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1 Introduction
One fundamental challenge in robotics is finding a configuration for a robotic arm such that the end effector
of the arm reaches a certain position y ∈ R3. An example of a robotic arm is given in Figure 1. This
particular robotic arm has 6 axes of rotation, which are called joints. These joints are connected by links.
To reach the position y, one needs to find the corresponding rotation angles of every joint of the robotic arm.
This is called the inverse kinematics problem and is extensively studied within the field of robotics (see [10]
and [16]).

Figure 1: The Stäubli robot. [15]

As an illustration, let us consider a robotic arm which only consists of one freely rotating joint and one link.
Let the initial position of the end effector be described by the vector x ∈ R3. To reach the end position
y ∈ Rn we need to find a n× n rotation matrix R, such that Rx = y. Here n denotes the dimensionality of
the problem. Since R is a rotation matrix it belongs to the special orthogonal group SO(n), which is defined
by

SO(n) ={R ∈ Mn(R) : RTR = In,det(R) = 1}. (1)

We can transform this inverse kinematics problem into an optimization problem by considering the objective
function f(R) = ∥Rx− y∥2, which needs to be minimized for R over SO(n).

In this thesis, we dive into the subject of Riemannian geometry and Lie groups to develop an iterative
algorithm which solves this optimization problem. This provides a powerful mathematical framework for
understanding the geometry and structure of SO(n). One can opt to solve the problem by using classical
gradient descent over the space of all real n× n matrices. However, at iteration step t the classical gradient
descent method will not give an Rt ∈ SO(n) necessarily. Therefore, we will exploit the manifold structure
of SO(n) to obtain a Riemannian optimization method, which gives after every iteration step t a feasible
Rt ∈ SO(n). This allows for real-time updating of the robotic arm.

Furthermore, we present an innovative iterative algorithm that finds the configuration of a robotic arm such
that it accurately follows a given curve γ : R → Rn. This algorithm is also suitable for real-time updating
of the robotic arm. Moreover, this algorithm is not restricted to finding a robotic arm configuration in R2

or R3 but can be used to find a configuration in a general multi-dimensional space Rn, where n is finite.

In summary, this thesis dives into the field of Riemannian geometry to develop algorithms that can allow
for real-time updating of the robotic arm. The main result of this thesis is an algorithm that can find the
configuration of a robotic arm which accurately follows a given curve in n-dimensional space. This algorithm
can find use in the field of robotics, where the robotic arm is restricted to follow a certain path, due to
certain obstacles within the range of the arm.

1.1 Structure of the Report

This report has the following structure. Chapter 2 contains the theoretical background for the remainder of
this report. This includes subjects from topology, Lie group theory and Riemannian geometry. In Chapter
3, we apply this theory to SO(n) to adjust the classical gradient descent method to the Riemannian setting.
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The main result of this section is the constant line search method given by Algorithm 2. In Chapter 4,
we test Algorithm 2 extensively and show numerical convergence. Furthermore, we develop a mathematical
model for a robotic arm in Rn and use Algorithms 3 and 4 to find the configuration of the robotic arm which
accurately follows a given curve. Lastly, Chapter 5 contains the conclusion and future research directions.
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2 Manifolds, Tangent Spaces and Lie Algebra
In this chapter, we give the mathematical framework which will be useful when deriving the iterative opti-
mization method on the special orthogonal group SO(n). The first three sections, Section 2.1, Section 2.2
and Section 2.3 introduce the concepts of matrix groups, topological spaces, manifolds and the differential
map. Then, in Section 2.4, Section 2.5, Section 2.6 and Section 2.7, we look further into manifolds and their
tangents space. We add a differential structure to a manifold to obtain a smooth manifold and we add a
Riemannian metric to a smooth manifold to obtain a Riemannian manifold. Here, we will interpret SO(n)
as a Riemannian submanifold of Mn(R). In Section 2.9 the matrix exponential is defined, which plays an
important role when defining the Lie algebra of a matrix Lie group in the next section, Section 2.10. The
final section, Section 2.11, is about differential equations on submanifolds. Here, we obtain a nice description
of the tangent space of SO(n) in terms of its Lie algebra. This description of the tangent space is very useful
for finding a good update matrix in the iterative optimization algorithm introduced in the next chapter.

Information in this chapter about topologies, manifolds and tangent spaces is from [2], [17], [18], [22].
Information about matrix groups, Lie groups and Lie algebras is from [6], [12], [13], [21].

2.1 Matrix groups and SO(n)

This section is an introduction to matrix groups of which the matrix group SO(n) is an important example.
First, let us give the general definition of a group and a subgroup,

Definition 2.1 (Group). A group G is a set with a binary operator. Let us denote this binary operator as
∗. This operator combines two elements, say a, b ∈ G, such that a ∗ b ∈ G. Moreover, the following group
axioms must be satisfied

• associativity, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

• There exist a (unique) identity element e ∈ G, such that e ∗ a = a and a ∗ e = a for all a ∈ G.

• For every a ∈ G, there exists an inverse a−1 ∈ G such that a ∗ a−1 = e and a−1 ∗ a = e.

Definition 2.2 (Subgroup). A subgroup H of a group G is a subset of G, such that

• a ∗ b ∈ H for all a, b ∈ H, so H is closed under its binary operator.

• for every a ∈ H, its inverse a−1 is also in H.

Note that the identity element e is always an element of the subgroup H since a ∗ a−1 = e must be in H.
Moreover, note that a subgroup is also a group. Examples of some simple groups and subgroups are given
below.

Example 2.1. (Groups)

• A simple example of a group is the set of all integers Z with the addition operator +. Here 0 is the
identity element and an integer a has inverse −a. A subgroup of all the integers is the group of all
even integers.

• The set of integers modulo a prime together with the multiplication operator ∗ is a group. This group
can be denoted as (Z/pZ)∗. Let a ∈ (Z/pZ)∗, then the inverse a−1 of a can be calculated by using
the extended Euclidean algorithm or by calculating a multiplication table. As an example of a modulo
multiplicative group, let us consider (Z/7Z)∗ = {1, 2, 3, 4, 5, 6}. 1 is the identity element. To find the
inverse pairs, we use the extended Euclidean algorithm.

gcd(7, 2) = gcd(2, 1) = 1; 7− 3 ∗ 2 = 1 mod 7,

4 ∗ 2 = 1 mod 7,

gcd(7, 3) = gcd(3, 1) = 1; 7− 2 ∗ 3 = 1 mod 7,

5 ∗ 3 = 1 mod 7,

gcd(7, 6) = gcd(6, 1) = 1; 7− 1 ∗ 6 = 1 mod 7

6 ∗ 6 = 1 mod 7.
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This results in table 1.

a a−1

2 4
3 5
4 2
5 3
6 6

Table 1: The inverse a−1 for each a ∈ (Z/7Z)∗.

• The set of all invertible n× n matrices, which is denoted as GL(n,R), is a group under matrix multi-
plication. Associativity holds since (AB)C = A(BC) for all A,B,C ∈ GL(n,R). Moreover, for every
A ∈ GL(n,R), there exists an A−1 ∈ GL(n,R), for which AA−1 = In, where In is the n × n identity
matrix, which is the identity element of the group GL(n,R).

Now, we are ready to give the definition of a matrix group.

Definition 2.3 (Matrix group). Let G be any subgroup of GL(n,R). If a sequence of matrices (Ai)
∞
i=0 ⊆ G

converges to some matrix A (i.e., every entry of Ai converges to the corresponding entry of A as i → ∞),
and A is either an element of the subgroup G or A is not invertible, then G is called a matrix group.

In literature, matrix groups are sometimes called matrix Lie groups. Below, some examples of matrix groups
are given of which one is SO(n).

Example 2.2. (Matrix Groups)

• The orthogonal group is defined as the set of all n× n orthogonal matrices, i.e.,

O(n) = {X ∈ Mn(R) : XTX = In}. (2)

Here Mn(R) denotes the set of all n × n matrices. O(n) is a subgroup of GL(n,R), since for every
X ∈ O(n) there is an inverse X−1 = XT , which is also an element of O(n). Moreover, the matrix
product of two orthogonal matrices Z = XY , where X,Y ∈ O(n), is also orthogonal since

ZTZ = (XY )TXY,

= Y TXTXY,

= Y TY = In.

Moreover the relation XTX = In is preserved under taking limits, therefore O(n) is a matrix group.

• The special orthogonal group SO(n) is defined as the group of all n × n orthogonal matrices with
determinant equal to 1. In other words, SO(n) is the group of all matrices which represent rotations
in Rn. The formal definition is given by

SO(n) = {X ∈ Mn(R) : XTX = In,det(X) = 1}. (3)

SO(n) is also a subgroup of O(n) and therefore also a subgroup of GL(n,R). Like the property that
XTX = In is preserved under taking limits, the property that det(X) = 1 is too. Therefore, SO(n) is
a matrix group.

• To show that not every subgroup of GL(n,R) is a matrix group, let us consider the group of all
invertible n× n matrices with rational entries, denoted as GL(n,Q). Consider the following sequence
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(Ai)
∞
i=0 of matrices in GL(2, (Q):

A0 =

(
3 0
0 1

)
,

A1 =

(
3, 1 0
0 1

)
,

A2 =

(
3, 14 0
0 1

)
,

...

lim
i→∞

Ai =

(
π 0
0 1

)
.

For each element Ai of the sequence (Ai)
∞
i=0, the upper-left entry is equal to an approximation of π up

to i digits. For i → ∞ this entry becomes equal to π. Note that limi→∞Ai is invertible. Therefore,
for GL(n,Q) to be a matrix group, we require that limi→∞Ai ∈ GL(n,Q). However, this is clearly
not the case.

2.2 Topological Spaces and Manifolds

In this section, the definition of a manifold is given. Before we arrive at this definition we need some basic
concepts from the field of topology. First, consider the definition of a topological space below.

Definition 2.4 (Topological space). Given is a set X. A topology T on X is a collection T of subsets of X
satisfying the following properties:

• Ø, X ∈ T .

• T is closed under finite intersections: if U1, ..., Un are elements of T , then their intersection U1∩· · ·∩Un
is an element of T .

• T is closed under arbitrary unions: if (Uα)α∈A is any (finite or infinite) family of elements of T , then
their union

⋃
α∈A Uα is an element of T .

The elements of T are called open sets or open neighbourhoods. A set X together with a topology T on X
is called a topological space, denoted as (X, T ) (see [17] and [23]).

Example 2.3. (Topology)

• T = {Ø, X} is a topology on the set X. This specific topology is also called the indiscrete topology of
X.

• T = P(X), where P(X) denotes the power set of X, is a topology on X. This specific topology is also
called the discrete topology of X.

• Let X = {1, 2}, T = {Ø, {2}, {1, 2}} is a topology on X.

• Let X = R, T = {Ø,R} ∪ {⟨b,→⟩ : b ∈ R} is a topology on X.

• Let X ⊆ Rn. Let us define the Euclidean distance between two points x and y in Rn as

dist(x,y) = ∥x− y∥

=
√
(x1 − y1)2 + ...+ (xn − yn)2.

Here, ∥ · ∥ denotes the 2-norm and xi and yi, i ∈ {1, ..., n}, are the coordinate elements of the vectors
x and y respectively, when using the standard basis for Rn. We define the standard topology T of X
as the set of all open sets U for which we have that for all x ∈ U , there exists an ϵ > 0, such that all
points in the set

Bϵ(x) = {y : dist(x,y) < ϵ}, (4)

are also in U , i.e., Bϵ(x) ⊆ U ∈ T . Here, Bϵ(x) is called an open epsilon ball around x.
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Recall that we defined an open set U of a topological space (X, T ) as an element of a topology T , i.e.,
U ∈ T . In metric spaces, one can also define an open set by using open epsilon balls as we have seen in
the last example. There, we gave the definition of the standard topology of a subset of Rn. Note that this
topology contains open sets U , where we can recognize these open sets in the way they are defined in metric
spaces. Therefore, X ⊂ Rn can be regarded as an metric space with the Euclidean distance as a metric. In
general, open sets when considering X as a metric space are also called open sets when considereing X as
an topological space. The reverse argument is not necessarily true, since a metric on a topological space is
not always defined.

Next, let us consider maps between topological spaces. This will give us the following notion of continuity.

Definition 2.5 (Continuous maps). Consider two topological spaces (X, TX) and (Y, TY ). A map f : X → Y
is called continuous if for all U ∈ TY : f−1[U ] ∈ TX . Here, f−1[U ] denotes the pre-image of U , i.e.,
f−1[U ] = {x ∈ X : f(x) ∈ U}.

A special type of continuous map is a homeomorphism.

Definition 2.6 (Homeomorphism). Consider two topological spaces (X, TX) and (Y, TY ). A map f : X → Y
is called a homeomorphism if f is bijective (one-to-one), continuous and if its inverse f−1 : Y → X is also
continuous.

Now we arrive at the notion of locally Euclidean topological spaces.

Definition 2.7 (Locally Euclidean and charts). A topological space (X, T ) is locally Euclidean of dimension
n if, for all a ∈ X, there exists an open set (also called an open neighbourhood) Ua ∈ T , for which a ∈ Ua
and there exists a homeomorphism φa : Ua → U ′

a, with U
′
a ⊆ Rn open. φa is called a chart of (X, T ), which

one can denote as (Ua, φa).

So, for a topological space (X, T ), which is locally Euclidean, we have for every point a ∈ X an open
neighbourhood Ua, such that (Ua, φa) forms a chart. A collection of charts, of which their corresponding
open neighbourhoods covers X is called an atlas, i.e.,

Definition 2.8 (Atlas). A collection of charts A = ∪i{(Ui, φi)}, i ∈ {1, 2, ...}, of the set X is called an atlas
of X if ∪iUi = X.

Now, we have all the mathematical tools to give the definition of a manifold, which generalizes the concept
of surfaces in space.

Definition 2.9 (n-manifold). The topological space (M, T ), or simplyM, is a manifold of dimension n if
it has the following properties:

• M is a Hausdorff space: for every pair of distinct points p, q ∈ M, there are disjoint open neighbour-
hoods U, V ∈ T , such that p ∈ U and q ∈ V .

• M is second-countable: there exists a countable basis for the topology T of M .

• M is locally Euclidean of dimension n. (See Definition 2.7).

A manifold can be denoted as (M, T ) or simply as the setM. Recall that a topological space can be denoted
as a couple (X, T ), where X is a set and T is a topology on X. Denoting a manifold as (M, T ) corresponds
to the notion of a manifold as a topological space. For simplicity, we will denote a manifold as the set M
and not state the topology explicitly, except if stated otherwise.

Example 2.4. (Manifolds) Consider the following examples of a manifold.

• Consider a finite number of pointsM and its discrete topology T = P(M). One can easily verify that
(M, T ) is Hausdorff and that the set of the individual points forms a basis for T . Therefore, (M, T )
is second-countable. Moreover, for every point, let us consider a map φ which maps the point to 0.
These charts are homeomorphisms and therefore (M, T ) is a 0-dimensional manifold.

• Consider a subset M of Rn, i.e., M ⊆ Rn. Rn with the standard topology (see Example 2.3) has
the property that it is Hausdorff and second-countable [18]. Since M is a subspace of Rn, M is also

7



Hausdorff and second-countable. As a chart, consider the identity map, which is a homeomorphism.
Therefore,M is an n-dimensional manifold.

• Any n-dimensional vector space V is a manifold [2]. Given a basis (ei)
n
i=1 of V. The map ψ : V → Rn,

ψ(x) = (x1, x2, ..., xn)T ,

such that x =
∑n
i=1 x

iei, is a chart of V.

• Consider the n-dimensional sphere, which is defined as

Sn = {x ∈ Rn+1 : ∥x∥ = 1},

where ∥x∥ denotes the Euclidean norm of x. For simplicity, let us take n = 2, S2 is a sphere in R3 with
radius 1. We will show that S2 is a two-dimensional manifold. S2 is Hausdorff and second-countable
since it is a topological subspace of R3. Now, let us define the following open sets on S2.

Ui,+ = {x ∈ S2 : xi > 0}, for i ∈ {1, 2, 3},
Ui,− = {x ∈ S2 : xi < 0}, for i ∈ {1, 2, 3},

where x = (x1, x2, x3)
T . These Ui,±’s are hemispheres. For example, U3,+ is the northern hemisphere

and U3,− is the southern hemisphere. Next, let us introduce an open subset of R2.

Ũ = {x̃ ∈ R2 : ∥x̃∥ < 1}.

Here, x̃ = (x̃1, x̃2)
T . Note that Ui,± ⊆ S2 for all i ∈ {1, 2, 3} and Ũ ⊆ R2. Let us introduce the maps

hi,+ : Ui,+ → Ũ and hi,− : Ui,− → Ũ for all i ∈ {1, 2, 3}. For i = 1, these maps and their inverses are
given by

h1,+(x) = (x2, x3),

h−1
1,+(x̃) = (

√
1− ∥x̃∥, x̃1, x̃2)T ,

h1,−(x) = (x2, x3),

h−1
1,−(x̃) = (−

√
1− ∥x̃∥, x̃1, x̃2)T ,

and likewise for i = 2, 3. First note that the hi,±’s and the h−1
i,±’s are continuous and bijective. Therefore

the hi,±’s are homeomorphisms, so (Ui,+, hi,+) and (Ui,−, hi,−) for all i ∈ {1, 2, 3} are charts of S2.
Furthermore, note that A = ∪i∈{1,2,3}{(Ui,+, hi,+), (Ui,−, hi,−)} is an atlas of S2. This shows that S2

is locally Euclidean of dimension two and therefore a two-dimensional manifold. In general, one can
show that any n-dimensional sphere Sn in Rn+1 is an n-dimensional manifold, following the same steps
as given above (see [18]).

In this last example of S2, we constructed charts for S2, where a chart is a double containing an open set
U ⊆ S2 and a homeomorphism h. Then we find a collection of charts of which its open sets cover S2. So,
this collection of charts is an atlas for S2. Therefore, S2 is locally Euclidean and together with the Hausdorff
and second-countable property we can conclude that S2 is a manifold.

In the remainder of this chapter, we broaden our understanding of manifolds by introducing manifolds with
special properties, like smooth manifolds and Riemannian manifolds.

2.3 The Differential

Definition 2.10 (Differential). Let E and F be two finite-dimensional normed vector spaces over R. A
function F : E → F is (Fréchet)-differentiable at a point x ∈ E if there exists a linear operator

DF (x) : E → F ,

8



which maps h ∈ E to DF (x)[h] ∈ F , such that

F (x+ h) = F (x) + DF (x)[h] + o(∥h∥), (5)

in other words,

lim
h→0

∥F (x+ h)− F (x)−DF (x)[h]∥
∥h∥

= 0.

The linear operator DF (x) is called the differential and the element DF (x)[h] is called the directional
derivative of F at x along h. The function F : E → F is said to be differentiable on an open domain Ω ⊆ E
if F is differentiable at every point x ∈ Ω. [2]

The differential has some nice properties. We have the chain rule

D(F ◦G)(x) = DF (G(x)) ◦DG(x),

in other words,

D(F ◦G)(x)[h] = DF (G(x))[DG(x)[h]].

The differential DF (x) belongs to the vector space L(E ;F) of all linear operators from E to F . So, we can
see DF as a map DF : E → L(E ;F). If DF is continuous on an open domain Ω, then we say that F is
continuously differentiable on Ω.

Let (e1, ..., em) and (e′1, ..., e
′
n) be bases for E and F respectively. Let F̂ : Rm → Rn be the expression for F

in terms of these bases, in other words,

F

(
m∑
i=1

xiei

)
=

n∑
j=1

F̂ j(x)e′j ,

where the xi’s are the coordinates of x, with respect to the the basis (e1, ..., em) and F̂ j(x) : Rm → R are
the coordinates of F (x) with respect to the basis (e′1, ..., e

′
n). Then, we have the following theorem.

Theorem 2.1 (Continuous differentiability via partial derivatives). A function F : E → F is continuously
differentiable if and only if the partial derivatives ∂iF̂

j of F̂ exist and are continuous. Then we have

DF (x)[h] =

n∑
j=1

m∑
i=1

∂iF̂
j(x)hie′j . (6)

Here, the hi’s are the coordinates of h, with respect to the basis (e1, ..., em). It can be shown that this
expression does not depend on the chosen bases (see appendix of [2]).

Example 2.5. (Differential)

• Let f : R2 → R and let {e1, e2} be the canonical basis of R2

f(x1, x2) = x21 +
x22
2
,

Using Definition 2.10, we obtain

f(x1 + h1, x2 + h2) = (x1 + h1)
2 +

1

2
(x2 + h2)

2

= (x21 + 2x1h1) +

(
x22
2

+ x2h2

)
+ o(h1) + o(h2).

Therefore,

Df(x)[h] = 2x1h1 + x2h2

9



Alternatively, one can use Equation (6), to obtain

Df(x)[h] = ⟨∇f(x),h⟩2,

where ∇f(x) denotes the Euclidean gradient of f at x, h = (h1, h2)
T and ⟨·, ·⟩2 denotes the standard

inner product. Note that the differential map Df : R2 → L(R2,R) can be expressed as

Df = (∇f(x))T .

• Let F : R2 → R3, be defined as

F (x1, x2) = x21e1 + 2x1x2e2 + x22e3,

where {e1, e2, e3} is the canonical basis of R3. Using the standard bases for R2 and R3 and Equation
(6) we obtain

DF (x1, x2)[h] =

 2x1 0
2x2 2x1
0 2x2

( h1
h2

)
.

Note that the differential map DF : R2 → L(R2;R3) is given by

DF =

 2x1 0
2x2 2x1
0 2x2


Note that DF is equal to the Jacobian matrix.

• Let F (X) = tr(X), where X ∈ Mn(R). Note that

F (X +H) = tr(X +H),

= tr(X) + tr(H),

= F (X) + tr(H).

Therefore, DF (X)[H] = tr(H).

• Let F (X) = X−1, where X is an invertible matrix. Let H be a bounded matrix, which is small in the
operator norm | · |, such that |H| < 1

|X−1| . Then,

F (X +H) = (X +H)−1

= (X(I +X−1H))−1

= (I +X−1H)−1X−1

=

∞∑
k=0

(−1)k(X−1H)kX−1

= X−1 −X−1HX−1 + ...

= F (X)−X−1HX−1 + ....

Here, I is the identity matrix. Note that we used the Neumann series

(I −A)−1 =

∞∑
k=0

Ak,

which holds for |A| < 1. We left out the terms which contains H to the power of 2 or higher. We can
conclude that DF (X)[H] = −X−1HX−1.
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2.4 Smooth Maps and Smooth Manifolds

The definition of a manifold in the previous section is sufficient for studying the topological properties of
manifolds, like compactness, connectedness and simple connectivity [18]. Unfortunately, this is not enough
for doing optimization over manifolds. In the next chapter, we will introduce a real-valued loss function
over SO(n), which is a map between two manifolds, SO(n) and R. We will minimize this loss function over
SO(n). Therefore, we need to make sense of derivatives of real-valued functions between manifolds. For this,
we need a special kind of manifold called a smooth manifold. This will help us decide if a map to or from a
manifold is smooth.

In the previous section, we constructed an atlas for the two-dimensional manifold S2. The six charts in this
atlas contain the six open sets Ui,± (i ∈ {1, 2, 3}). Note that some open sets partly overlap. For example,
U1,+ ∩ U3,+ = {x ∈ S2 : x1 > 0, x3 > 0} ≠ Ø. So we have two (or even more) homeomorphisms h1,+ and

h3,+ that map the points in U1,+ ∩ U3,+ to a subset of R2 (Ũ). Therefore, we can construct a so-called

transition map h3,+ ◦ h−1
1,+ : Ũ → Ũ . In general, a transition map is defined as follows.

Definition 2.11 (Transition Map). Let M be an n-dimensional manifold. If (U,φ), (V, ψ) are two charts
such that U ∩ V ̸= Ø, the composite map ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) is called the transition map from
φ to ψ.

Note that the transition map is a composition of homeomorphisms and therefore is itself a homeomorphism.
The transition map ψ ◦ φ−1 is illustrated in Figure 2.

Figure 2: Illustration of the transition map from φ to ψ. Here, (U,φ) and
(V, ψ) are charts. φ maps the open set U onto Rn and ψ maps the open
set V onto Rn. The transition map ψ ◦ φ−1 is a map from the image of φ
(φ(U)) to the image of ψ (ψ(V )) (see [18]

).

We will say that the two charts (U,φ) and (V, ψ) are smoothly compatible if the transition map ψ ◦ φ−1 is
a diffeomorphism, where a diffeomorphism is defined as follows:

Definition 2.12 (diffeomorphism). A smooth map, which is bijective and has a smooth inverse, is called a
diffeomorphism (see [18]).

Note that a diffeomorphism is also a homeomorphism.

Recall that an atlas ofM is a collection of charts whose domains coverM. Now consider the definitions of
a smooth atlas and a maximal smooth atlas.
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Definition 2.13 (Smooth Atlas). An atlas A for a manifoldM is called a smooth atlas if any two charts
in A are smoothly compatible with each other (see [18]).

Definition 2.14 (Maximal Smooth Atlas or Smooth Structure). Let A+ be a smooth atlas of the manifold
M. A+ is called a maximal smooth atlas or smooth structure onM if any chart that is smoothly compatible
with every chart in A+ is already in A+ (see [18]), [2]

Now we have everything to give the definition of a smooth manifold.

Definition 2.15 (n-dimensional Smooth Manifold). An n-dimensional manifoldM is called an n-dimensional
smooth manifold ifM has a maximal smooth atlas.

A smooth manifold is often denoted as (M,A+), whereM is the smooth manifold andA+ is its corresponding
smooth structure. In Ref. [18] it is noted that a smooth manifold could have many different smooth
structures. We will not dive into further details here, since for us it is only interesting if such a smooth
structure does exist.

In general, it is very inconvenient to define a smooth structure by explicitly describing a maximal smooth
atlas on a given manifoldM. Fortunately, the following lemma helps us a lot.

Lemma 2.2. LetM be a manifold. Every smooth atlas A forM is contained in a unique maximal smooth
atlas (see [18]).

So, to prove that a manifold M is also a smooth manifold, we only have to find a smooth atlas A for M.
Then, by using Lemma 2.2, we can conclude that there exists a maximal smooth atlas forM containing A.
Therefore, we can conclude thatM has a smooth structure, i.e.,M is a smooth manifold.

Next, let us consider smooth maps between smooth manifolds. The definition of smooth maps between
smooth manifolds is based on the definition of smooth maps between Euclidean spaces Rn and Rm.

Definition 2.16 (Smooth maps between Euclidean spaces). Let U and V be open subsets of the Euclidean
spaces Rd1 and Rd2 , respectively. A function f : U → V is called infinitely differentiable, C∞, or smooth if
each of its component functions has continuous partial derivatives of all orders (see [18]).

Now, let us jump back to manifolds. Let F be a function from a smooth manifoldM1 of dimension d1 to a
smooth manifold M2 of dimension d2. Consider a point x on M1, which is mapped by F to a point F (x)
onM2. We can choose a chart φ1 around x and a chart φ2 around F (x). We can define a smooth function
between two manifolds in a similar way as we did for a function between Euclidean spaces. Given these
two charts φ1 and φ2, the function F can be read through the charts, i.e., we can define a new function
F̂ : Rd1 → Rd2

F̂ = φ2 ◦ F ◦ φ−1
1 .

F̂ is called the coordinate representation of F . The coordinate representation F̂ is schematically illustrated
in Figure 3.
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Figure 3: Illustration of the coordinate representation F̂ : Rd1 → Rd2 of a
map F :M1 →M2. Here,M1 andM2 are manifolds of dimension d1 and
d2, respectively. φ1 :M1 → Rd1 is a chart ofM1 and φ2 :M2 → Rd2 is a
chart ofM2.

This gives us the following definitions.

Definition 2.17 (Smooth maps between manifolds). Let M1 and M2 be smooth manifolds. A function
F :M1 →M2 is infinitely differentiable or smooth at x if F̂ : Rd1 → Rd2 is smooth at φ1(x). A function
F :M1 →M2 is said to be smooth if it is smooth at every point of its domain.

Definition 2.18 (Diffeomorphisms between manifolds). F :M1 →M2 is a diffeomorphism if and only if
it is a bijection such that F and its inverse F−1 are both smooth.

Note that we can take the differential of F̂ , since F̂ is function between two vector spaces, namely Rd1 and
Rd2 . Therefore, we can define the differentiability of F in terms of the differentiability of F̂ . The following
definition of the rank of a function F will become useful in the next section when determining the dimension
of manifolds.

Definition 2.19. (Rank) Let M1 and M2 be smooth manifolds of dimension d1 and d2, respectively,
and let F : M1 → M2 be a smooth map. The rank of F at x ∈ M1 is the dimension of the range of
DF̂ (φ1(x))[·] : Rd1 → Rd2 , where F̂ is the coordinate representation of F .

Next, let us consider some examples of smooth manifolds.

Example 2.6. (Smooth manifolds)

• Rn is a smooth manifold since the one chart (Rn, Id) already forms a smooth atlas for Rn. Here Id is
the identity map, which is clearly a diffeomorphism. By using Lemma 2.2, we can conclude that there
exists a maximal smooth atlas for Rn. Therefore, Rn is a smooth manifold.

• In this example we prove that S2 is a smooth manifold by showing that every pair of charts from the
atlas A = ∪i∈{1,2,3}{(Ui,+, hi,+), (Ui,−, hi,−)} is smoothly compatible. These charts and this atlas were
already defined in Example 2.4.

Proof. Consider an arbitrary pair of charts from the atlas A: (Ui,±, hi,±) and (Uj,±, hj,±) for arbitrary
i, j ∈ {1, 2, 3}. The transition map wi±,j± : hi,±(Ui,± ∩Uj,±)→ hj,±(Ui,± ∩Uj,±) defined as wi±,j± =
hj,± ◦ h−1

i,±, is a smooth map. To see this, consider for example the transition map w∗ = w3+,1+ =

h1,+ ◦ h−1
3,+ and let x̃ = (x̃1, x̃2)

T be an arbitrary point in h3,+(U3,+ ∩ U1,+) ⊆ Ũ . Then, we define w∗

as

w∗ :

(
x̃1
x̃2

)
h−1
3,+−−−→

 x̃1
x̃2√

1− ∥x̃∥2

 h1,+−−−→
(

x̃2√
1− ∥x̃∥2

)
.
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Note that ∥x̃∥ < 1, since x̃ lies somewhere in Ũ (see example 2.4). Therefore, w∗ is a smooth map.
This holds in general for every transition map wi±,j±. Since,

(wi±,j±)
−1 =

(
hj,± ◦ h−1

i,±
)−1

= hi,± ◦ h−1
j,± = wj±,i±,

we can conclude that all the inverses of wi±,j± are smooth maps too. Therefore all the transition maps
are diffeomorphisms and therefore A is a smooth atlas for S2. By using Lemma 2.2 we can conclude
that there exists a maximal smooth atlas for S2. Therefore S2 is a smooth manifold.

• Consider an n-dimensional vector space V. In Example 2.4, we have seen that V is a manifold. Let
(ei)i=1,...,n be a basis for V. Consider the map E : Rn → V

E(x) =

n∑
i=1

xiei.

This map is a homeomorphism, so (V, E−1) is a chart. This chart covers the whole vector space. So we
have already found a smooth atlas for V and can conclude that V is a smooth manifold by using Lemma
2.2. There could be other bases for V, let (ẽj)j=1,...,n be such a basis. Then, there is a corresponding

homeomorphism Ẽ : Rn → V

Ẽ(x) =

n∑
j=1

x̃j ẽj .

If such a basis exists, there exists some invertible n× n matrix (Aji ) such that

ei =

n∑
j=1

Aji ẽj ,

for each i ∈ {1, ..., n}. This gives us another chart (V, Ẽ−1). Let us check if this chart is indeed
smoothly compatible with the chart (V, E−1). The transition map w : Rn → Rn between the two

charts is w : Ẽ−1 ◦ E, i.e.

w : x
E−→

n∑
i=1

xiei
Ẽ−1

−−−→ x̃.

Here,

n∑
j=1

x̃j ẽj =

n∑
i=1

xiei

=

n∑
i=1

xi
n∑
j=1

Aji ẽj

=

n∑
j=1

n∑
i=1

xiAji ẽj .

From this, we can conclude that

x̃j =

n∑
i=1

xiAji .

So the transition map w, sending x to x̃, is an invertible linear map and therefore a diffeomorphism. So
if there exist such a pair of charts, (V, Ẽ−1) and (V, E−1), these charts are indeed smoothly compatible.
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The space of all real m × n matrices is a finite-dimensional real vector space under matrix addition and
scalar multiplication. From Example 2.6, we can conclude that this vector space is a smooth manifold. In
particular, the space of all square real matrices Mn(R) is an n×n-dimensional real vector space and therefore
an n2-dimensional smooth manifold. Starting from the next section, we will assume that every manifold is
a smooth manifold unless stated otherwise.

2.5 Submanifolds

In this section, we introduce the concept of embedded submanifolds. We prove that SO(n) is a submanifold of
Mn(R), from which we can conclude that SO(n) is a (smooth) manifold. First, let us consider the definition
of an (embedded) submanifold (see [2]), [12].

Definition 2.20 ((embedded) submanifold). A subsetM of an n-dimensional manifoldM is a d-dimensional
embedded submanifold ofM (d ≤ n) if and only if, around each point x ∈M, there exists a chart (U,φ) of
M such thatM∩M =M is a φ-coordinate slice of U , i.e.,

M = {x ∈ U : φ(x) ∈ Rd × {0}n−d}.

The chart (M∩M, φ), where φ is seen as a mapping into Rd, is a chart of the embedded submanifoldM.
WhenM is a submanifold ofM,M is called the embedding space.

There also exists the notion of immersed submanifold, which is not necessarily an embedded manifold. More
details can be found in Ref. [18]. In this report, we will simply call an embedded submanifold a submanifold.

Example 2.7. (S2 as a submanifold of R3)

• Consider the manifold R3 and the chart ψ : R3 → R3 defined as ψ(x1, x2, x3)→ (r − 1, θ, φ), where

r =
√
x21 + x22 + x23,

θ = arccos
(x3
r

)
,

φ = sgn(x2) arccos

(
x1√
x21 + x22

)
are polar coordinates, which are illustrated in Figure 4.

Figure 4: Spherical coordinates r, θ, φ in R3.

For S2, we have r = 1, since S2 is a sphere of radius 1 in R3. So, for the image of S2, denoted as ψ[S2],
we have

ψ[R3 ∩ S2] = ψ[S2] = [0, π]× [−π, π]× {0}1.

Therefore, S2 is a two-dimensional submanifold of R3.
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Functions defined on embedded submanifolds pose no particular difficulty regarding smoothness. A subman-
ifold is itself also a (smooth) manifold. Furthermore, letM be a submanifold ofM and let F be a smooth
function onM. Then, the restriction of F onM, F |M, is a smooth function onM. The following lemma
is very useful when identifying submanifolds, without explicitly finding the φ-coordinate slices.

Lemma 2.3. (Subsets of manifolds) Let M be a subset of a manifold M. Then M admits at most one
smooth structure that makes it an embedded submanifold ofM (see [2]).

We have seen that Mn(R) is a manifold. Since SO(n) ⊂ Mn(R), by using Lemma 2.3 we can conclude
that SO(n) is a submanifold of Mn(R). One can use the following theorem to obtain the dimension of a
submanifold, without using φ-coordinate slices (see [2]).

Theorem 2.4 (submersion theorem). Let F :M1 → M2 be a smooth mapping between two manifolds of
dimension d1 and d2, respectively, where d1 > d2. Moreover, let y be a point of M2. If y is a regular value
of F , i.e., the rank of DF (y) is equal to d2 at every point of F−1(y), then F−1(y) is a closed embedded
submanifold ofM1, with dimension d1 − d2.

The submersion theorem is schematically illustrated in Figure 5.

Figure 5: Illustration of the submersion theorem, which states that F−1(y)
is an embedded submanifold ofM1 if the rank of F is equal to the dimension
ofM2 for all point in F−1(y).

Example 2.8. (Submersion theorem)

• Consider the set of n× n orthogonal matrices O(n),

O(n) = {X ∈ Mn(R) : XTX = In},

where In denotes the n × n identity matrix. Clearly, O(n) is a subset of Mn(R). In the previous
section, we found that Rm is a smooth manifold for some arbitrary finite value of m. Since there is a

one-to-one correspondence of Mn(R) with Rn
2

(one can simply rewrite the elements of an n×n matrix
into one vector of dimension n2), we can conclude that Mn(R) is also a smooth manifold. Therefore,
by Lemma 2.3 O(n) is submanifold of Mn(R).
We can also prove that O(n) is a submanifold of Mn(R) by using the submersion theorem. Then, we also
obtain the dimension of O(n). Consider the smooth map F : Mn(R) → Ssym(n); F (X) = XTX − In,
where Ssym(n) denotes the set of all n×n symmetric matrices. Note Mn(R) and Ssym(n) are both vector
spaces. Therefore, there is no need to read F through the charts. Also note that O(n) = F−1(0n),
where 0n ∈ Ssym(n) is the n× n zero matrix. Next, let us calculate the differential of F .

F (X +H) = (X +H)T (X +H)− In,
= XTX − In +XTH +HTX + ...,

= F (X) +XTH +HTX + ....

Therefore, DF (X)[H] = XTH + HTX. It remains to show that for all Ĥ ∈ Ssym(n), there exists a
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H ∈ Mn(R), such that DF (X)[H] = Ĥ, where X ∈ F−1(0n). Let H = 1
2XĤ, then

DF (X)[H] = DF (X)[
1

2
XĤ]

=
1

2
XTXĤ + (

1

2
XĤ)TX

=
1

2
Ĥ +

1

2
ĤTXTX

=
1

2
Ĥ +

1

2
Ĥ = Ĥ.

Here, we used that XTX = In, since X ∈ O(n) and that Ĥ = ĤT , since Ĥ ∈ Ssym(n). So we can
conclude that O(n) is a submanifold of Mn(R). The dimension of O(n) is equal to the dimension of
Mn(R) minus the dimension of Ssym(n). Therefore,

dim(O(n)) = dim(Mn(R))− dim(Ssym(n)),

= n2 − 1

2
n(n+ 1),

=
1

2
n(n− 1).

• O(n) consist of two components, matrices X for which det(X) = 1 and for which det(X) = −1. The
first component is SO(n), which is also a subgroup of O(n). SO(n) has the same dimension as O(n),
i.e., the dimension of SO(n) is equal to 1

2n(n− 1).

2.6 Tangent Spaces

In this section, the definition of the tangent space of an embedded submanifold is given, where the embedding
space is a vector space. An example of these embedded submanifolds is S2, which is an embedded submanifold
of the vector space R3. Other examples are matrix manifolds like SO(n) and O(n), which are submanifolds
of the vector space Mn(R). It is important to note that there also exists a general definition of the tangent
space of a manifold (which is not necessarily an embedded submanifold of a vector space). This general
definition is given in Ref. [2] and Ref. [18].

Let us consider a one-dimensional manifold in Rn, which is a regular parametric curve γ : I → Rn. The
tangent at a = γ(0) is a straight line given by τ : I → Rn, τ(t) = a+ tv, where v = γ′(0) ̸= 0. Shifting the
origin to the point a, the tangent space at a is the linear space

TaM = {tv : t ∈ R}.

As an example, letM be described by γ : [−π, π]→ R3, where γ is the unit circle in the x1x2-plane, i.e.,

γ(θ) =

 cos(θ)
sin(θ)

0

 .

So, γ(0) = a = (1, 0, 0)T , then the tangent vector is γ′(0) = (0, 1, 0)T , therefore

TaM = {(0, t, 0) : t ∈ R}.

Note that in the original variables, the tangent space is given by the affine space a + TaM. For multi-
dimensional manifolds, the tangent space should also become multi-dimensional. As an example consider
the tangent space of the unit sphereM in R3 at a = (1, 0, 0)T . Now, there are infinitely many continuously
differentiable paths γ overM for which γ(0) = a, with different values for v = γ′(0). One can choose again
γ1 to be the unit circle in the x1x2-plane, then γ

′
1(0) = (0, 1, 0)T . However, if one chooses the path γ2 to be

the unit circle in the x1x3-plane, then γ
′
2(0) = (0, 0, 1)T . These two tangent vectors span the tangent space,

so

TaM = {(0, t1, t2) : t1, t2 ∈ R}. (7)
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The following definition defines the tangent space of a submanifold in terms of these continuously differen-
tiable paths through a.

Definition 2.21 (tangent space). Let M ⊂ M be a submanifold of the vector space M and let a ∈ M.
The tangent space ofM at a is the space given by

TaM =

{
v ∈M :

∃ϵ > 0,∃γ : (−ϵ, ϵ)→M continuoulsy differentiable, such that
γ(s) ∈M for s ∈ (−ϵ, ϵ), γ(0) = a and γ′(0) = v.

}
.

Elements of TaM are called tangent vectors ofM at x. TaM has the important property that it is a vector
space and that its dimension is equal to the dimension ofM (see [2]).

The tangent bundle TM is defined as the collection of all tangent spaces, i.e.,

Definition 2.22 (tangent bundle). LetM be a submanifold of the embedding vector spaceM. The tangent
bundle TM of the submanifoldM is given by

TM = {v ∈M : ∃x ∈M, such that v ∈ TxM}.

When the manifoldM is (globally or locally) defined as the level set of a constant-rank function F :M→ Rn,
whereM is the embedding vector space, we have

Theorem 2.5 (tangent space through the level set representation of a submanifold). Consider a submanifold
M⊂M of dimension k and let a ∈M. Furthermore, letM be locally given by U∩M = {x ∈ U : F (x) = 0},
where F : U → Rn is a constant-rank function, then

TaM = ker (DF (a)[·]) = {v ∈M : DF (a)[v] = 0}. (8)

The proof of this theorem can be found in Ref. [2] and Ref. [12].

Example 2.9. (Tangent spaces)

• Consider the unit sphere Sn−1, which is a submanifold of the vector space Rn. Consider the function
F : Rn → R Defined as

F (x) = xTx− 1.

DF (x)[h] = xTh + hTx. Note that F (x) is of constant-rank equal to 1, since for an arbitrary ĥ ∈ R,
we have h = 1

2xĥ, such that

DF (x)[
1

2
xĥ] =

1

2
xTxĥ+

1

2
(xĥ)Tx

= ĥ.

Therefore, we can use Theorem 2.5 to obtain

TxS
n−1 = ker(DF (x)[·])

= {v ∈ Rn : xT v + vTx = 0}
= {v ∈ Rn : xT v = 0} (9)

Earlier, we concluded that the tangent space of S2 at (1, 0, 0)T can be described by Equation (7). Note
that this expression coincides with Equation (9), when we let n = 3 and x = (1, 0, 0)T .

• Next, lets us consider the orthogonal group O(n). In Example 2.8, we have seen that O(n) can be
described by

O(n) = {X : F (X) = 0n},
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where F : Mn(R) → Ssym(R), defined as F (X) = XTX − In. F (X) is of constant rank equal to
1
2n(n+ 1) and

DF (X)[H] = XTH +HTX,

so

TXO(n) = ker(DF (X)[·])
= {V ∈ Mn(R) : XTV + V TX = 0n×n}. (10)

In particular the tangent space of O(n) at the identity element is defined as

TIO(n) = {Ω ∈ Mn(R) : Ω + ΩT = 0n×n}. (11)

Note that TIO(n) is the space of all n× n skew-symmetric matrices Sskew(n).

Next, let us propose an alternative characterization of TXSO(n), which is also given in Example 3.5.2
and 3.5.3 of Ref. [2]. Let X0 be an element of O(n) and let t→ X(t) be a curve in O(n), through X0

at t = 0, i.e., X(0) = X0. Since X(t) ∈ O(n), we have

XT (t)X(t) = In×n

ẊT (t)X(t) +XT (t)Ẋ(t) = 0n×n (12)

Since X(t) ∈ O(n), X(t) is of full rank, therefore Ẋ(t) can be written as

Ẋ(t) = X(t)Ω. (13)

Substitution of Equation (13) into Equation (12) gives

ΩTXT (t)X(t) +XT (t)X(t)Ω = 0n×n

ΩT +Ω = 0n×n

Therefore, Ẋ(t) = X(t)Ω, where Ω ∈ Sskew(n) is a skew-symmetric matrix. In example 2.8 we found
that the dimension of O(n) is equal to 1

2n(n − 1). Since the dimension of the tangent space is equal
to the dimension of the manifold and X is of full rank and the space of all skew-symmetric matrices
Sskew(n) is also an 1

2n(n− 1) dimensional space, we can conclude that the tangent space of O(n) at a
point X can be written as

TXO(n) = {XΩ : ΩT +Ω = 0n×n}, (14)

Which is an alternative way to describe the tangent space of O(n) as the expression given in Equation
(10). Note that for any matrix Y ∈ Mn(R) and Ω ∈ Sskew(n) we have

Y Ω = (Y TΩT )T = (−Y TΩ)T = ΩY.

In particular, we have XΩ = ΩX for X ∈ O(n). Therefore, we can also write

TXO(n) = {ΩX : ΩT +Ω = 0n×n}.

• As we have already discussed in the previous section, SO(n) is one of the two connected components of
O(n), therefore the tangent space TR SO(n) at a point R ∈ SO(n) can also be described by Equation
(14), i.e.,

TR SO(n) = {RΩ : Ω ∈ Sskew(n)} = {ΩR : Ω ∈ Sskew(n)}. (15)
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2.7 Riemannian Manifolds

In the previous two sections, we described ways to find and describe the tangent space TxM at a point x of
submanifoldsM. It is important to have a good representation of the tangent space of a submanifold since
tangent vectors generalize the notion of direction derivatives. (See next chapter). Therefore these tangent
vectors will be very useful when optimizing a function F : M → R over an embedded submanifold M of
the embedding vector space M. To characterize which direction of motion from x produces the steepest
increase or decrease in the function value, we need a notion of length that applies to tangent vectors. This
can be done by endowing the tangent space with an inner product ⟨·, ·⟩x, which is a bilinear, symmetric
positive-definite form. This inner product induces a norm

∥v∥ =
√
⟨v, v⟩x,

where v ∈ TxM. Note that one can define various inner products for various tangent spaces. This depen-
dency of the inner product ⟨·, ·⟩x on the tangent space TxM is denoted by using a subscript x.

Definition 2.23 (Riemannian manifold and Riemannian metric). Consider a manifold M, whose tangent
spaces are endowed with a smoothly varying inner product ⟨·, ·⟩x. ThenM is called a Riemannian manifold
and ⟨·, ·⟩x is called the Riemannian metric ofM (see [2]).

Here, smoothly varying means that the inner product smoothly changes with respect to the chosen tangent
spaces, i.e., ⟨·, ·⟩x smoothly changes with respect to x.

Example 2.10. (Riemannian manifold).

• Let us consider the space of all n × n matrices Mn(R). The tangent space of Mn(R) is simply
Mn(R) itself. Let us endow the tangent space of Mn(R), with the Frobenius inner product ⟨·, ·⟩F :
Mn(R)×Mn(R)→ R defined as

⟨X,Y ⟩F = tr(XTY ). (16)

Note that this inner product does not depend on which tangent space TX Mn(R) is chosen. Mn(R)
together with the Frobinius inner products forms a Riemannian manifold.

2.8 Riemannian submanifolds

SO(n) can be considered as an embedded submanifold of the Riemannian manifold Mn(R). In general, let
us denote the submanifold as M and the embedding Riemannian manifold as M. One would expect that
M can inherit a Riemannian metric fromM in a natural way. Let us denote the Riemannian metric in the
embedding spaceM as g(X,Y ). Since every tangent space TRM can be regarded as a subspace of TRM,
the Riemannian metric ḡ ofM induces a Riemannian metric g onM according to

gR(X,Y ) = g(X,Y ), ∀X,Y ∈ TRM, (17)

where X and Y are viewed as elements of TRM. Endowed with this Riemannian metric, the embedded
submanifoldM becomes a Riemannian manifold. M is called the Riemannian submanifold ofM.

Next, we take a closer look at elements in the tangent space TRM and how they can be related to elements
in TRM. Therefore, we need the concept of an orthogonal projection.

Definition 2.24 (Orthogonal projection and orthogonal complement). Let V be a vector space endowed
with an inner product ⟨·, ·⟩ and let V be a linear subspace of V. An orthogonal projection PVx of a vector
x ∈ V onto V is a vector that satisfy two conditions:

1. PVx ∈ V

2. ⟨x− PVx, y⟩ = 0, for all y ∈ V.

The orthogonal complement V⊥ of V is defined as

V⊥ ={x ∈ V : ⟨x, y⟩ = 0, ∀y ∈ V}. (18)
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Every element in x ∈ V can be uniquely decomposed into the sum of an element in V and an element in V⊥,
i.e.,

x = PVx+ PV⊥x.

[20]

Since TRM is a linear subspace of the vector space TRM, we can uniquely decompose any X ∈ TRM into

X = PTR MX + P(TR M)⊥X, (19)

and we can define the orthogonal complement (TRM)⊥ of TRM as

(TRM)⊥ = {X ∈ TRM : g(X,Y ) = 0, ∀Y ∈ TRM}.

(TRM)⊥ is also called the normal space toM at R.

Example 2.11. (The normal space of SO(n))

• In section 2.5, we have seen that SO(n) is a submanifold of the embedding space Mn(R). We choose
the Frobenius norm (see Equation (16)) as our Riemannian metric for Mn(R). According to Equation
(17), SO(n) inherits the Riemannian metric from the embedding space Mn(R). Since tr(STΩ) = 0 for
all S ∈ Ssym(n),Ω ∈ Sskew(n), the normal space of SO(n) at R is given by

(TR SO(n))
⊥
= NR SO(n) = {XS : S ∈ Ssym(n)}, (20)

where Ssym(n) denotes the space of all n× n symmetric matrices.

To conclude this section, let us consider the following theorem, which characterizes the tangent space of the
product space of two Riemannian submanifolds of Rn.

Theorem 2.6. Let M1 and M2 be submanifolds of Rn. Let M =M1×M2 be the product spade of M1

andM2. Then,

T(x1,x2)M = Tx1
M1×Tx2

M .

Proof. This proof consists of two parts. First we will show that Tx1M1×Tx2M2 ⊆ T(x1,x2)M. Then we
will show that T(x1,x2)M⊆ Tx1M1×Tx2M2M.
Part 1.
Let v1 ∈ Tx1

M and v2 ∈ Tx2
M be chosen arbitrarily. From Definition 2.21, we have

v1 ∈ Tx1
M⇔ ∃ϵ1,∃γ1(s1), s1 ∈ (−ϵ1, ϵ1) such that γ1(0) = x1 and γ′1(0) = v1

and

v2 ∈ Tx2M⇔ ∃ϵ2,∃γ2(s2), s2 ∈ (−ϵ2, ϵ2) such that γ2(0) = x2 and γ′2(0) = v2.

Let us define ϵ = min{ϵ1, ϵ2} and let us construct the path γ(s) overM as follows

γ(s) = (γ1(s), γ2(s)), for s ∈ (−ϵ, ϵ).

Note that γ(s) ∈M and that

γ(0) = (γ1(0), γ2(0)) = (x1, x2)

and

γ′(0) = (γ′(0), γ′(0)) = (v1, v2).
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Therefore, (v1, v2) ∈ T(x1,x2)M, so we can conclude that Tx1M1×Tx2M2 ⊆ T(x1,x2)M.
Part 2.
Let v ∈ T(x1,x2)M be chosen arbitrarily. From Definition 2.21, we have

v ∈ T(x1,x2)M⇔ ∃ϵ,∃γ(s), s ∈ (−ϵ, ϵ), such that γ(0) = (x1, x2) and γ
′(0) = v.

Note that γ(s) can be writen as

γ(s) = (PM1
γ(s),PM2

γ(s)),

where PM1 and PM2 denotes the orthognal projection onto M1 and M2 respectively. We define γ1(s) =
PM1γ(s) and γ2(s) = PM2γ(s). So,

γ(s) = (γ1(s), γ2(s)).

Therefore, we have

γ(0) = (γ1(0), γ2(0)) = (x1, x2)

and

γ′(0) = (γ′1(0), γ
′
1(0)) = v.

Note that γ′1(0) ∈ Tx1M and γ′2(0) ∈ Tx2M, therefore v ∈ Tx1M1×Tx2M2. So we can conclude that
T(x1,x2)M⊆ Tx1M1×Tx2M. This result together with the result from part 1 proves this theorem.

2.9 The Matrix Exponential

This section is about the matrix exponential, which is useful when we discuss Lie algebras that describe
tangent spaces, in the next section. Moreover, calculating the matrix exponential will be an important step
in our optimization algorithms.

The definition of the matrix exponential is given below.

Definition 2.25 (matrix exponential). Let X ∈ Mn(R). The matrix exponential is a map exp : Mn(R) →
Mn(R) given by

exp(X) =

∞∑
m=0

Xm

m!
. (21)

Example 2.12. (Matrix exponential)

• As an example, let us calculate the matrix exponential of the following matrix

X =

(
0 −θ
θ 0

)
, (22)

X = θJ, (23)

where θ ∈ R and J is the symplectic matrix given by

J =

(
0 −1
1 0

)
.

Computing the powers of X gives

X2 = θ2J2

= −θ2I2,
X3 = θ3J3

= −θ3J,
X4 = θ4J4

= θ4I2,

...
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So,

exp(X) = I2 +X +
1

2!
X2 +

1

3!
X3 +

1

4!
X4 + ...

= I2 + θJ − 1

2!
θ2I2 −

1

3!
θ3J3 +

1

4!
θ4I2 + ...

= (1− 1

2!
θ2 +

1

4!
θ4 − ...)I2 + (θ − 1

3!
θ3 + ...)J

= cos(θ)I2 + sin(θ)J

=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

In conclusion, the matrix exponential maps a real 2× 2 skew-symmetric matrix to the space of SO(2).

Below some properties of the matrix exponential are given.

Lemma 2.7. Let X,Y ∈ Mn(R), the matrix exponential has the following properties:

1. The matrix exponential exp(X) is a continuous function of X.

2. exp(0n) = In, where In is the n× n identity matrix and 0n is the n× n zero matrix.

3. (exp(X))T = exp(XT ).

4. exp(X) is invertible and (exp(X))−1 = exp(−X). Therefore, exp is a map from Mn(R) to GL(n,R).

5. exp((α+ β)X) = exp(αX) exp(βX) for all α, β ∈ R.

6. If XY = Y X, then exp(X) exp(Y ) = exp(Y ) exp(X) = exp(X + Y ).

7. If C is invertible, then exp(CXC−1) = C exp(X)C−1.

8. ∥ exp(X)∥ ≤ exp(∥X∥), where ∥X∥ is the Frobenius norm defined as
√∑n

k,l=1 |Xkl|2.

9. det(exp(X)) = etr(X), where tr(X) denotes the trace of the matrix X.

10. d
dt exp(tX) = X exp(tX) = exp(tX)X. In particular, d

dt exp(tX)|t=0 = X.

11. exp(X + Y ) = limm→∞
(
exp(Xm ) exp( Ym )

)m
. This is known as the Lie Product formula [13].

All properties above are proven in [13]. These properties also hold when considering the matrix exponential
as a map from Mn(C) to Mn(C). Here Mn(C) denotes the space of all n× n matrices with complex entries.
However, in property 3, one should replace the transpose with the conjugate transpose.

Most properties can directly be shown using Definition 21 and writing out the power series. As an example,
the proof of property 6 is given below.

Proof of property 6.

exp(X) exp(Y ) =

(
I +X +

X2

2!
+ ...

)(
I + Y +

Y 2

2!
+ ...

)
=

∞∑
m=0

m∑
k=0

Xk

k!

Y m−k

(m− k)!

=

∞∑
m=0

1

m!

m∑
k=0

(
m
k

)
XkY m−k.

Only because X and Y commute, one can use the binomial theorem

(X + Y )m =

m∑
k=0

(
m
k

)
XkY m−k.
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Therefore,

exp(X) exp(Y ) =

∞∑
m=0

1

m!
(X + Y )m

= exp(X + Y ).

Similarly, one can prove that exp(Y ) exp(X) = exp(Y +X). Therefore,

exp(X) exp(Y ) = exp(Y ) exp(X) = exp(X + Y ).

Note that XY = Y X is crucial for property 6 to hold. If XY ̸= Y X, i.e., X and Y do not commute,
exp(X) exp(Y ) = exp(Z) ̸= exp(X + Y ), where Z is given by the Baker-Campbell-Hausdorff formula [13].

Now, let us consider methods for calculating the matrix exponential exp(X), where X ∈ Mn(R)) without
calculating all the powers of X. These methods are also discussed in [13]. We will distinguish three cases:
the matrix X is diagonalizable, the matrix X is nilpotent and the matrix X is arbitrary.

2.9.1 Case 1: X is diagonalizable

When X ∈ Mn(R) is diagonalizable, there exists an invertible complex matrix C ∈ Mn(C), of which the
columns are the ordered eigenvectors v1, ...,vn of X, and a complex diagonal matrix D containing the
corresponding eigenvalues λ1, λ2, ..., λn of X, such that X = CDC−1. Then, exp(X) can be written as

exp(X) = exp(CDC−1)

= C exp(D)C−1

= C

 eλ1 0
. . .

0 eλn

C−1.

Here, property 7 of Lemma 2.7 is used.

2.9.2 Case 2: X is nilpotent

An n × n matrix X is nilpotent if and only if Xm = 0 for some positive integer m. Consequently, for all
integers l ≥ m, X l = 0. Therefore,

exp(X) =

m−1∑
k=0

Xk

k!
.

can be computed explicitly.

2.9.3 Case 3: X is arbitrary

A matrix can be neither diagonalizable nor nilpotent. However, every matrix X can uniquely be written as
X = S+N , where S is diagonalizable, N is nilpotent, and SN = NS [13]. Since S and N commute, we can
use property 6 of Lemma 2.7 to obtain

exp(X) = exp(S +N)

= exp(S) exp(N).

Now, exp(S) and exp(N) can be calculated individually by considering them as case-1 and case-2 matrix
exponential, respectively.

Example 2.13. (Calculation of the matrix exponential).
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• Consider the 2×2 skew-symmetric matrix X defined as in Equation (22). This matrix is diagonalizable.
The eigenvectors of X are (1, i)T and (i, 1)T , with corresponding eigenvalues −iθ and iθ, respectively.
Therefore,

exp(X) =

(
1 i
i 1

)(
e−iθ 0
0 eiθ

)
1

2

(
1 −i
−i 1

)
=

1

2

(
e−iθ + eiθ −i(e−iθ − eiθ),

i(e−iθ − eiθ) e−iθ + eiθ

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

• Consider the following matrix

X =

(
0 a
0 0

)
.

Note that X is nilpotent since X2 = 02. Therefore,

exp(X) = I +X

=

(
1 a
0 1

)
.

• Consider the following matrix

X =

(
a b
0 a

)
.

X can be rewritten as X = S + N , where S is a diagonalizable matrix and N a nilpotent matrix, in
the following way

X =

(
a 0
0 a

)
+

(
0 b
0 0

)
.

Therefore,

exp(X) =

(
ea 0
0 ea

)(
1 b
0 1

)
=

(
ea eab
0 ea

)
.

2.10 Lie Groups and Lie Algebras

In this section, the concepts of a Lie group and a Lie Algebra are given. And we relate the previously
introduced concepts of the matrix exponential and tangent spaces of matrix manifolds to each other via Lie
Algebras.

Definition 2.26 (Lie Group). A Lie group is a smooth manifold G, which is also a group and such that the
group product ∗ : G×G→ G and the inverse map g → g−1 are smooth maps for all g ∈ G.

In Section 2.1, we concluded that SO(n) together with the matrix product is a matrix group. In section
2.5 have seen that SO(n) is a smooth submanifold. Therefore, SO(n) is a Lie group. For matrix groups in
general the following theorem holds. [13]

Theorem 2.8. Every matrix group is a smoothly embedded submanifold of Mn(R) and is thus a Lie group.
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Therefore, matrix groups are also called matrix Lie groups. The proof of Theorem 2.8 can be found in Ref.
[13]. The reverse does not hold, i.e., not every Lie group is a matrix (Lie) group. Some counterexamples to
prove this statement are also given in Ref. [13]. One should keep this difference between matrix (Lie) groups
and Lie groups in mind.

The main reason why we want to see SO(n) as a Lie group is because a Lie group has a corresponding matrix
Lie algebra, which gives us a nice way to describe the tangent space of SO(n). The definition of a general
Lie algebra is given below.

Definition 2.27 (Lie Algebra). A Lie algebra g over some field F is a vector space equipped with a binary
operator, called the bracket operator

[·, ·] : g× g→ g,

such that the following properties hold

• bilinearity, i.e.,

[aX + bY, Z] = a[X,Z] + b[Y, Z],

[X, aY + bZ] = a[X,Y ] + b[X,Z],

for all a, b ∈ F and X,Y, Z ∈ g.

• alternativity, i.e.,

[X,X] = 0,

for all X ∈ g.

• Jacobi identity, i.e.,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0,

for all X,Y, Z ∈ g.

By expanding [X + Y,X + Y ] and using the bilinearity and the alternativity properties, we obtain

[X,Y ] = −[Y,X]. (24)

This property is called anticommutativity.

Now let us consider a matrix group G, and let us define the following set g as

g ={X : exp(tX) ∈ G,∀t ∈ R}. (25)

We claim that the following theorem holds.

Theorem 2.9. Let G be a matrix group. The set g = {X : exp(tX) ∈ G,∀t ∈ R} equipped with the bracket
operator [X,Y ] = XY − Y X is a Lie algebra.

Proof. This proof consists of two parts. First, we will prove that the bracket operator [·, ·] fulfils all the
properties, i.e., [·, ·] must fulfil the bilinearity, alternativity and Jacobi identity conditions. Then, we will
prove that g is a vector space, which is closed under the bracket operator.
Checking all conditions for the bracket operator.
Bilinearity,

[X, aY + bZ] = X(aY + bZ)− (aY + bZ)X,

= aXY + bXZ − aY X − bZX,
= a[X,Y ] + b[X,Z].

[aX + bY, Z] = (aX + bY )Z − Z(aX + bY ),

= aXZ + bY Z − aZX − bZY,
= a[X,Z] + b[Y,Z].
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Alternativity,

[X,X] = XX −XX = 0.

Jacobi identity,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = [X,Y Z − ZY ] + [Y,ZX −XZ] + [Z,XY − Y X],

= X(Y Z − ZY )− (Y Z − ZY )X

+ Y (ZX −XZ)− (ZX −XZ)Y
+ Z(XY − Y X)− (XY − Y X)Z,

= XY Z −XZY − Y ZX + ZY X

+ Y ZX − Y XZ − ZXY +XZY

+ ZXY − ZY X −XY Z + Y XZ = 0.

So, all conditions for the bracket operator are fulfilled. Next, we will show that g is a vector space which is
closed under the bracket operator. Let X,Y ∈ g be arbitrary, we require that the common properties of a
vector space are satisfied and that g is closed under the bracket operator, i.e., we require

1. sX ∈ g, for all s ∈ R,

2. X + Y ∈ g,

3. [X,Y ] = XY − Y X ∈ g.

To prove the first property, note that exp(tsX) ∈ G. Therefore sX ∈ g.

Next, let us look at the second property. Using the Lie Product Formula (property 11 of Lemma 2.7) gives

exp(t(X + Y )) = lim
m→∞

(
exp

(
t
X

m

)
exp

(
t
Y

m

))m
.

Note that (exp(tXm ) exp(t Ym ))m ∈ G for all m ∈ N. Since G is a matrix group (see Definition 2.3) and since
the limit is invertible, the limit must be again in G. Therefore, X + Y is in g.

To prove the third property, let us take an arbitrary A ∈ G. By property 7 of Lemma 2.7, we have

exp(tAY A−1) = A exp(tY )A−1 ∈ G.

Note that A exp(tY )A−1 is an element of G, since A ∈ G and exp(tY ) ∈ G. Therefore, AY A−1 ∈ g. Now,
let A = exp(tX). Then, exp(tX)Y exp(−tX) ∈ g for all t ∈ R. From properties 1 and 2, one can conclude
that g is a subspace of Mn(R). This means, in particular, that g is a topologically closed subset of Mn(R)
[13], i.e., for any convergent sequence (Zm)∞m=0 of elements Zm ∈ g the limit is also in g. Now let

Zm = m

(
exp

(
X

m

)
Y exp

(
−X
m

)
− Y

)
.

Note that Zm ∈ g. Therefore, limm→∞ Zm ∈ g. Using the definition of the differential, property 10 of
Lemma 2.7 and the product rule, we obtain

lim
m→∞

Zm = lim
m→∞

m

(
exp

(
X

m

)
Y exp

(
−X
m

)
− Y

)
= lim
h→0

exp(hX)Y exp(−hX)− Y
h

=
d

dt
(exp(tX)Y exp(−tX)) |t=0

= (X exp(tX)Y exp(−tX) + exp(tX)Y (−X) exp(−tX)) |t=0

= XY − Y X.
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Therefore, XY −Y X ∈ g. So, g is a vector space which is closed under the bracket operator. This completes
the proof.

Due to Theorem 2.9 we can say that the set g defined by Equation (25) is the Lie algebra of the matrix
group G. In particular, for SO(n) we will denote the corresponding Lie algebra as so(n), i.e.,

so(n) = {X : exp(tX) ∈ SO(n),∀t ∈ R}. (26)

To further characterize the Lie algebra of SO(n). Consider the following Lemma.

Lemma 2.10. A matrix X ∈ Mn(R) is in the Lie algebra of SO(n) if and only if the matrix X is a
skew-symmetric matrix, i.e. XT = −X.

Proof ⇒. Let so(n) denote the Lie Algebra of the rotation group SO(n), i.e.,

so(n) = {X : exp(tX) ∈ SO(n),∀t ∈ R}.

Let X ∈ so(n) be chosen arbitrarily, then we have

(exp(tX))T exp(tX) = In, ∀t.

Differentiating this equation with respect to t and substuting t = 0 gives

XT +X = 0n×n,

so XT = −X. Therefore X is skew-symmetric.

Proof ⇐. Let X be an arbitrary skew-symmetric matrix, i.e., XT = −X, and let t ∈ R be arbitrary. We
have

exp(tX)T = exp(tXT ) = exp(−tX) = (exp(tX))−1.

Therefore,

exp(tX)T exp(tX) = In.

Furthermore, we have

det(exp(tX)) = e(tr(tX)) = e0 = 1

So, X ∈ so(n).

So, the Lie algebra of SO(n) is the set of all n× n skew-symmetric matrices. There are other matrix groups
of which there are clear descriptions of their corresponding Lie Algebra. Some of them are given in Table 2.
There, Jn is defined as the 2n× 2n symplectic matrix

Jn =

(
0n×n In×n
−In×n 0n×n

)
.
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Lie Group Lie Algebra

GL(n) = {X ∈ Mn(R) : det(X) ̸= 0} gl(n) = Mn(R)
general linear group n× n matrices
SL(n) = {X ∈ Mn(R) : det(X) = 1} sl(n) = {Z ∈ Mn(R) : tr(Z) = 0}
special linear group trace zero matrices
O(n) = {X ∈ Mn(R) : XTX = In×n} o(n) = {Z ∈ Mn(R) : ZT + Z = 0n×n}
orthogonal group skew-symmetric matrices
SO(n) = {X ∈ O(n) : det(X) = 1} so(n) = {Z ∈ Mn(R) : ZT + Z = 0n×n}
special orthogonal group skew-symmetric matrices
Sp(2n) = {X ∈ M2n(R) : XTJnX = Jn} sp(2n) = {Z ∈ M2n(R) : JZ + ZTJ = 02n×2n}
symplectic group

Table 2: Lie algebras of some matrix groups. Note that o(n) = so(n). This
table can also be found in Ref. [12].

The following theorem describes the connection between the Lie algebra of a matrix group and the tangent
space of this matrix group.

Theorem 2.11. The matrix Lie algebra g = {X : exp(tX) ∈ G,∀t ∈ R} of a matrix Lie group G completely
describes the tangent space of the matrix Lie group G at the identity element I, i.e.,

g = TIG

To prove this theorem, we need the definition of the matrix logarithm, which is given below.

Definition 2.28 (matrix logarithm). Let X ∈ Mn(R), the matrix logarithm log : Mn(R) → Mn(R) is
defined by

log(X) =

∞∑
m=1

(−1)m+1 (X − In×n)m

m
, (27)

whenever the series converges.

The sum in Equation (27) might not converge. However, it does converge for matrices in a neighbourhood
around the identity matrix In×n. In particular, the series converges for X, if ∥X − In×n∥F < 1, where ∥ · ∥F
denotes the Frobenius norm defined as

∥A∥F =
√
⟨A,A⟩F =

√
tr(ATA). (28)

The matrix logarithm is the inverse map of the matrix exponential, in other words,

log(exp(X)) = X,

exp(log(X)) = X.

For proof, see Theorem 2.8 of Ref. [18]. Now, let us prove Theorem 2.11.

Proof of Theorem 2.11. The proof consists of two parts. First, we will show that g ⊆ TIG. Secondly, we will
show that TIG ⊆ g.
Part 1.
Let X ∈ g be arbitrary, then define the path γ : [−1, 1]→ G as

γ(s) = exp(sX).

Note that by definition of g we indeed have that γ(s) ∈ G for all s ∈ [−1, 1]. Furthermore,

γ(0) = exp(0) = I,

dγ(0)

ds
= X exp(0) = X.
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So, X ∈ TIG.
Part 2.
Let Y ∈ TIG be chosen arbitrarily. Then, there exist an ϵ > 0 and a path γ(s) : [−ϵ, ϵ] → G, such

that γ(0) = I and Y = dγ(0)
ds . So, we need to prove that exp

(
tdγ(0)ds

)
∈ G. It is sufficient to prove that

exp
(

dγ(0)
ds

)
∈ G, since we can simply create another path γ∗(s) that satisfies the same properties as γ(s) by

re-scaling the s parameter, using t, by choosing

γ∗(s) = γ(ts),

dγ∗(s)

ds
= t

dγ(s)

ds
.

Next, let us define ψ(s) = log(γ(s)) for small values of |s| < ϵ. Here log is the matrix logarithm as defined in
Definition 2.28. The matrix logarithm is uniquely defined in a neighbourhood around the identity element
In×n. Since we choose |s| to be small, γ(s) will be in this neighbourhood. Therefore, γ(s) = exp(ψ(s)) ∈ G
for small s. Using the chain rule we obtain

dψ(s)

ds
= Dlog(γ(s))

dγ(s)

ds
.

Subsitution of s = 0 gives

dψ(0)

ds
= Dlog(In×n)

dγ(0)

ds
.

Note that

Dexp(0n×n) = In×n.

By the inverse function theorem we have

Dlog(In×n) = (Dexp(0n×n))
−1 = In×n.

Therefore,

dψ(0)

ds
=

dγ(0)

ds
.

So, it remains to prove that exp(dψ(0)ds ) ∈ G. Using the definition of the derivative we obtain

dψ(0)

ds
= lim
h→0

ψ(h)− ψ(0)
h

.

Note that ψ(0) = log(γ(0)) = log(In×n) = 0n×n. Take h = 1
n , then

dψ(0)

ds
= lim
n→∞

nψ

(
1

n

)
.

Note that ψ( 1n ) is defined for sufficiently large n. Recall that we have γ(s) = exp(ψ(s)) ∈ G for small
|s|. Therefore, γ(s)n = exp(nψ(s)) is also in G for small values of s. Now take n sufficiently large, then
exp(nψ( 1n )) ∈ G. Since G is a matrix group and since a matrix exponential is always invertible, we have that

exp(limn→∞ nψ( 1n )) = exp(dψ(0)ds ) ∈ G. Therefore, exp(dγ(0)ds ) ∈ G, exp(tY ) ∈ G and Y ∈ g. This completes
the proof.

We can combine Theorem 2.9 and Theorem 2.11 to conclude that one can use the Lie Algebra of a matrix
group G as a way to describe the tangent space of G at the identity element I.
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To conclude this section, let us look at what this all means for the matrix group SO(n). In Section 2.6, we
found Equation (15), which describes the tangent space of SO(n) at R ∈ SO(n). In particular, the tangent
space at the identity element I can be described by

TI SO(n) = {Ω : Ω ∈ Sskew(n)}. (29)

In this section, we found an alternative way to describe TI SO(n), i.e.,

TI SO(n) = so(n) = {X : exp(tX) ∈ SO(n)}. (30)

This observation explains the result from example 2.12. There we calculated the matrix exponential of an
arbitrary 2× 2 skew-symmetric matrix and found that this results in an element of SO(2).

2.11 Differential Equations on Submanifolds and their Tangent Spaces

In this section, differential equations on submanifolds will be discussed. These differential equations give
another perspective on concepts like tangent spaces, Lie algebras and the matrix exponential. This perspec-
tive will give us a new way to describe the tangent space TX SO(n) at an arbitrary element X ∈ SO(n).
Whereas, in the previous section we only found a way to describe the tangens space TI SO(n) at the identity
element In. A lot of the results given in this section can also be found in Ref. [12].

The definition of a differential equation on a submanifold is given below.

Definition 2.29 (vector field, differential equation and integral curves on a manifold). Let M be a sub-
manifold. A vector field onM is a continuously differentiable mapping f :M→ Rd such that

f(Y ) ∈ TYM for all y ∈M.

For such a vector field,

Ẏ = f(Y ) (31)

is called a differential equation on the submanifoldM, and a function Y : I →M, where I ⊂ R, satisfying
Ẏ (t) = f(Y (t)) for all t ∈ I is called an integral curve or simply a solution of the differential equation.

The following theorem describes the existence and uniqueness of an initial value problem on a manifold as
described by Equation (31). The proof of this theorem will not be given here but can be found in Ref. [12].
More information on how the solution of the differential equation depends on the initial conditions and how
perturbations in the system propagate is also given in Ref. [12].

Theorem 2.12 (Existence an uniqueness of differential equations on a submanifold). Consider a differential
equation ẏ = f(y) on a submanifoldM⊂ Rn. Here, f :M→ Rn is a continuous differentiable vector field.
Then, for every y0 ∈M, there exists a maximal open interval I = I(y0) and a twice continuous differentiable
function y : I →M satisfying

• y(t) is a solution of ẏ = f(y) on I satisfying y(0) = y0.

• If ŷ : J →M is a solution of ẏ = f(y), with initial condition y(0) = y0, on the interval J , then J ⊂ I
and ŷ(t) = y(t) for t ∈ J .

Example 2.14. (vector field on S2).

• As an example of a differential equation on a submanifold, we will consider Euler’s equations of motion,
which describe the rotation of a rigid body [12]. Let I1, I2, I3 be the principal moments of inertia of
the rigid body and let y(t) = (y1(t), y2(t), y3(t))

T be the angular momentum vector and let y0 = y(0)
be the initial condition. Here t ∈ R≥0 represents time. Then the Euler equations state

ẏ1 = (I−1
3 − I−1

2 )y3y2,

ẏ2 = (I−1
1 − I−1

3 )y1y3,

ẏ3 = (I−1
2 − I−1

1 )y2y1.
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We will show that Euler’s equations of motion are a system of equations which can also be described
as a differential equation on a submanifold of the form ẏ = f(y), where

f(y) =

 (I−1
3 − I−1

2 )y3y2
(I−1

1 − I−1
3 )y1y3

(I−1
2 − I−1

1 )y2y1

 .

First, note that the vector y lies on a submanifold of R3. This can be seen by considering the function
C : R3 → R, which is defined as

C(y) =
1

2

(
y21 + y22 + y23

)
. (32)

Taking the derivate with respect to time gives

d

dt

(
1

2
(y21 + y22 + y23)

)
= y1ẏ1 + y2ẏ2 + y3ẏ3,

= (I−1
3 − I−1

2 )y1y2y3 + (I−1
1 − I−1

3 )y1y2y3 + (I−1
2 − I−1

1 )y1y2y3,

= 0.

So, C(y) is a preserved quantity. Therefore,

M = {y ∈ R3 :
1

2
∥y∥2 − C(y0) = 0} (33)

describes a submanifold on which the solution y(t) lives for all t ∈ R≥0. Let g : R3 → R be defined as

g(y) = C(y)− C(y0)

=
1

2
∥y∥2 − C(y0).

Note that g(y) = 0 for all y on the manifold. From this, one can conclude that the manifold described
by Equation (33) is a two-dimensional manifold. More precisely, M represents a sphere in R3 with
radius r =

√
2C(y0). Note that

Dg(y) = (y1, y2, y3).

Therefore,

Dg(y)[f(y)] = (y1, y2, y3)

 (I−1
3 − I−1

2 )y3y2
(I−1

1 − I−1
3 )y1y3,

(I−1
2 − I−1

1 )y2y1


= (I−1

3 − I−1
2 )y1y2y3 + (I−1

1 − I−1
3 )y1y2y3 + (I−1

2 − I−1
1 )y1y2y3,

= 0.

Comparing the equality above with the description of the tangent space through the level set repre-
sentation of the submanifold (see Equation (8)) one can conclude that f(y) ∈ TyM. So, ẏ = f(y) is
indeed a differential equation on the submanifoldM.

An important result from the previous section was the equality g = TIG, where g is the matrix Lie algebra
of a matrix group G and TIG is the tangent space of the matrix Lie group at the identity element I. The
following theorem gives a description of the tangent space at an arbitrary element of G (see [2], [12]).

Theorem 2.13. The tangent space TYG of a matrix Lie group G at an element Y ∈ G can be given as

TYG = {AY : A ∈ g} = {Y A : A ∈ g}, (34)

where g is the Lie algebra of the matrix Lie group G.
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Proof. (Proof of Theorem 2.13) Consider an arbitrary element A ∈ g. Since g = TIG, there exists a
differentiable path α(t) in G satisfying α(0) = I and α′(0) = A. For a fixed Y ∈ G, the path γ1(t) = α(t)Y
is in G and satisfies γ1(0) = Y and γ̇1(0) = AY . Consequently, AY ∈ TYG. Alternatively, the path
γ2(t) = Y α(t) is in G and satisfies γ2(0) = Y and γ̇2(0) = Y A. Consequently, Y A ∈ TYG.

Ẏ = AY defines a differential equation on the submanifold G. The solution Y (t) = exp(tA) is therefore in
G for all t ∈ R. This again shows that the matrix exponential maps elements from the Lie algebra to the
Lie group, i.e. exp : g→ G. This results in the following theorem.

Theorem 2.14. Let G be a matrix Lie group and g its Lie algebra. If A(Y ) ∈ g for all Y ∈ G and if the
initial condition Y0 ∈ G then the solution of Ẏ = Y A(Y ) satisfies Y (t) ∈ G for all t ∈ R (see [12]).

Now, let us consider the case where G = SO(n). Applying Theorem 2.13 gives

TR SO(n) = {RΩ : Ω ∈ so(n)}. (35)

Note that this expression is equivalent to Equation (15), since so(n) = Sskew(n).

To conclude this section, let us apply Theorem 2.14 on the following initial value problem defined on SO(n).

• Y (0) = R ∈ SO(n),

• Y ′(t) = ΩY (t), where Ω ∈ Sskew(n)

The solution is given by

Y (t) =R exp(tΩ). (36)

Note that Ω ∈ so(n), therefore Theorem 2.14 applies. So, Y (t) ∈ SO(n) for all t ∈ R
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3 Optimization on SO(n)

Given is a smooth function f : Mn(R) → R. This chapter aims to obtain an iterative method to solve the
following minimization problem.

min
R∈SO(n)

f(R). (37)

Consider the following example of such a problem: Let x,y be given vectors in Rn. Suppose one wants to
find a rotation matrix R ∈ SO(n), such that Rx = y. One can consider this as a minimization problem by
defining the function

f(R) = ∥Rx− y∥2,
= (Rx− y)T (Rx− y).

which needs to be minimized for all R ∈ SO(n). In general, the problem described by Equation (37) is
not easy, due to the restriction R ∈ SO(n). If we ignore this restriction we could use the classical gradient
descent algorithm over Mn(R) which is an iterative algorithm given by

Rt+1 = Rt − ηGradf(Rt). (38)

Here, η ≥ 0 is the learning rate (which may depend on the number of prior iteration steps t) and Gradf(R)
is the Euclidean matrix gradient as defined below.

Definition 3.1 (Euclidean (matrix) gradient). Given a real-valued matrix function f : Mn(R) → R, the
Euclidean gradient of f(R) at R = (rij) ∈Mn(R) is defined to be the matrix,

Gradf(R) =


∂f(R)
∂r11

· · · ∂f(R)
∂r1n

...
. . .

...
∂f(R)
∂rn1

· · · ∂f(R)
∂rnn

 . (39)

Note, that there is a one-to-one correspondence between the definition of the Euclidean matrix gradient
and the definition of the classical Euclidean gradient for a function f̂ : Rn2 → R. To see this, let us

define a mapping vec : Mn(R) → Rn
2

, which rearranges the elements of a matrix R ∈ Mn(R) into a

vector vec(R) ∈ Rn
2

. Moreover, consider the function f̂ : Rn2 → R, which maps the vector vec(R) ∈ Rn2

to the scalar f(R), i.e., f̂(vec(R)) = f(R) for all R ∈ Mn(R). The classical Euclidean gradient of f̂

is denoted as ∇f̂(vec(R)) ∈ Rn2

. When one rearranges this classical Euclidean gradient ∇f̂(r) into an
n × n matrix by using the inverse vec−1 of the mapping vec, one obtains the Euclidean matrix gradient
Gradf(R) = vec−1(∇f̂(vec(R))). In the remainder of this report, we will call the Euclidean matrix gradient
simply the Euclidean gradient.

When optimizing over SO(n) the problem which arises when using the classical gradient descent algorithm
is that the updated matrix Rt+1 in Equation (38) is not necessarily an element of SO(n) even if Rt ∈ SO(n).
Moreover, Gradf(Rt) is not necessarily an element of the tangent space of SO(n) at Rt. In this chapter,
we adjust the classical gradient descent algorithm to obtain an iterative method where the updated matrix
Rt+1 stays in SO(n). Therefore, we give the definition of the Riemannian gradient, which can be regarded
as an extension of the concept of a Euclidean gradient from Mn(R) to Riemannian manifolds. Secondly, we
look into retractions, which are maps that map a matrix in the tangent space back onto the submanifold
(SO(n)) in a meaningful way. Then, we will talk about line-search methods and finally, we will look into the
convergence properties of these line-search methods.

3.1 Riemannian gradient

Let us first consider the space of Rn equipped with the standard inner product ⟨·, ·⟩2 : Rn×Rn → R, i.e.,
⟨x,y⟩ = xTy. Let f : Rn → R be a smooth scalar function. Let us look at how we use the Euclidean
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gradient ∇f(rt) to obtain the steepest-descent direction x∗ of f at rt. Using this direction we can update
rt as follows.

rt+1 = rt + ηx∗, η ≥ 0,

where η is the learning rate and x∗ is the direction of steepest-descent, which is defined as

x∗ = argmin
x∈Rn:∥x∥2=1

Df(rt)[x]. (40)

Here, ∥x∥2 denotes the vector 2-norm, i.e., ∥x∥2 =
√
⟨x, x⟩2 and Df(rt)[x] denotes the differential or direc-

tional derivative of f at rt along x (see Definition 2.10) which in this case can also be written as

Df(rt)[x] = ⟨∇f(rt)),x⟩2 = (∇f(rt))Tx. (41)

Now, consider the following lemma.

Lemma 3.1 (Steepest-descent direction Rn). Let f : Rn → R be a smooth mapping. Then

argmin
∥x∥2=1

Df(r)[x] = x∗ = − ∇f(r)
∥∇f(r)∥2

.

Proof. Let x ∈ Rn, with ∥x∥2 = 1. By the Cauchy-Schwarz inequality

−∥∇f(rt)∥2 ≤ Df(rt)[x] = ⟨∇f(rt),x⟩2 ≤ ∥∇f(rt)∥2. (42)

These bounds are achieved for x = ± ∇f(rt)
∥∇f(rt)∥2

. Therefore, the direction of greatest descent is

x∗ = − ∇f(rt)
∥∇f(rt)∥2

.

Note that it also follows from the proof of Lemma 3.1 that the direction of greatest ascent is −x∗.

Now let us consider an embedded submanifold M of a Riemannian manifold M, a smooth scalar field
f :M→ R and the iteration point rt. We will drop the subscript t for notation purposes. We can extend
the idea of minimising the directional derivative from Rn to the manifold. Analogous to Equation (40), we
have that the direction of greatest descent x∗ is given by

x∗ = argmin
x∈TrM:∥x∥=1

Df(r)[x]. (43)

Here, ∥x∥ is the norm of x induced by the Riemannian metric at r ∈ M. Df(r)[x] is again called the
directional derivative of f at r along x. Note the restriction of x onto TrM. This restriction is important.
To see this, suppose x has a component y ∈ (TrM)⊥ such that x = PTrMx + y (see Section 2.8), this
component gives us no meaningful direction of movement over the submanifoldM since this component is
orthogonal with respect to the submanifold at point r.

Similar to the case of Rn (see Equation (41)), we have a way to express Df(r)[x] in terms of a gradient.
This gradient is called the Riemannian gradient or simply gradient.

Definition 3.2 (Riemannian gradient). LetM be a Riemannian manifold and let ⟨·, ·⟩r be the Riemannian
metric ofM. Given is also a smooth map f :M→ R. Then, the Riemannian gradient gradf(r) of f at a
point r ∈M is an element of TrM, which is defined in the following sense

Df(r)[x] = ⟨gradf(r), x⟩r , ∀x ∈ TrM. (44)

In other words, the Riemannian gradient grad f(r) is the Riesz representer of the linear functional Df(r) ∈
L(TrM) that takes values in the space TrM with inner product ⟨·, ·⟩r. The Riesz represented (thus the
Riemannian gradient) is an element of TrM. [5]
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The Riemannian gradient has the following properties (see [2]):

• The direction of gradf(r) is the steepest-ascent direction of f at r

gradf(r)

∥gradf(r)∥
= argmax
x∈TRM:∥x∥=1

Df(r)[x]. (45)

• The norm of gradf(R) gives the steepest slope of f at r:

∥gradf(r)∥ = Df(r)

[
gradf(x)

∥gradf(x)∥

]
. (46)

One can prove these properties by using the Cauchy-Schwartz inequality in a similar way as was done for
Rn (see Equation (42)), but now replacing the standard inner product with the Riemannian metric. Similar
one can show that −gradf(r) is the steepest-descent direction of f at r.

Note that for M = Rn, where M is equipped with the standard inner product ⟨·, ·⟩2, we have that the
Riemannian gradient is equal to the orthogonal projection of the Euclidean gradient into the tangent space
(see Example 2.5). In general, this holds for all vector fields where one uses the standard inner product as
a Riemannian metric [2].

3.2 Calculation of the Riemannian Gradient

In the previous section, we have given the definition of the Riemannian gradient and we have seen that this
gradient gives us the direction of greatest ascent and descent. In this section, we develop a method to find
the Riemannian gradient at a point R ∈ SO(n). Recall that SO(n) can be regarded as a submanifold of the
Riemannian manifold Mn(R).

Let the Riemannian metric of Mn(R) be the Frobenius inner product (see Equation (16)). Since the Frobenius
inner product is defined onMn(R), it is also defined on the tangent space of SO(n). Therefore, SO(n) together
with this metric form a Riemannian manifold. Now let f : Mn(R) → R be a smooth function which has to
be minimized (see Equation (37)). Since f is defined over Mn(R) it is also defined over the tangent space of
SO(n). For notation let us denote SO(n) asM. The Riemannian gradient of f at R is given in the following
sense

Df(R)(V ) = ⟨grad f(R), V ⟩F , ∀V ∈ TRM . (47)

Note that we write V and R as uppercase letters to emphasise that these are matrices. Since Mn(R) is a
vector space of which the Frobenius inner product is its standard inner product, we have

Df(R)(V ) = ⟨Grad f(R), V ⟩F , ∀V ∈ TRMn(R) = Mn(R) . (48)

Here Grad f(R) is the Euclidean matrix gradient as defined in definition 3.1. Since TRM⊂Mn(R), we can
use Equation (17). We have for all V ∈ TRM

⟨grad f(R), V ⟩F =⟨Grad f(R), V ⟩F
=⟨PTR M Grad f(R) + P(TR M)⊥ Grad f(R), V ⟩F
=⟨PTR M Grad f(R), V ⟩F .

Therefore,

grad f(R) = PTR M Grad f(R). (49)

Here, PTR M Grad f(R) denotes the orthogonal projection of Grad f(R) onto TRM and P(TR M)⊥ Grad f(R)

denotes the orthogonal projection of Grad f(R) onto (TRM)⊥. Equation (49) gives us a way to calculate
the Riemannian gradient of f at R ∈ SO(n).
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3.3 Projecting the Euclidean gradient

In this section, we discuss a way to project the Euclidean gradient Grad f(R) onto the tangent space TRSO(n)
of SO(n) and find the Riemannian gradient at a point R ∈ SO(n). For notation, purposes denote SO(n) as
G and denote the Lie algebra so(n) of SO(n) as g.

According to Theorem 2.11, we have that the matrix Lie algebra g of G completely describes the tangent
space TIG at the identity element I. According to Lemma 2.10, the Lie algebra g of G and the tangent
space TIG is the vector space of all skew-symmetric matrices Sskew(n). This can be denoted as

TIG = span{U1, ..., Uk}. (50)

Here k = 1
2n(n − 1) and the sequence (Ui)

k
i=1, Ui ∈ Mn(R) forms a basis for the vector space of all n × n

skew-symmetric matrices. We choose the following basis

U1 =
1

2

√
2



0 1 0 0 · · · 0
−1 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 0


, (51)

U2 =
1

2

√
2



0 0 1 0 · · · 0
0 0 0 0 · · · 0
−1 0 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 0


, (52)

... (53)

Un =
1

2

√
2



0 0 0 0 · · · 0
0 0 1 0 · · · 0
0 −1 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 0


, (54)

... (55)

Uk =
1

2

√
2


0 · · · 0 0 0 0
...

...
...

...
...

0 · · · 0 0 0 0
0 · · · 0 0 0 1
0 · · · 0 0 −1 0

 . (56)

Note that for all i, j ∈ {1, ..., k}, we have

⟨Ui, Uj⟩F = δi,j .

Therefore {U1, ..., Uk} forms an orthonormal basis for TIG.

In general, we want to describe the tangent space TRG at an arbitrary element R ∈ G. According to Theorem
2.13,

TRG = {RA : A ∈ g}.
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Therefore, {RU1, ..., RUk} forms a basis for TRG and we have

TRG = span{RU1, ..., RUk}.

According to Equation (49), we need to project the Euclidean gradient Grad f(R) onto this tangent space
to obtain the Riemannian gradient grad f(R). Before we discuss how to project onto this space, let us first
consider the following example of a projection of a vector in Rn onto a linear subspace.

Example 3.1. (Projection onto a linear subspace of Rn)

• Let us consider a vector x ∈ Rn and the vector space V ⊆ Rn of dimension k ≤ n, which is given by

V = span{u1, ...,uk}.

Here, ui ∈ Rn for i ∈ {1, ..., k} and {u1, ...,uk} forms an orthonormal basis for V. Let us define a
matrix U ∈ Rn×k, the columns of which are the basisvectors of V, i.e.,

U =


...

...
u1 · · · uk
...

...

 .

We want to project the vector x onto V. The projected vector is denoted as PVx. We can write x as

x = PVx+ PTVx,

where PV⊥x denotes the projection onto the orthogonal complement V⊥ of V, where V⊥ is a n − k
dimensional vector space.

PVx can be written as

PVx = Uc,

where c represents the coordinate vector of PVx with respect to the basis {u1, ...,uk}. Due to or-
thonormality, we have

UTPV⊥x = 0k

UT (x− Uc) = 0k

c = (UTU)−1UTx

PVx = UUTx, (57)

where we used that UTU = Ik×k. Equation (57) gives us a way to project x onto V.

Next, let us define

UR =


...

...

vec
(

RU1

∥RU1∥F

)
· · · vec

(
RUk

∥RUk∥F

)
...

...

 , (58)

where vec : Mn(R)→ Rn
2

is an operator which orders the elements of a n× n matrix into a n2 dimensional
vector. The way of ordering can be chosen arbitrarily. We will use row-wise ordering in our final algorithm.

Furthermore, let vec−1 : Rn
2

→ Mn(R) denote the inverse of vec. UR is an orthogonal matrix and note that

UI =


...

...
vec(U1) · · · vec(Uk)

...
...

 . (59)
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Since TRG can be seen as a linear subspace of Rn
2

, we proceed similarly as in Example 3.1. Therefore, the
Riemannian gradient in vector form vec(grad f(R)) is given by

grad f(R)) = vec−1(URU
T
R vec(Grad f(R))), (60)

In Equation (60), we transform the Euclidean gradient into a vector of Rn
2

. Then, we project onto the linear
subspace described by the columns of UR. The resulting vector is then transformed back into a matrix of
Mn(R). This matrix is the Riemannian gradient of f(R).

Example 3.2. (Calculating the Riemannian gradient)

• Suppose x,y ∈ Rn are given and we want to minimize the loss function

f(R) = ∥Rx− y∥2

for R ∈ SO(n). Note that if x,y ∈ Sn−1, then there exists an R∗, such that R∗x = y, therefore
f(R∗) = 0. The Euclidean gradient Grad f(R) of f(R) is given by

Grad f(R) = 2(Rx− y)xT .

Using Equation (60) and UR as defined by Equation (58) gives

grad f(R) = 2 vec−1(URU
T
R vec((Rx− y)xT )).

The Riemannian gradient needs to be computed during every iteration step. Moreover, using the method
described above, we need to compute a basis for TRG and obtain UR. Then, UR needs to be multiplied
with its transpose. UR is a big n2 × k matrix, so constructing this matrix and calculating URU

T
R can be

computationally expensive and we need to redo all these calculations during every iteration step. Therefore,
consider the following lemma.

Lemma 3.2. Let M = SO(n), V ∈ Mn(R) and R ∈ SO(n), then

PTRG V = RPTIG(R
TV ), (61)

where PTRG denotes the projection onto TRG and PTIG denotes the projection onto TIG = g.

Proof. From the definition of a projection, we have

⟨PTRG V,RΩ⟩F = ⟨V,RΩ⟩F , ∀Ω ∈ TIG

and

⟨PTIG(R
TV ),Ω⟩F = ⟨RTV,Ω⟩F , ∀Ω ∈ TIG.

Using the equalities above and the property ⟨AB,C⟩F = ⟨B,ATC⟩F , we obtain

⟨PTIG(R
TV ),Ω⟩F = ⟨RTV,Ω⟩F = ⟨V,RΩ⟩F = ⟨PTRG V,RΩ⟩F = ⟨RT PTRG V,Ω⟩F , ∀Ω ∈ TIG.

Therefore,

RT PTRG V = PTIG(R
TV ),

PTRG V = RPTIG(R
TV ).
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From Lemma 3.2 and Equation (49) , we obtain

grad f(R) = RPTIG(R
T Grad f(R)). (62)

Projecting, like in Equation (60), gives

grad f(R) = R vec−1(UIU
T
I vec(RT Grad f(R))). (63)

We will use Equation (63) rather than Equation (60) to calculate the Riemannian gradient since this is
computationally more efficient. Because, by using Equation (63), we no longer have to construct a new basis
for the tangent space TRG during every iteration step. We can simply use {U1, ..., Uk} as a basis for TIG,
obtain UI and then precompute UIU

T
I .

3.4 Retractions

In the previous section, we found a way to calculate the Riemannian gradient grad f(R) ∈ TR SO(n) of the
loss function f : SO(n)→ R at a point R. Since − grad f(R) is the steepest descent direction (see Equation
(45)), we suggest the following update method

Rt+1 = Rt − η grad f(Rt), (64)

where t is the iteration step and η is the learning rate. This update method is already an improvement with
respect to classical gradient descent, given by Equation (38). In this new method, we move in the direction
of a tangent vector since grad f(Rt) ∈ TRt

SO(n), whereas Grad f(Rt) does not lie in the tangent space
TRt

SO(n) necessarily. However, we still have the problem that the update Rt+1 does not necessarily lie in
SO(n). In our final update method, we want to move in the direction of a tangent vector, while staying on
the manifold. To ensure the latter, we will introduce the notion of a retraction mapping. Let x ∈ M be a
point on the manifoldM. A retraction ρ at x, denoted by ρx, is a mapping from TxM toM that preserves
gradient at x. A more formal definition is given below (see [2]).

Definition 3.3 (retraction). Consider a manifold M and a smooth mapping ρ from the tangent bundle
TM onto M . Let ρx denote the restriction of ρ on TxM. ρ is called a retraction ofM if for all x ∈M

ρx(0x) = x. and (65)

Dρx(0x)[v] = v, ∀v ∈ TxM, (66)

where 0x denotes the zero element of the tangent space TxM.

In general, we assume that the domain of ρ is the whole tangent bundle TM. This property will hold for
all the retractions we will discuss in this report.

Now we suggest the following update method, which we will call the Riemannian gradient descent method.

Rt+1 = ρRt(−η grad f(Rt)), (67)

where t is the iteration step, ρRt : TRtM → M is a retraction and η is the learning rate. Suppose the
Riemannian gradient grad f(Rt) is equal to the zero element 0Rt

∈ TRt
M. (In case of optimization over

SO(n), we have 0Rt
= 0n×n, where 0n×n is the n × n zero matrix). The first property, Equation (65),

guarantees that 0Rt
is sent to Rt. This is desirable since if grad f(Rt) = 0Rt

, then we are at a possible
minimum of f . During each iteration step, we want to move in the direction of − grad f(Rt) over the
manifold to get closer to a minimum of the loss function f . The second property, Equation (66), secures that
we indeed move in the direction of − grad f(Rt) over the manifold, at least for an infinitesimal step size.

A special kind of retraction is a retraction which is based on a decomposition. Examples of such decompo-
sitions are the QR-decomposition or the polar decomposition (see [2]).

Theorem 3.3 (retractions based on decompositions). LetM be an embedded submanifold of a vector space
M and let N be a manifold such that dim(M)+dim(N ) = dim(M). Assume that there is a diffeomorphism

ϕ :M×N →M∗

(X,Y )→ ϕ(X,Y ),
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whereM∗ is an open subset ofM, with a neutral element I ∈ N satisfying

ϕ(X, I) = X, ∀X ∈M .

Let V ∈ TXM. The mapping

ρX(V ) = π1(ϕ
−1(X + V )), (68)

defines a retraction onM. Here

π1 :M×N →M
(X,Y )→ X

denotes the projection onto the first component.

The proof of this theorem can be found in Section 4.1 of Ref. [2]. Next, we will consider some examples of
retractions based on decompositions.

Example 3.3. Retractions and decompositions

• Consider the unit sphereM = Sn−1 inM = Rn, let N = {r ∈ R : r > 0}, and consider the mapping

ϕ :M×N → Rn∗
(x, r)→ xr,

where R∗ = {x ∈ Rn : x ̸= 0n} is open. One can easily verify that ϕ is a diffeomorphism. Using
Theorem 3.3, we can conclude that

ρx(v) =
x+ v

∥x+ v∥2

is a retraction, where v ∈ TxM. This retraction maps the point x + v, to the point ρx(v) ∈ Sn−1

which lies closest to x+ v. For S1 this retraction method is visualized in Figure 6.

Figure 6: Retraction onto the unit sphere S1, which is a submanifold of R2.
Here x ∈ S1 and v ∈ TxS1. Suppose we want to minimize a smooth function
f over S1 using the Riemannian gradient descent method and we start at
x. Then, v = −η grad f(R) and ρx(v) is the next iteration point.

• Consider the manifold of orthogonal matrices On. A QR-decomposition of an n × n real matrix
A ∈ Mn(R) is the decomposition A = QR, where Q ∈ O(n) is an orthogonal matrix and R ∈ Supp+(n)
is an upper triangular matrix with strictly positive diagonal elements. Note that dim(O(n)) = 1

2n(n−1)
(see Example 2.8), dim(Supp+(n)) = 1

2n(n+ 1) and dim(Mn(R)) = n2 = dim(O(n)) + dim(Supp+(n)).
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The inverse of a QR decomposition is the mapping

ϕ :On × Supp+(n)→ Mn(R) .
(Q,R)→ QR.

ϕ is a diffeomorphism and has the property that ϕ(Q, I) = Q for all Q ∈ O(n). Let

π1 :O(n)× Stext+(n)→ O(n)

(Q,R)→ Q

be the projection onto the first component. According to Theorem 3.3 the map

qf = π1 ◦ ϕ−1

is a retraction onto O(n).

3.5 Geodesics and the Riemannian Retraction

Let us reconsider the classical gradient descent algorithm in Mn(R) with no restrictions on R, i.e., R ∈ Mn(R)
(see Equation (38)). Here, we move in a straight line from Rt towards Rt+1 in the direction of −Gradf(Rt).
In Section 3.1, we have given the definition of the Riemannian gradient grad f(Rt) of f at Rt and we argued
that on a manifoldM = SO(n) we should move into the direction of −gradf(Rt), since this is the direction
of greatest descent and we have gradf(Rt) ∈ TRt

M, whereas Gradf(Rt) is not necessarily an element of
the tangent space TRt

M. Like in the classical gradient method on Mn(R), we would like to move in a
straight line over the manifold G in the direction of −gradf(Rt). This raises the question of how to move in
a ”straight line” over a curved space like a manifold. ”Straight lines” over a manifold are called geodesics.
Geodesics are one of the fundamental concepts of differential geometry.

Since SO(n) is a Riemannian submanifold of Mn(R) and there is a one-to-one correspondence between Mn(R)
and Rn

2

, we can consider SO(n) as a submanifold of Rn
2

. Then we have the following definition of a geodesic.

Definition 3.4. (geodesic) Let M be a Riemannian submanifold of Rn were the Riemannian metric is
induced by the usual metric on Rn. Furthermore, let γ : I → M be a curve on the manifold, where I is
some interval of R. γ′′ ∈ Rn, i.e. the second derivative of γ, is called the acceleration vector, which can be
decomposed into a tangential and a normal component with respect to the tangent space TγM, i.e.,

γ′′ = γ′′∥ + γ′′⊥,

where γ′′∥ ∈ TγM and γ′′⊥ ∈ NγM. NγM denotes the normal space ofM at γ, which is the orthogonal
complement of the tangent space TγM.

The curve γ is called a geodesic if and only if

γ′′∥(t) = 0n, ∀t ∈ I.

As an example, consider the roads in Figure 7 as curved surfaces in R3. Let γ be the curve on the road
which is marked by the orange road markings at the centre of the road. The tangent vector γ′(t) is denoted
as a red arrow and the acceleration vector γ′′(t) is denoted as a green arrow. The tangent plane Tγ(t)M is
depicted as a red plane. In Figure ??, γ is a geodesic since γ′′ has no tangential component. Note that it
does have a normal component, which is pointing straight into the ground. In Figure 7b, γ is not a geodesic,
since γ′′ does have a tangential component.

For general Riemannian manifolds, geodesics can be defined in terms of an affine connection. Let X(M)
denote the space of vector fields of the manifoldM (see Definition 2.29). An affine connection ∇ : X(M)×
X(M) → X(M) is a map which can map one tangent space to another (see [9]). One can define infinitely
many affine connections on a Riemannian manifold. However, for every Riemannian manifold there exists
one unique affine connection, called the Levi-Civita or Riemannian connection, which is both torsion-free
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(a) γ is a geodesic of this curved surface in R3. (b) γ is not a geodesic of this curved surface in R3.

Figure 7: On the left-hand side, the road markings are forming a geodesic.
On the right-hand-side, they are not.

and compatible with the Riemannian metric. The Koszul formula characterizes this connection (see [9] and
[2]).

The idea behind affine connections is illustrated in Figure 8. We can see an affine connection as the operation
of rolling one tangent plane over a curve on the manifold to get to another tangent plane. Intuitively, it
makes sense to define geodesics by using affine connections, since when we are moving away from a point
x0 ∈M in the direction of the tangent vector v0 ∈ Tx0

M by an infinitesimal step, we arrive at a new point
xδ ∈ M, were we want to keep moving in the direction of v0. However, v0 is not necessarily an element of
the tangent space of Txδ

M anymore. An affine connection gives us a way to transform the tangent vector
v0 into a new tangent vector vδ ∈ Txδ

M. Now, we can continue moving in a ”straight line” by using this
new tangent vector vδ.
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Figure 8: Illustration of an affine connection. Intuitively speaking, an affine
connection transforms one tangent space into another one, by rolling the
tangent space over a curve on the manifold.

We will not dive into further details about affine connections and geodesics, since our case study of SO(n),
where SO(n) is endowed with the Frobenius norm as a Riemannian metric, allows us for a rather simple
analysis of geodesics with respect to the general case where we need to define geodesics in terms of an affine
connection. For further reading see Ref. [9] or other introductory books about differential geometry.

For SO(n) we claim the following.

Theorem 3.4. γ is a geodesic of SO(n) if and only if

γT γ′′ = γ′′T γ

Proof. Equation (14) from Section 2.6 gives us an expression for the tangent space TR SO(n) of SO(n)
at R ∈ SO(n). Equation (20) from Section 2.8 gives us an expression for the normal space NR SO(n).
Furthermore, note that γ ∈ SO(n), therefore γT = γ−1. We have

γ is a geodesic ⇐⇒ γ′′∥ = 0 ⇐⇒ γ′′ ∈ Nγ SO(n) ⇐⇒ γT γ′′ ∈ Ssym(n) ⇐⇒ γT γ′′ = γ′′T γ.

When we are at Rt we would like to move in a direction v = −gradf(Rt) in a ”straight line”. We have seen
that geodesics on a manifold are like straight lines in Rn. Therefore, let us consider the following theorem.
(For more details we refer to Section 5.4 of [2]).

Theorem 3.5 (existence and uniqueness of geodesics). LetM be a Riemannian manifold. For every point
x ∈M and every tangent vector v ∈ TxM, there is some interval (−β, β) and a unique geodesic

γ(t;x, v) : (−β, β)→M,

satisfying the conditions

γ(0;x, v) = x, γ′(0;x, v) = v.

The following theorem gives an expression for geodesics on SO(n).
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Theorem 3.6. Let R ∈ SO(n) and let Ω ∈ Sskew(n), then

γ :R→M :

t→ γ(t) = R exp(tΩ),

is the unique geodesic satisfying the conditions

γ(0;R,RΩ) = R, γ′(0;R,RΩ) = RΩ.

Proof. The conditions are easily verified. What is left to prove is that γ is a geodesic. Therefore, by using
Theorem 3.4, we need to prove that γT γ′′ = γ′′T γ. We have

γ′′(t) = RΩ2 exp(t(Ω)).

Since Ω ∈ Sskew(n), we have

(Ω2)T = (ΩT )2 = (−Ω)2 = Ω2

and since R ∈ SO(n), we have RTR = In×n Rewriting γT γ′′ gives

γT γ′′ = (R exp(tΩ))TRΩ2 exp(tΩ) = (exp(tΩ))TRTRΩ2 exp(sΩ) = (exp(tΩ))T (Ω2)TRTR exp(tΩ)

= (RΩ2 exp(tΩ))TR exp(tΩ) = γ′′T γ.

Now, we arrive at the definition of the Riemannian exponential (not to be confused with the matrix expo-
nential defined in Definition 21).

Definition 3.5. (Riemannian exponential and logarithm) Let M be a smooth manifold on which we can
define geodesics, i.e.,M is equipped with an arbitrary connection. Furthermore, let x ∈M and

Dx = {v ∈ TxM : γ(1, x, v) is defined}

The mapping

Expx :Dx →M :

v → Expx(v) = γ(1, x, v),

where γ(t, x, v) denotes the unique geodesic trough x for which γ′(0;x, v) = v. The inverse of Expx is called
the Riemannian logarithm, which is denoted as Logx, which maps from the manifoldM to the tangent space
TxM.

Note that the Riemannian exponential map Expx is a retraction (see Definition 3.3), called the Riemannian
retraction, with domain Dx. If Dx = TxM for all x ∈ M, we say that the Riemannian manifold M is
geodesically complete. Let R ∈ SO(n) and V = RΩ ∈ Tx SO(n), where Ω ∈ Sskew(n) = so(n) then, from
Theorem 3.6, we can conclude that the Riemannian retraction for SO(n) is given by

ExpR(ΩR) = R exp(Ω), i.e., (69)

ExpR(V ) = R exp(RTV ). (70)

Note that ExpR(V ) is defined for all V ∈ TR SO(n) and R ∈ SO(n). Therefore, SO(n) is geodesically
complete. The Riemannian logarithm is given by

LogR(Y ) = R log(RTY ),

where log denotes the matrix logarithm, defined in Definition 2.28.

Equation (69) should not come as a surprise. At the end of Section 2.11 we discussed a particular initial
value problem where Y (0) = R and Y ′(t) = ΩY (t). We found the solution Y (t) = R exp(tΩ) and concluded
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that Y (t) ∈ SO(n) for all t. Now, we know that Y (t) describes the unique geodesic starting at R, which
moves in the direction of the tangent vector RΩ.

Substitution of the Riemannian retraction method into Equation (67) gives us the following update method

Rt+1 = Rt exp(−ηRTt gradf(Rt)). (71)

η > 0 is the learning rate or step size. Substitution of Equation (49) and using Lemma 3.2 gives

Rt+1 = Rt exp
(
−ηPTI MRTt Gradf(Rt)

)
, (72)

where M = SO(n). The projection of Gradf(Rt) onto TIM can be done like in Equation (63). In this
update method, at every iteration, we move from Rt over the geodesic in the steepest descent direction
−gradf(Rt). This method will be numerically tested in the next chapter.

3.6 Line Search Methods

The constant line-search (CLS) method for optimization on Riemannian manifolds (see Chapter 4 of Ref.
[2]) is given by Algorithm 1. CLS can be regarded as the Riemannian equivalent of the classical gradient
descent method and is therefore also called the Riemannian gradient descent method.

Algorithm 1 Constant Line Search (CLS)

Require: Riemannian manifoldM; continuous differentiable f :M→ R; retraction ρ : TM→M; a
learning rate or step size η > 0.

Input: Initial iterate x0 ∈M.
Output: Sequence of iterates {xt}.

1: for t = 0, 1, 2, ... do
2: xt+1 ← ρxt(−ηgradf(xt))
3: end for

For SO(n), we can further specify the steps given in Algorithm 1 by implementing the Riemannian retraction
(see Equation (72)) and by giving the expression for the Riemannian gradient. This results in Algorithm 2.

Algorithm 2 Constant Line Search on SO(n)

Require: Continuous differentiable f : SO(n) → R; a learning rate or step size η > 0; an operator

vec : Mn(R)→ Rn
2

, which orders the elements of a matrix into a vector (see Section 3.3).
Input: Initial iterate R0 ∈ SO(n).
Output: Sequence of iterates {Rt}.

1: Construct a basis {U1, U2, ..., Uk} for Sskew(n), where k = 1
2n(n− 1).

2: Construct the matrix UI = (vec(U1), vec(U2), ..., vec(Uk)) ∈ Rn
2×k (see Equation (59)).

3: V ← UIU
T
I

4: for t = 0, 1, 2, ... do
5: Rt+1 ← Rt exp(−ηvec−1(V vec(RTt Gradf(Rt))))
6: end for

Note that the update method is based on Equation (63). Furthermore note that we precompute V to
speed up the algorithm (see section 3.3). We test Algorithm 2 extensively in Chapter 4, where we vary the
dimensionality n and the learning rates η.

3.7 Convergence in Continuous Time

In this section, we prove convergence of the CLS algorithm (see Section 3.6) in the continuous-time limit.
The analyses in this section is based on information from [3], [24] and [19]. For the convergence properties
of the ALS algorithm, we refer to Chapter 4 of [2].
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Let us consider the following differential equation, which we refer to as the gradient flow problem.

x′(t) + gradf((x(t)) = 0; x(0) = x0 (73)

where x : [0,∞)→M and f :M→ R is smooth. Now, we have the following theorem from [19].

Theorem 3.7 (Existance and Uniqueness of the gradient flow solution). LetM be a Riemannian manifold
which is geodesically complete. Let f :M→ R be smooth and bounded from below. For every starting point
x0 ∈ M, the problem described by Equation (73) has a unique solution x(t) defined on [0,∞), which is also
continuously differentiable.

In particular, SO(n) is geodesically complete. Therefore there exists a unique solution x(t) defined on SO(n)
for every smooth f which is bounded from below.

The discrete Riemannian retraction method (Equation (71)) is based on the following equation

R(t+ dt) = ExpR(t)(−dt grad f(R(t)), (74)

where dt is infinitesimal. From this equalition we obtain R′(t) = −gradf(R(t)). Therefore, the continuous
version R(t) fulfils the differential equation described by Equation (73). This is also what we would expect
since Equation (73) generalizes to a Riemannian setting the continuous version of the steepest descent
equation for Rn. In Ref. [19] it is stated that R(t) decreases and converges for a geodesically complete
manifold like SO(n).

We can prove additional convergence properties when f :M→ R is µ-strongly convex (see Definition 3.6).

Definition 3.6 (µ-strongly convex). Let M be a Riemannian manifold which is geodesically complete on
A ⊂M. A smooth function f : A→M is called (geodesically) µ-strongly convex, µ > 0, if for all x, y ∈ A

f(x)− f(y) ≥ ⟨gradf(y),Logy(x)⟩y +
µ

2
∥Logy(x)∥2. (75)

Here, Logy(x) is the Riemannian logarithm, which maps x onto the tangent space TyM (see Definition 3.5).

Now, consider the following theorem about the rate of convergence of the continuous-times solution.

Theorem 3.8 (convergence rate in the continuous-time limit). Let M be a Riemannian manifold which is
geodesically complete. Let f : M → R be µ-stronlgy convex and let x(t) be the solution to Equation (73).
x(t) minimizes f(x) with rate

f(x(t))− f∗ ≤ e−2µt(f(x(0))− f∗), (76)

where f∗ = minx∈M f(x).

Before we prove this theorem, let us consider two other theorems, which we will use in the proof of Theorem
3.8.

Theorem 3.9 (Polyak-Lojasiewicz). Let f be µ-strongly convex on a geodesically complete Riemannian
manifoldM. Then,

f∗ ≥ f(x)− 1

2µ
∥gradf(x)∥2, (77)

where f∗ = minx∈M f(x).

Proof. Let x, y ∈M. From µ-stronlgy convexity we obtain

f(y) ≥ f(x) + ⟨gradf(x),Logx(y)⟩x +
µ

2
∥Logx(y)∥2, (78)

where ⟨·, ·⟩x denotes the Riemannian metric at x ∈M. Minimizing on both sides with respect to y gives.

f∗ ≥ f(x) + min
y∈M

(
⟨gradf(x),Logx(y)⟩x +

µ

2
∥Logx(y)∥2

)
.
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In this case, minimizing over y ∈M is equivalent to minimizing over v = Logx(y) ∈ TxM. Therefore,

f∗ ≥ f(x) + min
v∈Tx M

(
⟨gradf(x), v⟩x +

µ

2
∥v∥2x

)
.

Cauchy-Schwarz implies that v is of the form v = −c grad f(x), c ≥ 0. Substitution of v = −c grad f(x) gives

f∗ ≥ f(x) + min
c≥0

g(c) (79)

g(c) = −c∥ grad f(x)∥2 + c2
µ

2
∥ grad f(x)∥2 (80)

Differentiation of g(c) and setting the result equal to zero gives

−∥ grad f(x)∥2 + cµ∥ grad f(x)∥2 = 0.

c =
1

µ
.

Note that indeed c > 0 since µ > 0. We obtain

min
c≥0

g(c) = − 1

2µ
∥ grad f(x)∥2 (81)

Substituion of Equation (81) into (79) results into Equation (77).

The following theorem we state without proof (see Ref. [11]).

Theorem 3.10 (Grönwall’s inequality). Let I ⊂ R denote an interval on the real line of the form [a,∞), [a, b]
or [a, b) with a < b. Let β(t) be real-valued continuous and let u(t) be real-valued continuous differentiable
on I. If

u′(t) ≤ β(t)u(t), ∀t ∈ I,

then

u(t) ≤ u(a)e
´ t
0
β(s)ds, ∀t ∈ I.

Now we are ready to prove Theorem 3.8.

Proof of Theorem 3.8. Let us differentiate f(x(t))− f∗ with respect to t.

d

dt
(f(x(t))− f∗) = Df(x(t))[x′(t)] = ⟨gradf(x(t)),− grad f(x(t))⟩x(t) = −∥gradf(x(t))∥2

Using Polyak-Lojasiewicz, we obtain

d

dt
(f(x(t))− f∗) = −∥gradf(x(t))∥2 ≤ −2µ(f(x(t))− f∗).

Using Grönwall’s inequility on the interval [0,∞) with β(t) = −2µ and u(t) = f(x(t))− f∗, we obtain

f(x(t))− f∗ ≤ e−2µt(f(x(0))− f∗).
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4 Numerical Simulations
At the start of this chapter, we discuss the performance of Algorithm 2 by applying it to numerous prob-
lems. In Section 4.5, we will introduce a new algorithm which is developed to fit a robotic arm on a
given curve. This algorithm is then further tested and improved in Section 4.6 and Section 4.7. The algo-
rithms discussed in this chapter are implemented in Python. The code can be found on my GitHub page:
https://github.com/DeMilder/Thesis-Final-Code.git.

4.1 Rotation of vectors in R2

Consider the problem of rotating a vector x ∈ Rn towards a vector y ∈ Rn, where x and y are not the
zero vector. Without loss of generality, let us assume that ∥x∥2 = ∥y∥2. We want to find R ∈ SO(n) such
that Rx = y. For the case that ∥x∥2 ̸= ∥y∥2, we can rescale the vectors x and y by defining x̂ = x

∥x∥2
and

ŷ = y
∥y∥2

, such that ∥x̂∥2 = 1 = ∥ŷ∥2. Then, we want to find R ∈ SO(n), such that Rx̂ = ŷ. We will refer to

this problem as the vector-rotation problem.

To solve this problem we can use Algorithm 2. Therefore, let the loss function f be defined as

f(R) = ∥Rx− y∥22. (82)

Then the problem can be described as finding R∗ ∈ SO(n) such that

R∗ = argmin
R∈SO(n)

f(R). (83)

The minimum of f at R∗ is a unique minimum and R∗ fulfils R∗x = y.

To perform Algorithm 2, we need to find the Euclidean gradient of f(R). We claim the following.

Grad ∥Rx− y∥22 = 2(Rx− y)xT . (84)

Proof.

Grad ∥Rx− y∥22 = Grad(Rx− y)T (Rx− y)
= Grad

(
xTRTRx− yTRx− xTRT y + yT y

)
= Grad(xTRTRx)−Grad(yTRx)−Grad(xTRT y)

Considering each term separately by differentiating element-wise gives (see Definition 3.1) the following. For
the first term, we have

xTRTRx =

n∑
m=1

n∑
k=1

Rmkxk

n∑
l=1

Rmlxl,

therefore

∂

∂Rij
xTRTRx = xj

(
n∑
l=1

Rilxl

)
+

(
n∑
k=1

Rikxk

)
xj ,

∂

∂Rij
xTRTRx = 2

(
n∑
k=1

Rikxk

)
xj ,

therefore

GradR(x
TRTRx) = 2RxxT .

For the second term, we have

yTRx =

n∑
k=1

yk

n∑
l=1

Rklxl,

yTRx =

n∑
k=1

n∑
l=1

ykRklxl,
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therefore

∂

∂Rij
yTRx = yixj ,

therefore

GradR(y
TRx) = yxT .

For the third term, we have

xTRT y =

n∑
k=1

xk

n∑
l=1

Rlkyl,

xTRT y =

n∑
k=1

n∑
l=1

xkRlkyl,

therefore

∂

∂Rij
xTRT y = xjyi,

therefore

GradR(x
TRT y) = yxT .

Substitution gives

Grad ∥Rx− y∥22 = 2(Rx− y)xT .

As a matrix-to-vector operator vec : Mn(R) → Rn
2

, we choose to order the matrix element row-wise into a

vector in Rn
2

. Now, we have all the ingredients to perform Algorithm 2.

Algorithm 2 is implemented in Python, where we used the Numpy and Scipy libraries. The vectors are
represented as Numpy arrays and we calculate the matrix exponential by using the scipy.linalg.expm()
function. In this section, we only consider vector-rotation problems in R2. Higher dimensional vector-
rotation problems are discussed in Section 4.3.

4.1.1 Testcase 1: y = 1
2

√
2(−1, 1)T

Let R0 = I2×2, x = (1, 0)T and y = 1
2

√
2(−1, 1)T . We set the learning rate η = 1 and use our Python

implementation of Algorithm 2 to solve this problem. The results are given in Figure 9. In the left figure,
the yt = Rtx vectors, where t denotes the iteration index, are illustrated. Note that y0 = Ix = x. We see
that the yt = Rtx rotates in the positive direction toward y. In the right figure, the value of the loss function
f(Rt) for every iteration step t is given. After 6 iterations, we converge to computer precision. Note that
we used double-precision floating point numbers (float64). Similar results are obtained when considering
y = − 1

2

√
2(−1, 1)T . However, in that case, yt = Rtx rotates in the negative direction towards y.

4.1.2 Testcase 2: y = (−1, 0)T

Now, suppose R0 = I2×2, x = (1, 0)T and y = −x. Does the algorithm for this case rotate in the positive or
the negative direction towards y? Calculating the Euclidean gradient gives

Grad f(R0) =

(
4 0
0 0

)
.
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(a) Graphical representation of the yt = Rtx vector, where
t is the iteration index.

(b) Value of the loss function f(R), as given in Equation
(82), at every iteration step.

Figure 9: Solving the vector-rotation-problem in R2. Here R0 = I2×2,
x = (1, 0)T , y = 1

2

√
2(−1, 1)T and η = 1. We see that after 6 iteration

steps, we reach computer precision.

Calculating the Riemannian gradient according to Equation (62) gives

grad f(R0) = PTISO(2) Grad f(R0) = 02×2.

Note that Grad f(R0) is a symmetric matrix. Therefore, projecting this matrix onto TISO(2) = Sskew(2)
gives the zero matrix 02×2. So the Riemannian gradient grad f(R0) is equal to the zero matrix. Retracting
the zero matrix onto the tangents space gives R0 (see the first property of Definition 3.3). So in this case,
the algorithm keeps returning R0 and does not converge to the solution at all.

R0 is a critical point, i.e., grad f(R0) is equal to the zeros matrix, but R0 is not a solution to the problem.
Furthermore, note that R0 is an unstable critical point because when we slightly change R0, the algorithm
moves away from R0 and converges to the solution. Therefore in general, when we encounter such an unstable
critical point, say R̂, we can slightly perturb grad f(R̂), such that it is not equal to the zero matrix anymore.
By doing so, We observed that the algorithm moves away from R̂ and eventually converges to the solution
R∗.

4.1.3 Testcase 3: y ∈ S1

Let R0 = In×n, x0 = (1, 0)T , η = 1 and y = (cos(θ), sin(θ))T for θ ∈ (−π, π]. We solve this problem for
multiple values of θ, using Algorithm 2. Note that the exact solution to the problem is the rotation matrix

R∗ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

We say that the algorithm converged at iteration t∗ if t∗ is the smallest integer such that the inequality
f(Rt∗) < ϵ is true, where ϵ ∈ R>0 is small. Let ϵ = 10−15, the number of iterations needed until convergence
t∗ for different values of θ is given in Figure 10. We see that for values of θ close to 0, the algorithm converges
rapidly to the solution since we only need to rotate the vector x over a small angle θ to obtain y. For values
of θ close to π or −π, the number of iteration steps needed before convergence is larger, since we need to
rotate x over a larger angle θ and the Riemannian gradient will be approximately equal to the zero matrix
during the first iteration steps.
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Figure 10: Number of iterations until convergence. Here, we say that this
number is equal to the smallest t such that f(Rt) < 10−15, where f denotes
the loss function.

4.2 Rotating towards a perturbed figure

Suppose that we have a number of points xi ∈ Rn, where i ∈ {1, 2, ..., p}. Let us call the collection of these
points a figure, which is denoted as x. Suppose we want to rotate this figure x so that it best fits the points
ŷi ∈ Rn, i ∈ {1, 2, ..., p}. The ŷi’s can be expressed as

ŷi = yi + ϵi, i ∈ {1, 2, ..., p}.

Here yi = R∗xi, where R∗ ∈ SO(n) is the true rotation matrix and ϵi is some perturbation vector. Let us
assume that the ϵi’s are sampled from a multivariate normal distribution N (0n, σ

2In×n) with a mean equal
to the zero vector and with a diagonal covariance matrix σ2In×n. For this problem consider the following
loss function f(R)

f(R) =
1

p

p∑
i=1

∥Rxi − ŷi∥22 , (85)

and its Euclidean gradient Grad f(R)

Grad f(R) =
1

p

p∑
i=1

(Rxi − ŷi)(xi)T . (86)

This problem can be described as a minimization problem, where we want to minimize f for R ∈ SO(n).
Therefore we can apply Algorithm 2.

As an example consider the parametric curve γ : [0, 1)→ R2, defined as

γ(t) =

(
5 sin(4πt)
10 sin(2πt)

)
, t ∈ [0, 1).

Let the figure x = {xi : i ∈ {1, 2, ..., p}} be a collection of p = 10, 000 points sampled from γ(t), such that

xi = γ

(
i

p

)
, i ∈ {1, 2, ..., p}.
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Let the true rotation R∗ be a 90 degree rotation around the origin in the positive direction, i.e.,

R∗ =

(
0 −1
1 0

)
.

We have a number of p perturbated fitting points ŷi = R∗xi + ϵi, i ∈ {1, 2, ..., p}. The ϵi’s are samples
from the multivariate normal distribution N (02, σ

2I2×2), with σ = 1. Suppose R∗ is unknown, then we can
recover R∗ from the ŷi’s using Algorithm 2. After 10 iterations, with a learning rate η = 0.01 and initial
guess R0 = I2×2, we obtained the matrix

R10 =

(
0.00053 −1.00000
1.00000 0.00053

)
.

We indeed see that R10 accurately approximates R∗.

More results are visualized in Figures 11 and 12. In Figure 11, the red dots represent the perturbed data
points ŷi for i ∈ {1, ..., p}. The collection of points yit = Rtx

i, i ∈ {1, ..., p}, at iteration steps t are plotted
as curves and labeled as yt. Here, y0 corresponds to the initial collection of points yi0 = xi, i ∈ {1, ..., p}. We
see that after iteration step t = 6, yt overlaps with the unperturbed figure y.

In Figure 12, the loss function f (see Equation (85)) decreases rapidly during the first 3 iteration steps and
reaches a value of f = 1.25 after the sixth iteration step. By the law of large numbers, we have that

1

p

p∑
i=1

∥R∗xi − ŷi∥2 =
1

p

p∑
i=1

∥ϵi∥2
p→+∞−−−−−→ E[∥ϵ∥2] =

√
π

2
,

with rate O( 1p ). Here, we recognize that ∥ϵ∥2 is distributed according to the Rayleigh distribution with scale

parameter σ = 1, which has a mean of
√
π/2 ≈ 1.25 (see Ref. [1]). This also validates that Algorithm 2

gives the correct solution.
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Figure 11: Graphical representation of the yt’s at different iteration steps t.
y is the desired figure. ŷ is the perturbated version of y.
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Figure 12: f as given in Equation (85).
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4.3 Rotation of vectors in Rn

In the previous sections, we looked at the rotations of vectors and figures in R2. We have minimized a loss
function f(R) for R ∈ SO(n). In this section, we again look at problem (83), where we use Equation (82) as
our loss function f(R), and we check the performance of the algorithm for different dimensions n.

Let R0 = In×n and let x = (1, 0, 0, ...)T be the unit basis vector. We set the learning rate η = 1. We can
choose an arbitrary y on the sphere centred at the origin. In general, one can pick a random point on a
hypersphere of arbitrary dimension n by generating n Gaussian random variables g1, g2, ..., gn. Then the
distribution of the vectors

1√
g21 + g22 + ...g2n

(g1, g2, ..., gn)
T (87)

is uniform over the surface Sn−1.[14] We perform the algorithm m = 10, 000 times in Rn where n =
2, 3, 5, 10, 20. So, in total, we perform the algorithm 50, 000 times. For every instance, we will use a
different end vector y which is sampled from the uniform distribution over the surface Sn−1 (see Equation
(87)). After every iteration step t, the value of f , as given in Equation (82), is calculated. These values are
then averaged over the m instances. The results are given in Figure 13.

0 2 4 6 8 10
iteration step t

10 30

10 26

10 22

10 18

10 14

10 10

10 6

10 2

f(R
t)

Convergence in various dimensions (average)

n = 2
n = 3
n = 5
n = 10
n = 20

Figure 13: The average value of the loss function f(Rt) after every iteration
step t is plotted for different dimensions. The results are averaged over
m = 10, 000 instances.

Figure 13 gives some unexpected results. In Section 4.1, we have seen that in R2 the algorithm often already
converges after 6 iteration steps. However looking at Figure 13, it looks like that, on average, we are still far
from convergence after 6 iteration steps. It also looks like we need fewer iteration steps to reach convergence
if the dimensionality of the problem is larger. For n = 10 and n = 20, we see the same convergence rates as
the n = 2 instance illustrated in Figure 9.

In Section 4.1, we have seen that for n = 2 the convergence rate of the loss function can depend on the angle
θ over which we have to rotate x to obtain y. It can take a lot of iteration steps before the value of the loss
function converges especially when θ ≈ π or θ ≈ −π. Therefore, the average value of the loss function f(Rt)
at t gives a misleading image of the performance of the algorithm.
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Let us take a look at Figure 14. There we see a histogram of the number of iteration steps needed until the
convergence of f(Rt). Again, we say that the algorithm has converged to the solution at iteration t∗ if t∗

is the smallest integer such that f(R∗
t ) < ϵ for some small ϵ ∈ R>0. Let us choose ϵ = 10−15. We see that

the variation in the value for t∗ is larger for n = 2 than for the higher value of n. For n = 20, t∗ seems to
be equal to 4 for almost every instance of y. This seems reasonable, since the probability that we select a
point y on the unit sphere which lies very close to x or −x decreases if we increase the dimensionality of the
sphere.
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Figure 14: Histogram of the number of iteration steps t∗ needed until f t
∗
<

10−15.

In Figure 15 we have plotted the median of the loss function f(Rt) of the m = 10, 000 iterations for every
dimension. When we look at the median, we see that the convergence behaviour is the same in every
dimension. The edges of the coloured area mark the minimum and the maximum observed value for f(Rt).
Again we see that for n = 2 the value for f(Rt) can vary significantly between different instances of y,
whereas for n = 20 this difference in f(Rt) is small.

In short, when looking at the median, we see that the number of iterations needed before convergences t∗ is
often equal to 4 and does not depend on the dimensionality of the problem. When the dimensionality of the
problem is low n < 5, we see that t∗ can vary significantly between different instances for y. Since it is more
likely for the algorithm to get stuck in an unstable critical point (see Subsection 4.1.2).
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Figure 15: Median value of the loss function f(Rt) at iteration t for different
dimensions. The edges of the coloured area mark the minimum and maxi-
mum observed value for f(Rt) (m = 10, 000)).

4.4 Different Learning rates

In this section, we will solve the vector-rotation problem (see Equations (82) and (83)) using different values
for the learning rate η. In the previous section, we discovered that the convergence rate of Algorithm 2
does not heavily depend on the dimensionality of the problem. Furthermore, we have seen that when the
dimensionality n of the vector-rotation problem is high, the variance in the number of iteration steps needed
until convergence between different given instances of y is low because we are less likely to select y such that
Rt gets stuck in an unstable critical point. However, the computational cost to perform one iteration step
increases as n increases. Therefore, let us take n = 5 to test the performance of the algorithm for different
learning rates η because the variance in the convergence rate between multiple instances of y is low with
respect to smaller values of n and the computational cost of performing one iteration step is small with
respect to higher values of n.

Let us test the performance of the algorithm for η = 0.1, 0.5, 0.9, 1.0, 1.1, 1.5, 2.0. As in the previous section,
we perform the algorithm for m = 10, 000 instances for y. In Figure 16, the median value of the loss function
f(Rt) at iteration step t is plotted. The upper edges of the coloured areas indicate the maximum observed
value for f(Rt) and the lower edges indicate the minimum value for f(Rt). We see that we get the fasted
convergence rate for η = 1. When choosing lower values for η, the convergence rate becomes gradually worse
as we move further away from η = 1. When choosing a higher value for η, the convergence rate also becomes
worse and for η = 2 we even see that algorithm becomes unstable.

We have seen that in general we only need 4 or 5 iteration steps to converge to computer precision. Therefore
let us take a closer look at these first 5 iteration steps. In Figure 17, we see that the reduction in the loss
function after the first iteration step is larger for η = 1.5 than for η = 1.1 and η = 1.0. After the second
iteration step η = 1.1 has the fastest convergence rate. We have to note that Figure 17 is based on the
median and we can see that the value of f(Rt) can vary highly between different instances for y.

Let us compare the value of the loss function f for different values of the learning rate η to the case when
η = 1. Note that we used the same m = 10, 000 instances for y to test the different learning rates. Let
us denote these instances as yk for k ∈ {1, 2, ...,m}. Let f(Rt, η, yk) be the value of the loss function f at
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Figure 16: Loss function f for learning rates η = 0.1, 0.5, 0.9, 1.0, 1.1, 1.5, 2.0.
n = 5, m = 10, 000.

Figure 17: Caption
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iterations step t where we used a learning rate of η. So we want to look at the difference between f(Rt, η, yk)
and f(Rt, η = 1, yk) for every instance yk. This difference for iteration step t = 1 is calculated for the
m = 10, 000 instances for yk and these data points are visualized as boxplots in Figure 18 for the different
values of η.

Figure 18: Boxplot where we compare the value of the loss function
f(Rt, η, yk) at iteration step t = 1 for different learning rates to the value
of the loss function when using a learning rate of η = 1. On the y-axis the
quantity f(R1, η = 1, yk)− f(R1, η, yk) is plotted.

First note that all the data points lie at 0 for η = 1, because we look at the difference between f(Rt, η, yk)
and f(Rt, η = 1, yk). In Figure 18, we can see that choosing a learning rate between 1 and 1.5 gives a greater
decrease in the loss function during the first iteration step than for the η = 1 case. When using a learning
rate larger than 1.5, the variance in the data points increases. So the convergence could be better or worse,
which highly depends on the given yk instance. This can be explained by the fact that some instances for yk
lie very close to −x. Therefore, the algorithm can get stuck in an unstable critical point. A larger learning
rate η can then be beneficial to escape this unstable critical point faster, especially during the first iteration
step. (see also subsection 4.1.2). At higher iteration steps, i.e., t > 1, we generally see that η = 1 gives the
greatest decrease in the value of the loss function f (see Figure 16).

To conclude this section, we have found that choosing η = 1 gives the fastest convergence rate. However, one
can opt to choose a slightly larger value for η during the first iteration step, which can help the algorithm
escape from an unstable critical point.
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4.5 Fitting a Robotic Arm

In the previous sections, we have mainly discussed the vector-rotation problem. We have looked at this
problem in multiple dimensions and applied Algorithm 2 for different values of the learning rate η. In this
section, we will extend our view and consider another problem, which is inspired by the inverse kinematics
problem in robotics [8]. Our goal is to find a configuration of a robotic arm that flows a given curve
γ : R → Rn. We will call this problem the robotic-arm problem. Here n denotes the dimensionality of this
problem. The robotic arm is made out of k links. These links are connected by a point of rotation, which are
called joints. We assume that these joints can be freely rotated, like a ball-and-socket joint. This stands in
contrast to a hinge joint, which only allows movement in a two-dimensional plane. Furthermore, we assume
that the curve γ is continuously differentiable, i.e., γ ∈ C1. Note that we look at the robotic arm problem
in Rn so we do not restrict ourselves to n = 2 or n = 3.

To describe the robotic-arm problem in further detail, consider a piecewise linear function α : [0, k] → Rn,
where k ∈ N which is equal to the number of links. This function is piecewise linear over the intervals
[0, 1], [1, 2], ..., [k − 1, k]. Let αi be the linear function which describes α on the interval [i − 1, i], for i ∈
{1, 2, ..., k}, i.e.,

α(t) =


α1(t), for t ∈ [0, 1].

α2(t), for t ∈ [1, 2].
...

αk(t), for t ∈ [k − 1, k].

(88)

The function α(t) is the curve which describes the robotic arm. α(0), α(1), ..., α(k−1) describe the positions
of the joints. Between these joints are the links, where the ith link is described by αi(t) for t ∈ [i− 1, i]. Let
x1, x2, ..., xk ∈ Rn be given vectors, where xi represents the initial orientation of the ith link with respect to
the ith joint α(i). Then the αi’s can be defined as

α1(t) = tR1x1, for t ∈ [0, 1],
α2(t) = α1(1) + (t− 1)R2x2, for t ∈ [1, 2],
...
αi(t) = αi−1(i− 1) + (t− (i− 1))Rixi, for t ∈ [i− 1, i],
...
αk(t) = αk−1(k − 1) + (t− (k − 1))Rkxk, for t ∈ [k − 1, k],

where we take α0(0) = 0n.

The path on which we want to fit the robotic arm describe by α is given as a continuously differentiable
curve

γ :R→ Rn,
τ → γ(τ),

for which γ(0) = 0.

Next, let there be a continuous injective mapping

m :[0, k]→ R,
t→ τ,

The robotic-arm problem can be described as follows: find the continuous (injective) mapping m : [0, k]→ R
and the matrices R1, R2, ...Rk ∈ SO(n), such that

1

k

ˆ k

0

∥α(t)− γ(m(t))∥2dt (89)
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Figure 19: Illustration of a robotic arm described by α(t), where the number
of links is k = 3. γ(τ) is the desired path.

is minimal. Note that this is a minimization problem over SO(n)
k ×C0, where C0 denotes the set of contin-

uous functions.

Our goal is to find or obtain a very good approximation for these matrices R1, ..., Rk, because these matrices
tell us how to rotate each joint of the robotic arm. We are less interested in an exact expression for the
mapping m. Furthermore, minimizing Equation (89) for m is rather difficult. Therefore, let us make an
assumption for the shape of m. We assume that m is piecewise linear over the intervals [0, 1], [1, 2], ...,
[k − 1, k], i.e.

m(t) =



tτ1, for t ∈ [0, 1],

τ1 + (t− 1)(τ2 − τ1), for t ∈ [1, 2],
...

τi−1 + (t− i)(τi − τi−1), for t ∈ [i− 1, i],
...

τk−1 + (t− (k − 1))(τk − τk−1), for t ∈ [k − 1, k],

(90)

where τ0 = m(0) = 0, τ1 = m(1), ..., τk = m(k). Note thatm(t) rescales the τ parameter of the γ(τ) function
over the intervals [τ0, τ1],[τ1, τ2], ..., [τk−1, τk] linearly, but with a different scale parameter for each interval.
Assuming this form, m is completely defined by a finite set of value τ1, τ2, ..., τk. So now we can minimize
Equation (89) for R1, R2, ..., Rk and τ1, τ2, ..., τk instead. For notation purposes let us define g = γ(m(t))
and let us write

g(t) =



g1(t), for t ∈ [0, 1],

g2(t), for t ∈ [1, 2],
...

gi(t), for t ∈ [i− 1, i],
...

gk(t), for t ∈ [k − 1, k].

(91)

By substituion of m(t) one can define the gi’s as

gi(t) =γ (τi−1 + (t− (i− 1))(τi − τi−1)) , for i ∈ {1, ..., k}.
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Splitting the integral of Equation (89) and writing it terms of the gi’s gives

1

k

ˆ k

0

∥α(t)− γ(m(t))∥2dt =1

k

k∑
i=1

ˆ i

i−1

∥αi(t)− gi(t)∥2. (92)

Note that we transformed the minimization problem (89) over SO(n)
k ×C0 into a minimization problem

over SO(n)
k ×Rk. Next, let us discretize each integral by considering p subintervals of equal width. This

gives

1

k

ˆ k

0

∥α(t)− γ(m(t))∥2dt ≈ 1

kp

k∑
i=1

p∑
j=1

∥∥∥∥αi((i− 1) +
j

p

)
− gi

(
(i− 1) +

j

p

)∥∥∥∥2 .
Elaborating this expression in terms of the Ri’s and τi’s gives

1

k

ˆ k

0

∥α(t)− γ(m(t))∥2dt ≈ 1

kp

k∑
i=1

p∑
j=1

∥∥∥∥α(i− 1) +
j

p
Rixi − γ

(
τi−1 +

j

p
(τi − τi−1)

)∥∥∥∥2 .
So we found the following discrete minimization problem: Let k be the number of links and joints of the
robotic arm. Let p be the number of integration points per link so that we have a total of kp integration
points. Then find R1, R2, ..., Rk ∈ SO(n) and τ1, τ2, ..., τk ∈ R such that

f(R1, ..., Rk, τ1, ..., τk) =
1

kp

k∑
i=1

p∑
j=1

∥∥∥∥α(i− 1) +
j

p
Rixi − γ

(
τi−1 +

j

p
(τi − τi−1)

)∥∥∥∥2 (93)

is minimal. For notation let us define αij as

αij =α(i− 1) +
j

p
Rixi (94)

and gij as

gij =gi

(
(i− 1) +

j

p

)
. (95)

such that

f(R1, ..., Rk, τ1, ..., τk) =
1

kp

k∑
i=1

p∑
j=1

∥αij − gij∥2 . (96)

We can use the Riemannian gradient descent algorithm to calculate this minimum. Therefore, we need to
specify Algorithm 1 further, such that it optimizes f overM = SO(n)

k ×Rk. To use Algorithm 1 we need to
obtain the Riemannian gradient gradx f for x ∈ M. Therefore let us first calculate the Euclidean gradient
of f with respect to Ri

GradRi
f =

1

kp

p∑
j=1

j

p
(αij − gij)xTi . (97)

The Euclidean gradient of f with respect to τi is given by

Gradτif = − 2

kp

(
j

p
(αij − gij)T g′ij + 1i<k

(
p− j
p

(α(i+1)j − g(i+1)j)
T g′(i+1)j

))
, (98)

where

g′ij = γ′
(
τi−1 +

j

p
(τi − τi−1)

)
.
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For notation purposes, let us denote Gradx f to be the Euclidean gradient Gradx f at a point

x =(R1, ..., Rk, τ1, ..., τk) ∈M,

i.e.,

Gradxf = (GradR1
f, ...,GradRk

f,Gradτ1f, ...,Gradτkf).

Note thatM can be seen as a submanifold of Mn(R)k ×Rn. Therefore, to obtain the Riemannian gradient
gradx f we need to project the Euclidean gradient Gradx f onto the tangent space TxM of M. Using
Theorem 2.6, we can conclude that the tangent space TxM ofM at a point x = (R1, ..., R2, τ1, ..., τk) can
be written as

Tx

(
SO(n)

k ×Rk
)
=TR1 SO(n)×...× TRk

SO(n)×Tτ1 R×...× Tτk R, (99)

=TR1 SO(n)×...× TRk
SO(n)×Rk . (100)

Therefore, we can write

gradx f =(PTR1
SO(n) GradR1

f, ...,PTRk
SO(n) GradRk

f,Gradτ1f, ...,Gradτkf), (101)

=(gradR1
f, ..., gradRk

f, gradτ1f, ..., gradτkf). (102)

Note that gradτif = Gradτif for i ∈ {1, ..., k}, since for these element we are working in R. Next, we need
to define a retraction method ρx : TxM→M, which maps an element of the tangent space TxM, in our
case −η gradxf , onto the manifold M. Here, η ∈ R>0 is the learning rate for the Ri’s and σ ∈ R>0 is the
learning rate for the τi’s. We can do this by retracting element-wise, i.e.,

ρx(−η gradx f) =
(
ρR1

(
−η gradR1

f
)
, ..., ρR1

(
−η gradR1

f
)
, τ1 − ηGradτ1f, ..., τk − ηGradτkf

)
.

Here, we define ρR1
: TR1

SO(n) → SO(n) to be the Riemannian retraction which is defined in Section 3.5.
Therefore, we can use Equation (72) as our update method for the Ri’s. Note that for the last elements
containing τi’s the Riemannian retraction method reduces to the standard gradient descent algorithm in R,
since the tangent space of R is equal to R.

Our analysis results in Algorithm 3, where we denote the iteration index as a superscript, i.e., Rti is the
matrix Ri duration the t’th iteration step. The first three steps of Algorithm 3 are similar to Algorithm 2.
These steps construct a basis for TI SO(n) = Sskew(n) and calculate the projection matrix, which is used
to project the Euclidean gradient of f with respect to the Ri’s onto the tangent space. In the fourth step,
we calculate the initial value of the loss function f0 by substituting in the R0

i ’s and the τ0i ’s into Equation
(93). The loop over t = {0, 1, 2, ...} is over the iteration steps. One can specify when to stop this loop giving
a maximum number of iterations tmax or by using a while-loop and a conditional statement. A possible
conditional statement can be f t > ϵ for some ϵ ∈ R≥0. In this way, one can make sure that the value of the
loss function f is below some maximal allowable value ϵ. One can also add a condition based on the values
of the gradients since each gradient with respect to one of the Ri’s should converge to the n×n zero matrix
and each gradient with respect to one of the τi’s should converge to 0. We will use a maximum number of
iteration steps tmax to terminate this loop.

The first loop over i = {1, 2, ..., k} is a loop over the number of links and joints k of the robotic arm. This

loop updates the Rti’s by using the Riemannian retraction. Then, we get an intermediate update f t+
1
2

for the loss function f by substituting the Rt+1
i ’s and τ ti ’s into Equation (93). Then the second loop over

i = {1, 2, ..., k} updates the τ ti ’s by already using the previously obtained Rt+1
i ’s and f t+

1
2 . One can also

opt to update the Rti’s and the τ ti ’s in one loop over i = {1, ..., k} and not calculate an intermediate value

f t+
1
2 of the loss function. This will give a slower convergence rate, but this makes the algorithm simpler.

We have implemented Algorithm 3 in Python, where we used the Numpy and Scipy libraries. The matrix
exponential is calculated using the scipy.linalg.expm() function.
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Algorithm 3 Riemannian Gradient Descent for the Robotic Arm

Require: Piecewise linear function α(t) : [0, k] → Rn which describes the robotic arm (see Equation
(88)) including the x1, ..., xk which describe the initial orientation and length of each of the links, here k is
the number of links and joints; the minimization function f (see Equation (93)); a learning rate or step size

η > 0 for the Ri’s; a learning rate or step size σ for the τi’s; an operator vec : Mn(R) → Rn
2

, which orders
the elements of a matrix into a vector (see Section 3.3).

Input: Initial iterate R0
1, ..., R

0
k ∈ SO(n) and τ01 , ..., τ

0
k .

Output: Sequences of iterates {Rt1}, ..., {Rtk}t=0, {τ t1}, ..., {τ tk}
1: Construct a basis {U1, U2, ..., Uk} for Sskew(n), where k = 1

2n(n− 1).

2: Construct the matrix UI = (vec(U1), vec(U2), ..., vec(Uk)) ∈ Rn
2×k (see Equation (59)).

3: V ← UIU
T
I .

4: Calculate the initial loss f0 by substituting the R0
i ’s and the τ0i ’s in f (see Equation (93)).

5: for t = 0, 1, 2, ... do
6: Calculate GradRt

i
f t for i ∈ {1, ..., k}.

7: for i = 1, 2, .., k do
8: Rt+1

i ← Rti exp(−ηvec−1(V vec((Rti)
T GradRt

i
f t))

9: end for
10: Calculate f t+

1
2 by substituting the Rt+1

i ’s and the τ ti ’s in f (see Equation (93)).

11: Calculate Gradτt
i
f t+

1
2 for i ∈ {1, ..., k}.

12: for i = 1, 2, ..., k do
13: τ t+1

i ← τ ti − σGradτt
i
f t+

1
2

14: end for
15: Calculate f t+1 by substituting the Rt+1

i ’s and the τ t+1
i ’s in f (see Equation (93)).

16: end for

As an initial test of Algorithm 3, let us consider the robotic-arm problem in R2. We take a robotic arm with
three links and joints, i.e., k = 3. We want to fit the robotic arm on the curve γ : R→ R2 given by

γ(τ) =

(
τ

−(τ − 1)2 + 1

)
. (103)

We set the number of integration points per link to p = 1. Therefore, only the endpoints of each link will be
fitted on γ. We set x1 = x2 = x3 = x = (0.8, 0), therefore ∥xi∥ = 0.8. We use R0

1 = R0
2 = R0

3 = I2×2 as our
initial guesses for the Ri’s. We use τ1 = 0.4, τ2 = 0.8 and τ3 = 1.2 as our initial guesses for the τi’s.

In Section 4.4, we learned that a learning rate of η = 1 for the vector-rotation problem gives the best overall
convergence. To solve the vector-rotation problem we used Algorithm 2. Note Algorithm 2 also uses the
Riemannian retraction to update R. Therefore it is reasonable to assume that a learning rate of η = 1
is also a good choice for the robotic arm case. However, since ∥GradRi

f∥F , for all i ∈ {1, 2, ..., k}, scales
with ∥x∥2, we take η = 1

∥x∥2 to compensate for this scaling factor. Therefore, we choose the learning rate

η = 1
0.82 ≈ 1.56. Testing some learning rates σ gives that σ = 1 gives a faster convergence rate than smaller

values of σ. Using a much higher value of σ will result in oscillatory behaviour in the value of the loss
function f between iterations.

In Figure 20, illustrations of the robotic arm during the first ten iteration steps are given. Here, αt denotes
the robotic arm at iteration step t, which is defined by substituting R1 = Rt1, ..., Rk = Rtk in the expression
for α (see Equation (88)). We see that the first link of the arm rapidly fits on γ. This is also visible in Figure
21. Here, fi represents the loss induced by the ith link, i.e.,

fi =
1

p

p∑
j=1

∥αij − gij∥2 , (104)
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such that

f =
1

k

k∑
i=1

fi. (105)

fi gives an indication of how well the ith link is fitted on top of γ. During the first four iterations, f1 is
smaller than f2 and f3, which indicates that the first link is better fitted than the other two links. In the
next iteration steps, we see that f1 and f2 increase whereas f3 and f still decrease. This is also visible in
Figure 20 where the first two links are moved away from γ so that the third link fits better. The points
γ(τ201 ), γ(τ202 ) and γ(τ203 ) are represented by the blue dots on the γ curve.
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Figure 20: The robotic arm αt. Here, k = 3, p = 1, η = 1.56, σ = 1. γ(τ101 ),
γ(τ102 ) and γ(τ103 ) are represented by the blue dots.

The convergence behaviour over 110 iteration steps is given in Figure 23. We see that f converges to
computer precision after these 110 iterations. The final orientation of the robotic arm after 110 iterations is
given in Figure 22. The blue dots represent γ(τ1101 ), γ(τ1102 ) and γ(τ1103 ). We see that the endpoints of each
link are plotted on top of the blue dots and on top of the gamma curve, which is indeed optimal for p = 1.

Next, let us increase the number of integration points per link to p = 10. A graphical representation of the
robotic arm for the first 20 iteration steps is given in Figure 24. We see that the first and second links are
fitted on top of γ first. Performing more iterations also brings the third link on top of the γ curve. The
same phenomenon is also visible in Figure 25, where we see that f1 and f2 rapidly decrease during the first
2 iteration steps. After these first 2 iterations the value of f2 increases, which seems suboptimal. However,
in this way the overall loss value f decreases, since f1 and f3 decrease. The same phenomenon occurs after
iteration step 9, where now f1 increases. So the algorithm allows for increasing fi’s if this results in a nett
decrease of the loss function f .

In Figure 27 the value of the loss function f and the losses per link f1, f2, f3 are plotted. We see that f3 is
larger than f1 and f2 until iteration step 41, then f3 becomes smaller than f1 and f2, which indicates that
the third link is fitted best. After 100 iterations the value of f stays around 3.9 · 10−3 and the values of
f1, f2 and f3 do not change significantly anymore, indicating that we have reached a minimum of f . Note
that the value of f does not go to zero, since for p > 1 it is not possible to fit all the integration points
(the αij ’s) on top of the γ curve. To further validate that we are approaching a minimum of f , we can also
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Figure 21: The loss function. f1, f2 and f3 are also plotted (see Equation
(104)).
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Figure 22: The robotic arm α110. Here, k = 3, p = 1, η = 1.56, σ = 1.
γ(τ1101 ), γ(τ1102 ) and γ(τ1103 ) are represented by the blue dots.
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Figure 23: The loss function. Here, k = 3, p = 1, η = 1.56, σ = 1.
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Figure 24: The robotic arm αt. Here, k = 3, p = 10, η = 1.56, σ = 1.
γ(τ201 ), γ(τ202 ) and γ(τ203 ) are represented by the blue dots.
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Figure 25: Loss during the first 20 iteration steps. Here, η = 1.56, k = 3
and p = 10.

look at the Riemannian gradients gradR1
f , gradR2

f and gradR3
f . For convergence, these gradients should

approach 0n×n, therefore the Frobenius norms of these matrices should become zero. To investigate this, we
have plotted ∥ gradR1

f∥F , ∥ gradR2
f∥F and ∥ gradR3

f∥F in Figure 28. Furthermore, let us define

gradτf =
(
gradτ1f, ..., gradtauk

f
)T
,

where gradτf ∈ Rn. The Frobenius norm of gradτf is given by

∥ gradτ f∥F =

√√√√ k∑
i=1

(
gradτi f

)2
,

which is also given in Figure 28. We indeed see that these norms go to zero, which indicates that we are
approaching a minimum for f . The final configuration of the robotic arm α200 after 200 iterations is given
in Figure 26, which nicely fits the γ curve.

Next, we double the number of links k to k = 6. Furthermore, let xi = (0.4, 0) and R0
i = I2×2, for all

i ∈ {1, ..., 6}. We use τ01 = 0.2, τ02 = 0.4, ..., τ06 = 1.2 as our initial guesses for the τi’s. We keep the learning
rate for the τi’s at σ = 1 and we choose a learning rate for the Ri’s of η = 1

∥x∥2 ≈ 6.25. The number of

integration points per link is p = 10. The end result after 200 iterations is given in Figure 29. We see that
the robotic arm matches the γ curve. In Figure 30 the value of the loss function is plotted over 200 iterations.
Again we see that the value of the loss function stabilizes around 100 iterations where f ≈ 2.5 · 10−4. Note
that for the k = 3 case, we had f = 3.9 · 10−3 at iteration step 100. When k = 6, we have more links.
Therefore, we can fit the robotic arm better on γ than for the k = 3 case. This explains why f is smaller
for the k = 6 case than for the k = 3 case. Furthermore, we see that f6 convergences very slowly. This is
the loss associated with the sixth and final link. We can explain this slow convergence by the fact that there
are a lot of ways to change the position of the sixth link since this position depends on all the Ri’s, whereas
the position of the first link only depends on R1. Therefore we need more iteration steps to fit the sixth link
than we need to fit only the first link on γ.

In short, we developed Algorithm 3 which can fit a robotic arm, which is described by Equation (88), on a
given curve γ : R→ Rn in general dimensions n. We have tested the algorithm in 2 dimensions where each
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Figure 26: The robotic arm αt. Here, k = 3, p = 10, η = 1.56, σ = 1.
γ(τ2001 ), γ(τ2002 ) and γ(τ2003 ) are represented by the blue dots.
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Figure 27: The loss function. Here, k = 3, p = 10, η = 1.56, σ = 1.
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Figure 28: Frobenius norm of the Riemannian gradient. Here, k = 3, p = 10,
η = 1.56, σ = 1.
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Figure 29: The robotic arm α200. Here, k = 6, p = 10, η = 6.25, σ = 1.
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Figure 30: The loss function f . Here, k = 6, p = 10, η = 6.25, σ = 1.

link has an equal length. When choosing the learning rate η = 1
∥x∥2 and σ = 1 gives a proper solution after

100 iterations. We advise doing more iteration steps when k is large so that the final links are also fitted on
top of γ.

In the next section, Section 4.6, we will discuss a flaw of Algorithm 3, which occurs when the initial value of
the τi’s are chosen poorly. This flaw is fixed by introducing a method which finds proper initial values for
the τi’s. In Section 4.7, we will test the algorithm in higher dimensions.
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4.6 Arc Length Initialization

In this section, we discuss a flaw of Algorithm 3. The flaw is that the final solution of Equation (93) obtained
by the algorithm may depend on the initial values R0

i and τ0i , where i ∈ {1, 2, ..., k}.

To illustrate this problem let us consider the case where the number of links is k = 3. Let the number
of integration points per link be p = 10 and let γ be described by Equation (103). We take ∥xi∥ = 0.8
for i ∈ {1, 2, 3}. Note that we already considered this problem in the previous section. However, let
R0

1 = R0
3 = I2×2 and R0

2 = −In×n be the initial values for the Ri’s and let τ01 = τ03 = 0.4 and τ02 = 0 be the
initial values for the τi’s. We choose the learning rates η = 1

∥xi∥2 ≈ 1.56 and σ = 0.5. The results are given

in Figures 31, 32 and 33.
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Figure 31: The robotic arm αt. Here, k = 3, p = 10, η = 1.56, σ = 1. The
initial values are R0

1 = R0
3 = I2×2, R

0
2 = −I2×2 and τ01 = τ03 = 0.4, τ02 = 0.
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Figure 32: The loss function f . Here, k = 3, p = 10, η = 1.56, σ = 1. The
initial values are R0

1 = R0
3 = I2×2, R

0
2 = −I2×2 and τ01 = τ03 = 0.4, τ02 = 0.
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Figure 33: The Frobenius norm of the gradients. Here, k = 3, p = 10, η =
1.56, σ = 1. The initial values are R0

1 = R0
3 = I2×2, R

0
2 = −I2×2 and

τ01 = τ03 = 0.4, τ02 = 0.

In Figure 31, we see that the end configuration of the robotic arm α200 differs from the configuration given
in Figure 26. This is because of the difference in the initial values between the two instances. In Figure 32
we see that after 200 iterations the value of f stays around 9.5 · 10−4 and in Figure 33 we see that Frobenius
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norms of the Riemannian gradients go to zero, which both indicate that we have reached a minimum of the
loss function f . However, we prefer the solution given in Figure 26 over the solution given in Figure 31. We
want that the robotic arm travels along γ as far as possible and that its links do not fold into eachother. So,
we require

Ri ̸=−Ri+1, for all i ∈ {1, ..., k}.

One can impose such a constraint by adding an extra term to the loss function f . However, we developed
another technique which solves this problem and does not further complicate the loss function f . Our idea
is to give a good guess for the initial values τ0i , for i ∈ {1, ..., k}. To determine this guess we first need to
consider the definition of the arc length. [4]

Definition 4.1 (Arc Length). Given is a curve γ : R→ Rn. Let γ(a) and γ(b) be two points on γ The arc
length s(a, b) between these points is defined as the length along the curve γ(τ) from γ(a) to γ(b), which is
given by

s(a, b) =

ˆ b

a

∥γ′(τ)∥ dτ. (106)

We choose our initial values τ0i such that

s(τ0i−1, τ
0
i ) =

ˆ τ0
i

τ0
i−1

∥γ′(τ)∥dτ =∥xi∥, for all i ∈ {1, ..., k}, (107)

where τ00 = 0. Moreover, we fix τi = τ0i , i ∈ {1, ..., k}, for the first t̂ iteration steps and optimize f only
for the Ri’s. One can choose to do this until convergence. Then, we let go of the restriction on the τi’s
and optimize f for the Ri’s and the τi’s simutanuously. This idea results in Algorithm 4. Note that during
the first for-loop of Algorithm 4 we fix τ ti = τ0i from iteration step 1 upto t̂. One can opt to change this
for-loop into a while loop, which terminates if f t has converged. One can check for convergence by looking
at the difference f t−f t−1 or by looking at the Riemannian gradients and checking if they approach the zero
matrices.

Let us test Algorithm 4 by considering the path γ : [0, 1]→ Rn, which is defined as

γ(τ) =

(
sin(2πτ)
cos(4πτ)

)
.

We fit a robotic arm with k = 18 links and p = 10 integration points per link on this γ curve. Let us first use
Algorithm 3 from the previous section, which does not initialize τ0i based on the arc lengths equations, to
solve this case. Let us take τ0i = 0 instead, for all i ∈ {1, ..., 18}. Furthermore, let xi = (0.5, 0), R0

i = I2×2.
We choose η = 2 and σ = 0.1 as our learning rates. We perform 400 iteration steps. The results are given
in Figures 34 and 35.
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Algorithm 4 Riemannian gradient descent with arc length initialization

htbp
Require: Piecewise linear function α(t) : [0, k] → Rn which describes the robotic arm (see Equation

(88)) including the x1, ..., xk which describe the initial orientation and length of each of the links, here k
is the number of links and joints; the minimization function f (see Equation (93)); a learning rate or step

size η > 0 for the Ri’s; a learning rate or step size σ for the τi’s; an operator vec : Mn(R) → Rn
2

, which
orders the elements of a matrix into a vector (see Section 3.3); Number of iteration t̂ for which we want to
fix τi = τ0i , i ∈ {1, ..., k}.

Input: Initial iterate R0
1, ..., R

0
k ∈ SO(n).

Output: Sequences of iterates {Rt1}, ..., {Rtk}t=0, {τ t1}, ..., {τ tk}
1: Initialize the τi’s by solving Equation (106) for τ0i , i ∈ {1, ..., k}.
2: Construct a basis {U1, U2, ..., Uk} for Sskew(n), where k = 1

2n(n− 1).

3: Construct the matrix UI = (vec(U1), vec(U2), ..., vec(Uk)) ∈ Rn
2×k (see Equation (59)).

4: V ← UIU
T
I .

5: Calculate the initial loss f0 by substituting the R0
i ’s and the τ0i ’s in f (see Equation (93)).

6: for t = 0, 1, 2, ..., t̂ do
7: Calculate GradRt

i
f t for i ∈ {1, ..., k}.

8: for i = 1, 2, .., k do
9: Rt+1

i ← Rti exp(−ηvec−1(V vec((Rti)
T GradRt

i
f t))

10: τ ti ← τ0i
11: end for
12: end for
13: for t = t̂, (t̂+ 1), ... do
14: Calculate GradRt

i
f t for i ∈ {1, ..., k}.

15: for i = 1, 2, .., k do
16: Rt+1

i ← Rti exp(−ηvec−1(V vec((Rti)
T GradRt

i
f t))

17: end for
18: Calculate f t+

1
2 by substituting the Rt+1

i ’s and the τ ti ’s in f (see Equation (93)).

19: Calculate Gradτt
i
f t+

1
2 for i ∈ {1, ..., k}.

20: for i = 1, 2, ..., k do
21: τ t+1

i ← τ ti − σGradτt
i
f t+

1
2

22: end for
23: Calculate f t+1 by substituting the Rt+1

i ’s and the τ t+1
i ’s in f (see Equation (93)).

24: end for
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Figure 34: The robotic arm αt with τ0i = 0 for i ∈ {1, ..., k}. Here, k =
18, p = 10, η = 2, σ = 0.1.
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Figure 35: The loss function f with τ0i = 0 for i ∈ {1, ..., k}. Here, k =
18, p = 10, η = 2, σ = 0.1.

In Figure 34, the blue dots label γ(τ400i ) for i ∈ {1, ..., 18}. We see that γ(τ4009 ) and γ40011 lay on top of each
other and so are γ(τ40015 ) and γ(τ40017 ). This indicates that R9 ≈ −R10 and R15 ≈ −R16. This phenomenon
occurs at a place where the γ curve makes a sharp turn. Looking at Figure 35, we see that we approach a
local minimum for f . The algorithm is not able to escape this minimum. After 400 iterations, we obtain
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f400 = 2.65 · 10−2.

Next, let us consider the same problem with the same initial R0
i and the same learning rates η = 2 and

σ = 0.1. However, now we use Algorithm 4. So we first calculate τ0i based on Equations (106). Then we
fix τ ti = τ0i during the first t̂ = 100 iterations. Then we perform 300 more iterations, where we unfix τ ti .
Algorithm 4 is implemented in Python. We used the scipy.optimize.rootscalar() and scipy.integrate.quad()
functions to solve Equation (106) numerically to obtain τ0i for i ∈ {1, ..., 18}. If the primitive function of
∥γ′(τ)∥ is known, one can also opt to solve Equation (106) exactly. The results of our code are given in
Figures 36 and 37.
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Figure 36: The robotic arm αt, where the τ ti ’s are fixed during the first
t̂ = 100 iterations. Here, k = 18, p = 10, η = 2, σ = 0.1.
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Figure 37: The loss function f , where the τ ti ’s are fixed during the first
t̂ = 100 iterations. Here, k = 18, p = 10, η = 2, σ = 0.1.

In Figure 36, we see that the robotic arm is stretched out over γ. There are no joints for which Ri+1 ≈ −Ri.
In Figure 37, we see a plot of the value of the loss function f over the iteration steps. For the first t̂ = 100
iterations, the shape of the graph of f is similar to the one given in Figure 34. During these iteration steps
we fix τ ti = τ0i , so we are minimimzing over SO(2)18. In Figure 36, the decrease in the loss function is
larger than in Figure 34, indicating that we reach a better minimum. After iteration step t̂ = 100, we see a
sudden decrease in f , because we unfix the τi’s at iteration t̂ = 100. This gives more freedom to minimize
f , since we are now mimimizing over SO(2)18 × R18 instead. After a total of 400 iterations, we obtain
f400 = 2.79 · 10−3. This is a significant improvement with respect to the results from Algorithm 3, where we
obtained f400 = 2.65 · 10−2.

In terms of computational complexity Algorithm 4 is slightly more expensive than Algorithm 3, since we first
need to solve the arc length equations (given by Equation (106)) numerically before we start the iteration
steps. However, this extra computational cost is neglectable in comparison to the cost of performing the
rest of the Algorithm 4. Moreover, if a primitive function of ∥γ′(τ)∥ is known, one can solve the arc length
equations exactly and very efficiently.

In short, we developed Algorithm 4 as a way to improve Algorithm 3. Algorithm 3 can get stuck in a local
minimum for which for some links i, we have Ri+1 ≈ −Ri, which is undesired. This can especially occur
when solving more complicated problems where the number of links k is large or the path γ contains multiple
curves. Algorithm 4 initializes the τi’s based on the arc lenght equations (106) and keeps these τi’s fixed for
the first couple of iterations t̂, to guarantee that we end up in the desired minimum of f . A test case, where
k = 18, shows that Algorithm 4 indeed ends up in this desired minimum.
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4.7 The Robotic Arm in Higher Dimensions

In this final section about the numerical simulations, we lay emphasis on the fact that Algorithm 4 is suitable
for fitting a robotic arm on a curve γ in any multiple dimensional space Rn. We will look at R3 since for
this case we still have tools to visualize the robotic arm.

Let us difine the path γ : R→ R3 as follows

γ(τ) =

 1− cos(2πτ)
sin(2πτ)

τ

 .

Let the number of links be k = 18 and let the number of integration points per link be p = 10. Furthermore,
let R0

i = I3×3 for i ∈ {1, 2, ..., 18}. We use Algorithm 4 with learning rates η = 2 and σ = 0.1, where we fix
τ ti = τ0i for the first t̂ = 50 iterations. The results are given in Figures 38 and 39. Here, the labeled blue
dots represent γ(τ200i ) for i ∈ {1, ..., 18}.
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Figure 38: The robotic arm αt in R3, where the τ ti ’s are fixed during the
first t̂ = 50 iterations. Here, k = 18, p = 10, η = 2, σ = 0.1.
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Figure 39: The loss function f , where the τ ti ’s are fixed during the first
t̂ = 50 iterations. Here, n = 3, k = 18, p = 10, η = 2, σ = 0.1.

In figure 38, we see that after 200 iterations the robotic arm fits γ. The loss function is plotted in Figure 39.
We need slightly fewer iteration steps to converge to the solution in this case than for the 2-dimensional case
from the previous section (see Figures 36 and 37). This could be due to multiple factors. For example, the
γ curve differs from the γ curve considered in the previous section. It can also be due to the phenomenon
which we discussed in Section 4.3. There we found that increasing the dimensionality of the vector-rotation
problem can in some cases lead to a faster convergence because it becomes less likely for the algorithm to
get stuck in an unstable critical point.

In general, the computational cost for each iteration increases as we increase the dimensionality n of the
problem, because of the increasing dimensions of the Ri matrices. Therefore, the total computational cost
increases as n increases. Based on our observation in Section 4.3, we also expect that for the robotic-arm
problem the number of iterations needed until convergence is independent of n.
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5 Conclusion
In this report, we looked at the classical gradient descent method and adapted it to a Riemannian setting.
Our analyses of the tangent spaces of Riemannian manifolds, the Riemannian metric and the Riemannian
gradient resulted in the constant line search method (CLS) given by Algorithm 1. Performing this algorithm
includes calculating the Riemannian gradient and using a retraction method.

We have further specified the CLS method for the Riemannian manifold SO(n). SO(n) is a Riemannian
submanifold of Mn(R) and therefore inherits the Riemannian metric from Mn(R), which is the Frobenius
inner product. Using this Riemannian metric we were able to calculate the Riemannian gradient grad f(R)
of a loss function f at a point R ∈ SO(n) by projecting the Euclidean gradient onto the tangent space
TR SO(n) (see Equation (63)). As a retraction method, we used the Riemannian exponential map, which is
defined in terms of geodesics (see Definition 3.5). This gave us all the tools to specify the CLS method for
SO(n). This resulted in Algorithm 2.

We tested Algorithm 2 on the vector-rotation problem. We concluded that a learning rate of η = 1 gives
the fasted convergence rate and that the number of iteration steps needed until convergence does not change
as we increase the dimensionality of the problem. This shows that Algorithm 2 is very suitable for solving
higher dimensional problems.

Lastly, we considered the robotic-arm problem, where we try to find a robotic arm configuration which
accurately approximates a given curve γ : R → Rn. We developed Algorithm 3, which gave good results
if the number of links k is small. We adapted Algorithm 3 by initializing the τi (i ∈ {1, 2, ..., k}) variables
based on the arc length equations given by Equation (106). This resulted in Algorithm 4, which also gives
good results for high values for k. We lay special emphasis on the fact that Algorithm 4 can be used to do
real-time updating of the robotic arm. Moreover, Algorithm 4 is very suitable for solving such the robotic-
arm problem in a higher dimensional space, since the number of iteration steps until convergence does not
increase as n increases. However, the computational cost of each iteration step does increase as n increases,
due to the increasing dimensions of the Ri matrices.

5.1 Future Directions

The last thing we want to discuss is some future research directions related to this thesis. First of all, it
could be interesting to adopt the CLS method for other matrix groups, like the special linear group or the
symplectic group. Secondly, we could compare our algorithm to other methods, for example, the stochastic
gradient descent method (see Ref. [7]) and the Newton method (see chapter 6 of Ref. [2]). Finally, there is a
lot of literature about methods which can optimize over the orthogonal group O(n) for training deep neural
networks. These methods are also based on the theory of Lie groups and Riemannian geometry. It can be
interesting to further explore the possibilities within this field of research.
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