphasizes 

the importance of choosing the right 'fit' and having high-quality data when using MNLR. The last study 

that is reviewed in this section is performed by Lu et al. (2021), here MLR is used to predict the CW 

generated by Greater Bay Area (GBA) in China. A few logical steps were taken, first is the application 

of logarithmic transformation to improve data normality and decrease the difference between datapoints 

in the same dimension. Secondly, a principal component analysis (PCA) is conducted to reduce/remove 

multicollinearity between the input points, which could affect the outcome of the MLR. It is also used 

to determine the principal components for the MLR.  

The results are shown in tables 1 and 2. These two tables are briefly covered since it's an important step 

when performing an MLR. The first table shows that the first principal component (PC) accounts for 

89.92% of the variance, which is by far the highest value, the second PC only explains 6.84% of the 

variance. The second table shows the input factors for each of the predictor variables that are included 

in the research. It shows that component one is a composite source of information since it contains 

information for all the predictor variables quite evenly. Whereas other components like component two 

mainly contain information about FC (floor space completed). The researchers chose to develop five 

MLR models, based on the first t components identified by PCA-MLR-t (t= 1,2, …, 5). The average 
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performances of the five models are plotted in figure 12 it shows that adding a component will slightly 

increase the accuracy. The five components contain 100% of the data set, ignoring any of them results 

in information loss. The best performing model PCA-MLR-5 was trained 50 times by cross-validation 

(different partitioning of the data set). The average R2 for testing was found to be 0.777 (Lu et al., 

2021). 

Table 1 Total variance explained in PCA (Lu et al., 2021). 

Component Eigenvalue Percentage explained (%) Cumulative percentage (%) 

1 4.50 89.92 89.92 

2 0.34 6.84 96.76 

3 0.13 2.58 99.34 

4 0.03 0.53 99.87 

5 0.01 0.13 100.0 

 

Table 2 The factor loading matrix (Lu et al., 2021). 

Component 1 2 3 4 5 

PO 0.46 -0.39 -0.20 -0.25 0.73 

GC -0.45 -0.15 0.79 -0.11 0.38 

CO 0.45 -0.44 0.38 -0.04 -0.55 

FS 0.46 -0.05 0.34 0.82 0.06 

FC 0.41 -0.79 0.28 -0.32 0.14 

 

 

Figure 12 Average training and testing performance of MLR models (Lu et al., 2021). 

Table 3 summarizes the reviewed studies and the performance of the prediction models, the table 

includes six more studies that were covered by the study of Lu et al. (2021). These studies are more 

comparable to the result of Poon et al. (2004) since all those studies developed prediction models at city 

or country scale and not on project level. Interestingly it can be seen that the r2 values vary strongly 

there are performances as low as 0.55 and as high as 0.99. This shows that MLR or MNLR is a suitable 

ML algorithm to predict forms of waste. However, the studies that developed prediction models at 

project/building scale score significantly lower, so it seems that regression (linear regression, MLR and 
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MNLR) is mostly suitable for situations where the waste generation dynamics have a relatively stable 

nature. Nevertheless, did it show that analysing the dataset beforehand will help to achieve higher r2 

values. Depending on the evaluation of other ML algorithms covered in the next subchapters of the 

literature review will determine if MLR or MNLR are promising enough to achieve the objectives of 

this research.   

Table 3 Overview of the linear regression related studies covered in this sub-chapter. 

Method Model Waste 

Type 

Region Region 

Level 

No. of 

data 

Level of 

data 

collectio

n 

Model 

Perfor

mance 

Reference 

Linear 

Regressio

n 

MLR CW New 

Zealand 

Country 159 Project R2 = 

0.47 - 

0.55 

Domingo 

& Batty 

(2021) 

 MLR CW Brazil South-

Brazil 

18 Project R2 = 

0.69 

Kern et al. 

(2015) 

 MNLR Solid 

Waste 

Kuwait Country +/- 7300 Days R2 = 

0.99 

Al-Salem 

et al. 

(2018) 

 MNLR CW Brazil Porto 

Alegre 

18 Project R2 = 

0.81 -   

0.91 

De 

Carvalho 

Teixeira et 

al. (2020) 

 MLR CW China GBA 43 Region R2 = 

0.78 

Lu et al. 

(2021) 

 MLR CW China Country 206 Building R2 = 

0.62 

Hu et al. 

(2021) 

*Taken from the overview created by Lu et al. (2021) 
MSW – municipal solid waste 

 

2.2.2. Support Vector Machine 

The next ML algorithm reviewed is the support vector machine (SVM), this ML algorithm is known to 

be a good tool for challenging engineering problems characterized by small data samples, nonlinearity, 

local minima and high dimensionality (Chang, 2011). Statistical learning theory (SLT) makes it possible 

to construct algorithms for small data sets/sample sizes, SVM was originally proposed based on SLT. 

One of the features that differentiate SVM is the use of the principle of structural risk minimization, 

this results in a trade-off between the complexity of the prediction function and the quality of the 

prediction. This is different from the empirical risk minimization principle, which is used in a variety 

of neural networks, for example in backpropagation neural networks (BPNN). As a result, may the 

solution of the SVM be a global optimum whereas the other models provide a solution that tends to fall 

in a local minimum, this makes SVM more robust against overfitting (Abbasi, 2016). SVM algorithm 

uses a kernel to transfer the input data to the required form, this so-called kernel can be seen as a set of 

mathematical functions. There are different types of kernel functions, for example, polynomial kernels, 

Gaussian kernels, radial basis function (RBF) kernels, linear kernels and network kernels (Noori et al., 

2009). It’s also possible to design custom kernels, however, it requires extensive knowledge of the 

mathematical theory, considering the fact that the author of this thesis has no experience with kernels 

at the time of writing this thesis and gaining this knowledge was considered out of scope. For these 

reasons, custom kernels will be avoided during the ML development performed in this thesis since. The 

kernel function makes it possible to create separating hyperplanes in high dimensional feature space 

without the addition of computation tasks. These features can be considered advantages and make it a 
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suitable algorithm to improve/solve waste generation rate (WGR) prediction problems (Muller, 2001). 

The underlying concept and theoretical background of SVM's are quite complex, this will not be fully 

covered in the literature review. In case of further development of an SVM based model in-depth theory 

and examples are explained in more detail in the following sources Vapnik (1995), Cortes & Vapnik 

(1995) and Vapnik & Chervonenkis (1971). The application of SVM algorithms for CW predictions is 

limited in the existing scientific literature, a possible reason could be that SVM is more commonly used 

for classification rather than regression. However, it has been used for MSW prediction purposes, for 

example Sousa et al. (2019) and Kumar (2018) achieved an R2 value of 91.8% and 74% respectively.  

The promising performance of SVM in MSW prediction was one of the reasons for Hu et al. (2021) to 

use the SVM algorithm for the development of a CW prediction model for commercial buildings in 

China. This study proposes systematic and comprehensive measurements for different construction 

stages and several CW groups. The response variable is defined as kg of waste per m2 of gross floor 

area and is predicted for five different CW groups and three different construction stages, so a total of 

fifteen support vector machines based WGR prediction models (SWPM) were developed. Figure 13 

shows the development process of the SWPMs, the correlation analysis calculated the Pearson 

correlation coefficients between the predictor variables. This will eliminate redundant variables and 

simplify the model. Three different training test ratios were used, the chosen ratios were based on the 

performance and required a minimum number of test cases in each set. The paper thoroughly covers the 

results of one of the fifteen SWPM, namely inorganic non-metallic waste generated during the 

superstructure phase, and compares it with BPNN and MLR. The comparison is relevant for the 

literature review because it helps to choose the right ML algorithm. Table 4 shows the results of the 

three algorithms, it is clear that SVM is the best performing ML algorithm since it has a significantly 

higher prediction accuracy.   

 

 

Figure 13 flowchart of establishing the SWPM (Hu et al., 2021). 

 

Table 4 prediction performance of SWPM, BPNN and MLR (Hu et al., 2021). 
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The previously described PCA method can also be used for SVMs, the purpose of the PCA is the same 

as for MLR, where it can reduce the input variable complexity. The study of Noori et al. (2009) 

developed a traditional SVM prediction model and a PCA-SVM model to compare the performance. 

Thirteen independent variables were included, resulting in a much more complex model compared to 

(Hu et al., 2021). Interestingly enough can be seen in the table 5 that PCA-SVM models 5,6 and 7 have 

a higher R2 value than PCA 13 which includes all independent variables. This technique provides useful 

information to determine which PCA-SVM models are most promising and should be analysed to 

further optimize the model. So far, the evaluation process only included the average error, another 

criterion is for model evaluation is introduced, namely the threshold statistics (TS). This statistic is used 

to check the robustness of the SVM model. TS provides a distribution of the prediction error alongside 

the performance in the form of an index (Noori et al., 2008). Figure 14 shows a visualization of the TS, 

the way to interpret this graph is as follows, for example, 50% of the predictions have an absolute 

relative error of less than 2.48%. The distribution provides more information than just an average error 

statistic, which is useful to analyse the performance of the prediction model.  

Table 5 the results of training and testing steps of PCA-SVM by Noori et al. (2009). 

 

 

Figure 14 impression of TS results, distribution of errors at different threshold levels Noori et al. (2009). 

The previous example used PCA to increase interpretation of variables and to reduce complexity, to 

create an improved version of the original SVM model. Another way to improve the performance of an 

algorithm is by using an optimization technique. Optimization techniques can be classified in a variety 

of ways, the schematic overview in figure 15 shows what optimization techniques are suitable for which 

type of engineering problem. The optimization options are different for each of the ML algorithms, at 
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the current stage no final choice for the ML algorithm is made, this is why the optimization process is 

covered at a later stage. However, the study of Sousa et al. (2019) is used as an example to show the 

effects of optimization for SVM. The study used a genetic algorithm (GA) to optimize an SVM model 

with a pool of 14 independent variables and compared its performance with a ‘fixed’ SVM model 

including 5 independent variables. In short, the GA is inspired by the natural evolution theory of Charles 

Darwin, where the strongest survive. A practical translation would be that the GA starts off with a 

random set of variables or values and it will use the information of the variables or values that result in 

a high score (the fittest) to determine the input for the next ‘generation’. The study used the GA 

algorithm twice, first to determine the explanatory variables and later for the selection of the SVM 

parameters. It is generally known that the performance of SVM is heavily depending on the ‘goodness’ 

of the meta-parameters settings, in particularly the regularization parameter (C), precision parameter 

(ε) and kernel parameter (γ) (Abbasi, 2016). GA is one of the many ways to find values for these 

parameters, however GA itself requires a set of parameters too for example, population size, selection 

scheme, occurrence of mutations and a crossover probability. Choosing values for parameters like these 

can be done based on experience, testing different values or by using values found in scientific literature. 

Another way to determine the SVM parameters is by using the grid search method. Figure 16 shows an 

example of this, the advantage of this method is that it results in an easy-to-understand visualisation of 

the performance. Optimization of the model can result in a significant improvement (Sousa et al., 2019) 

was able to increase the R2 value form 0.67 (fixed) to 0.92 (optimal) for the SVM prediction function 

of MSW. The downside of using GA and other optimizing algorithm is that it can significantly increase 

the required calculation power and time. For example, the mentioned study tested 100*5(first 

GA)*100*5(second GA)*5(cross-validation = 1.25 million) SVM models. The resources and time 

available for the development will decide if calculation of this size is realistic. This paragraph is 

summarized in table 6 where each of the examples covered are listed to give a general idea of the 

performance. 

 

 

 

Figure 15 Schematic overview of optimization techniques for engineering systems (Wang & Li, 2008). 
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Figure 16 SVM parameter optimization of Gamma and C using the grid search method, a) measures the performance in R2 
and b) uses MAPE (Abbasi, 2016). 

 

 

Table 6 Overview of the SVM related studies covered in this sub-chapter. 

Method Model Waste 

Type 

Region Region 

Level 

No. of 

data 

Level of data 

collection 

Model 

performanc

e 

Reference 

SVM SVM CW China China 206 Building R2 = 0.87 Hu et al. 

(2021) 

 SVM MSW Iran City 145 weeks R2 = 0.78 Noori et al. 

(2009) 

 SVM  MSW Portug

al 

City 42 Municipaliti

es 

R2 = 0.92 Sousa et al. 

(2019) 

 SVM 

+ Grid 

search 

metho

d 

MSW Austral

ia 

City 216 months R2 = 0.71 Abbasi 

(2016) 

  

 

2.2.3. Artificial Neural Network 

Artificial neural networks (ANNs) are non-linear statistical models and can be seen as a series of 

algorithms that aim to find underlying relationships in a (big) data set. The process and structure are 

similar to the human brain, because of the neurons that transmit signals to each other by the connections. 

This makes the models able to learn from past data and provide outputs in the form of classifications or 

predictions. The structure of the neurons (also called nodes) determines the dynamics of the network, 

the most basic shape is shown in figure 17. It consists of an input layer, hidden layer and an output 

layer. The number of hidden layers and the number of nodes in each layer can be changed accordingly. 
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Each network structure has its algorithm and serves a specific purpose, so it’s important to determine 

what type of neural network fits best to the research or practical purposes. That’s also the goal of this 

paragraph, to find ANN algorithms suitable for the development of the CW prediction tool. ANNs are 

not new in the construction industry, many other sub-sectors like project risk management, budget 

calculation, planning, etc, have found efficient applications of the ANN algorithm for example the 

studies of Murtala (2011) and Kim & Shim (2012). A sub-sector closely related to CW is the estimation 

of construction quantities needed for a project since the waste is likely to be related to the used materials 

during a construction project. Studies in this field showed the superiority of ANN compared to 

regression analysis (RA), case-based reasoning (CBR) and SVM (Viharos & Mikó, 2009) (Zade & 

Noori, 2008) (Noori et al., 2009) (Kim et al., 2013). Nevertheless, show other studies covered during 

this review examples where alternative ML algorithms outperformed ANNs. These contradictory 

findings again emphasize that the performance is strongly dependent on the research characteristics. 

However, there are general advantages of the ANN algorithm that are applicable to any situation. The 

first advantage is that there is no limitation for predictor variables because it has the ability to learn and 

organize independently. Thereby can it perform well in cases where the cause-and-effect relation is 

considered to be missing information (Lee, 2016). In the case of CW will it become clear that a wide 

variety of variables play a role in the CWG, because of the non-linear nature of CW dynamics.   

 

Figure 17 Schematic overview of an ANN algorithm (Team, 2021). 

As mentioned before is the first step when using an ANN algorithm to select a structure, one approach 

to this is by testing multiple structures and analysing the change in performance. For example, the study 

of Lee at al. (2016) chose a three-layer feedforward structure with five input neurons and one output, 

this was based on the frequent usage and relatively good performance (Ojha et al., 2017). The number 

of neurons in the hidden layer was tested for 3, 5, 10, 15, 30, and 50 respectively. Other algorithm 

settings like the sigmoid transfer function which serves as the activation function within the ANN and 

the Levenberg-Marquardt backpropagation algorithm were used to train the model. The capability of 

ANNs to find highly complex non-linear relationships also comes with a disadvantage, this is the risk 

of falling into a local minimum. There are a variety of ways to reduce this risk, one is by choosing a 

large amount of (random) data partitions that are used for training and testing the model. The study of 

Cha et al. (2021) used this method and performed 50 iterations and averaged the performance to 

generate an overall performance. The eventual results show that the best performing model contains 15 

neurons in the hidden layer. This is somewhat surprising since more neurons in the hidden layers result 

in a model with a higher degree of complexity, this generally results in higher performance for complex 

problems. However, there is a limit to the effectiveness of adding neurons (or layers) to a model, this 

can be seen in figure 18 which visualizes the results of the ANN prediction model. Increasing the 

number of neurons results in an increasing model training performance. The testing performance on the 
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other hand starts to decrease from ANN-30 and the standard deviation starts widening, this is a clear 

sign of an overfitted model, resulting in an overall worse-performing model compared to those with 

fewer neurons. The conclusions made by Lu et al. (2021) are that the ANN prediction model is hard to 

interpret, prone to fall into a local minimum and is sensitive to overfitting. The strengths are the high 

prediction accuracy and the suitability of modelling a variety of complex relationships.   

 

Figure 18 Average training and testing performance (Lu et al., 2021). 

The previous study chose one base structure for the ANN model and developed variations by changing 

the parameter ‘number of nodes in the hidden layer’ to find the best performing value. This will increase 

the chance of finding a better performing model compared to just testing one model however, it's still 

unclear if this is the best possible model. Training an ANN model can be done with many different 

algorithms, backpropagation (BP) is the most common algorithm for feedforward ANNs (study of Lu 

et al. (2021)) used a variation of the BP). BP computes the gradient of the loss function for the individual 

weights by the chain rule. This will result in a good solution with the corresponding parameters. Finding 

the absolute best ANN model for a dataset can be a complicated challenge since it will involve much 

more calculation (for all different combinations of parameter settings). The SVM paragraph covered 

the GA which is also an algorithm used for training and optimization. This algorithm is also applicable 

for ANNs, however complicated encoding and decoding is required for proper execution. Thereby will 

the time and resources required to produce results with GA increase significantly in cases of high model 

complexity and large amounts of training data (Lee et al., 2016). An alternative is the ant colony 

optimization (ACO) algorithm, this algorithm is based on the swarm intelligence and abilities, that ants 

use to find the shortest path between a food source and their nest. Multiple reasons why ACO was 

chosen were listed, the first being the efficient avoidance of premature convergence by contributed 

computations. Secondly, the early-stage heuristic techniques can be used to achieve better potential 

solutions and thirdly the fast detection of better solutions through positive feedback (Solís-Guzmán et 

al., 2009). The study of Lee et al. (2016) used the combination of ACO and ANN for the development 

of a hybrid model to estimate construction waste generated during the construction phase of multifamily 

residential buildings in South Korea. The ACO was used to determine the training parameters for the 

ANN model, these consisted of the momentum, the learning rate of the BP and the number of nodes in 

the hidden layer. The ACO itself needs parameters just like any algorithm, this selection is not further 

discussed however Lee et al. (2016) provides more information in case this algorithm is selected. For 
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this part of the literature review, it's most important that the ANN + ACO resulted in a higher prediction 

accuracy and a lower standard deviation compared to the simple ANN which makes it more reliable.   

Another type of neural network is the deep neural network (DNN) is a model which is quite similar to 

the ANN, however, this model generally has multiple hidden layers with a large number of neurons. 

Another difference is that a DNN is better at handling massive datasets. It is able to detect high 

dimensional nonlinear relationships, in sparse and noisy data (Akanbi et al., 2020). This algorithm 

makes use of the deep learning architecture which is also used in other algorithms like a convolutional 

neural network, recurrent neural network and deep belief network. The DNN is most relevant for this 

study because of its relative simplicity and suitability for regression problems. The study by Akanbi et 

al. (2020) used this to make a prediction model for demolition waste of buildings. The dynamics of the 

waste generated by demolition are not the same as those of CW, however, the structure of the dataset 

and the desired output is quite similar. This makes the research a valuable source to find out if DNN 

could be a suitable algorithm to use in this research. Figure 19 is a schematic visualization of the model 

architecture, five inputs are used to predict three outputs. Just like the previous discussed ML algorithms 

is the exact shape determined by parameters, in this case, activation function, hidden layers, neurons, 

Rho, Epoch, Epsilon, ℓ1 regularisation, ℓ2 regularisation and input dropout ratio. In other examples, an 

optimization algorithm was used to determine the best combination of parameters. In this example, the 

random search approach is used since this is found to be more efficient than the grid search method 

(Tixier et al., 2016). This is done for each of the three models since different dynamics are expected for 

each output type. The researchers achieved an average R2-value of 0.97 for the three prediction models 

combined, this is an incredibly high performance. Besides this did the model also provide insight into 

the contribution of each independent variable for each of the models. This allows for further 

investigation and understanding of the waste generation dynamics, which is also one of the objectives 

of this research. It must be noted that the dataset used in the research was of significant size compared 

to the previously described examples. In general, DNNs will perform better with larger datasets, thus 

using this algorithm and model structure in combination with smaller datasets will likely result in less 

accuracy.    

The previously described study by Hu et al. (2021) that developed CW prediction models for 

commercial buildings in China found that the ANN model had an r2 value of 0.75, which, in their case 

was a worse performance compared to the SVM model. Even though an r2 value of 0.75 is an acceptable 

result for many prediction models does it show that the ANN algorithm can be outperformed by other 

ML algorithms. This can have many reasons one of which could be the lesser amount of available data 

to train the model, 206 projects (Hu et al., 2021) compared to the 2280 projects used by Akanbi et al. 

(2021).  Table 7 gives an overview of all the examples discussed in this paragraph. 
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Figure 19 DNN model architecture for demolition waste prediction (Akanbi et al., 2021). 

 

Table 7 Overview of the ANN related studies covered in this sub-chapter. 

Method Model Waste 

Type 

Region Region 

Level 

No. 

of 

data 

Level of 

data 

collection 

Model 

performance 

Reference 

ANN ANN 

+ 

ACO 

Demolition 

waste 

South-

Korea 

Country 118 Building R2 = 0.86 Lee et al. 

(2016) 

 ANN CW China GBA 43 Region R2 = 0.92 Lu et al. 

(2021) 

 

 DNN Demolition 

waste 

UK Country 2280 Building R2 = 0.97 

 
Akanbi et 
al. (2021) 

 ANN CW China Country 206 Building R2 = 0.75 

 

Hu et al. 

(2021) 

 

2.2.4. Fuzzy logic  

 

Fuzzy logic was presented by L.A. Zadeh (1965), as a technique that can manipulate/process data and 

information which is affected by imprecision/un-probabilistic uncertainty. Multiple types of uncertainty 

emerge from the imprecise natural state, for example, process uncertainty, model uncertainty, 

implementation uncertainty, measurement uncertainty and estimation uncertainty. The math behind the 

technique is designed to represent this uncertainty and vagueness, going deeper into the theory will 

require complex mathematical knowledge, for this reason, it's not covered during this literature review. 

Fuzzy logic belongs to the ‘many-valued logic’ in which the value indicates the relation of a proposition 

to the truth -also called the ‘truth value’- for a variable it can be a value between 0-1. This 0-1 represents 

a range between absolutely false and absolutely true. In theory, there are n types of fuzzy sets, however, 

most literature covers two types of fuzzy sets, type-1 fuzzy sets and type-2 fuzzy sets. Type-1 fuzzy 

sets can be seen as the fundamentals of fuzzy logic, the most common applications are to control 
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complex nonlinear systems, especially those that are hard to model analytically. Type-1 fuzzy sets 

involve the determination of the degree of achieving the characteristics of an object. This is achieved 

by developing membership functions for which the user believes it can capture uncertainty. This means 

that after setting up the membership functions all uncertainty disappears because the membership 

functions are precise (Azar, 2012). This loss of uncertainty was the reason to further develop fuzzy 

logic to find a method that is able to capture the uncertainty without losing uncertainty. Type-2 fuzzy 

sets capture this dimension, it can be seen as an extension of the type-1 fuzzy sets. It uses a superior 

membership function and an inferior membership function to characterize a type-2 fuzzy set. In other 

words, a type-2 fuzzy set uses a type-1 fuzzy set as a membership function. This explains why in theory 

it's possible to have n types of fuzzy sets since type-n fuzzy sets are fuzzy sets that have type-n-1 fuzzy 

sets as the membership functions. This is logically combined with the requirement that n > 1. When n 

> 3 it is complex to understand since space is limited to three dimensions which makes it hard to 

visualise higher-dimensional space. Figure 20 shows the difference between the membership function 

of type-1 fuzzy sets and type-2 fuzzy sets. The type-2 fuzzy set membership function is not a strict line 

but rather an area, this way it's able to incorporate the uncertainty and this grey area is called the 

footprint of uncertainty (FOU), which characterizes a type-2 fuzzy set (Castillo et al., 2008).    

 

Figure 20 On the left (a) the ‘crisp’ type-1 fuzzy logic membership function and on the right (b) the type-2 fuzzy logic 
membership function (Castañón-Puga et al., 2015). 

The coherent necessity of fuzzy logic gets clearer with a simple example, a construction company uses 

the complexity score (1-100) of a project to determine the risk of exceeding the projected budget. A 

high complexity score results in a 'high risk', a low complexity score in a 'low risk', etc. However, what 

is a high complexity score, this can be determined by asking many experts their opinion regarding this 

question. This will naturally result in a variety of different values, one option is to take the average 

value of the respondents. The illogical consequence is that a minor increase in the complexity score can 

result in a sudden switch of the expected risk category, followed by a gap where a change in complexity 

score will not change the expected risk while in reality this may be the case. Type-1 fuzzy logic as 

previously described (shown in figure 20 a) allows setting a function that determines the value. This 

will result in a more realistic and accurate risk level determination according to the complexity score. 

For example, with fuzzy logic, it's possible to get a risk level of [0.48 (medium risk), 0.52(high risk), 

instead of the value just falling into the high-risk group and thus outputting 'high-risk']. As explained 

before lacks the membership function vagueness, this is not a problem/requirement in some cases. 

While in other cases, like most real-life situations this model takes into account too much certainty. In 

the case of project risk, a more accurate function would incorporate the level of vagueness/uncertainty 

which is included in the collected expert’s data. This is done in the type-2 fuzzy sets and is shown in 

figure 20 b. 

The difference is crucial to understand since type-2 fuzzy sets can get quite complex and resource-

intensive when working with multiple variables. Figure 21 shows that in both cases the crisp input is 

fuzzified which is used as input for the inference. The inference is based on a rule base, which in turn 



   

 

  50 

 

 

can be based on data from experts or other sources. The difference is in the next step, where the type-1 

fuzzy sets use a defuzzifier to get crisp output, whereas the type-2 fuzzy sets first use a type reducer to 

go from a type-2 fuzzy set to a type-1 fuzzy set, followed by a defuzzifier as well to generate a crisp 

output. In a lot of cases is this the order in which the model is developed which will require a rule-base, 

this can have many forms, in most cases is this done, by collecting experts' data in the form of 

questionnaires etc, simply because this is fairly straight forward to transform to rules and one of the 

most practically accessible resources that give a decent representation of the system. In order to use this 

method, a clear understanding of the system is required to manually collect the useful data and set up a 

rule-base.   

Nevertheless, is it also possible to develop the fuzzy model in the opposite direction. This way the 

development starts with essentially an empty framework without rules and understanding about 

membership functions. This framework will be shaped by using ML and the available data (in- & output 

data) to systematically learn the parameters of the inference system, this way the model can be tuned 

similar to an ANN model. The practical benefit of using fuzzy logic compared to ANNs is that the fuzzy 

model is easier to interpret since the rules are interpretable. This is specifically helpful for systems 

where verification and certification are important (Abuelenin, 2014).   

 

Figure 21 Systematic overview of a) type-1 and b) type-2 fuzzy sets (Abuelenin, 2014). 

The following section covers multiple studies that used fuzzy logic to predict waste generation. The 

research by Maués et al. (2020) uses a type-1 fuzzy set to predict the total generated construction waste 

(in m3) for residential construction projects. It uses two independent variables being, the number of 

floors and built area, the three membership functions are shown in figure 22. The research rule-base is 

based on 18 experts who filled in a questionnaire. Five classes are chosen to fuzzify and defuzzify the 

data. A total of 23 residential buildings were included in the dataset for this research. The accuracy of 

the prediction model turns out to be 64.29% which is one of the lowest accuracies covered in the 

literature review so far. The low accuracy could indicate that fuzzy logic is not the best method for 

construction waste prediction on a project scale. However, it could also be due to the limited number 

of input variables (only two). Another potential weakness is the development of the rule-base, it could 
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be that either 18 experts were too little to get an accurate representation of the reality, or the 

questionnaire was not able to extract the right knowledge from the experts. The amount of construction 

data is also on the low side compared to other studies, especially using only fourteen training cases 

could be one of the causes for the low accuracy.   

 

Figure 22 Input and output of the fuzzy subset (VL = very low, ….. , VH = very high) (Maués et al., 2020)). 

There are also examples of hybrid models that integrate fuzzy logic, one of the most prominent 

examples in the literature is the study by Akinade (2018). This study was performed in the UK and the 

dataset consisted of 118 construction projects (including all sorts of construction projects ranging from 

commercial to civil). This hybrid system follows the approach earlier mentioned where an empty 

framework is developed and trained by the dataset (containing in and output values). This model is 

called an adaptive neuro-fuzzy inference system (ANFIS), this is a type of ANN model that is based on 

the Takagi–Sugeno fuzzy inference system. It integrates neural networks and fuzzy logic in one system, 

this results in a connectionist learning-based structure of ANN with human-like reasoning of fuzzy 

logic. The structure of the model is shown in figure 23 like Maués et al. (2020) are only two independent 

variables used as input to predict one dependent variable. Layer 1 is the fuzzification layer and layers 4 

is a defuzzification layer, layer 2 and 3 form the hidden layer part of the ANN system. The detailed 

development of the ANFIS model is not discussed in this part of the research, however, the achieved 

prediction accuracy of 86% is significantly better than the previous example. This shows that fuzzy 

logic can be used effectively in CW prediction models, however solely fuzzy logic may result in a too 

simplistic model which is not able to capture the complex dynamic nature of CWG. Table 8 lists the 

two discussed examples. 
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Figure 23 A two input and one output ANFIS System (Akinade, 2018). 

 

Table 8 Overview of the fuzzy logic related studies covered in this sub-chapter. 

Method Model Waste 

Type 

Region Region 

Level 

No. 

of 

data 

Level of 

data 

collection 

Model 

performance 

Reference 

ANFIS ANFIS CW UK Country 118 Building R2 = 0.86 Akinade  
(2018) 

 Fuzzy 

logic 

CW Brazil City 23 Building R2 = 0.67 Maués et 
al. (2020) 

 

2.2.5. Regression Trees 

Regression trees (RT) are a type of decision tree (DT), this ML algorithm can be used to construct 

prediction models. Decision trees in general are easy to build, easy to use and easy to interpret, however, 

there is one aspect that prevents this method from being the ideal tool for predictive learning, namely 

inaccuracy (Hastie et al., 2009). In other words, RTs works great with the data used to create them but 

are not flexible when it comes to classifying new samples. These characteristics make it that RTs, 

especially in combination with small datasets, can exhibit bias (Raschka, 2018) and high variance (Jiang 

et al., 2009). In this research its yet unclear if the available dataset can be considered small or not. A 

sure element of the desired prediction model is that it should predict the outcome of new cases based 

on previous cases, this makes regular RTs potentially not suitable to be used for the prediction model. 

However, there are multiple ML algorithms that improve the regular RT methodology. Two variants of 

the RT are discussed in this paragraph, first the random forest (RF) and secondly the gradient boosting 

machine (GBM). In order to understand RF and GBM, is helpful to first shortly explain the regular RT. 

The process through which an RT is built is known as binary recursive partitioning, this process is 

iterative and splits the data into branches or partitions. This splitting method moves up each branch 

resulting in smaller and smaller groups, so-called leaves or nodes (end of a branch). The first partition 

contains all the events that make part of the training dataset, the algorithm will allocate the data into the 

first two partitions. The way it does so is by calculating every possible binary split, the split that results 

in the lowest sum of squared deviations from the mean will be chosen. The algorithm will continue this 

process until a user-specified minimum leaf/node size is achieved for all nodes. Figure 24 shows a 

simple example of an RT with four leaves.  As previously described are RT fraught with potential 
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problems (overfitting, bias error and variance error), slightly different data can result in completely 

different RTs. A tree-based on 1000 data samples will look completely different than an example with 

only 10 data points. 

 

 

Figure 24 A RT predicting the software effort estimation, prediction value is person-hours (Menzies et al., 2014). 

The RF and GBM algorithm are both considered an ensemble learning (EL) model, this means building 

and combining various ML algorithms. The benefit of ensemble learning algorithms (ELA) is that it 

generally results in higher predictive performance and improved generalization relative to single 

learning algorithms. EL can achieve this because the risk of choosing an underperforming classifier is 

reduced by the votes of individual classifiers (Cha et al., 2021). There are a variety of ensemble 

techniques, however, boosting and bagging are relevant for RF. Bagging uses the available training data 

to generate numerous bootstraps, each bootstrap is then used to independently create a predictive model 

(figure 25 left side). This improves the accuracy and stability of ML algorithms (Breiman, 2001). 

Boosting, however, is a technique that uses earlier samples to generate numerous classifiers, the weak 

classifiers are used to create strong classifiers (figure 25 right side). In summary is boosting a 

dependent-based and iterative system, whereas bagging is an independent-based learner training system 

(Cha et al., 2021).  

 

Figure 25 Workflows of bagging (left) and boosting (right) methods (Cha et al., 2020). 
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GBM is an ML algorithm that uses the boosting technique it can be considered a numerical optimization 

algorithm of which the goal is to search for an additive model that mostly reduces the loss function. It 

does so by iteratively adding a different DT (the weak classifier in figure 26) this can minimize the loss 

function significantly at each step. In short, each step contains a DT that is fitted to the existing residual 

and combined with the earlier model in order to renew the residual, this process is visualized in figure 

26. 

 

Figure 26 Schematic overview of the RF algorithm (Cha et al., 2021). 

The RF algorithm is an ensemble technique based on bagging, it uses bootstrap sampling, as can be 

seen in figure 27. The algorithm works as follows, first it uses the training data to builds many subsets 

(bootstrap samples) that are used to train the algorithm many times. The prediction made by the model 

is generated by feeding the input vector to the model, each tree will make a prediction and the RF model 

will select its outcome by majority vote. 

 

Figure 27 Schematic overview of the RF algorithm (Cha et al., 2020). 
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The research field of CW doesn’t provide many examples where RF and/or GBM was used for the 

development of CW prediction models. However, two articles from (partially) the same authors in the 

field of demolition waste were found. Both articles are probably based on the same research since the 

subject and data match.   

The articles Cha et al. (2020) and Cha et al. (2021), cover the development and performance of a 

prediction model based on the RF and GBM algorithm. This information will be needed if similar 

developments are chosen in this study. However more importantly for the literature review is the reason 

why the authors chose RF and GBM. This is because most literature in the field of demolition waste 

(DM) consisted of the application of ML algorithms (like the ones earlier described in this literature 

review) trained by large datasets containing continuous variables (Cha et al., 2020). This study has a 

total dataset containing 784 buildings for which the generated construction waste was recorded. This is 

a large dataset compared to the studies reviewed so far in this literature review. However, the study of 

Cha et al. (2021) and Cha et al. (2020) is part of the demolition waste sector. In this sector, the dataset 

of 784 is considered to be of smaller size (Cha et al., 2020). Besides this included the dataset many 

categorical variables. It is for these two reasons that the researchers assessed this dataset to be different 

from most of the previous work. This raised the question if other ML algorithms (not being the ML 

algorithms whose effectiveness has already been proven in previous literature) could perform well for 

the dataset used in Cha et al. (2020) study. RF and GBM were chosen because it seemed to fit the dataset 

well and were unnoticed so far in both the CW and DM sector. The study eventually shows that RF and 

GBM algorithms are suitable to generate accurate predictions when trained with this type of dataset.   

Table 9 summarizes the study characteristics (in this case very similar), a separate prediction model was 

developed for each waste material group. This means that the prediction accuracy of the model varies 

for each waste group, figure 28 shows the R2 value of RF and GBM for each material waste group. The 

difference is small, however, RF scores higher overall values. Besides this can it be noted that the 

differences between the material groups are large. This shows that the method or available data was not 

sufficient to make accurate predictions for all the waste groups separately. 

 

Table 9 Overview of the RF related studies covered in this sub-chapter. 

Method Model Waste 

Type 

Region Region 

Level 

No. 

of 

data 

Level of 

data 

collection 

Model 

performance 

Reference 

Random 

Forest 

RF Demolition 

waste 

  784 Building R2 = 0.34-

0.89 
Cha et al. 
(2021) 
 

 GBM Demolition 

waste 

  784 Building R2 = 0.22-

0.84 
Cha et al. 
(2020) 
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Figure 28 Comparison of the R2 value of each material groups for both RF (green) and GBM (white) (Cha et al., 2021). 

 

2.2.6. Conclusion 

This chapter of the literature review is finished, this means that the discussed ML algorithms are 

considered for further developed of the prediction model. Even though there are more possible ML 

algorithms suitable for modelling predictions, the number of ML-algorithms analysed are limited to 

those listed in table 10. The reason for this is that during the extensive search for ML-algorithms in the 

scientific CWM field no other ML-algorithms frequently showed promising results in multiple 

occasions. This doesn’t mean that are no other promising ML-algorithms available, however the goal 

of this sub-chapter is to locate the most promising ML-algorithms and understand the theory. 

Considering that table 10 shows multiple ML-algorithms that all have proven to be accurate, it can be 

concluded that these options are enough to fulfil the goal of this section. This part of the literature 

review ended up being the majority of this chapter, however this is justified since it’s the most crucial 

part of this study. Table 10 summarizes the reviewed ML-algorithms, the following chapters of the 

literature review will provide the last information required to make a well-balanced choice.  

Table 10 Summarized overview for each of the discussed ML-algorithms. 

ML 

algorithm 

Strengths (in short) Weaknesses (in short) Prediction 

accuracy 

range (R2) 

MLR Simple to understand and develop. Accuracy decreases in a highly 

complex environment.  

0.55- 0.993 
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SVM Doesn’t require much knowledge 

about the data, able to solve 

complex problems, scales well to 

high dimensional data. 

Choosing the ‘best’ kernel 

function can be a hard task, 

difficult to understand and 

interpret the variables. 

0.71-0.92 

ANN Doesn’t allow to understand the 

prediction dynamics. 

Very high prediction accuracy, 

suitable for complex non-linear 

problems. 

0.75-0.97 

Fuzzy 

Logic 

Simplicity and flexibility, able to 

handle imprecise and incomplete 

data, can model nonlinear 

functions. 

Dependent on human knowledge 

and expertise (non-hybrid 

system), system requires a lot of 

testing, inaccurate results. 

0.67-0.86 

RT Works well with categorical data, 

intuitive model structure, easy to 

understand. 

Accuracy can vary significantly.  0.22-0.89 

 

 

2.3. Construction waste dynamics 
A major part of the literature study has been dedicated to the ML-algorithms used previously in the 

construction industry. This is also the most important aspect of this research since the main goal is to 

develop such a ML-algorithm to determine the current useability of those ML-algorithms for the Dutch 

residential construction industry, and also what actions need to be undertaken to improve the quality of 

the results so that ML-algorithms can play a major role in the reduction of construction waste. However, 

in order to interpret the dynamics of the prediction model and the output its essential to understand the 

general knowledge regarding residential construction projects and construction waste. This section of 

the literature study aims to provide this information by shortly going over some of the general aspects 

regarding the environment in which construction waste is generated and how the waste is generated. 

2.3.1. Residential construction projects 

There are a few characteristics industry specific characteristics that are important to consider since it 

large shaped the dynamics of all the activities and events. First of all, a residential construction project, 

just like most other construction projects, takes in most cases multiple years to finish. This is quite 

unique compared to most other industries where projects can finish within days of weeks. Of course, it 

all depends on which scale a ‘project’ is interpreted, one specific task of a construction project can still 

be finished in a day, however this may be the project to an individual construction worker that is hired 

for one specific task. The project scale for the contracting entity is considered to be the whole process 

which starts at the moment the tender is won till the moment the project is 'handed over’ to the client 

(tendering is considered to be a separate project since at that moment it's still unsure if the project will 

be carried out). This makes sense considering the research topic considers construction waste, the 

generation of waste starts at the time the first physical works start and only end at when the project is 

finished and thus the works have stopped. 

So, the duration is considered to be relatively long, the second characteristic is the physical size of the 

construction project. Size refers to the area/land plot on which all the activities are executed. In general, 

the size of the construction is dependent on two factors, first the number of residential properties that 

will be built in the project, one can image that a residential project of 10 houses will be much smaller 

than a residential project of 1000 houses. The second factor is the type of residential buildings, 

apartments or other forms of stacked residences are far less land consuming compared to the usual 

family houses. The size of the construction area is important to the waste generation since waste is a 

result of construction activities, and the size of the construction project influences the density of 

construction activities. Besides this it also directly affects the available space to manage all the activities 
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of which one is waste collection. Every construction project will have a construction site lay-out, such 

lay-outs have a quite static nature, this has to do with the importance to all the actors at the construction 

site. Changing/adapting this regularly would create confusion and will most likely slow down the 

project (Ning et al., 2011). However different construction activities can ask for a different optimal site 

lay-out. A good example of this is the generation of construction waste, in general there is a dedicated 

area where waste is collected and separated, however if works are moving from place to place it could 

be logical to have the waste collection move along to avoid long travel distances. An example of a site 

lay-out is shown in figure 29, this site lay-out is from the study of Ning et al. (2011). This study is 

emphasizing the importance of site lay-out design and comes up with a decision-making system based 

on multiple mathematical optimization models to generate the most efficient site lay-out for the specific 

input. What is fascinating is that waste colleting was not included as in input nor output variable, which 

indicated that improvement can still be made if the waste dynamics of a project can be predicted and 

shaped in such shape that it can be included in models like those of Ning et al. (2011).  

 

Figure 29 Construction site layout (Ning et al., 2011). 

2.3.2. Construction waste  

Construction waste is general term to refer to waste generated by the construction industry. Earlier in 

the research the term construction waste has already been limited to only the waste which is generated 

at construction sites. This limits the scope in order to make it less complex to determine the amount of 

waste that counts for a residential construction project. However, it does not yet give any information 

about the material type and what the direct cause/source is. This section will provide more insight into 

the different waste types as in material and the cause of generation.   



   

 

  59 

 

 

The type of CW waste materials that are generated can be different for every region. In the Netherlands 

the major resource for building residential properties was and still is bricks, whereas in New Zealand 

most houses are build using timber (Interreg Europe, 2021). This is mostly driven by the culture and 

availability of resources. However, there are a number of factors that can change this, for example the 

introduction of new building materials, building methods, policies and/or price change. Plastics are a 

good example of building material that was hardly present at construction sites 50 years ago. Currently 

is the environmental awareness influencing the use of construction materials, an example is the 

increasing use of wood for construction projects (Interreg Europe, 2021). The presence of shifts like 

this should be visible in the generated CW data, examining this data will also be a part of this study, 

and will help determine the major CW materials in the dataset.    

A study by Llatas (2011) quantifies the construction waste according to the European waste list. The 

European union setup general codes to generalize the administration of materials, to avoid confusion 

and improve the cooperation in waste processing and waste management. The codes are for materials, 

if waste is separated well, it can be considered a generic material that corresponds to one of the material 

groups. Now a mix of different materials together will end up in a waste type that is not according to 

any specific material. In practice this can happen a lot since separating all the generated waste in all of 

the corresponding material groups can be labour and/or space consuming. Besides this are some items 

used during construction already a mix of materials which makes it even harder to be separated in the 

different material groups. However, appendix I shows the European list of materials and the 

corresponding code, this can be used to classify each type of construction waste that is generated. There 

are two main waste groups that are used (at least in the Netherlands) for waste that does not qualify for 

any of the existing material groups, this en residual waste and construction & demolition waste. Other 

common material groups of waste that can be found at the construction side is plastic packaging, wood, 

gravel, metals, etc (Llatas, 2011). In fact, the study of Llatas (2011) visualised a simple theory that the 

waste generated at a construction site is all dependent on the materials supplied to this construction site, 

see figure 30. This is also in line with the definition of construction waste for this research, by using 

this approach it will be easier to identify possible waste generated at the site if all the supplying materials 

are known. Looking at this figure it can be said that this direct link between input and output is very 

suitable for machine learning algorithms to make accurate predictions since a direct link can logically 

be made between the input variables and output variables. So far most of the studies that have been 

analysed in this research limit the prediction to the total ‘construction waste’ this is simply all the waste 

added up together. In some ways this can be a quite deceiving waste indicator for a project. As said 

before waste is separated using the European code for materials, so waste that qualifies for most of 

those material codes can be recycled or processed in some way. Most studies only consider the 

accumulated weight because the data of separate waste groups is not available or of poor quality. 

However, in relation to this section it highlights the importance of generating this extra data of all the 

different waste groups. In the current state of most studies projects with a similar total waste by weight 

can differentiate significantly in waste performance. One example is the study of Barritt (2015), one of 

the mentioned construction projects ‘Olympic park’ where a recycle, reuse and recover rate of 98% was 

achieved of the total waste generated during construction and demolition. With the European union 

setting the goal of 70% by 2020 for all construction projects it shows that much higher rate are possible. 

So yes, predicting the total waste for a construction project is useful and also mostly practiced in 

specifical studies, however including some sort of KPI that covers the percentage of recycling would 

be of high value.  
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Figure 30 Systemic visualization of the resource in and output at a construction site (Llatas, 2011). 

2.3.3. Generation of waste 

The causes of construction waste have been studied thoroughly, most of the studies approach is by 

interviewing experts in the field of construction waste. The study of Udawatta et al. (2015) attempts to 

improve waste management for construction projects. First a literature study was done to explore 

possible ways to improve the performance of waste management. Then these options were used to setup 

a questionnaire for the experts to rank the aspects in order of importance. Even though these aspects 

won't directly reflect the causes of construction waste generation it does highlight aspects that are likely 

to have a relation with construction waste generation. The list of aspects is shown in table 11 with the 

rank resulting from the study.  

Table 11 Ranking of solutions that could improve waste management (high to low potential) (Udawatta et al., 2015). 

Solutions for WM Ranking 

Construction technologies to minimise waste generation  1 

Proper selection of materials  2 

Develop the market for recycled products  3 

Incorporate WM plans into design from beginning of project  4 

Change attitudes and industry behaviours towards waste minimisation  5 

Design for adaptability  6 

Effective onsite WM plans  7 

Engagement of all stakeholders in construction WM  8 

Adequate supervision of WM activities with clear instructions  9 

Good company policies on construction WM  10 

Training and education to all stakeholders  11 
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Simplification of design 12 

Financial rewards and incentives  13 

Effective communication amongst all stakeholders  14 

Lifecycle costing  15 

Industry transparency in reporting  16 

Proper design and construction documentation  17 

Life cycle approaches in building construction  18 

Use information and communications technology such as BIM (Building 
Information Modelling) to minimise waste generation  

19 

High level of collaboration and risk sharing  20 

Offsite manufacturing  21 

Standardise the design  22 

Relationship building among stakeholders  23 

Reinforce legislation and regulation related construction WM  24 

Prequalification of contractors based on WM performance  25 

Triple bottom line reporting in construction activities  26 

 

Investigating each solution would go too far from the main objective of this research, however its useful 

to take a closer look at the top 3. First of all, and thus ranked highest is “Construction technologies to 

minimise waste generation”, so most experts think improving waste management can be most 

effectively done by using those construction technologies that are able to minimise the generation of 

construction waste. This is a very interesting finding since it is directly related to construction waste 

generation and thus the goal of this research. It would suggest that different construction techniques 

will result in different waste generation rates. Secondly is the selection of proper materials, the reason 

behind this is that process to shape a material in such a way that it can be used to construct a building 

it will generate waste. Different materials will undergo different processes and thus result in different 

waste generation rates. The third point is developing the market for recycled products, this is a very 

practical issue since the current market environment for ‘circular building items/materials’ is not 

developed enough to be applicable for large scale construction projects (Schut & Crielaard, 2015). This 

has to do with the unique industry characteristics and the complex dynamics of circular economy (Yu 

et al., 2022). So far is discussed what aspects of the construction industry could have a major impact 

for reducing construction waste. Next is a glance into the direct causes that generate construction waste. 

The study of Fadiya et al. (2014) developed a questionnaire that was conducted on a group of industry 

experts, the results of this are visualized in figure 31. Giving the figure a first look will show that the 

contribution rated are fairly evenly distributed among the different causes. This means that there is no 

‘easy’ target to realize huge reductions in construction waste generation. In order to realize significant 

reductions, it should be further researched how much resources it will take to achieve a certain reduction 

for each cause. This way the most efficient causes can be filtered down, so that the focus of industry 
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developments can be targeted on those construction waste generation causes. These causes should be 

kept in mind during this study since potential input variables that are related to the causes below can be 

of high importance when trying to predict the construction waste.  

 

Figure 31 Causes of construction waste (Fadiya et al., 2014). 

 

To highlight the information/impact one specific construction variable can provide to a potential 

prediction tool the following founding of study [49] is mentioned. The variable is the type of residential 

building being constructed, the study used six construction projects and “it was found that horizontal 

construction adds 57% greater volume of waste than vertical, while detached and semi-detached 

buildings showed the highest waste volumes of 57% and 32% respectively (Carpio et al., 2016).” 

(Domingo & Batty, 2021). Even though this is one variable it can be explained why this can hold such 

effective information regarding construction waste. The type of residential building will influence many 

other variables for example the operations (large project area or small), the design (stacked buildings 

are differently designed compared to detached) and also vandalism (detached buildings more likely to 

be located in less populated areas compared to vertical residential buildings). This shows that even if 

there are only a limited selection of variables available that those variables could still hold enough 

information to make accurate predictions considering the limited input information.  

 

2.4. Conclusion literature review  
After conducting a thorough literature review, it is clear that machine learning holds significant promise 

for predicting waste in the construction industry. Numerous studies have demonstrated that machine 

learning algorithms can achieve relatively high accuracy in waste prediction. However, there were no 

studies found that attempted to implement this is real construction businesses in order to track the 

benefits of this improved prediction accuracy. Nevertheless, did some studies note that improved 

prediction accuracy could theoretically help construction companies better identify construction waste 

generation causes, which in turn can lead to more efficient and effective waste management practices. 

This finding suggests that there is a significant opportunity to increase the adoption of machine learning 

and leverage its predictive capabilities to drive improvements in waste management. 

The causes of construction waste have been extensively researched by previous studies, this made the 

information easily accessible and relatable for this study. It showed that the causes range broadly and 

are quite evenly distributed it's, this means that in theory it would be beneficial to generate/select a 

range of input variables that can be related to a similar distribution of causes. Using input variables that 

are close related to the causes of construction waste also means that the dynamics generated by the 
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prediction model can provide valuable insights regarding construction waste generation. By leveraging 

this knowledge and addressing the gaps in research, the full potential of machine learning in the 

construction industry to reduce waste and promote sustainable practices can be unlocked. 

The first gap that was identified in the existing literature related to construction waste and machine 

learning was the prediction of individual waste material groups. Most studies focus on the total waste 

output, rather than specific waste streams, which could limit the effectiveness of machine learning 

models in practice. Another gap in the literature was the lack of studies that were performed within the 

Dutch construction industry, this is mostly limiting the knowledge regarding ‘local’ construction waste 

dynamics. 

Addressing this gap in research could help to enhance the accuracy and applicability of machine 

learning models for waste prediction as well as providing new insight regarding Dutch construction 

waste generation. In the following chapters, the research methodology, development and results of this 

study are presented. 

 

  



   

 

  64 

 

 

3. Methodology 
 

3.1. Introduction 
The methodology chapter will outline the framework and approach used to gather and analyse the data 

required to achieve the objectives of this study. This chapter will detail the steps taken to locate and 

collect data within the company, as well as how the data was processed to prepare it for machine 

learning analysis. Locating and collecting data within the company is the first step towards achieving 

the research goals. This phase involves identifying the relevant data sources within the company and 

obtaining the necessary permissions to access them. Once access to the data has been granted, it is 

necessary extract it and start formatting to make it suitable for machine learning analysis. Both stages 

are often a time-consuming and labour-intensive process that requires great attention to detail in order 

to avoid messing up the data structure. Despite the challenges involved in data collection and formatting, 

the data is crucial to the research, as it forms the basis for all subsequent analysis. Without this data, it 

would be impossible to achieve the main objective of the study or to make any meaningful conclusions. 

The following sections of the methodology chapter will detail the tools and techniques used to process 

the data. Through this chapter, readers will gain an understanding of the steps taken to locate and collect 

the data, ensuring that the research is based on sound research practices. 

 

3.2. Data collection 
Heijmans (contractor) is the construction company that provided me access to collect the residential 

construction project characteristics, the final dataset that partially formed with this data is covered at a 

later stage in this thesis. Heijmans is most known for their residential development projects but also 

constructs civil works. Heijmans was interested in the research topic construction waste and is in general 

willing to help students with projects in order to maintain a good relationship with students that later 

may work for or with Heijmans. Heijmans also provides a course at the Tu/e that was followed by the 

author of this thesis, the course was called procurement. It was this course where connection was made 

with Thijs Huijsmans which later became the contact within Heijmans that approved my request to use 

company related data. Except for the data there is no further involvement of Heijmans, all research 

choices are made purely for educational purposes. This also meant that Heijmans wouldn’t provide any 

professional resources to collect all the desired data. This resulted in a huge task to collect the data 

manually, access to some company folders were provided to execute the task (which are not shared in 

this research because of confidentiality). The data collection is divided into 2 sections, first is the waste 

related data, second is the project related data. Collecting both datasets took extremely long time, which 

is which is typical for these types of research, unfortunately did it also result in a significant extension 

of the thesis duration.   

 

3.2.1. Waste data 

Even though the exact process of data collection cannot be fully shared/explained because of 

confidentiality it can be generally described. For each residential project there is a separate excel 

document that contains the waste data, this document is provided by the waste company (either Renewi 

or Pre-Zero). So basically, the work came down to merging all the different datasets into one document 

for each of the waste processing companies. At this stage the data is not further investigated to determine 

possible relevancy for the research. The reason for this is that if the relevancy would be judged at this 

stage, it could result in excluding data without actually having tested the potential relevance (by using 

it as an input variable and judging the output). This choice does result in a large dataset with all the 

waste logs, having all the possible data in one manageable dataset will keep all options open. At the 
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time of collecting the data no hard decisions were made regarding the development of the machine 

learning prediction model. Figure 32 shows all the variables that were collected for the Renewi waste 

data and stored in one excel file, this excel file is attached to appendix II , it consists of 28 x 27.151 

records with each 28 variables resulting in a size of 760.228 data fields. Figure 33 shows the data 

collected for the Pre-zero, this one can be looked up in detail in appendix III , it consists of 44.584 

records with each 44 variables resulting in a size of 1.827.944 data fields.  

 

Figure 32 Renewi dataset. 
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Figure 33 Pre-Zero dataset. 
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3.2.2. Projectdata 

The project data is the ‘opposite side’ of the waste data as this will be used to create the input 

variables. Collecting all this data was less of a struggle since it was already structured in a uniform 

way (SAP-system). This dataset is significantly smaller since it's not event based but project based, 

every row is a project instead of an event. Still, it consists of more than 500 construction projects, the 

variables included are visualized in figure 34 and the dataset itself can be found in appendix IV. This 

dataset contains of 16 x 522 = 8.352 cells. 

 

Figure 34 Heijmans datset. 

 

3.3. Data Formatting 
The data formatting process was a major obstacle to overcome, the basic idea is shown in figure 35. 

three separate excel files have to be merged into one dataset that is project based, meaning that each 

row is representing a single project, the project variables are already format in a similar way. However, 

the two-waste dataset are not structured in the same way. The two waste datasets are of such significant 

size that formatting it manually wouldn’t work for a couple of reasons. First it would take too much 

time and afford to finalize this task. Secondly is that it would get too chaotic if all changes would be 

done ‘by hand’, since there are no logical process steps that are undertaken. Of course, accurate 

documentation would avoid any chaos, however this would mean that the already enormous task would 

even get bigger since accurate documentation will require quite some time too. The third and last reason 

is the most important one, by using automated scripts like python to format all the data allows for 

changes at any stage of the formatting process or even the development process. Once a script is 

developed to format data in a specific way it can be slightly adjusted later on, without having to do the 

whole task of manual formatting over again. This makes the whole process dynamic and easily 

adjustable. It does require significant time and afford to be invested upfront to develop all the formatting 

scripts in python.  
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Figure 35 Overview of dataset transformation. 

Before roughly explaining the data formatting process the individual files are briefly covered to get a 

better understanding of the data. All the files are the ‘raw’ data, however this is not how the data was 

handed over by Heijmans, these raw datasets were also manually collected from the digital environment 

within Heijmans, this process is not covered for confidential reasons. The process after this is of much 

more value and interest that’s why the coverage starts from this stage. Figure 35a are print screens of 

the Heijmans, Renewi and Pre-zero datasets in respective order. The figure is not meant to extract/read 

any information (open the attached files in appendix II, III, IV and VI), however the purpose is to get a 

general idea of the structure. The Heijmans project file has project variables in the columns and each 

row is representing a single project. The Renewi and Pre-zero file are a collection of all waste logs, so 

each row represents a transportation of waste executed by the respective company, all the columns are 

variables of the corresponding event. The general goal is to sum up all waste events done for each of 

the listed residential construction projects in the Heijmans dataset. In order to do so the project reference 

is used, this is a matching variable between the waste events data and the Heijmans dataset. However 

later it will be shown that this variable is unfortunately not perfect in all cases. Besides the matching is 

also a lot of other formatting needed to create the final dataset. This formatting is visualized as best as 

possible in figure 35b, each of the blue nodes refer to one of the python scripts created during this thesis, 

these can all be fully found in appendix V. The function of each of the blue nodes (python scripts) is 

briefly explained in the following section.   

“Data sorting Heijmans projects” was created to reshape the original excel file in such way that only 

the relevant variables are kept, and some new ones generated from the existing data. For example, the 

construction time in days, which was generated by calculating the number of working days between the 

starting and finish date.  

“Add description to projects” for the ML the description data for each project is not relevant since its 

string data that is randomly structured. However, for the manual matching of some projects this was 

crucial data since it provides some extra information regarding the exact location and name of the 

project.  
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“Filter cities Heijmans” was created to separate all the Heijmans projects per city, this was later used to 

make it easier to link the projects with the prezero data, for those projects that could not be matched by 

the regular project code.  

“RNW PRE matching projects” the function of this script was to check if there was overlap in 

projects/projectcodes in the data of Renewi and Pre-zero, luckily and somewhat logically there was not 

overlap meaning that for each residential construction project either Renewi or Pre-zero was handling 

the waste but not both at the same project.  

“Empty row deleting” this script is self-explanatory, just to make sure all the rows where data is missing 

are deleted from the dataset.  

“Count events prezero projects” this script was created to add up all of the events in the pre-zero dataset 

that belong to the same project, this way new variables were created like total number of events and the 

summed-up weights of each waste group separately collected at the project.  

“Count types of waste events” this did the same as the script above but then for the Renewi datset.  

“Merge terminology” the terms for the same waste groups were slightly different in-between the Renewi 

and Pre-zero dataset. To make one generic dataset these needed to be changed to one uniform format.  

“Prezero data filter” since the dataset of pre-zero contained data for all Heijmans departments, so also 

the non-residential related projects. This script only selected the relevant departments.  

“Renewi match project ID” this script did basically the same as the above script only then for the Renewi 

datset.  

“Add oms to pre zero” this script added extra data to the projects of pre-zero that couldn’t be matched 

with the project code, thus the information in the description was used to help manually matching the 

projects.  

“Prezero add location” this script added the location as extra variable for the same reason as the 

previously explained script.  

“Replace werknummer” this script replaced the project code of the events in the pre-zero dataset with 

the Heijmans project code that was manually matched.  

“Sort waste data” is used to eventually merge the three formatted file together to create one merged 

excel file that hold all the relevant data in such way that its usable for the ML development stage. 

Table 13a summarizes the efficiency of the data formatting process. The total events are based on the 

raw dataset before formatting, each event means a transportation of waste. Unique project number 

(code) means the number of unique projects found in the dataset, this project code can be in any form 

or shape. The G project number (the project codes used by Heijmans) shows the number of projects 

found in the Renewi and Pre-zero dataset that can be directly matched with the Heijmans dataset. The 

table shows that the difference between Renewi and Pre-zero is significant. Not all G-project codes in 

the waste data can be related to the Heijmans dataset, this resulted in some lost data, reducing the 

percentages more. However, when calculating the number of events that can be matched it shows that 

the Renewi dataset can almost fully be linked. However, the Pre-zero dataset only achieves 15.42%, 

this number was so low that it was decided to manually link pre-zero projects with the Heijmans projects 

to increase the percentage of usable data to avoid losing a lot of potentially valuable data which could 

later influence the performance of the ML prediction models. By doing so the usable data percentage 

as raised to 68% which is a significant increase.  
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Figure 36a Overview of dataset transformation. 
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Table 123a Overview of the used data in this thesis. 

 
Renewi Pre Zero (by 

existing G-numbers 

Pre Zero Manual 

matching of projects 

Total event records 19070 13865 13865 

Unique project numbers 210 570 570 

Count G project numbers 194 32 43 

% of G numbers (of unique project 

numbers) 

92.38% 5.61% 7.5% 

Matching project number Heijmans 177 28 43 

% of matching G project numbers 84.29% 4.91% 7.5% 

% of non matching project numbers 7.62% 94.39% 87% 

Total matching project events 18783 2138 9460 

% of total matching project events 98.50% 15.42% 68% 
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Figure 37b Overview of dataset transformation. 
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Developing a tool that can format datasets of waste event logs and project variables into a machine 

learning ready format would be a project in itself. This would be possible by mimicking the process 

that is done manually now and shaping it into an automated script/tool. Since the waste recycling 

companies provide all the clients with the same structured event logs. Considering that many 

construction companies (companies in general) use systems like SAP to manage projects, it would be 

possible to make some specific data merging tool. The formatting stage in this thesis was solely for 

practical purposes in order to continue to the machine learning development. The fundamental 

formatting task was to collect all ‘waste events’ (a truck collection waste) linked to a specific residential 

construction project in the Heijmans project list. Once all events are extracted the data is used to 

generate a couple of variables that are listed in table 12, these variables are potential output variables 

for the machine learning prediction model. The input variables that are extracted from the Heijmans 

project dataset are shown in table 13.  

Table 13 Generated output variables from the waste datasets. 

Project related waste variable Explanation 

Waste Event count The number of events that are executed for the 

project 

Total waste kg The weight of all the events that have been 

executed for the project 

Foil kg Only the weight of foil waste extracted from the 

relevant events 

Construction and demolition kg Only the weight of construction and demolition 

waste extracted from the relevant events 

Metal kg Only the weight of metal waste extracted from 

the relevant events 

Gypsum kg Only the weight of gypsum waste extracted 

from the relevant events 

Paper cardboard kg Only the weight of paper cardboard waste 

extracted from the relevant events 

Stony materials  Only the weight of stony materials waste 

extracted from the relevant events 

Residual waste kg Only the weight of residual waste extracted 

from the relevant events 

Insulating material Only the weight of insulating waste extracted 

from the relevant events 

Woodwaste kg Only the weight of woodwaste waste extracted 

from the relevant events 

Waste processor Either Renewi or Pre-zero, depending which 

company was involved in the project (there 

were no projects where both were involved) 

 

Table 14 Generated input variables from the project dataset. 

Project related input variable Explanation 

Number of dwellings The number of dwellings to be constructed in 

the project 

Activity The type of residential building that is 

constructed in the project 

Concept Concept of residential building 

Start construction Start date of project 
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Completion month Completion date of the project 

Contract sum Contract sum for the project was tendered 

Average dwelling price Average construction price for a dwelling within 

the project 

Construction time (days) Number of days it took to complete the 

residential construction project 

 

All python scripts that have been developed for formatting added to appendix V for documentational 

purposes and also to emphasize the time and effort that was needed to successfully finish this task. The 

merged dataset that is created after all the formatting is added to appendix VI, this is a suitable format 

for machine learning development since input and output variables are all structured in one row which 

represents one project. Noticeable is that the total number of projects went down from 521 to 200, this 

is because for some projects there was either no waste data available because neither of the two waste 

processing companies were involved in these projects, or it was unable to match the waste data with 

any project. Besides this are also some projects merged into one project, this has to do with the fact that 

Heijmans sometimes subdivides projects while Renewi and Pre-zero use the same address since the 

waste was collected at one location. The total size of the data was also significantly reduced, the three 

excel files together contained around 2.6 million data cells, this would be considered ‘big data’. 

However, after all of the formatting 4.200 data cells are left, those 4.200 data cells are of ‘high quality’, 

with this its meant that the data is extracted from the most original source. Since each event (transported 

waste) is registered and summed up to create the total waste profile of a residential project. This at least 

means that all the values are exactly determined and not a result of averages or rough information. Later 

in the thesis it will become clear that for some of the ML algorithms a 200 event/case dataset is relatively 

small to get accurate predictions. However, one should consider that realistically speaking a dataset of 

10.000 or even 1.000 residential construction project within a comparable environment (in this case the 

Netherlands) is almost impossible to create. For example, currently in the Netherlands there are a total 

of 1.000 residential project under construction or in design phase (Nieuwbouw Nederland, 2023). 

Considering that at least 50+ contractors execute these projects (Valkhoff, J., 2023). and that it takes on 

average more than a year to be completed (average construction time). This means that it would require 

to generate a dataset based on 50 different sources for multiple years in the same format. In practice 

this is close to impossible, however The Netherlands is a small country so one could say that larger 

countries allow for larger datasets since there is a high chance the country can be considered a 

‘comparable environment’ in terms of CWG. Nevertheless, is it likely that with increasing area/region 

also the number of contractors increase. Thus, making it more complex to manage the development of 

the overall dataset. In short is it important to consider that in the residential construction industry the 

amount of available data is in reality limited. This is an important industry characteristic to consider 

when searching for possible ML-algorithms, since the performance can be heavily influenced by the 

number of training data. 

 

3.4. Descriptive statistics 

In order to get a better feeling of the data that will be used for the machine learning development and 

of the significance of this dataset in general, a short section will cover the descriptive statistics. Figure 

36 shows some of the summed-up variables which point out that the total dataset covers the waste 

generated during the construction of almost 10.000 dwellings with a total contract sum of 1.63 billion 

euros. The total waste accumulated to 48 million kilograms which was transported by almost 26 

thousand trips. Considering that the dataset container 200 projects it comes down to +/- 240 tons of CW 

per project. 
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Figure 38 A number of summed-up variables of the finalized dataset. 

The summed distribution of waste is shown in figure 37, stony materials make up just a bit more than 

half of the total weight. The second largest waste group is construction and demolition waste, this type 

of waste is basically the residual waste for the construction industry since most materials (non-

hazardous) can be disposed in this type of container. The third group is wood waste, the means that the 

top 3 waste material groups make up around 92% of all the waste. Important to understand is that the 

distribution is based on the classifications of waste containers that are transported from the construction 

site. This means that all of the weight in a container labelled as ‘wood waste’ will be registered in the 

data as fully ‘wood waste’ even though in reality there could be fraction of other waste in the container. 

Nevertheless, is the percentage of ‘pollution' very low for well determined waste groups. If a significant 

of ‘pollution’ is present in a container it will result in a rejection, meaning the container will be 

relabelled to a more matching waste group, in practice this will be to residual waste or construction and 

demolition waste (based on experience in the industry of the author). This means that the collected 

waste data of waste groups will be an accurate representation of the physical materials in the container. 

There are two exceptions to this, the waste groups residual waste and construction/demolition waste are 

not material specific. Residual waste will be logical for most people since this type of waste is most 

common at households. As stated earlier can the construction and demolition waste seen as the ‘residual 

waste for construction activities. The reason for this is that this type of waste will generally contain 

fractions of larger size compared to regular residual waste, besides this is this type of waste more 

predictable since its linked with a specific type of activity (construction/demolition works), whereas 

residual waste could come from any activity imaginable. Both waste groups will go through a separation 

process at the recycling plant, construction and demolition waste has a higher ‘recycling rate’ meaning 

that the waste processing company can get more ‘value’ out of this waste stream compared to residual 

waste. This eventually results in lower processing costs for construction and demolition waste compared 

to residual waste. This makes sense when considering the terms of acceptance are less strict for residual 

waste compared to construction and demolition waste (Renewi, 2020) (Renewi, 2017). 

These later to waste group will thus result in very limited information regarding the exact type of 

materials are generated at a project. The chosen waste collection structure at residential construction 

projects determines the accuracy of the generated waste material data. For example, one project is a 

standalone housing project and thus covering a significant area of land, here it could be that the project 

manager choses a waste collection structure of multiple waste groups since there is more than enough 

place to set this up. Whereas a stacked residential construction project could have very limited space 

(e.g. city centre), this could result in a waste structure of only one container being construction and 

demolition waste. So even if in reality the construction waste in both projects would be exactly the 

same, the data received by the waste processing company would show completely different results. 

Besides available space the total expected waste output is another project variable that influences the 

waste collection structure. In order to economically separate another waste stream on a construction site 

its required to have a minimum volume, one can image that separating plastics will be very 

economically and space inefficient if it's only a couple hundred kilograms in total. This is a reason why 

smaller residential construction projects have a lower waste separation rate (discussed later on).  
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Figure 39 Distribution of all the recorded construction waste in the finalized dataset. 

Figure 38 visualizes the average waste generated per constructed dwelling against the year of 

completion. This is visualized with the purpose of possibly spotting a trend in waste generation per 

dwelling. The first and last years are less representative since the projects do not hold all of the waste 

generated. However, most of the 2018, 2019, 2020 and 2021 projects are fully constructed during the 

period. Figure 39 shows the average value, and it seems that in the four years there is a slight decrease 

visible from 6,9 ton in 2018 to 5,8 ton in 2021.  

 

Figure 40 Average waste per constructed dwelling for each project, arranged by completion year. 
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Figure 41 Average yearly waste per constructed dwelling. 

Next it the average waste separation ratio by year, where Renewi and Pre-zero are separate of each other 

shown (figure 40). It would be interesting to see it there is any significant difference between the two 

waste processing companies. The intention of this figure is not because the waste companies could 

influence the separation behaviour of the construction workers, but the waste companies do advise 

Heijmans (and other construction companies) what waste collection structure to implement at a project 

site. However, there are no significant differences between the two companies in the most reliable years 

in terms of data.  

 

Figure 42 Average waste separation ratio per year for the project facilitated by Renewi (R) and Pre-zero (Z) 

The following two scatterplots shown in figures 41 and 42 visualize the number of dwellings in the 

corresponding project against the waste separation ratio, where the different colours highlight the 

concept type in figure 41 and the activity in figure 42.  These graphs are accompanied by the average 

separation ratio for concept and activity. The scatterplot doesn’t show any clustering that could indicate 

significant differences between the concepts, activities and or number of dwellings for the separation 

ratio.  However, it’s noticeable is that the only projects that have a very low waste separation ratio are 
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smaller projects in terms of number of dwellings. Tables 14 and 15 show the average waste separation 

ratio by weight for all projects of the corresponding concept or activity type. When looking at these 

values a difference can be spotted, especially between concepts ‘Morp’ and ‘Regulier’ the difference is 

0.18 meaning an 18% difference in waste separation percentage. Looking at the activity maximum 

difference is 0.10 meaning a 10% difference in waste separation percentage. 

 

Figure 43 scatterplot where each project is arranged by the number of dwellings against the separation ratio, where the 
concept highlights the different colours. 

 

Table 15 Average waste seperation ratio by weight for each type of concept, generated with PowerBI. 

 

When trying to make sense of these differences it should be looked into what differentiates the 

individual concept types. “regulier” translated “regular” refers to the regular construction type of the 

residential buildings, the residential properties in these projects vary significantly in size and 

architectural design. The buildings in these projects are specifically designed for it.The concept 

“Wenswonen” translated “Wishliving”, is a semi-adjustable concept of Heijmans. These residential 

buildings have a concept layout that can be adjusted by the future resident. The technical difference is 

that these buildings consist of a significant number of prefabricated parts that result in relatively lower 

construction periods. The Heijmans “Huismerk” translated “House brand” is a project that consists of 

residential buildings from the catalogue of Heijmans, even though this consists of 1000+ different 

types/models it does mean the whole design is already done and all these houses have been built before. 

The “Morph” type is a concept that mainly consists of corner apartments, so all these residential 

buildings are stacked. Knowing more about these concepts it's possible to look for specific reasons why 

the separation rate varies. The fact that regular has the lowest rate makes some sense since this is the 
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most freely designed project concept which results in buildings that have not been built before by 

Heijmans and the buildings within the project have a high diversity, meaning less repetition. The morh 

concept has been a popular option for social housing, this means that the residential buildings are kept 

relatively simple this in combination with a standardised design and limited to apartments makes it ideal 

for fast and efficient modern-day construction.  

The activity variable consists of three different options, “Nieuwbouw grondgebonden” means newly 

constructed ground-bound, which means residential properties which have a dedicated footprint/area. 

Whereas “nieuwbouw gestapeld” means stacked residential properties. The last type is called 

“nieuwbouw combinatie” this means the project is a combination of both types. The waste separation 

rate differences are not that significant to directly think of some logical reasons however, the most likely 

reason why the activity “combined” has a higher separation rate is that it is most likely to be a project 

of larger size and thus more efficient to separate smaller CW streams. 

Table 16 Average waste seperation ratio by weight for each type of activity, generated with PowerBI. 

 

Figure 44 scatterplot where each project is arranged by the number of dwellings against the separation ratio, where the 
concept highlights the different activity. 

 

3.5. Exploratory Data Analysis 
The following graphs and tables are generated in Jupyter’s notebook, this is done because it's the same 

environment used to run the machine learning algorithms. It also allowed for more adjustibilty and 

flexibility to visualize the desired graphs etc. The steps taken to generate the analysis are explained in 

the sections below. 

In figure 43, head() function has been implemented after reading the xlsx. extension file through 

read_excel() function in Jupyter’s notebook. It displays the first five rows present in the dataset in which 

various columns and their values present in the dataset could be seen. 
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Figure 45 all columns present in the dataset. 

In figure 44, it can be seen that important features which are required to predict the total waste in kg 

has been selected for the purpose of visualization and exploratory data analysis. In this project, I 

carefully extracted features ‘Number of dwelling’, ‘Activity’, ‘Concept’, ‘Contract sum’, ‘Construction 

Time (days)’, and ‘Total Waste in Kg’. 

 

Figure 46 2 Selecting the number of features. 

In figure 45, the description of the dataset has been displayed in which mean, standard deviation, 

minimum, maximum, and percentiles (25, 50, 75) can be seen. For example, the minimum value for the 

number of dwellings is 2, and the maximum value is 464, and similarly, for Construction days, the 

maximum number is 1612 while the mean value is 489. 

 

Figure 47 description of features in the dataset 

In figure 46, the info() function displays the general information present in the selected features of the 

dataset where total number of entries, columns, and data types of the features can be seen. There are a 

total number of 200 entries present in the dataset, and there are 3 integers, two object types, and 1 

floating point data types present in the selected dataset. 
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Figure 48 general info() present in the dataset. 

In figure 47, isnull().sum() function has been used to display the total number of null values present in 

the dataset. It could be seen that there are no null values present in the dataset. 

 

Figure 49 isnull().sum() function present in the dataset. 

In figure 48, feature ‘Number of dwelling’ has been illustrated using histogram and box plot to show 

the distribution of the values. Moreover, the skewness and the lowest and highest value has also been 

indicated. It can be clearly seen that the smallest value present in the dataset is 2 and the highest value 

is 464 and the skewness is 1.5 which is rightly skewed.   

 

Figure 50 Number of dwelling - box plot and histogram 

In figure 49, feature ‘Contract sum’ has been illustrated using histogram and box plot to show the 

distribution of the values. Moreover, the skewness and the lowest and highest value has also been 

indicated. It can be clearly seen that the smallest value present in the dataset is 600k and the highest 

value is 78300k and the skewness is 4.15 which is rightly skewed.   
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Figure 51 Contract sum: histogram & boxplot 

In fig. 50, feature ‘Construction Time (days)’ has been illustrated using histogram and box plot to show 

the distribution of the values. Moreover, the skewness and the lowest and highest value has also been 

indicated. It can be clearly seen that the smallest value present in the dataset is 149 and the highest value 

is 1612 and the skewness is 1.49 which is rightly skewed. Moreover, almost 75% of the values are under 

600 construction days, while remaining are above 600. 

 

Figure 52 Construction Time: histogram & boxplot 

In fig. 51, feature ‘total waste in kg’ has been illustrated using histogram and box plot to show the 

distribution of the values. Moreover, the skewness and the lowest and highest value has also been 

indicated. It can be clearly seen that the smallest value present in the dataset is 0 and the highest value 

is 3983k and the skewness is 6.05 which is rightly skewed.   

 

Figure 53 Total Waste Kg: histogram & boxplot. 
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Figure 52 shows the correlation heatmap graph for the variables used in this thesis, the correlation 

heatmap graph is used to visualize the correlation or relationship between variables in a dataset. It 

provides a visual representation of the strength and direction of the relationships between the variables, 

using colours to indicate the correlation values. The purpose of this correlation heatmap graph is to 

identify patterns and dependencies among variables. It helps in understanding which variables are 

positively or negatively correlated with each other and to what extent. In general, a correlation heatmap 

graph provides a visual summary of the interrelationships between variables, which can help to quickly 

identify patterns and make informed decisions based on the observed correlations. In this case the 

number of variables relatively small, so the ‘quick overview' function is less relevant, however the 

reason for adding this this graph is that it can help identify potential multicollinearity issues (high 

correlations between predictors) in regression analysis or highlight interesting associations between 

variables that may warrant further investigation. 

In this case, feature ‘Number of dwelling’ has a correlation value of 0.76 with ‘total waste in kg’ this 

already shows that number of dwellings could be a valuable input variable for waste prediction. Also 

‘Contract sum’ shows a high correlation value of 0.86 with ‘Total waste in kg’. However, the two input 

variables have a high mutual correlation as well (0.91) this shows the potential risk of multicollinearity. 

  

Figure 54 Correlation Heatmap Graph. 

In figure 53, the pair plot of features with other features of the dataset has been displayed in which the 

presence of values in one feature with respect to the other feature can be seen. 
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Figure 55 Pair Plots in The Dataset. 

In fig. 54, the feature ‘Concept’ has been displayed with respect to the feature ‘total_waste_kg’ feature. 

It can be seen that ‘Regular’ value produces the highest waste in kg around 300k, followed by 

‘Wenswomen’ around 175k, ‘Huismerk’ around 130k, and Morph was the lowest around 20k. 

 

Figure 56 Total Waste in Kg vs Concept. 

In figure 55, the feature ‘Activity’ has been displayed with respect to the feature ‘total_waste_kg’ 

feature. It can be seen that ‘Nieuwbouw Gestapeld’ value produces the highest waste in kg around 450k, 
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followed by ‘Nieuwbouw Combinatie’ around 240k, and ‘Nieuwbouw Grondgebonden’ was the lowest 

around 180k. 

 

Figure 57 Total Waste in Kg vs Activity. 
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3.6. Data (second) Pre-processing 
In figure 56, it can be seen that encoding of categorical feature has been performed using the 

get_dumies() function of Pandas library. 

 

Figure 58 Categorical feature encoding. 

In figure 57, it can be observed from the codding snippet that two variables ‘X1’ and ‘y1’ have been 

initialized using the variable ‘df’ that contains the whole dataset. In variable ‘X1’, I stored all the 

features except the target feature ‘total_waste_kg’ using axis = 1, and on the other hand, I initialized 

the variable ‘y1’ in which I stored the ‘total_waste_kg’ label feature. This is an important step for the 

purpose of building the machine learning models. 

 

Figure 59 Variables: input & output 

In fig. 58, it can be observed that the function train_test_split() has been implemented to split the dataset 

into testing and training datasets: X_train, X_test, y_train, and y_test. While doing it, the test_size of 

20% has been taken from the dataset and random_state=42 has been chosen so that each time the 

splitting is done, it must be split the same way it did last time. In this way, the dataset was ready for the 

training of the model. 

 

Figure 60 Splitting the dataset into testing/training. 

In figure 59, it can be observed that standard scaler library of Sklearn has been implemented for pre-

processing before dataset is fed to the models. Standard Scaler library is used to scale the features or in 

other words maintain a similar scale of numerical features throughout the dataset. This helps to have a 

general scale in the dataset which helps to increase the performance of the machine learning model. 

 

Figure 61 Scaling of features using Standard Scaler Library. 
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4. Machine Learning Model development 
 

4.1. Included ML methods 
This chapter will describe development of a couple of ML prediction models. The models that have 

been chosen to develop are Support Vector Machines, Ridge Regression, Multivariate Linear, 

Regression, Random Forest Regression, Extra Tree Regression, Artificial Neural Network. These 

methods have been chosen because the combination is fairly similar with the methods covered in the 

literature review. These methods have proven to be effective to a certain extent in the past, this makes 

the results of this thesis relatable to the current studies in the research field. The fuzzy logic was 

excluded for the simple reasons that the development couldn’t be performed the same way as the other 

methods (lack of experience and knowledge made it impossible for the author to continue development 

after some technical issues).  

4.2. Support Vector Machines 
In figure 60, it can be observed that Support Vector Regression has been implemented with Forward 

Feature Selection (FFS) technique to only chose those features which have an increasing accuracy 

impact on the model’s performance and leave out other features. While doing so, the value of k_features 

has been chosen between for the shape of features present in training dataset, and r2 scoring has been 

used to test the performance later. 

 

Figure 62 Forward Feature Selection: Support Vector Machines. 

In more detail why the FFS technique was chosen is because of a number of other reasons:  

1. Improved model interpretability: When only selecting relevant features for the SVR model it 

can enhance the interpretability. When selecting the most important features, the focus can be 

on understanding the impact of those variables on the predicted outcomes. Forward feature 

selection helps identifying the subset of features that contribute the most to the SVR model's 

performance. 

2. Enhanced model generalization: In contrast to the previous point, if irrelevant or redundant 

features are included in the model it can lead to overfitting, this will result in high performance 

on the training data, but it will fail to generalize this performance on new unseen data. Forward 

feature selection helps mitigate this risk by iteratively selecting the most relevant features, 

which can improve the model's generalization performance. 

3. Reduced computational complexity: SVR can be computationally intensive, especially when 

dealing with a large number of features, in this case there are only a few features so this point 

is less relevant. However, by using forward feature selection, the dimensionality of the problem 

can be reduced by selecting only the most informative features. This can lead to faster training 

and prediction times, making the model more efficient, improving efficiency is always helpful. 
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4. Increased model accuracy: Forward feature selection aims to find the subset of features that 

maximizes the performance of the SVR model. By iteratively adding features that improve the 

model's performance, this increases the chance of achieving higher accuracy. The selected 

features are expected to capture the most relevant information for predicting the target variable. 

5. Feature selection as a model validation step: Forward feature selection can also be used as a 

form of model validation. By comparing the performance of the SVR model with different 

subsets of features, this allows to assess the stability and consistency of the selected features. 

This can be supportive when identifying robust and reliable features that consistently improve 

the model's performance. 

After Forward Feature Selection (FFS) technique was implemented, it provided the selected features 

with indexes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and their corresponding names can be seen in figure 61. 

 

Figure 63 Results of Forward Feature Selection (FFS). 

In fig. 62, it can be seen that the features provided by Forward Feature Selection have been chosen for 

the training and testing dataset. 

 

Figure 64 Features Selected By FFS 

In figure 63, it can be observed that Hyper-parameter tuning has been implemented with parameter’s 

kernel and C for Support Vector Regression. GriSearchCV will provide the best hyper-parameters to 

get the best performance from Support Vector Regression. This is a step of optimizing the model's 

performance.  

 

Figure 65 Hyper-parameter Tuning using GridSearch Library. 

GridSearch is a popular technique for hyperparameter tuning that involves exhaustively searching 

through a predefined grid of hyperparameter values to find the combination that yields the best 

performance. Again, there are a couple of reasons why exactly gridsearch was chosen for the hyper-

parameter tuning these are explained below, followed by alternatives that were not chosen.  
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1. Improved model performance: The choice of hyperparameters significantly impacts the 

performance of an SVM model. By performing hyperparameter tuning using GridSearch, it's 

possible to systematically explore different combinations of hyperparameters and identify the 

optimal values that lead to improved model performance. This can help you achieve better 

accuracy, precision, recall, or any other evaluation metric you are optimizing for. 

2. Comprehensive search over hyperparameter space: GridSearch allows to define a grid of 

possible values for each hyperparameter of the SVM model. It performs an exhaustive search 

over all possible combinations of these values, as mentioned above. This ensures that no 

potentially good hyperparameter settings are missed. This comprehensive search helps to find 

the best hyperparameter configuration within the defined grid. 

3. Reproducibility and consistency: GridSearch provides a systematic and reproducible way of 

conducting hyperparameter tuning. By specifying the grid of hyperparameter values in 

advance, consistency in the search process is ensured. This allows to easily reproduce and 

validate the results obtained during the hyperparameter tuning process, making it easier to 

compare different models or approaches. 

4. Avoiding bias and overfitting: Without hyperparameter tuning, default values are often used, 

which may not be optimal for your specific dataset and problem. By performing GridSearch, 

you avoid the bias introduced by default values and instead select hyperparameters that are 

more suitable for the data. This helps in preventing overfitting or underfitting and leads to a 

more robust and generalizable SVM model. 

Naturally are there other hyperparameter tuning algorithms that were consider when setting up the 

prediction model, a number of alternatives for gridsearch are listed below: 

1. Randomized Search: Randomized Search explores the hyperparameter space by randomly 

sampling a defined number of combinations. Unlike GridSearch, which systematically 

evaluates all combinations in the grid, Randomized Search allows you to specify a distribution 

for each hyperparameter and randomly sample from those distributions. This approach can 

be more efficient than GridSearch when the hyperparameter space is large, as it provides a 

good trade-off between exploration and exploitation. Since the hyperparameter space in this 

case is not regarded as ‘large’ (5 x 3), it was less logical to choose this alternative.  

2. Genetic Algorithms: Genetic Algorithms are inspired by the process of natural selection and 

evolution. They maintain a population of hyperparameter combinations, where each 

combination represents an individual. Through iterations of selection, crossover, and 

mutation, genetic algorithms evolve the population to find the best hyperparameter 

configuration. This technique can handle a large hyperparameter space and is useful when the 

relationship between hyperparameters is complex and non-linear. Again, is the 

hyperparameter space fairly limited resulting in less need to apply alternatives that generally 

perform well in large hyperparameter spaces. 

3. Particle Swarm Optimization: Particle Swarm Optimization (PSO) is a population-based 

optimization algorithm that mimics the behaviour of a swarm of particles. Each particle 

represents a hyperparameter combination, and the swarm collectively searches the 

hyperparameter space. The particles adjust their positions based on their own experiences 

and the best experiences of the swarm, leading to the discovery of better hyperparameter 

configurations. PSO can efficiently explore the hyperparameter space and handle multi-modal 

optimization problems. The strengths of PSO, in specific handling multi modal optimization 

problems is not what is generally needed when using SVM-models. Regarding the SVM model 

the objective is to find the hyperplane that maximizes the margin between the classes, or in 
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the case of regression, minimizes the error between the predicted values and the actual 

values. The optimization process is not multi-modal by nature, it aims to find a unique solution 

that provides the best possible separation or regression performance according to the 

specified objective (e.g., maximizing the margin or minimizing the error). 

This eventually led to the choice of using GridSearch, together with the FFS technique form the basis 

of modelling for all the upcoming ML-algorithms covered in this chapter. When other or additional 

techniques are used it will explained at the specific ML-algorithm sub-chapter. Figure 64 shows that 

GridSearchCV() provided the best estimator with value of C=1000 and kernel=poly.  On the other hand, 

the rank_test_score can also be seen for each kernel value and param C. 

 

Figure 66  Results of Grid Search CV. 

In figure 65, a 3d plot showing the parameter ‘kernel’ and ‘C’ with respect to performance using 

GridSearch  can be observed. With more ‘C’ value, the test score goes to a lower value, and with kernel 

‘poly’ the test score is lower 
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Figure 67 3D Plot of Grid Search's Hyper-Parameter Tuning. 

Development: Support Vector Regression 

In figure 66, the coding snippet illustrates the implementation of Support Vector Regression with 

parameter C=1000 and kernel = poly. For the implementation, sklearn library has been imported of 

which fit() function has been used to train the model on the datasets. Moreover, predict() function has 

been used to test the model for predictions. 

 

Figure 68 Support Vector Regression: Implementation. 

4.3. Ridge Regression 
In figure 67, it can be observed that Ridge Regression has been implemented with Forward Feature 

Selection (FFS) technique to only chose those features which have an increasing accuracy impact on 

the model’s performance and leave out other features. While doing so, the value of k_features has been 

chosen between for the shape of features present in training dataset, and r2 scoring has been used to test 

the performance later. 
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Figure 69 Ridge Regression: Forward Feature Selection. 

After Forward Feature Selection (FFS) technique was implemented, it provided the selected features 

with indexes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and their corresponding names can be seen in figure 68. 

 

Figure 70 Results of Forward Feature Selection. 

In figure 69, it can be seen that the features provided by Forward Feature Selection have been chosen 

for the training and testing dataset. 

 

Figure 71 Features selected by Forward Feature Selection 

In figure 70, it can be observed that Hyper-parameter tuning has been implemented with parameter’s 

alpha Ridge Regression. GriSearchCV will provide the best hyper-parameters to get the best 

performance from Ridge Regression. 

 

Figure 72 Grid Search's Hyper-parameter tuning. 

In figure 71, it can be seen that the best parameter for Ridge regression by GridSearchCV() function 

was alpha 50. 
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Figure 73 Results of Grid Search CV. 

Development: Ridge Regressions 

In figure 72, the coding snippet illustrates the implementation of Ridge Regression with parameter 

alpha=50. For the implementation, sklearn library has been imported of which fit() function has been 

used to train the model on the datasets. Moreover, predict() function has been used to test the model for 

predictions. The choice to use the sklearn library is related to cross-validation and hyperparameter 

tuning: sklearn provides tools for cross-validation and hyperparameter tuning, which are crucial for 

evaluating and optimizing ridge regression models. GridSearchCV function van be used to perform 

cross-validation and search for the best alpha value, respectively, based on the specified performance 

metric. Besides this does the sklearn library have other general advantages when used for ridge 

regression like, efficient implementation, flexibility in regularization and integration with the sklearn 

ecosystem. Also, the sklearn library is used in other upcoming ML-algorithms, this is for the same 

reasons as explained here. 

 

Figure 74 Ridge Regression Implementation. 

4.4. Multivariate Linear Regression 
In figure 73, it can be observed that Linear Regression has been implemented with Forward Feature 

Selection (FFS) technique to only chose those features which have an increasing accuracy impact on 

the model’s performance and leave out other features. While doing so, the value of k_features has been 

chosen between for the shape of features present in training dataset, and r2 scoring has been used to test 

the performance later. 
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Figure 75 Linear Regression: Forward Feature Selection. 

After Forward Feature Selection (FFS) technique was implemented, it provided the selected features 

with indexes (0, 1, 3, 4, 5, 6, 7, 8, 9) and their corresponding names can be seen in figure 74. 

 

Figure 76 Results of Forward Feature Selection (FFS). 

In figure 75, it can be seen that the features provided by Forward Feature Selection have been chosen 

for the training and testing dataset. 

 

Figure 77 Selecting Features of FFS. 

Development: Linear Regression 

In figure 76, the coding snippet illustrates the implementation of Linear Regression. For the 

implementation, sklearn library has been imported of which fit() function has been used to train the 

model on the datasets. Moreover, predict() function has been used to test the model for predictions. 

 

Figure 78 Linear Regression Development. 

4.5. Random Forest Regression 
In figure 77, it can be observed that Random Forest Regression has been implemented with Forward 

Feature Selection (FFS) technique to only chose those features which have an increasing accuracy 

impact on the model’s performance and leave out other features. While doing so, the value of k has 

been chosen between for the shape of features present in training dataset, and r2 scoring has been used 

to test the performance later. 
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Figure 79 Random Forest: Forward Feature Selection. 

After Forward Feature Selection (FFS) technique was implemented, it provided the selected features 

with indexes (0, 1, 2, 3, 4, 5, 6, 7) and their corresponding names can be seen in figure 78. 

 

Figure 80 Results of Forward Feature Selection (FFS) 

In figure 79, it can be seen that the features provided by Forward Feature Selection have been chosen 

for the training and testing dataset. 

 

Figure 81 Selecting important features from the dataset.  

In figure 80, it can be observed that Hyper-parameter tuning has been implemented with parameter’s 

n_estimators, max_features, max_depth for Random Forest Regression. GridSearchCV will provide the 

best hyper-parameters to get the best performance from Random Forest Regression. 

 

Figure 82 Hyper-parameter tuning: Random Forest Regression 

In figure 81, it can be seen that GridSearchCV() provided the best estimator with value of parameters 

max_depth=20, max_features=’auto’, and n_estimators=5. 
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Figure 83 Results of Hyper-parameter tuning. 

In figure 82, a 3d plot showing the parameter ‘max_features’, ‘max_depth’ and ‘n_estimators’ with 

respect to performance using GridSearch can be observed. With max_features ‘auto’, and n_estimatore 

‘5’ the accuracy is higher. 

 

Figure 84 3D Plot of Grid Search: Random Forest. 

In figure 83, the coding snippet illustrates the implementation of Random Forest Regression with 

parameter max_depth=20, max_features=’auto’, and n_estimators=5. For the implementation, sklearn 

library has been imported of which fit() function has been used to train the model on the datasets. 

Moreover, predict() function has been used to test the model for predictions. 

 

Development: Random Forest 
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Figure 85 Random Forest Regression: Training and Development. 

4.6. Extra Tree Regression 
In figure 84, it can be observed that Extra Tree Regression has been implemented with Forward Feature 

Selection (FFS) technique to only chose those features which have an increasing accuracy impact on 

the model’s performance and leave out other features. While doing so, the value of k has been chosen 

between for the shape of features present in training dataset, and r2 scoring has been used to test the 

performance later. 

 

Figure 86 Extra Tree Regression: Forward Feature Selection. 

After Forward Feature Selection (FFS) technique was implemented, it provided the selected features 

with indexes (0, 1, 2, 3, 4, 5, 6, 7) and their corresponding names can be seen in figure 85. 

 

Figure 87 Results of Forward Feature Selection. 

In figure 86, it can be seen that the features provided by Forward Feature Selection have been chosen 

for the training and testing dataset. 

 

Figure 88 Selecting important features provided by Forward Feature Selection. 

Development: Extra Tree Regression 

In figure 87, the coding snippet illustrates the implementation of Extra Tree Regression with parameter 

max_depth=4, n_estimators=10, and random_state=1000. For the implementation, sklearn library has 
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been imported of which fit() function has been used to train the model on the datasets. Moreover, 

predict() function has been used to test the model for predictions. 

 

Figure 89 Extra Tree Regression Development.  
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4.7. Artificial Neural Network 
Development: Artificial Neural Network 

In figure 88, it can be observed that Artificial Neural Network has been implemented with batch size 

= 50 and 500 epochs. The loss was used as mean squared error (MSE) ‘mse’ and adaptive moment 

estimation (ADAM) ‘adam’ optimizer was used for the purpose of training and testing. The choice for 

MSE is a commonly used loss function when training an artificial neural network [57][79], and it 

offers several advantages that make it a logical choice in this case. The following feature explain why 

MSE was chosen as the loss function for the development of the ANN: 

1. Differentiability: MSE is a differentiable loss function, which is essential for gradient-based 

optimization algorithms like backpropagation. The gradients of MSE can be easily computed, 

allowing efficient updates of the network weights using techniques such as stochastic gradient 

descent (SGD) or its variants. 

2. Convexity: MSE is a convex loss function, meaning it has a single global minimum. This 

property ensures that the optimization process converges to a single optimal solution. Neural 

networks with MSE loss tend to have a unique solution that minimizes the overall error, which 

simplifies the training process. 

3. Interpretability: MSE has a clear interpretation as the average squared deviation between the 

predicted and true values. This interpretability is valued since it's important to explain the 

model's performance. 

4. Availability and Compatibility: MSE is widely supported in many machine learning 

frameworks and libraries, including scikit-learn which is regularly used in this thesis. This 

availability makes it convenient to use MSE as the loss function without the need for custom 

implementation. 

There are a couple of alternatives to the MSE function, one of which is the Huber loss. Two reasons 

why this function has not been chosen are, parameter sensitivity, the Huber loss function has a 

parameter, denoted as δ, which determines the point at which the loss function transitions from quadratic 

to linear. The choice of this parameter can have a significant impact on the performance of the model. 

Selecting an inappropriate value for δ can lead to suboptimal results. A second reason is the trade-off 

between accuracy and robustness, the Huber loss strikes a balance between the mean absolute error 

(MAE) and the mean squared error (MSE). While this trade-off can be beneficial in handling outliers, 

it can also result in a loss of accuracy when dealing with data points that are not outliers. The Huber 

loss may sacrifice some precision in order to improve robustness. In thesis achieving a higher accuracy 

is prioritized over a higher Robustness. 

 

The optimizer used for as mentioned before is Adam, the thought behind this choice isexplained by 

listing the relevant advantages below:  

1. Adaptive Learning Rate: Adam automatically adapts the learning rate for each parameter based 

on the historical gradients. It combines the benefits of both Adaptive Gradient (AdaGrad) and 

Root Mean Square Propagation (RMSprop) by using adaptive per-parameter learning rates. 

This adaptivity allows Adam to effectively handle different magnitudes of gradients and 

converge faster. 

2. Momentum Optimization: Adam incorporates the concept of momentum, which helps 

accelerate convergence in the optimization process. By utilizing an exponentially decaying 

moving average of past gradients, Adam accumulates momentum and dampens the oscillations 
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in the parameter updates. This property can improve training stability and enable the model to 

escape shallow local minima. 

3. Robustness to Hyperparameters: Adam is known for being less sensitive to hyperparameter 

tuning compared to other optimization algorithms. It often performs well with default 

hyperparameter values across a wide range of neural network architectures and tasks. While 

fine-tuning hyperparameters is still beneficial, Adam's robustness reduces the need for 

extensive manual tuning. 

It's important to note that there are other alternatives, for example RMSprop, however it seems to be 

more complex to since it requires careful tuning of the hyper parameters to achieve optimal 

performance. This is because RMSprop adapts the learning rate for each parameter by dividing the 

learning rate by a moving average of the root mean square (RMS) of the parameter gradients. The 

preference was giving to an optimizer that is easier to use and will generally perform better with average 

tuning results. From here onwards the explanation of the development is continued. 

 

Figure 90 Artificial Neural Network. 

The losses plot of artificial neural network can be seen in figure 89 in which it can be seen that as the 

total number of epochs grow, the loss and val_loss becomes smaller and smaller. 

 

Figure 91 Loss vs val_loss of artificial neural network. 
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In figure 90, the predictions on training and testing data for artificial neural network can be seen in 

which it can be seen that evaluations have printed to see how well it performs on the dataset. 

 

Figure 92 Predictions of Artificial neural network 
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5. Results 
In this section, the results of the implemented models in the methodology section would be discussed 

using performance metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and R2 Score. As the models were 

trained using the training data and tested on the test data, therefore, to see how well it performs, a graph 

of actual vs predicted values have been illustrated to see the values. The choice to use the above listed 

performance metrics, are shortly explained (MSE was already covered in chapter 4.7). 

MAE is very similar to the MSE, however MSE gives more weight to larger errors compared to MAE 

(Mean Absolute Error). Squaring the errors before averaging them magnifies the impact of outliers or 

extreme errors in the data. This characteristic makes MSE particularly useful in applications where it is 

crucial to prioritize and address significant deviations. The dataset does include a couple of outliers and 

considering the nature of CW it’s common feature in actual works and thus the database. So, magnifying 

the impact of outliers will be a useful feature.  

RSME has a similar feature compared to MSE which is that it gives more weight to large errors. Besides 

this is RMSE closely related to the standard deviation of the errors. By calculating the square root of 

the average squared errors, RMSE estimates the variability or dispersion of errors around the true 

values. This information is considered to be useful in understanding the consistency and reliability of 

the model's predictions. 

MAPE measures the percentual difference between predicted and actual values. It is calculated as the 

average of the absolute percentage errors for each data point. MAPE is specifically useful for assessing 

the relative error in the predictions. However, it can be problematic when the actual values are close to 

zero, as it may lead to division by zero errors or infinite values. In this case prediction values won’t be 

close to zero since the waste output of a project is in the tonnes. Assessing the relative error is considered 

to be useful information in this chapter, projects in the data set vary largely in size and so the CW 

outcome, this will generally be the case for contractors’ portfolios. 

R2 is probably the most commonly used performance metric in ML, in this research the most important 

reason to include it as one of the performance metrics is Intuitive interpretation. R2 has a straightforward 

interpretation, for example, an R2 value of 0.75 means that 75% of the variance in the target variable is 

accounted for by the predictors in the model. This interpretation provides a clear and meaningful 

understanding of the proportion of variability explained by the model, facilitating communication and 

decision-making. 

There are also alternative performance metrics that were considered but not chosen to be used during 

this thesis, each alternative is briefly explained. 

Mean Squared Logarithmic Error (MSLE): MSLE calculates the mean of the logarithmic squared 

differences between the logarithm of predicted and actual values. It is often used when the predicted 

values cover a large range, and it is preferred to penalize large errors more than smaller ones. MSLE 

can be helpful when working with data that has exponential growth patterns, such as financial data. In 

this research there is no logical reason to penalize large errors more than smaller errors since the waste 

output is generally relatively to the size of the project. 

Mean Absolute Scaled Error (MASE): MASE is a scaled version of MAE that compares the 

performance of your model against a baseline model, such as a simple average. It is advantageous when 

comparing the accuracy of different models on different datasets. MASE is particularly useful for time 

series forecasting, but it requires a reference model or baseline to calculate the scaling factor. This 

alternative is less relevant, there are different models, however all based on the same dataset. 
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Adjusted R-squared (R2-adj): R2-adj is an adjusted version of R-squared that takes into account the 

number of predictors in the model. Unlike R2, which tends to increase with the addition of more 

predictors, R2-adj penalizes the inclusion of irrelevant predictors. It provides a better assessment of 

model fit and helps prevent overfitting. However, R2-adj may still have limitations when comparing 

models with different sets of predictors. Reducing the chance of overfitting seems to be a good reason 

to choose this alternative, nevertheless, is it not desired to adjust the performance by the number of 

predictors used in the model. Getting the most out of the dataset is the main goal, if a larger variety of 

predictors was available in this research, then this would have definitely been an interesting alternative 

to include.  

It would be likely that other researchers would choose different performance measures with the same 

dataset as used in this thesis. However, it will always depend slightly on the preference of the researcher, 

depending on the experience and preference other choices could be justified as well. 

 

5.1. Support Vector Machines 
In figure 91, the evaluation of support vector regression can be seen where MAE, MSE, RMSE, and R2 

Score – performance metrics have been used to see how well it performs on the test data. Support Vector 

Regression had an MAE of 123763.98, MSE of 33948351880.49, RMSE of 184250.78, and R2 score 

of -0.01. In short, the R2 score already indicates an extremely bad performance, when looking at the 

MAE it also quickly becomes clear that no useful prediction is realized by this ML algorithm. As earlier 

mentioned, did an average project generate 240 ton of waste, with an MAE of 123 tons it puts in 

perspective how bad the model performs. 

 

Figure 93 Support Vector Regression Results 

In figure 92, the graph for actual values verses predicted values can be seen for Support Vector 

Regression. The x-axis shows the index for each tested project, so it's just a listing of the projects in the 

validation dataset. The y-axis is the amount of waste in kg that was generated for a project on the x-

axis. The rest line shows the actual results and the green line the predicted results. It can be seen that 

the predicted outcomes are almost a horizontal line and thus resulting in basically no more than a static 

average.  
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Figure 94 Actual vs Predicted: Support Vector Regression. 

In figure 93, the scatter plot for actual values verses predicted values can be seen for Support Vector 

Regression. The most likely reason why the SVM does not seem to work at all has to do with insufficient 

feature representation. SVMs perform best when there is a clear separation between classes in the 

feature space (the basic theory regarding the functioning of SVM's). If the features provided to the SVM 

do not adequately capture the underlying patterns or if important features are missing, the model's 

performance may suffer. It is crucial to ensure that the input features are informative and relevant for 

the task at hand. With the limited number of predictors (features) and the general dynamic of the dataset 

(no clear separation between classes, looking back at figure 53) it is of no surprise that it doesn't perform 

well. However, the model was included since beforehand it was expected to perform not as bad as it did 

in the end.  

 

Figure 95 Actual vs Predicted: Support Vector Regression. 

5.2. Ridge Regression 
In figure 94, the evaluation of ridge regression can be seen where MAE, MSE, RMSE, and R2 Score – 

performance metrics have been used to see how well it performs on the test data. Ridge Regression had 

an MAE of 67195.64, MSE of 8524793857.22, RMSE of 92329.810, and R2 score of 0.74. With the 

MAE being reduced by 50% compared to the SVM model it does indicate that this model is performing 

signigicantally better. The R2 value of 0.74 shows that approximately 74% of the variance in the 

dependent variable can be explained by the independent variables in the model. It can be said that this 



   

 

  105 

 

 

indicates a relatively strong relationship between the predictors and the dependent variable, however, 

the remaining 26% of the variance in the dependent variable is unexplained by the predictors included 

in the model. This unexplained variance may be attributed to factors that are not captured by the model, 

random variation, or measurement errors. Another interesting observation is the very small difference 

between the R2 score of the training set (0.71) and the one achieved in the testing set, this generally 

indicates a reasonably good level of generalization by the model. 

 

Figure 96 Ridge Regression: Results. 

In figure 95, the graph for actual values verses predicted values can be seen for Ridge Regression. 

 

Figure 97 Actual vs Predicted Graph: Ridge Regression. 

In fig. 96, the scatter plot for actual values verses predicted values can be seen for Ridge Regression. 
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Figure 98 Actual vs Predicted Values: Ridge Regression. 

5.3. Multivariate Linear Regression 
In figure 97, the evaluation of Linear Regression can be seen where MAE, MSE, RMSE, and R2 Score 

– performance metrics have been used to see how well it performs on the test data. Linear Regression 

had an MAE of 114488.059, MSE of 20628833598.72, RMSE of 143627.412, and R2 score of 0.38. 

The MAE is much higher again which is not promising, the R2 of 0.38 is in line with the MAE showing 

extremely weak results. What is interesting to see is that the model predicted negative CW outputs for 

some projects, this however is impossible in practice. This suggests that the model is not capturing the 

underlying relationships correctly or is violating certain assumptions. This seems to have to major 

reasons, first of all violation of linearity assumption. MLR assumes a linear relationship between the 

independent variables and the dependent variable. In this case, yes, the data shows more or less a linear 

relation between number of dwellings and total generated CW. However, there is more complexity to 

it which is not captured by the model which in this case led to erroneous predictions, including negative 

values. Secondly are the outliers that most likely significantly impacted the MLR model's predictions. 

The extreme data points in the dataset, have likely disproportionately affected the estimated coefficients 

and lead to erroneous predictions. These outliers are part of the dataset and are included for earlier 

mentioned reasons. So, experiencing the significant influence it has on the performance of MLR is 

important information. 

 

Figure 99 Results for Linear Regression. 

In figure 98, the graph for actual values verses predicted values can be seen for Linear Regression. 
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Figure 100 Actual vs Predicted Graph: Linear Regression.  

In figure 99, the scatter plot for actual values verses predicted values can be seen for Linear Regression 

below. 

 

Figure 101 Actual vs Predicted Values: Linear Regression. 

 

5.4. Random Forest Regression 
In figure 100, the evaluation of Random Forest Regression can be seen where MAE, MSE, RMSE, and 

R2 Score – performance metrics have been used to see how well it performs on the test data. Random 

Forest Regression had an MAE of 83629.71, MSE of 17430596946.90, RMSE of 132024.98, and R2 

score of 0.47. This model shows a slight improvement from the previous one, however with an R2 value 

of 0.47 it's not indicating that the results will be of better use than the ridge regression. Interestingly 

when looking at figure 101 it seems to consequently underpredict the CW for larger CW output projects. 

This would make this model a conservative model, which could be useful in cases where the contractor 

would want to know the bare minimum of CW that is expected to be generated during the project. 
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Nevertheless, are there also signs of overfitting in this model, considering the large difference between 

the R2 value achieved for the training set and the one achieved from the test evaluation set, being 50% 

lower.  

 

Figure 102 Results for Random Forest. 

In figure 101, the graph for actual values verses predicted values can be seen for Random Forest 

Regression below. 

 

Figure 103 Actual vs Predicted: Random Forest.  

In figure 102, the scatter plot for actual values verses predicted values can be seen for Linear Regression. 
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Figure 104 Actual vs Predicted Values: Random Forest. 

5.5. Extra Tree Regression 
In figure 103, the evaluation of Extra Tree Regression can be seen where MAE, MSE, RMSE, and R2 

Score – performance metrics have been used to see how well it performs on the test data. Extra Tree 

Regression had an MAE of 74457, MSE of 11869608138.39, RMSE of 108947.73, and R2 score of 

0.64. This model has so far the second highest R2 value, unfortunately the R2 value in the training 

dataset was much higher which again shows signs of overfitting. Figure 104 it shows in some ways a 

similar picture as the previous model, where a lot of predicted results tend to be lower than the actual 

result. For this model the MAE losses relatively little, by going from +/- 70k to +/- 74K. Where other 

models showed increases of 50%, this model is limited to +/- 5%. However, judging the absolute value 

it still indicates a poor performance. 

 

Figure 105 Results for Extra Tree Regression. 

In figure 104, the graph for actual values verses predicted values can be seen for Extra Tree 

Regression. 
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Figure 106 Actual vs Predicted Graph: Extra Tree Regression.  

In figure 105, the scatter plot for actual values verses predicted values can be seen for Extra Tree 

Regression. 

 

Figure 107 Actual vs Predicted Values: Extra Tree Regression. 

5.6. Artificial Neural Network 
In figure 106, the evaluation of Artificial Neural Network can be seen where MAE, MSE, RMSE, and 

R2 Score – performance metrics have been used to see how well it performs on the test data. Artificial 

Neural Network had an MAE of 72669.32, MSE of 10886093755.98, RMSE of 104336.44, and R2 

score of 0.67. This last trained model ends up having the second highest R2 value, another good 

indicator is the relatively small difference between the train dataset and the test dataset, coming from 

0.76.  
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Figure 108 Artificial Neural Network.  

In figure 107, the graph for actual values verses predicted values can be seen for Artificial neural 

network. 

 

Figure 109 Actual vs Predicted Graph: Artificial neural network. 

In figure 108, the scatter plot for actual values verses predicted values can be seen for Artificial Neural 

Network. 
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Figure 110 Actual vs predicted values: Artificial neural network 

Figure 109 displays the results of all the implemented models using performance metrics: MAE, MSE, 

RMSE, Mape, and R2 Score. It can be seen that Ridge Regression has the highest R2 score of 0.74 with 

MAE of 67195.64, MSE of 8524793857.22, and RMSE of 92329.810. The only performance metric 

that is not in favour of ridge regression is MAPE, here random forest regression scores the best result 

with the lower MAPE value of 0.77.  

 

Figure 111 All Model Results 

In figure 110, the graph also illustrates the R2 performance of all the implemented models. It can be 

seen that Ridge Regression has the highest bar of orange colour. 

 

Figure 112 Bar Plot of R2 Score of All Models.  

In figure 111, the actual vs predicted values for all the models including Support vector regression, 

Ridge regression, Linear regression, Random Forest regression, Extra tree regression, and Artificial 

Neural network can be seen where the predicted values compared to actual values can be observed. 
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Figure 113 Actual vs Predicted Values for All Models. 

In figure 112, the graph for actual values versus predicted values can be seen for all the implemented 

models. 

 

Figure 114 Actual vs Predicted Graph: All Models. 

5.7. Conclusion  
First, the dataset was explored by performing Exploratory Data Analysis (EDA), this was done for a 

number of reasons, finding missing values or outliers, spotting relationships, finding correlations 

between features (positive/negative), get insights, find patterns and trends. Second, a data pre-

processing was performed on the dataset with the help of various libraries (i.e., Sklearn, Standard 

Scaler) and techniques. This helped to get the dataset ready for the implementation of the regression 

models. In data pre-processing, get_dummies() function of pandas was used to encode the categorical 

features present in the dataset, Standard Scaler library was used to scale the numerical features and the 
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dataset was split with 80/20 rule in which 20% of the dataset was used for testing while 80% of the 

dataset was used for training purposes. Thirdly, Forward Feature Selection (FFS) was implemented 

using mlxtend.feature_selection library from which SequentialFeatureSelector was used to implement 

the FFS technique. This technique helps to find the best features which improve the performance of the 

given model. So, for each implemented model: Support vector regression, Ridge regression, Linear 

regression, Random Forest regression, Extra tree regression, and Artificial Neural network, FFS 

technique was employed to bring a higher accuracy to the models. Finally, models were implemented 

and evaluated using performance metrics in which it was found that Ridge Regression had the highest 

R2 score of 0.74 with MAE of 67195.64, MSE of 8524793857.22, and RMSE of 92329.810. Therefore, 

Ridge Regression was chosen as the best model in this study and the project reached its conclusion by 

promising results. In future, the study could be improved by testing and implementing AutoML 

(Automated Machine Learning) technique to see how it performs on the dataset and will it bring more 

performance in the predictions. Another conclusion is that the MSE RMSE provided little to no relevant 

information during the performance analysis, looking back these could be left out and/or replaced by 

potentially more useful performance indicators. 

Objectively looking at the performance metric one could argue that all models have low accuracy and 

even the “best” model seems to be the best of the worst. But what is the point of taking the performance 

metric out of context and comparing it to predefined ranges of what is generally believed to be a high 

accuracy and low accuracy in the ML industry. Of course, an extremely low performance metric will 

indicate that the developed ML-prediction model will have little to no use since its nowhere near the 

actual results, in this thesis SVM can be categorised as such model. For all other higher values regarding 

the performance metric (no hard boarder), it all depends on what is taken as reference, in this thesis the 

results found in the literature review seem to be a logical reference. Each of the studied ML-algorithms 

had prediction accuracies up to 0.86-0.99, with lower boundaries ranging between 0.22-0.75. This lower 

boundary is less relevant since there is more focus on judging the best performing ML-algorithm rather 

than judging the worst performing model(s). Thus, comparing the higher bound with the best 

performing model in thesis it could be concluded that the prediction accuracy is relatively low and thus 

not performing well, not even mentioning all the others that perform even worse.  

However, the literature review also stated that predicting CW can be done on various “levels/scales” 

from the waste generated by constructing a single house to the construction waste generated as a result 

of (residential) construction activities of whole regions or countries. Including all these different levels 

of CW prediction in the literature review will result in a complete overview of the existing ML-based 

prediction activities in the field of construction waste. All the findings and conclusions help to make 

choices during the thesis which will benefit the overall process and the final outcome of this thesis. 

These different “levels” come with different predictive dynamics as mentioned in the literature review, 

so the best way to compare and judge the prediction accuracy achieved by the best model trained in this 

thesis is by prediction models on the same “level”. The studies reviewed in the literature review that 

also used data at project level in order to make predictions at project level are listed in table 16. It can 

again be concluded that by far the minority of performed studies use project level, since only 3 examples 

were found. Considering the size of the dataset the study performed by 49 seems to be the most 

comparable study of the three, here a maximum r2 value of 0.55 was achieved. This is significantly 

worse than what was achieved by the trained model in this study which argues that the performance is 

relatively good when compared with the existing literature. 

Method  Model  Waste 

Type  
Region  Region 

Level  
No. 

of 

data  

Level of data 

collection  
Model 

Performance  
Refer

ence  
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Linear 

Regressi

on  

MLR  CW  New 

Zealand  
Country  159  Project  R2 = 0.47 - 

0.55  
[49]  

  MLR  CW  Brazil  South-

Brazil  
18  Project  R2 = 0.69  [51]  

  MNLR  CW  Brazil  Porto 

Alegre  
18  Project  R2 = 0.81 -   

0.91  
[55] 

 

Table 16 Most relevant studies found in the literature review. 
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6. Potential data Collection using Revit Plugin 
 

The previous chapter answered the main question of this thesis, one of the conclusions was that there is 

a wide variety of ML algorithms to choose from and also many variables to tune this to a given dataset. 

However, it also emphasizes that at some point the model's performance is limited because of the 

amount and/or quality of data that is used to develop the prediction model. Therefore, it is most likely 

that in order to achieve a significant improvement for the prediction models developed in this thesis is 

by providing more complex and information carrying data to the prediction algorithm. The input 

variables used in this thesis were limited because the current partners couldn’t provide more 

project/building variables easily. Nevertheless, does the current BIM environment hold an enormous 

amount of data that could be useful input for a waste prediction tool, even though the level of detail in 

a BIM environment can vary depending on the project or contractor responsible for it. However, it 

cannot be argued that even the simplest models hold enough relevant data that should give more insight 

in dynamic processes when used more actively in the construction industry, for example the prediction 

of construction waste. A side note to this enormous database is that the size will grow organically during 

the engineering phase. This means that some data is only available from a certain phase/moment in 

time. Depending on the purpose of the prediction outcome, it can be determined what data is available 

at that moment in time and thus what can be used in order to calculate the prediction. What was missing 

for the current partners was a way to export any data from the BIM environment easily and store it in a 

database so that it can be used for multiple future tasks. With this in mind it was considered valuable to 

further explore this real-world limitation in this thesis.  

The initial goal of this thesis was to use BIM data and machine learning algorithms to try and develop 

a prediction model for construction waste. However, as described during the report it was found out 

that extracting BIM data from the digital environment of the partnering company was not feasible and 

thus input data was limited to non-BIM related data. The development of the prediction model was still 

executed however the expected complexity and insights into the dynamics of construction waste were 

limited by the general input variables. This did raise the question if it would be possible to develop 

some low-key Revit plugin to extract some of the data available in the BIM environment. Since this 

objective doesn’t directly relate to any of the research question and was also not required for this 

Reserarch to be successful it was still decided to explore the potential. Even though the research values 

of such plugin are limited, it’s a quite useful information to be included in this thesis. Since the main 

question of this thesis is already answered, it was chosen to limit the resources required to propose some 

sort of concept that could improve data extraction from the BIM environment. Revit forms the basis of 

most construction project in the Netherlands, this makes it the most relevant software to extract 

information from. Revit allows for the implementation of custom-made plugins, the approach is chosen 

to try and develop a plugin that can extract data from the model automatically. The actual development 

process is visualized in appendix VII, the result is demonstrated in figures 113 to 115. Figure x simply 

shows the example residential construction project used to test the plugin. It’s a residential project that 

consists of 3 different types of homes, in total there are 11 buildings in this project. Figure r shows the 

location of the installed plugin in the “Add-Ins” tab, it's called “Construction Characteristics Collector”. 

Activating it done by clicking the icon, no further input is needed (for more complex tools it would be 

beneficial to choose what data needs to be extracted). Figure y shows the data that is extracted from the 

model, in this case the data consists of the following 8 variables: Number of rooms, number of floors, 

% of prefabricated objects and the surface area (m2) of the bathroom, kitchen, living room, Roofing 

and windows (glass). This data is collected for each house, depending on which scale the waste data is 

collected it can be chosen to keep the variable scale in the current state or to add it up for the whole 

project to link it with the total waste output for the construction project.  
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Even though this plugin has limited variables that are currently collected it does demonstrate the 

potential of collecting data from the Revit environment. It has to be mentioned that this plugin does not 

use some sort of AI to automatically detect rooms or surface etc. A prerequisite for this plugin to work 

is that each building or element is modelled with an extra variable which the plugin uses to build the 

dataset. However, the current Revit environment already exists of a wide variety of elements that have 

attached variables. So, if the existing variables would be explored and mapped well it could show which 

data is easily extractable without changing any development process. Only variables that are not 

attached objects at all or variables that don’t follow a uniform format will require a change in the 

development process.  

The Revit project used to develop the plugin is a fictional residential project, there is no waste data 

linked to this project, so the extracted data has no further use in relation to the developed waste 

prediction model. However, it demonstrates the automated extraction of available data stored in the 

project. The variables collected are much more building-technical than those used in this thesis, which 

according to the literature review should unveil more insight into the generation of construction waste 

and thus improve the prediction accuracy. The current variables are somewhat generic and less 

dependent on detailed finalization of the construction project. It's mostly based on the sizes and ratios 

of the spaces that are created rather than specific materials type and/or amount used. The benefit of 

these the currently chosen variables are that it will be known from an early design stage, thus making it 

possible to incorporate the predicted result in the following choice making. In short does this show that 

it current construction companies should be able to come up with tools to extract and structure more 

project related data that can serve further machine learning developments.  

 

 

Figure 115 Revit environment with the example residential project. 
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Figure 116 Revit toolbar with the self-developed plugin. 

 

 

Figure 117 Print screen in the Revit environment showing the result of the data extraction. 

 

7. Conclusion 
In this last chapter, the final conclusion of this thesis is formulated, this is divided into four sections. 

First is the core conclusion of the thesis itself, this is done by briefly answering the research questions 

with the knowledge of findings resulting from the thesis. After this, the potential improvements are 

suggested and further explained. The findings in the thesis can provide new ground for future studies, 

what topics could be and what parts of this thesis will be most significant for those studies are covered 

in the third section. Finally, a recommendation is provided, this recommendation is aimed at Heijmans 

and the construction industry in general. The recommendation is more or less also relevant for the Built 

and Environment department at the Tu/e since this is the place that provides the construction industry 

with young professionals that could contribute to a changing future. 

7.1. Research questions 
The main research question has evolved during the development of the thesis and was eventually 

formulated to: 

·          How can the construction industry effectively implement ML algorithms to improve 

construction waste prediction? 
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The answer to this question is fairly simple, company broad data management and data structuring is 

the key to a successful implementation of ML algorithms for market parties in the construction industry. 

Digitisation within the construction industry is far enough developed that large amounts of valuable 

data are available to develop and implement ML algorithms. In this thesis, much of the data was 

collected manually which makes it inefficient and unscalable for large companies. Nevertheless, all the 

data used was real-world data that was already available for multiple years and was not just generated 

or registered for the purpose of this thesis. However, the data must be highly accessible and extractable 

to make it usable for ML algorithms. This is because these models are dynamic, meaning that it should 

be linked to the system in order to provide relevant and accurate output, which is needed when 

considering data-driven decision-making. 

Other sub-questions that were set for this thesis were the following. 

Sub-questions:  

·          What causes construction waste generation? 

The generation of construction waste is diverse, ranging from packaging to weather and construction 

errors. With the continuing improvement of digital engineering and designing the contribution of design 

errors that result in construction waste will become less significant. However, mistakes can never be 

fully ruled out. The practical answer to this question can be read in chapter 2.3, however, the implication 

of this answer is more important in the conclusion. New insights regarding the construction waste 

dataset (used in this thesis) were not achieved since the input variables were too general to be linked 

with any causes found in the literature.  

· What project variables are most promising for predicting construction waste?  

Unfortunately, the number and variety of input variables that were available in this thesis were very 

limited. However, it can be concluded that the contract sum of the project had the highest correlation 

with the total generated waste. After this, the number of dwellings was most significant this is partly 

due to the high correlation between contract sum and number of dwellings. Even though this conclusion 

is fairly straightforward ‘more dwellings equals more waste’, it does contain some extra information 

that was also found when looking into the different concepts. This is because more expensive dwellings 

result in relatively more waste, this explains why project sum has a higher correlation with generated 

waste than then number of dwellings. As mentioned in Chapter 3.4. residential buildings that allow for 

more design freedom/options are less standardized and eventually result in a lower separation rate 

(which means more waste in most cases). 

· How to extract and structure the available data in order to properly develop and build the ML 

prediction model?  

Extracting data is eventually a more IT-related question, logically if it's sorted in a centralized database 

so that it can be accessed from any digital location would make it very practical. It was found that the 

structure of the database and thus the dataset used for any application is a much more relevant question. 

When working with prediction models the most important structure requirement is the clear separation 

between in- and output variables on an event-based registration. Labelling each event is most important 

to allow prediction on different levels. For example, this thesis covers project-based predictions, this 

meant that all the individual waste collection had to be added up to a specific project to create the 

project-level scale of data. This took a significant amount of time and effort, one could also imagine 

waste being collected next to each building on a construction project (who knows what will happen in 

the future), in that case, the level scales down from project to building. In order to make a ML model 

in this scenario. It would mean that all the events for one building need to be added up, detailed labelling 

would allow for quick data level selection. Not specifically regarding the structure but still included in 

this section of the conclusion is data quality, the dataset in this thesis had overall good quality, however 
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when processing millions of data cells a 1% data error can take a lot of effort to correct if the processing 

system doesn’t filter these events automatically. This is another important conclusion in the section 

‘data’. 

· Which (hybrid) ML-model(s)prove to be most promising for construction waste predictions? 

Ridge Regression was the most accurate ML prediction model for the dataset used in this thesis. Current 

prediction accuracy of course doesn’t mean it's most promising. Besides the result of the model 

developed in this thesis, there are many covered in the literature review. There it was found that ANN 

proved to be the most consistent and best-performing ML prediction method. Considering the theory 

about ML algorithms it's unrealistic to point out a single ML algorithm that would be most promising 

for the construction industry. Nevertheless, is the current study a realistic representation of the available 

data at contractors combined with the same interest in predicting construction waste it can be concluded 

that Ridge Regression is one of the most promising ML models. However, ANN has to be added to this 

list as well, in this thesis it was ranked second, and the literature review ranked it first. The reason why 

ANN was outperformed by Ridge Regression is most likely due to the relatively small dataset. If data 

structures are more automated and grow significantly in the construction industry, then it's expected 

that ANN will outperform Ridge Regression. 

7.2. Potential improvements 
The most significant improvement considering the goal of this thesis is the complexity of the input 

variables. In this thesis, it was an enormous task to generate the construction dataset as it is currently. 

The fairly detailed waste output data (data is collected at the waste material group level, but later 

summed up to generate a total waste variable) was in some sense redundant because the input variables 

were lacking material-related dynamics making it impossible to link input variables with specific waste 

material groups generated. Even though this dataset itself is considered to be a huge achievement, it's 

not fully utilized, due to the limited input variables. The output data (waste) is data received from a 

third party (waste processing company), so the level of detail cannot be influenced by the contractor. 

However, the input variables are largely owned by the contractor. A handful of extra input variables 

could significantly improve the ML prediction performance, besides higher accuracy will it also be able 

to generate more knowledge about the dynamics how construction waste is exactly generated. 

7.3. Future studies 
The future studies section consists of two parts first a future study in line with this thesis and second a 

different approach to construction waste. A possible future study that could use current findings and 

complement this thesis is to do a similar research approach, but then on a much more detailed scale. 

Generating a more detailed dataset would take much more resources so to limit this the study could be 

performed on a much smaller number of projects. However, if knowledge at a smaller scale could be 

gained (e.g. more detailed generation of input and output variables, combined with some practical 

observed dynamics at the construction sites) then this could act as a sample for the dynamics in this 

research (large scale). By providing this complementing data it would be possible to redo the current 

thesis and add this newly gained information which would be representative of this dataset (if Heijmans 

would provide information again). Then it would be interesting to see possible improvements.  

A different approach to construction waste would be interesting for a future study. Currently, the waste 

is measured as a given variable, this is only measured after it has been generated. With prediction 

models, it's possible to get some indication about the upcoming amount of waste. However, waste is 

something physical and a new construction project starts without any form of waste, this means that the 

waste is solely generated from the physical goods present at the construction site. If the contractor is 

able to fully model the desired end product (residential building for example) and is also able to exactly 

determine what is being transported to the construction site, then it should be able to calculate the waste 

by calculating the delta between those two amounts. This will need extremely high data precision and 
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quality (which is definitely not available yet at market parties), so the study should be more aimed at a 

theoretical approach rather than a practical one. 

7.4. Discussion 
The conclusion of Chapter 5 was that the trained prediction model in this thesis can be considered quite 

well, since it scores signigicantally higher than the most comparable study found in the existing 

literature. Regardless of the interpretation of the chosen prediction performance indicator and its value, 

it should be mentioned that there are multiple reasons why synthetic data was not used during this thesis. 

First of all, a requirement to create synthetic data is an existing dataset that is similar to the desired 

synthetic data. It serves as a reference or basis for modelling the synthetic data. In order to ensure proper 

generation of synthetic data the real data must be representative and diverse enough to capture the 

underlying patterns and distributions. Using the created dataset as input to create synthetic data it would 

only result in a larger dataset (e.g. more construction projects). However, previous studies (covered in 

the literature review) have shown that there is not specifically a need for larger datasets, in case the 

dataset ended up being significantly smaller than the reviewed examples, then it would be more logical 

to create synthetic data. The main concern with the dataset was the not the size but the lack of 

building/material related indicators. Since this data was not easily accessible at the partnering contractor 

(Heijmans). It was mentioned that collecting this type of data would be extremely time consuming, this 

would then suggest executing the collection for a selected sample size of the dataset and use that data 

to generate synthetic data which will provide data for all the projected not included in the sample size.  

However, in order to do so the sample size of projects for which data is still manually collected will 

probably be at least 30+ projects in order to guarantee any representativeness. Besides the fact that it 

would still take too many resources considering the timespan of this thesis, it will be hard to justify the 

correctness of the synthetically generated data. Since the material/building related variables that would 

be generated are not specifically relatable by the existing variables. For example, the percentage of 

wood used in a residential project is not related to any of the existing project variables, so this way the 

process of synthetically generating values for this added variable for other projects would make no 

logical sense, and thus damaging the credibility of this thesis.  

The last point of the discussion section is a last review on the predictive nature of CWG, as mentioned 

before does the level influence the predictability of CWG, one of the many possible examples of this is 

construction errors. Where one residential construction project might have no errors another one may 

have multiple errors, there will be technical features known beforehand that could indicate a higher 

error chance, however when prediction the CW for one project or building (even smaller) predicting 

exactly when errors occur and what impact it has on the CW is probably close to impossible. For a lot 

of the causes that are responsible for CWG the prediction maybe closer to a guestimate. Looking back 

at this thesis it can be said that the nature of CWG is and probably will always stay more ‘unpredictable’ 

than most other departments in the build and environment industry.  

7.5. Recommendations 
The recommendation consists of two parts, first is a recommendation meant for the construction 

industry in general. Even though Heijmans provided me with the data the recommendation is not 

specifically aimed at them, this is because the thesis was executed fully independently which means 

that no company-specific processes or methodologies were analysed (other than the plain data). The 

recommendation is as follows: 

Set up a small data team within the company, not with the intention to directly improve current 

processes in the core business, but to investigate how to store all the processed data and make it 

easily accessible. This is the first and most crucial step towards data-driven decision-making. 

Contractors hold the most valuable data source in the whole construction industry, so structuring this 
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in a logical way is already a huge task. However, the first market party that is able to do this will be 

far ahead of its competitors, since the applicability of the data will be limitless. 

The second recommendation is more aimed at the BE department at the Tu/e but also at universities in 

general and is as follows: 

With data being increasingly important in any sector and thus also the construction sector it's important 

to also increase the significance of data within study programmes. There are many dedicated data-

related studies that are getting more and more complex, which results in a bigger gap between 

specialists and non-specialists in the field of data. In many cases the current technology is easily able 

to improve commercial processes/systems or solve current challenges, however, the translation of in-

depth data technology to in this case construction challenges can be difficult with limited professionals 

that perform the double role and act as a bridge. During this thesis, I gained a lot of new skills however 

it would have been even better if more courses would cover the technical aspects of data.   
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Appendices 
 

Appendix I  Eural codes (waste) materials  

Chapter Title 

17 01 CONCRETE, BRICKS, TILES AND CERAMICS 

- 17 01 01, concrete  

- 17 01 02, bricks 

- 17 01 03, tiles and ceramics 

- 17 01 06, mixtures of, or separate fractions of concrete, bricks, tiles and 

ceramics containing dangerous substances 

- 17 01 07, mixtures of concrete, bricks, tiles and ceramics other than those 

mentioned in 17 01 06 

 

17 02 WOOD, GLASS AND PLASTICS 

- 17 02 01, wood 

- 17 02 02, glass 

- 17 02 03, plastic 

- 17 02 04, glass, plastic and wood containing or contaminated with 

dangerous substances 

17 03 BITUMINOUS MIXTURES, COAL TAR AND TARRED PRODUCTS 

- 17 03 01, bituminous mixtures containing coal tar 

- 17 03 02, bituminous mixtures other than those mentioned in 17 03 01 

- 17 03 03, coal tar and tarred products 

 

17 04 METALS (INCLUDING THEIR ALLOYS) 

- 17 04 01, copper, bronze, brass 

- 17 04 02, aluminium 

- 17 04 03, lead 

- 17 04 04, zinc 

- 17 04 05, iron and steel 

- 17 04 06, tin 

- 17 04 07, mixed metals 

- 17 04 09, metal waste contaminated with dangerous substances 

- 17 04 10, cables containing oil, coal tar and other dangerous substances 

- 17 04 11, cables other than those mentioned in 17 04 10 

 

17 06 INSULATION MATERIALS AND ASBESTOS-CONTAINING CONSTRUCTION MATERIALS 

- 17 06 01, insulation materials containing asbestos 

- 17 06 03, other insulation materials consisting of or containing dangerous 

substances 

- 17 06 04, insulation materials other than those mentioned in 17 06 01 and 

17 06 02 

- 17 06 05, construction materials containing asbestos 

 

17 08 GYPSUM-BASED CONSTRCTION MATERIALS 
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- 17 08 01, gypsum-based construction materials contaminated with 

dangerous substances 

- 17 08 02, gypsum-based construction materials other than those mentioned 

in 17 08 01 

 

17 09 OTHER CONSTRUCTION AND DEMOLITION WASTES 

- 17 09 01, construction and demolition wastes containing mercury 

- 17 09 02, construction and demolition wastes containing PCB (for example 

PCB-containing sealants, PCB-containing resin-based floorings, PCB-

containing sealed glazing units, PCB-containing capacitors) 

- 17 09 03, other construction and demolition wastes (including mixed 

wastes) containing dangerous substances 

- 17 09 04, mixed construction and demolition wastes other than those 

mentioned in 17 09 01, 17 09 02 and 17 09 03 
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Appendix II Renewi waste dataset 
 

See the attached file to this thesis report called “Appendix II Renewi waste dataset.xlsx”. 

Appendix III Pre_zero waste dataset 
 

See the attached file to this thesis report called “Appendix III Pre_zero waste dataset.xlsx”. 

Appendix IV Heijmans projecten 
 

See the attached file to this thesis report called “Appendix IV Heijmans projecten.xlsx”.  
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Appendix V Python codes for data formatting 

Add description to projects 

 

import pandas as pd 
from datetime import date 
 
dfoms = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 2022\data\projecten WB tbv 

afvalonderzoek.xlsx') 
 
dfins = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans_Projects_Sorted_extended_2.1.xlsx') 
 
projectlist = dfoms['Project'].to_list() 
omslist = dfoms['Omschrijving'].to_list() 
 
dictoms = {projectlist[i]: omslist[i] for i in range(len(projectlist))} 
 
dfins['description'] = dfins['Project'].map(dictoms) 
 
dfins.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans_Projects_Sorted_extended_2.2.xlsx') 

 

 

Add oms to Prezero 

 

import pandas as pd 
from datetime import date 
 

 
pd.set_option('display.max_rows', 20) 
pd.set_option('display.max_columns', 500) 
pd.set_option('display.width', 1000) 
 
df = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw_trim.xlsx') 
 
df = df.drop_duplicates('description') 
 
list_dis = df['description'].to_list() 
list_date = df['Service datum (Month)'].to_list() 
 

 

 
print(len(list_dis)) 
print(list_dis) 
listCity = [] 
 
df2 = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\\Heijmans_Projects_Sorted_extended_2.2.xlsx') 
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def lastWord(string): 
    newstring = "" 
    length = len(string) 
    for i in range(length-1,0,-1): 
        if(string[i] == " "): 
            return newstring[::-1] 
        else: 
            newstring = newstring + string[i] 
for i in list_dis: 
    string = i 
    listCity.append(lastWord(string)) 
 
print(listCity) 
 
newdf = pd.DataFrame() 
list_dis = list(list_dis) 
newdf['City'] = listCity 
newdf['Description'] = list_dis 
newdf['Date'] = list_date 
 
print(newdf) 
newdf.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_locatie.xlsx') 
 
df2 = df2[df2['Waste event count'].isnull()] 

 
newdf2 = pd.DataFrame() 
newdf2['Projectcode'] = df2['Project'] 
newdf2['Description'] = df2['description'] 
newdf2['start'] = df2['Start bouw'] 
newdf2['end'] = df2['Maand oplevering'] 
 
print(newdf2) 
newdf2.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans_project_omschrijving.xlsx') 

 

Count types of waste events 

 

import pandas as pd 
from datetime import date 
 
df_Pre = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw_trim_added.xlsx') 
 
afvalgroep_P = df_Pre['Afvalgroep'].to_list() 
unique_P = set(afvalgroep_P) 
dictP = {} 
 
for i in unique_P: 
 
    countP = afvalgroep_P.count(i) 
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    dictP[i] = countP 
print(dictP) 
#______________________________________________________________________ 
 
df_RNW = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Base_Renewi_Woningbouw_trim.xlsx') 
 

 
afvalgroep_R = df_RNW['Afvalgroep'].to_list() 
unique_R = set(afvalgroep_R) 
dictR = {} 
 
for i in unique_R: 
    countR = afvalgroep_R.count(i) 
    dictR[i] = countR 
print(dictR) 
 
dfnewP = pd.DataFrame.from_dict(dictP, orient='index') 
dfnewR = pd.DataFrame.from_dict(dictR, orient='index') 
print(dfnewP) 
print(dfnewR) 
dfnewP.to_excel("avfalgroepen_distributie_Pre.xlsx") 
dfnewR.to_excel("avfalgroepen_distributie_Rnw.xlsx") 

 

 

Counting events prezero projects 

 

import pandas as pd 
from datetime import date 
 
pd.set_option('display.max_rows', 20) 
pd.set_option('display.max_columns', 500) 
pd.set_option('display.width', 1000) 
 
df = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_locatie.xlsx') 
 
list_oms = df['Description'].to_list() 
count_list = [] 
first_list = [] 
last_list =  [] 
 
df_count = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw_trim.xlsx') 
 
for i in list_oms: 
    selected_project = df_count.loc[df_count['description'] == i] 
    count = len(selected_project.index) 
 
    count_list.append(count) 
    first_event = selected_project['Service datum (Month)'].iloc[[0]] 
    last_event = selected_project['Service datum (Month)'].iloc[[-1]] 
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    first_list.append(first_event.to_string(index=False)) 
    last_list.append(last_event.to_string(index=False)) 
 
df['Event Count'] = count_list 
df['First date'] = first_list 
df['Last date'] = last_list 
 
print(df) 
 
df.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_locatie_count.xlsx') 
 

 

Data sorting Heijmans projects 

 

import pandas as pd 
from datetime import date 

 
pd.set_option('display.max_rows', 20) 
pd.set_option('display.max_columns', 500) 
pd.set_option('display.width', 1000) 
 
df = pd.read_excel('projecten WB tbv afvalonderzoek.xlsx') 
 
average_dwelling_price = [] 
 
df.drop(['Profit center', 'Profitcenter naam', 'Orderintake' , 'WBS-element' ,'Kans%' 

,'Activiteit nr' ,'Projectsoort', 'Statuslijst (verkort)'], axis=1, inplace=True) 
 
df2 = df.sort_values('Aantal Woningen', ).reset_index(drop=True) 
#print(df) 
aanneemsom = df2['aanneemsom'].to_list() 
Aantal_woningen = df2['Aantal Woningen'].to_list() 
 
print(aanneemsom) 
print(Aantal_woningen) 
 
for i,j in zip(aanneemsom, Aantal_woningen): 
    if j >= 1 and i >= 1: 
        X = i/j 
 
    else: 
        X = 0 
    average_dwelling_price.append(X) 
 
list_oplevering = df2['Maand oplevering'].astype(str) 
list_Start_Bouw = df2['Start bouw'].astype(str) 
adj_oplevering = [] 
Con_duration = [] 
 
for i in list_oplevering: 
    oplevering = i[:4] + '-' + i[4:] + '-01' 
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    adj_oplevering.append(oplevering) 
 
for i,j in zip(adj_oplevering, list_Start_Bouw): 
    a = int(i[:4]) 
    b = int(i[5:7]) 
    c = int(i[8:]) 
    d = int(j[:4]) 
    e = int(j[5:7]) 
    f = int(j[8:]) 
 
    d0 = date(a,b,c) 
    d1 = date(d,e,f) 
 
    delta = (d0 - d1).days 
    print(delta) 
    Con_duration.append(delta) 
 
df2['Maand oplevering'] = adj_oplevering 
df2['Average Dwelling Price'] = average_dwelling_price 
df2['Construction Time (days)'] = Con_duration 
 
print(df2) 
 
df2.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans_Projects_Sorted_2.0.xlsx') 
 

 

Empty row deleting 

 

import pandas as pd 
from datetime import date 
 
df = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans_Project_Data_finished.xlsx') 
 
print(df) 
 
df = df[df.Activiteit != 'RENOVATIE'] 
 
print(df) 
 
df.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans_Project_Data_finished_v1.0.xlsx') 

 

 

Filter cities Heijmans projects 

 

import pandas as pd 
from datetime import date 
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import os.path 
 
pd.set_option('display.max_rows', 20) 
pd.set_option('display.max_columns', 500) 
pd.set_option('display.width', 1000) 
 
df = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans_project_omschrijving.xlsx') 
 
df2 = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_locatie_count.xlsx') 
 
list_cities_pre_zero = df2['City'].to_list() 
 
list_cities_pre_zero = set(list_cities_pre_zero) 
print(len(list_cities_pre_zero)) 
print(list_cities_pre_zero) 
 
for i in list_cities_pre_zero: 
    print(i) 
    match = df[df['Description'].str.contains(i)] 
    print(match) 
    location = os.path.join(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans project per city\\', 
                 i + '.xlsx') 
    match.to_excel(location) 
 

 

Merge terminology waste 

 

import pandas as pd 
from datetime import date 
 
df_Pre = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw_trim_added.xlsx') 
df_RNW = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Base_Renewi_Woningbouw_trim.xlsx') 
 
df_RNW['Afvalgroep'] = df_RNW['Afvalgroep'].replace('BSA','Bouw- en sloopafval' ) 
 
df_Pre['Afvalgroep'] = df_Pre['Afvalgroep'].replace('Papier / karton','Papier, 

Karton') 
df_Pre['Afvalgroep'] = df_Pre['Afvalgroep'].replace('Puin','Steenachtige materialen') 
df_Pre['Afvalgroep'] = df_Pre['Afvalgroep'].replace('Bedrijfsafval','Restafval') 
df_Pre['Afvalgroep'] = df_Pre['Afvalgroep'].replace('Hout B','Houtafval') 
 

 

 
listkeep = ['Folie', 'Bouw- en sloopafval', 'Metaal', 'Gips', 'Papier, Karton', 

'Steenachtige materialen', 'Restafval', 'Isolatiemateriaal', 'Houtafval'] 
 
df_RNW = df_RNW[df_RNW['Afvalgroep'].isin(listkeep)] 
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df_Pre = df_Pre[df_Pre['Afvalgroep'].isin(listkeep)] 
 

 

 
df_Pre.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw_trim_added_v1.1.xlsx') 
df_RNW.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Base_Renewi_Woningbouw_trim_v1.1.xlsx') 
 

 

Prezero add location 

 

import pandas as pd 
from datetime import date 
 

 
df = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw.xlsx') 
 
df2 = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw_trim.xlsx') 
 
df2['Postalcode'] = pd.Series(df['Postalcode']) 
df2['Service adres'] = pd.Series(df['Service adres']) 
df2['Woonplaats'] = pd.Series(df['Woonplaats']) 
 

 
print(df2) 
 
df2.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw_trim.xlsx') 

 

Prezero data filter 

 

import pandas as pd 
from datetime import date 
 
df = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw.xlsx') 
df2 = df.loc[df["Divisie"] == 'Heijmans Woningbouw'] 
df2 = df2.reset_index() 
df2 = df2.drop('index', axis=1) 
print(df2) 
 
df2.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw.xlsx') 
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Renewi match project ID 

 

import pandas as pd 
from datetime import date 
 
base_df_Renewi = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Base_Renewi.xlsx') 
 
list_Entiteit = set(base_df_Renewi['Entiteit']) 
print(list_Entiteit) 
selected_entiteiten = base_df_Renewi[base_df_Renewi['Entiteit'].isin(['Heijmans 

Woningbouw Regio Oost', 'Heijmans Woningbouw Regio Zuid', 'Heijmans Woningbouw Regio 

West'])] 
selected_entiteiten = selected_entiteiten.reset_index() 
selected_entiteiten = selected_entiteiten.drop('Unnamed: 0', axis=1) 
selected_entiteiten = selected_entiteiten.drop('index', axis=1) 
print(selected_entiteiten) 
selected_entiteiten.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Base_Renewi_Woningbouw.xlsx') 

 

Renewi data 
import pandas as pd 
import openpyxl 
import numpy as np 
 
#-------------------------------------------------------------------------------------

- 
Renewi = pd.read_excel(r"C:\Users\Rob\Desktop\Thesis 2021\data\Renewi_CW_data.xlsx", 

sheet_name= 'Details') 
 
df = pd.DataFrame(Renewi, columns= ['Entiteit', 'Project', 'Adres', 'Postcode']) 
 
#print(df) 
 
new = df.loc[(df['Entiteit'] == 'Heijmans Woningbouw Regio West') | (df['Entiteit'] == 

'Heijmans Woningbouw Regio Oost') | (df['Entiteit'] == 'Heijmans Woningbouw Regio 

Zuid')] 
print(new) 
Projecten_R = pd.unique(new['Project']) 
print(Projecten_R) 
print(len(Projecten_R)) 
Postcode = pd.unique(new['Postcode']) 
 
print(len(Postcode)) 
 
#_________________________________________________________________________________ 
 
PreZero = pd.read_excel(r"C:\Users\Rob\Desktop\Thesis 2021\data\PreZero_CW_data.xlsx", 

sheet_name= 'Overzicht Suez') 
 
df_2 = pd.DataFrame(PreZero, columns= ['Divisie', 'Organisatienaam', 'Service adres', 

'Postalcode', 'Contract']) 
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Divisie_HW = df_2.loc[(df_2['Divisie'] == 'Heijmans Woningbouw')] 
 
print('Aantal events onder Heijmans Woningbouw') 
 
print(Divisie_HW) 
 
aantal_Org = pd.unique(Divisie_HW['Organisatienaam']) 
print(aantal_Org) 
print(len(aantal_Org)) 
 
Divisie_HW = df_2.loc[(df_2['Organisatienaam'] == 'Heijmans Woningbouw 

Oost')|(df_2['Organisatienaam'] == 'Heijmans Woningbouw Noord') 
|(df_2['Organisatienaam'] == 'Heijmans Huizen B.V.')|(df_2['Organisatienaam'] == 

'Heijmans Woningbouw B.V') 
                      |(df_2['Organisatienaam'] == 'Heijmans Woningbouw B.V.')] 
 
print(Divisie_HW) 
 
Projecten_per_postal_P = pd.unique(Divisie_HW['Postalcode']) 
 
print(Projecten_per_postal_P) 
print(len(Projecten_per_postal_P)) 
 
Projecten_per_contract_P = pd.unique(Divisie_HW['Contract']) 
print(Projecten_per_contract_P) 
print(len(Projecten_per_contract_P)) 
 
#Organisatie_ZWO = df_2.loc[(df_2['Organisatienaam'] == 'Heijmans Woningbouw')] 
 

 

Replace werknummer 

 

import pandas as pd 
from datetime import date 
 
df = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_locatie_count.xlsx') 
 
new_G = df['Matching project'].to_list() 
description = df['Description'].to_list() 
dict_replace = {} 
 
for key in description: 
    for value in new_G: 
        dict_replace[key] = value 
        new_G.remove(value) 
        break 
 
df2 = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw_trim.xlsx') 
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df2["Werknummer"] = df2["description"].map(dict_replace) 
 
df2.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw_trim_added.xlsx') 

 

RNW PRE matching projects 
import pandas as pd 
from datetime import date 
import numpy as np 
 
#Renewi 
base_df_Renewi_Excel = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Base_Renewi_Woningbouw_trim.xlsx') 
 
#preZero 
base_df_Pre_Excel = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw_trim.xlsx') 
 
#Heijmans 
heijmans_projects_file = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans_Projects_Sorted.xlsx') 
 
#lists of projects 
heijmans_projects_file_projects = set(heijmans_projects_file['Project']) 
count_Heijmans = len(heijmans_projects_file_projects) 
    #print(count_Heijmans) 
 
base_df_Renewi = set(base_df_Renewi_Excel['Project']) 
count_RNW = len(base_df_Renewi) 
    #print(count_RNW) 
 
base_df_Pre = set(base_df_Pre_Excel['Werknummer']) 
count_Pre = len(base_df_Pre) 
    #print(count_Pre) 
 
#calculating matching projectnumbers RNW 
array1 = np.array(heijmans_projects_file_projects) 
array2 = np.array(base_df_Renewi) 
 
substracted_array = np.subtract(array1, array2) 
substracted = list(substracted_array) 
substracted_count = len(substracted) 
    #print(substracted_count) 
 
RNW_precentage_match = ((count_Heijmans-substracted_count)/count_RNW)*100 
    #print(RNW_precentage_match) 
 
Heijmans_percentage_match = ((substracted_count/count_Heijmans))*100 
    #print(Heijmans_percentage_match) 
 
#calculating matching projectnumbers Pre 
array3 = np.array(heijmans_projects_file_projects) 
array4 = np.array(base_df_Pre) 
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substracted_array = np.subtract(array3, array4) 
substracted = list(substracted_array) 
substracted_count = len(substracted) 
    #print(substracted_count) 
 
Pre_precentage_match = ((count_Heijmans-substracted_count)/count_Pre)*100 
    #print(Pre_precentage_match) 
 
Heijmans_percentage_match = ((count_Heijmans/substracted_count)-1)*100 
    #print(Heijmans_percentage_match) 
 
#calculating matches RNW PRE 
substracted_array = np.subtract(array2, array4) 
substracted = list(substracted_array) 
substracted_count = len(substracted) 
    #print(substracted_count) 
 
#count G projectnumbers 
G_count_R = sum('G.' in s for s in base_df_Renewi) 
print(G_count_R) 
 
Event_G_count_R = 

base_df_Renewi_Excel[base_df_Renewi_Excel['Project'].isin(heijmans_projects_file_proje

cts)] 
print(len(Event_G_count_R)) 
 
G_count_P = sum('G.' in str(s) for s in base_df_Pre) 
print(G_count_P) 
 
Event_G_count_P = 

base_df_Pre_Excel[base_df_Pre_Excel['Werknummer'].isin(heijmans_projects_file_projects

)] 
print(len(Event_G_count_P)) 
 

 

Sort Waste data 

 

import pandas as pd 
from datetime import date 
 
pd.set_option('display.max_rows', 20) 
pd.set_option('display.max_columns', 500) 
pd.set_option('display.width', 1000) 
 
#base_df = pd.read_excel('Renewi_data.xlsx') 
 
#print(base_df) 
 
#base_df.drop(['Divisie', 'Werknummer', 'Werknaam', 'Adres', 'Postcode', 'Container-

id'], axis=1, inplace=True) 
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#base_df.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Base_Renewi.xlsx') 
 
#Renewi 
base_df_Renewi = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Base_Renewi_Woningbouw_trim_v1.1.xlsx') 
 
#preZero 
base_df_Pre = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Pre_Zero_Data_Woningbouw_trim_added_v1.1.xlsx') 
 
heijmans_projects_file = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans_Projects_Sorted_extended_3.1.xlsx') 
 

 
list_projects_Renewi = base_df_Renewi['Project'] 
list_projects_Renewi = set(list_projects_Renewi) 
 
list_projects_Pre_Zero = base_df_Pre['Werknummer'] 
list_projects_Pre_Zero = set(list_projects_Pre_Zero) 
 
#print('common projects') 
#print(list(set(list_projects_Renewi).intersection(list_projects_Pre_Zero))) 
 
#print(len(list_projects_Renewi)) 
#print(len(list_projects_Pre_Zero)) 
 
List_Projects_Heijmans = heijmans_projects_file['Project'].to_list() 
 

 
amount_of_events = [] 
total_waste_kg = [] 
 
Folie_kg = [] 
Bouw_en_sloopafval_kg = [] 
Metaal_kg = [] 
Gips_kg = [] 
Papier_Karton_kg = [] 
Steenachtige_materialen_kg = [] 
Restafval_kg = [] 
Isolatiemateriaal_kg = [] 
Houtafval_kg = [] 
 
Afvalverwerker = [] 
Project_In_Heijmans = [] 
 
for i in List_Projects_Heijmans: 
    if i in list_projects_Renewi: 
        Project_In_Heijmans.append(i) 
 
        selected_project = base_df_Renewi.loc[base_df_Renewi['Project'] == i] 
        eventcount_Renewi = len(selected_project.index) 
        amount_of_events.append(eventcount_Renewi) 
        print(selected_project) 
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        total_kg_Renewi = selected_project['Gewicht'].sum() 
        total_waste_kg.append(total_kg_Renewi) 
        Afvalverwerker.append('Renewi') 
 
        tkg_Folie = selected_project.loc[selected_project['Afvalgroep'] == 'Folie', 

'Gewicht'].sum() 
        Folie_kg.append(tkg_Folie) 
 
        tkg_BS = selected_project.loc[selected_project['Afvalgroep'] == 'Bouw- en 

sloopafval', 'Gewicht'].sum() 
        Bouw_en_sloopafval_kg.append(tkg_BS) 
 
        tkg_Metaal = selected_project.loc[selected_project['Afvalgroep'] == 'Metaal', 

'Gewicht'].sum() 
        Metaal_kg.append(tkg_Metaal) 
 
        tkg_Gips = selected_project.loc[selected_project['Afvalgroep'] == 'Gips', 

'Gewicht'].sum() 
        Gips_kg.append(tkg_Gips) 
 
        tkg_PK = selected_project.loc[selected_project['Afvalgroep'] == 'Papier, 

Karton', 'Gewicht'].sum() 
        Papier_Karton_kg.append(tkg_PK) 
 
        tkg_SM = selected_project.loc[selected_project['Afvalgroep'] == 'Steenachtige 

materialen', 'Gewicht'].sum() 
        Steenachtige_materialen_kg.append(tkg_SM) 
 
        tkg_Rest = selected_project.loc[selected_project['Afvalgroep'] == 'Restafval', 

'Gewicht'].sum() 
        Restafval_kg.append(tkg_Rest) 
 
        tkg_Iso = selected_project.loc[selected_project['Afvalgroep'] == 

'Isolatiemateriaal', 'Gewicht'].sum() 
        Isolatiemateriaal_kg.append(tkg_Iso) 
 
        tkg_Hout = selected_project.loc[selected_project['Afvalgroep'] == 'Houtafval', 

'Gewicht'].sum() 
        Houtafval_kg.append(tkg_Hout) 
 

 
    if i in list_projects_Pre_Zero: 
        Project_In_Heijmans.append(i) 
        selected_project = base_df_Pre.loc[base_df_Pre['Werknummer'] == i] 
        eventcount_Pre_Zero = len(selected_project.index) 
        amount_of_events.append(eventcount_Pre_Zero) 
 
        total_kg_Pre_Zero = selected_project['Gewicht'].sum() 
        total_waste_kg.append(total_kg_Pre_Zero) 
        Afvalverwerker.append('Pre_Zero') 
 
        tkg_Folie = selected_project.loc[selected_project['Afvalgroep'] == 'Folie', 

'Gewicht'].sum() 
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        Folie_kg.append(tkg_Folie) 
 
        tkg_BS = selected_project.loc[selected_project['Afvalgroep'] == 'Bouw- en 

sloopafval', 'Gewicht'].sum() 
        Bouw_en_sloopafval_kg.append(tkg_BS) 
 
        tkg_Metaal = selected_project.loc[selected_project['Afvalgroep'] == 'Metaal', 

'Gewicht'].sum() 
        Metaal_kg.append(tkg_Metaal) 
 
        tkg_Gips = selected_project.loc[selected_project['Afvalgroep'] == 'Gips', 

'Gewicht'].sum() 
        Gips_kg.append(tkg_Gips) 
 
        tkg_PK = selected_project.loc[selected_project['Afvalgroep'] == 'Papier, 

Karton', 'Gewicht'].sum() 
        Papier_Karton_kg.append(tkg_PK) 
 
        tkg_SM = selected_project.loc[selected_project['Afvalgroep'] == 'Steenachtige 

materialen', 'Gewicht'].sum() 
        Steenachtige_materialen_kg.append(tkg_SM) 
 
        tkg_Rest = selected_project.loc[selected_project['Afvalgroep'] == 'Restafval', 

'Gewicht'].sum() 
        Restafval_kg.append(tkg_Rest) 
 
        tkg_Iso = selected_project.loc[selected_project['Afvalgroep'] == 

'Isolatiemateriaal', 'Gewicht'].sum() 
        Isolatiemateriaal_kg.append(tkg_Iso) 
 
        tkg_Hout = selected_project.loc[selected_project['Afvalgroep'] == 'Houtafval', 

'Gewicht'].sum() 
        Houtafval_kg.append(tkg_Hout) 
 
#Dicts of Renewi 
dictionary_eventcount = dict(zip(Project_In_Heijmans, amount_of_events)) 
dictionary_wasteKG = dict(zip(Project_In_Heijmans, total_waste_kg)) 
dictionary_waste_processor = dict(zip(Project_In_Heijmans, Afvalverwerker)) 
 
dictionary_Folie = dict(zip(Project_In_Heijmans, Folie_kg)) 
dictionary_BS = dict(zip(Project_In_Heijmans, Bouw_en_sloopafval_kg)) 
dictionary_Metaal = dict(zip(Project_In_Heijmans, Metaal_kg)) 
dictionary_Gips = dict(zip(Project_In_Heijmans, Gips_kg)) 
dictionary_PK = dict(zip(Project_In_Heijmans, Papier_Karton_kg)) 
dictionary_SM = dict(zip(Project_In_Heijmans, Steenachtige_materialen_kg)) 
dictionary_Rest = dict(zip(Project_In_Heijmans, Restafval_kg)) 
dictionary_Iso = dict(zip(Project_In_Heijmans, Isolatiemateriaal_kg)) 
dictionary_Hout = dict(zip(Project_In_Heijmans, Houtafval_kg)) 
 
Heijmans_file = pd.read_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans_Projects_Sorted_extended_3.1.xlsx', 

index_col=0) 
 
Heijmans_file['Waste event count'] = 

Heijmans_file['Project'].map(dictionary_eventcount) 
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Heijmans_file['total_waste_kg'] = Heijmans_file['Project'].map(dictionary_wasteKG) 
 
#-------------------------------------- 
Heijmans_file['Folie kg'] = Heijmans_file['Project'].map(dictionary_Folie) 
 
Heijmans_file['Bouw- en sloop kg'] = Heijmans_file['Project'].map(dictionary_BS) 
 
Heijmans_file['Metaal kg'] = Heijmans_file['Project'].map(dictionary_Metaal) 
 
Heijmans_file['Gips kg'] = Heijmans_file['Project'].map(dictionary_Gips) 
 
Heijmans_file['Papier, karton kg'] = Heijmans_file['Project'].map(dictionary_PK) 
 
Heijmans_file['Steenachtige materialen'] = Heijmans_file['Project'].map(dictionary_SM) 
 
Heijmans_file['Restafval kg'] = Heijmans_file['Project'].map(dictionary_Rest) 
 
Heijmans_file['Isolatiemateriaal kg'] = Heijmans_file['Project'].map(dictionary_Iso) 
 
Heijmans_file['Houtafval kg'] = Heijmans_file['Project'].map(dictionary_Hout) 
#------- 
 
Heijmans_file['Afvalverwerker'] = 

Heijmans_file['Project'].map(dictionary_waste_processor) 
 
print(Heijmans_file) 
 
Heijmans_file.to_excel(r'C:\Users\Rob\Desktop\Thesis 

2022\data\Project_Data_Sorted\Heijmans_Projects_Sorted_extended_3.6.xlsx') 
 
 

Appendix VI Final formatted dataset 
 

See the attached file to this thesis report called “Appendix VI Final formatted dataset.xlsx”.  
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Appendix VII Construction Characteristics Collector (CCC) Revit Plugin 
 

 

Plugin collects specific data from multiple Revit files and shows them in Windows Presentation 

Foundation (WPF). In the steps below the way the plugin operates is explained by showing printscreens 

of the code. Pasting the original code in text like previously done for the python code was not practical 

in this case since it lost all the structuring etc.  

1. Create custom class RevitElement  

This class contains all required data such as room count, floor count, percent prefabricated, bathroom 

surface, kitchen surface etc.  

Class constructor requires parameter RevitLinkInstance. From this element plugin automatically reads 

all data by custom methods, convert them to metric system and store them into specific properties. 
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2. Collect all Revit links   

Plugin will collect all RevitLinkInstance and create instance of RevitElement class. These instances are 

grouped by link type and stored in list RevitElements. 
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3. Count total values 

Plugin will read all RevitElements and count sum of specific criteria. This total values are stored in new 

RevitElement named total. 

 

 

4. Create WPF 

Plugin will create simple WPF based on TabControl. First tab is for all RevitElements, second tab is 

for data of one RevitElement. WPF is based on DataBinding with primary class named Core. 
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5. Export to Microsoft excel 

Create custom method in WPF to export all data to Excel. This step requires specific reference 

“Microsoft.Office.Interop.Excel” and uses its internal methods. 
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6. Implementing to Revit 

Create custom class MyPanel. This class is loaded on Revit start and contains instructions for 

PushButtonData – icon and .dll file. 

 

 


