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Abstract 

 

Our ability to store large quantities of data is steadily getting more important. This has led to 

the development of compression algorithms which reduce the amount of memory required 

to store datasets. These compression algorithms can either be lossless or lossy. In this 

project, a new lossy compression algorithms has been developed that allows quantitative 

floating point datasets to be reduced. This new method takes inspiration from other lossy 

compression algorithms that are centred around the size reduction of audio and image files. 

By classifying digits from quantitative datasets as either random noise or non-noise, 

insignificant digits can be removed from the dataset’s contents. The amount of bits used to 

store the dataset’s contents are then reduced as much as possible without further altering 

the data as to reduce the memory usage of the dataset. Two datasets were used to test this 

method on, one concerning metocean measurement data and the other concerning weather 

data. The developed algorithm reduced the memory usage of these two datasets by 45.66% 

and 67.53% respectively. Though the values of certain parameters have yet to be optimized, 

the developed algorithm has the potential to be useful in a practical setting if used in 

combination with other existing compression algorithms. 
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1. Introduction 
 

Data is rapidly turning into one of the most valuable and sought-after resources on the 

globe. Applications that make use of big data are becoming much more common than they 

once were. As a result, more and more companies are starting to realise the potential value 

of data and the models that can be created with it. These companies can have very different 

goals with the data they collect. As an example, this data can be used for the purpose of 

performing analyses on the current system to find out how to increase efficiency within the 

company. It could also be used for the purpose of predicting crucial information that would 

allow said company to make more informed decisions for the future. Alternatively, the data 

might be collected for classification or clustering purposes. Those are only a few examples of 

the many applications of data. Unfortunately, there is a large issue when it comes to the use 

of big data. As the name “Big Data” suggests, many of these algorithms require massive 

amount of data to be truly effective. Our ability to store massive quantities of data is thus 

getting more important than ever. The purpose of this project will be to find (partial) 

solutions to this storage problem. More specifically, to find ways of reducing the size of 

datasets that contain quantitative data.  

1a. Lossless and Lossy Compression 

When it comes to reducing the size of datasets, one needs to consider whether it is 

acceptable for some information within the data to be lost in the process. A data size 

reduction process in which no information whatsoever may be lost is called lossless 

compression. On the other hand, lossy compression is a process that avoids transmitting 

unnecessary and less-useful data, so that more storage may be saved (Marzen & De Deo, 

2017). This means that some (insignificant) information is indeed lost in the process. As a 

result, lossy compression allows for greater data size reduction than lossless compression. 

This is because the methods used for lossless compression can still be used as an addition by 

one who intends to make use of lossy compression methods. 

The figure on the right shows a simplified  

visualization of both lossless and lossy 

compression. The sizes of the boxes 

represent the memory usage for the 

dataset in question. The dataset can be 

completely restored to its original form 

for lossless compression. For lossy 

compression on the other hand, the 

restored dataset will have lost some data. 

After using lossy compression, it is 

impossible to fully restore the dataset to 

its original form. 

 

Figure 1: Simplified visualization of lossless- and lossy 
compression. 
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In the past, the primary use case for lossy compression techniques of scientific data was 

visualization (Cappello et al., 2019). Lossy compression methods were and still are used to 

store images in such a way that the image will take up far less storage while the quality of 

the image would only decrease slightly. Additionally, lossy compression of images causes the 

transmission times of said images to decrease drastically. There are many methods that 

were and are used for lossy compression. Coefficient prioritization, wavelet transforms and 

vector quantization (Goldschneider, 1997) are only a few of the many techniques used for 

compressing images specifically in a lossy manner. Using these methods, very large amounts 

of storage can be saved in settings where the extremely fine details of images are not 

relevant. The extent to which lossy compression can reduce the required storage space of an 

image greatly depends on the modality of said image. However, lossy compression generally 

allows the storage size of an image to be reduced by a factor of up to about 40 without 

causing an immediate and apparent loss in image detail when redisplayed (Allisy-Roberts et 

al., 2008). 

The compression of images and sound had been considered to be the main and most useful 

purpose for lossy compression methods for a very long time. Lossy compressors designed for 

image processing are usually optimized considering human perception of the results. This 

raises an important issue for the use of lossy compression for non-image datasets. Because 

the optimization is based on human perception, it is very difficult to set upper bounds to the 

compression error that may be introduced (Cappello et al., 2019). However, in recent years 

there has been drastic and remarkable progress in the ability (and desire) of the scientific 

community to use lossy compression techniques on datasets other than only those centred 

around visualizations (Cappello et al., 2019). This has made it possible for many more types 

of datasets to be reduced in storage size using lossy compression methods.  

This project will focus on lossy compression methods rather than lossless methods so that 

more storage may be saved. These lossy compression methods will be used in order to 

reduce the required storage for quantitative datasets containing floating point data in ways 

that will be explained in the Methods section. 

1b. Implications for Supercomputers 

When it comes to data size reduction, supercomputers are a very relevant factor that are 

only becoming more important as time passes. The processing power of these monstrous 

devices has grown exponentially over the last few decades. This has resulted in more and 

more companies taking an interest. Many of these companies are starting to make use of 

supercomputers to be able to run highly complex and computationally intensive simulations 

and prediction algorithms, often times using convolutional and deep neural networks in the 

process. These types of algorithms are notorious for being both computationally and 

memory intensive (Chen et al., 2014). It would take decades to run these specific types of 

neural networks on regular computers. However, supercomputers can finish running these 

types of algorithms in a matter of hours due to their impressive computational capabilities. 

When it comes to supercomputers, the reduction of data sizes is getting more and more 

relevant. There are many reasons for this development, but there are two reasons that stand 

out as the most critical ones. 
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The first of these reasons is closely linked to dynamic random access memory (or DRAM for 

short) and the development thereof in the past decade. To better understand how changes 

in DRAM over the years have affected supercomputers, one first needs to know what DRAM 

entails and why it is of crucial importance. Nearly every computer has random access 

memory (RAM), this refers to internal memory of the computer. This RAM stores data 

temporarily while the central processing unit (CPU) is occupied with the execution of other 

tasks. DRAM is one of the two main types of RAM, the other type being static RAM (SRAM). 

For supercomputers, DRAM represents a very substantial part of the total costs. And since 

the price of DRAM has been increasing rapidly (the average selling price tripled between 

2007 and 2017 alone), the size of the system DRAM is not growing as quickly as the DRAM 

density (Cappello et al., 2019). This has resulted in a situation where the minimization of 

dataset sizes is of importance for the continuous successful development of supercomputers 

and the general use thereof as we move into the future. 

Secondly, it is useful to consider the performance and development of sockets, which ensure 

that all pins on the central processing unit receive the correct signals and voltages. 

Additionally, the development of bandwidth between the socket of the processor and the 

memory should also be examined. From 2007 until 2017, the socket performance has gone 

up quite substantially, namely between 50% and 60% per year. This is due to the emergence 

and development of the multi-many-core design (Vajda, 2011). The bandwidth on the other 

hand, has only increased between 20% and 25% per year (McCalpin, 2016). Since these two 

factors have not been increasing at a similar tempo, it has created a situation in which there 

is an expanding gap between the processing system and the memory system. The cache 

hierarchy, a memory architecture that makes use of a hierarchy of memory stores based on 

varying access speeds to cache data, can sometimes compensate for this gap. However, it is 

often times not able to compensate enough and it is often not able to compensate for all 

applications (Cappello et al. 2019). Therefore, reducing the storage required for data is 

important and useful. After all, by reducing the data size, less memory bandwidth will be 

needed, resulting in less strain being put on the memory system. This way, more processing 

power of supercomputers can be put to good use regardless of the gap between processing 

power and the limits of the memory system. 

These two factors combined make it clear to see that the reduction of dataset storage size is 

important for supercomputers. This displays one of the applications for data reduction 

algorithms. Since there is a field that needs datasets to be as small as possible to be as 

effective as possible, it is clear that there is a demand for such algorithms. That is why this 

project will work to create such an algorithm. 
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2. Objectives and Research Question 

 

Before the methods and results of this project are presented, it is important to clearly and 

concisely set out the objectives for this project. For this section there are three key 

requirements that need to be satisfied for each objective. Firstly, the objective needs to be 

specific. The reason for this being that specificity can avoid ambiguity in the goal, which 

would make it more apparent what steps need to be taken to reach the end goal(s). 

Secondly, the objectives must be achievable. For a goal to be suitable, it needs to be 

grounded in reality. Objectives that could be considered to be relatively ambitious given the 

time constraints of this project, need to be treated with caution. The third and final 

requirement for the formulation of objectives is that the objective should be relevant. After 

all, for an objective to have useful real-world applications, it needs to be relevant. These 

three requirements for the objectives are derived from the S.M.A.R.T. method of 

formulating objectives (Werle Lee, 2013). 

2a. Primary Goal and Significance Definition 

The primary end-goal of this project is to find ways to reduce the size of quantitative 

datasets which store floating point values as much as possible within the given timeframe. 

Additionally, it is important that no significant information is lost in this process. This 

objective is the primary goal for this project since the need to reduce the required memory 

for datasets is what made this project emerge in the first place. To achieve this goal, lossy 

compression will be used. Since the data stored in the relevant datasets will consist of 

floating point values which contain many digits, it will be possible to “cut off” some of these 

digits so that fewer digits will be needed for each data point. This way, digits which do not 

add any useful information to the data point will be removed. Using this methods, less 

storage will likely be needed for data which contains the same information, but with fewer 

digits. 

To better understand this goal there is one term that needs to be explored in more detail. As 

stated, the goal of this project will be to reduce data size without removing significant 

information from said data. However, in order to be able to realize this goal it is of 

importance to define what is meant by significant in this objective. Without being able to 

judge whether or not a value changes significantly, this task is not possible. Additionally, 

digits that are significant for one type of industry, may very well be insignificant to another 

industry. As an example one could consider a dataset regarding the amount of energy one 

could obtain from certain types of fuel. An engineer working for NASA would likely require 

reasonably many digits to conduct their research. Gas station owners who are interested in 

such a dataset on the other hand would likely not need nearly as many digits seeing as they 

would likely not intend to perform precise calculations with the data. 

Although the significance of data often depends on the relevant field and purpose for which 

the data is used, there is one type of data that is insignificant regardless of the type of 

industry: noise. Noise is meaningless data that does not add any information to a dataset. 

This is because noise is the result of randomness and because noise is always assumed to not 



8 
 

be present in the “real” values that the data tries to represents. For example, one could 

think of a machine which measures a certain variable and stores the numerical results. If 

such a machine is able to make accurate measurements to up to four decimals, yet the 

measurements are stored with 6 decimals, then the final two digits will most likely be 

random. This means that those digits add no additional information and can be considered 

as noise. It can often be difficult to judge whether data is noise or actually adds potentially 

useful information. Finding and removing noise from data will be the main way of reducing 

data sizes in this project. Such a method would be useful regardless of the industry in which 

the data is used since, which would make such a method universal. 

2b. Storage and Runtime Analyses 

Another objective of this project will be to perform analyses on the effects of the amount of 

digits for quantitative data. More specifically, the purpose of these analyses will be to test 

how the runtime of basic algorithms and the amount of required storage of datasets is 

affected by the amount of digits of the relevant data. Since much time will be spent on 

reducing the amount of stored digits of data, it is important to understand how these digits 

relate to the data’s storage and runtimes. After all, the main end goal of this project is to 

reduce data sizes, reducing the amount of digits that are stored in datasets is simply a means 

to achieve this goal.  

To perform these analyses, an arbitrary quantitative dataset will be generated since the 

exact values in the dataset are irrelevant in this case. This dataset will consist of many 

floating point values with a large amount of decimals. Then, a copy of this dataset will be 

created which “cuts off” the majority of these digits. Then, the amount of storage needed to 

save these datasets can be compared to find out what impact the amount of decimals makes 

on the memory usage. Additionally, some basic algorithms can be performed on both 

datasets and the total runtimes can be compared to find out whether fewer decimals 

reduces the runtimes of certain algorithms. Note that within this project, the term “digit” 

refers to a value from 0 to 9 rather than a binary value, which is usually used for floating 

point values. 

Lastly, these analyses will test what impact the variable type used to store the data makes. 

As stated, the datasets in question will contain floating point values. However, there are 

many types of floats that can be used. The difference between these types of floats is the 

amount of bits that are used to store data. A bit is the smallest unit when it comes to 

computer memory, a simple binary digit. It is most common to use either 64 or 32 bits to 

store float values, but these are not the only options. In these analyses the impact of the 

amount of bits on the runtimes and required storage will be tested. 

2c. F Tests 

In order to remove insignificant digits from float values, one would need to find out for each 

decimal digit whether it can be removed without causing significant difference in the 

relevant value. This is where F tests may be of use. F tests are usually used to find out 

whether the variances of two separate normal distributions are statistically significantly 

different. However, F test also make it possible to find out whether there is a significant joint 
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difference in means for random variables (Moreira, Mexia, Minder, 2013). This means that F 

tests check whether a certain number of variables are likely to be all equal to each other. A 

goal of this project will be to find out whether F tests can be used to find out whether float 

values change in a statistically significant way if certain digits are removed.  

This approach could certainly be of use if experimentation leads to the identification of 

valuable and achievable opportunities. However, since this is a very experimental and 

unconventional way of using F tests, this objective will not be treated as a main goal of this 

project. Instead, this method will be considered to be an auxiliary objective. 

2d. Research Question 

For this project to have a clear direction, it must have a clear, concise and relevant research 

question to guide it along. As discussed in section 2a, the main intended method of 

achieving this project’s end goal of reducing data sizes will be to detect and remove digits 

that are nothing but noise from float values. To find out whether or not certain digits can be 

considered to be noise, one would need to be able to judge whether digits are fully random. 

After all, fully random digits can usually be identified as noise. Though it is true that there 

are datasets where this type of data is in fact useful and not noise, this is quite uncommon 

and will be elaborated upon in the discussion section of this paper. For the remainder of this 

project, fully random digits will be considered as random noise. Such a random noise 

detection analysis will be the main focus of this project and should thus be included in the 

research question. 

Additionally, F tests could also be useful for reducing data sizes. As discussed in section 2c, 

this statistical method could make it possible to check whether a statistically significant 

change occurs when certain digits are removed. This in turn, would make it possible to 

categorize digits as either significant or insignificant so that insignificant digits can be 

removed to reduce memory usage of the dataset. 

The following research question has been chosen for this project: "How can lossy 

compression methods be used to reduce the memory usage of a dataset without 

significant information being lost?” 

This research question will be split up into two sub questions where each sub question will 

be centred around a possible method of reducing data sizes. The following sub questions 

have been chosen for this project: 

1. “How can random noise detection be used to remove insignificant digits from 

quantitative data in order to reduce the required memory usage for datasets?” 

2. “How can F tests be used to remove insignificant digits from quantitative data in 

order to reduce the required memory usage for datasets?” 
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3. Methods 
 

Now that the objectives of this project have been described, the methods that will be used 

to attempt to achieve those objectives will be elaborated upon. Firstly the Law of Large 

Numbers will be used to develop a random-noise detection algorithm. A bit reduction 

algorithm centred around minimizing the number of used bits for floating point values will 

then be explored. Additionally, the methodology for the use of F tests in this project will also 

be elaborated upon. Lastly, the used datasets for this project will be described. The 

techniques and methodology will be documented as clearly and concisely as possible in 

order to allow readers to replicate the relevant experiments as well as possible. 

For this project, the available literature was quite limited. A reasonable amount of research 

has been conducted on lossy compression methods for audio files and images. However, the 

amount of research that was centred around lossy compression of floating point data was 

small. As a result, new methods will be created in this project with the aim to fill this gap in 

current literature. These new methods will of course be based on knowledge gained from 

published literature. However, it should be noted that these techniques are experimental. 

3a. Law of Large Numbers 

As previously discussed, random noise detection will be of key importance for this project. 

As such, it is critical that potentially useful methods are identified so that research can be 

conducted regarding their applicability. The first method of detecting random noise will be 

centred around  the Law of Large Numbers (LLN). The term Law of Large Numbers first 

appeared in the History of Probability by Poisson (1837). It was described as follows:  

“Things of every kind of nature are subject to a universal law which one may well call the Law 

of Large Numbers. It consists in that if one observes large numbers of events of the same 

nature depending on causes which are constant and causes which vary irregularly,..., one 

finds that the proportions of occurrence are almost constant.” 

Thus, as the number of times an experiment is performed increases towards infinity, the 

average of the obtained results will converge to the expected result for each individual 

experiment (Seneta, 2013). The law of large numbers can be split into two categories, the 

Strong Law of Large Numbers (SLLN) and the Weak Law of Large Numbers (WLLN), which is 

also commonly referred to as Khinchin's law (Soliman, 2020). The Weak Law of Large 

Numbers states that the sample average converges in probability to the expected value. For 

any value 𝜀 > 0, this law can be expressed as follows: 

 

lim
𝑛→∞

𝑃(|�̅�𝑛 − 𝜇| ≥ 𝜀) = 0 

 

Within this formula, �̅�𝑛 refers to the mean of the observed results. μ refers to the expected 

value of each individual result. And lastly, n refers to the sample size, the number of trials. 

This implies that for any positive specified margin ε, the probability that the difference 
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Figure 3: LLN Experiment, n = 10,000 

between the mean of the observed results and the expected value μ will be larger than ε, 

converges to 0. 

There is a key difference between the Weak and Strong Law of Large Numbers. The Weak 

Law of Large Numbers states that the average of the observed values will get arbitrarily close 

to the expected value as the sample size grows to ∞. The Strong Law of Large Numbers on 

the other hand states that the average of the observed values will converge exactly to the 

expected value as the sample size grows to ∞ (Chen, Wu, Li, 2013). Though it is a subtle 

difference, it is certainly one that should be noted. For this project, the Weak Law of Large 

Numbers seems to be the most applicable. After all, since this theory will be used for the 

purpose of random noise detection and since we cannot actually increase the sample size to 

∞, we are only interested in testing whether certain digits fall within a certain margin that 

implies that it is fully randomly distributed (this technique will be elaborated upon in section 

3b). 

A small-scale experiment was conducted so that the effects of the Law of Large Numbers can 

be visualized in an understandable and concise way. For this experiment, a certain number 

of random digits are chosen. The number of random digits will be referred to as n. Then, 

after storing these random digits, the ratio for every digit are visualized with the use of a 

histogram. Since the expected occurrence ratio for every digit is 10%, a red line was added 

to the histogram at 𝑦 =  0.10 to display the expected results. This experiment was 

performed for three separate values of n: 100, 10,000 and 1,000,000. This will allow one to 

see what impact a growing sample size will have on the obtained results. The resulting 

histograms look as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: LLN Experiment, n = 100 

Figure 4: LLN Experiment, n = 1,000,000 
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As can be seen in the figures above, the ratios for the digits jointly approach the expected 

value of 10% as n grows. This is in line with the Law of Large Numbers and it thus confirmed 

and clearly showed the effects of LLN. It should be noted however, that this does not imply 

that the ratios will always jointly be closer to the expected value for a larger value of n. It 

only implies that as n increases, the odds of the ratios getting closer to the expected values 

will increase. There will always be a degree of randomness in the results since the sample 

size can never truly be equal to ∞. These findings will be useful for the development of a 

data reduction algorithm because as will be described in section 4e, the distribution of 

values of digits will be constructed similarly to the way they were constructed for this 

experiment (without creating a visualization). For every distribution, one could estimate how 

likely it is to be the result of pure randomness. This in turn, will make it possible to classify 

digits are either random-noise or non-noise. 

To further exemplify the phenomenon described in the previous paragraph, another small 

experiment has been conducted. This time with the purpose to display how the error 

margins change as n increases. For many different values of n, n digits are randomly picked 

and the ratios for every digit are then computed for that specific value of n. For every digit’s 

ratio, the difference in percentage points was then calculated between the observed ratio 

and the expected ratio (of 10%). The mean of these errors is calculated for every value of n 

to show how the mean error changes as n increases. The results of this experiment were 

then visualized in a simple line plot. To provide more general insights into the results, a 

Gaussian filter was then applied over the results so that the general trend could be observed 

more easily (Mathys et al., 2014). Additionally, a red line was added on the line 𝑦 = 0  so 

that one can see to what degree the line approaches the expected value. The following 

results were obtained: 

 

 

Figure 5: LLN Experiment, visualization of mean error as sample size increases 
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These figures clearly show that even though the mean error does not get smaller every time 

n grows, there is an undeniable downwards trend that moves towards the line 𝑦 = 0. This 

further confirms the Law of Large Numbers and shows its effects in an easy to understand 

way. 

3b. Random Noise Detection using LLN 

Now that the Law of Large Numbers and its implications have been explored, it is time to 

elaborate on how this law will be used with the intent to reduce the memory requirements 

of datasets. To achieve the goal of this project, every decimal digit of a quantitative dataset 

will be analysed. The Law of Large Numbers for such a decimal digit could very well allow 

one to see what the expected ratio for every digit is. If these ratios are sufficiently close to 

the 10% point, one could assume that the decimal digit is the result of randomness. If this is 

the case, the decimal does not provide any useful significant information and are effectively 

nothing but noise (Pence, W.D., White, R.L., & Seaman, R., 2010). This would mean that the 

decimal can thus be removed from the dataset. It is important to note however, that this 

method has a strong focus on the decimal representation of floating point values rather than 

the more commonly used binary representation. 

For the Law of Large Numbers to be applicable though, it is imperative that we have a 

sufficiently large sample size and that external variables remain as constant as possible. 

Therefore, this technique will be intended to be used for a specific types of data: dense, non-

volatile time series data which results from an identical experiment or measurement being 

performed many times. For example, one could imagine a machine which returns 

measurements in the form of floating point values of a certain variable in very quick 

succession. If the data is collected over a sufficiently short amount of time, external factors 

that could affect the returned data would not be able to change significantly over the given 

timeframe. Additionally, it is important that the relevant data is non-volatile. If both of these 

conditions are met, one could divide the data into smaller parts (to keep external variables 

constant) and treat the data of these separate parts as though it was collected in identical 

conditions. This would allow one to analyse every decimal digit (starting with the last 

displayed digit) and find the ratios for every possible digit since the repetition of the 

experiment would make the observed values approach the expected values according to the 

Law of Large Numbers. If this analysis results in the conclusion that the digits are fully 

randomly distributed, one could conclude that the data of that decimal is nothing but noise 

which would mean that the data can safely be removed.  

In order to be able to judge whether the data associated with a certain decimal place can be 

removed, it would need to be specified how close to true randomness the ratios of the 

possible digits would need to be. This parameter would greatly depend on the specific 

dataset that is used since it depends on how large of a sample size (value of 𝑛) can be used 

while keeping external variables constant. For this project’s research, multiple values for this 

parameter will be used and the results will be compared. In the results section of this 

project, the impact of different values for this parameter will be shown. Then, in the 

discussion section, the most suitable value for this parameter will be chosen for the used 
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datasets and it will be discussed how one would go about choosing the most suitable value 

for this parameters for other datasets. 

3c. Bit Reduction 

In the previous section it was discussed how the amount of decimals that are stored for a 

quantitative time series dataset can be reduced. However, this does not yet describe how 

this would reduce the memory usage of the relevant dataset. By reducing the amount of 

stored decimals for a floating point value, the amount of bits that are used for storing said 

value do not change. After all, the variable type remains constant throughout this process. In 

order to reduce the size of the data as much as possible, one would need to check for every 

value in the dataset whether it can be stored using fewer bits without changing the value of 

the number, which is exactly what will be done in this project.  

3d. F Test Methodology 

In order to make the approach of using F tests for the purpose of data size reduction 

possible, a null-hypothesis (H0) and an alternative hypothesis (Ha) would be required. At the 

current stage of the project, the following hypothesis is intended to fill the role of the null-

hypothesis: 

H0: 𝛼1 = 𝛽1, 𝛼2 = 𝛽2, … , 𝛼𝑘 = 𝛽𝑘 

In this formula, αi refers to the ith value of an arbitrary quantitative dataset with a total of k 

rows. βi refers to the value αi with a given number of digits removed. This test is to be 

performed multiple times for different amounts of digits that are to be removed from all 

values. This may yield useful insights into the amount of digits that can be removed without 

causing statistically significant changes. The advantage of this type of F tests is that it is 

reasonably simple to compute and it does not require the user to be careful about number 

of basis functions required (Moreira, E.E., Mexia J.T., Minder. C.E., 2013). The alternative 

hypothesis Ha would be the following: 

Ha: At least one variable αi is not equal to βi. 

Should this allow one to remove digits from floating point data, the bit reduction technique 

that was described in section 3c could be used to reduce the required memory space for 

such datasets.  

3e. Datasets 

Before the results of the methods that have been described will be presented, the datasets 

that they will be applied to must be described. There are two main datasets that will be used 

for this project, each with its own defining characteristics Additionally, there is a randomly 

generated dataset that will be used for the storage and runtime analyses. 

The first of these datasets contains metocean measurement data from the Offshore 

Windpark Egmond aan Zee (“OWEZ”) which is located in the North Sea, 15 kilometers off the 

Dutch coast. This dataset was stored using 66 separate xls (Microsoft Excel) files and every 

row in this dataset contains measurements relating to a specific timeframe. This dataset 
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contains data of 48 “channels”, each channel has five associated columns, one for identifying 

the channel and four statistics: Minimum, Maximum, Mean and Standard Deviation. For the 

majority of this project, only one channel (the horizontal windspeed) will be used for the 

creation of data size reducing algorithms. This is because by using one channel, the data 

stays a lot more organized and the runtimes of algorithms will stay as low as possible while 

the algorithms are not yet final. Once the algorithms for reducing storage size of the data 

have been finalized, it will be used on the entire dataset. 

The second dataset that will be used is a dataset that stores weather data from October 

2012 up until November 2017. This data was collected in 7 major cities in Canada and the 

United States of America and was stored using a single csv (comma separated values) file. In 

this dataset, the following statistics are stored for specific points in time with consistent 

amounts of time in-between: humidity, air pressure, temperature (in °Fahrenheit), weather 

description, wind direction and wind speed. For this project, the data relating to 

temperature will be the focus. This is because the temperature data contains floating point 

values with quite a large number of decimals, which is ideal for the lossy compression 

techniques that will be used. This weather dataset can be found on Kaggle using the 

following url: https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-

data?select=temperature.csv 

The two datasets described above have two main differences which will make it quite 

interesting to analyse the differences is how the methods of this project will affect them. 

The first difference is the time intervals between rows. Whereas the OWEZ dataset has time 

intervals of 10 minutes, the weather dataset has time intervals of one hour. If this difference 

leads to significant differences in results, it would be interesting to see how the results of the 

OWEZ dataset would change if the data was transformed so that it would also be hourly 

data. The second difference between the datasets is that the data in the weather dataset 

contains more decimals when loaded into a Pandas dataframe. The data in the weather 

dataset contains up to 9 decimals. The data stored in the OWEZ dataset on the other hand 

contains up to 6 decimals for the Mean and Standard Deviation columns and 2 decimals for 

the Minimum and Maximum columns. However, since Pandas dataframes are binary data 

structures, it is important to note that the number is changed from the binary 

representation to the decimal representation when displaying the data. As a result, the 

number of displayed decimals is often not equal to the true number of decimals that would 

be used to present the number in the decimal representation. It will be interesting to see 

whether and how this difference will affect the results for both datasets.  

The third dataset is a generated dataset containing random floating point values. These 

random values are generated using the “random” function from the “Numpy” library. The 

generated values are all within the open interval (0, 10) and contain 8 decimals after being 

generated. These values are then stored within the dataset using 64 bits. 

 

 

https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data?select=temperature.csv
https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data?select=temperature.csv
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4. Implementation 

 

Before the results of the described methods will be presented, the code and techniques 

used to implement these methods will be explained. The programming language Python 

(version 3.8.5) was used for all code in this project.  

4a. Hypotheses 

At the early stages of this project, once the methods had been thought out and analyses 

were ready to be performed, hypotheses about the results were constructed. Rather than 

being based on analyses, experiments and code, these hypotheses are based on background 

research and prior knowledge. Seeing whether these expectations are correct or not could 

yield valuable insights into the topic at hand.  

The following hypotheses were constructed for this project: 

1. If the amount of digits used to save a floating point value decreases, the runtimes of 

algorithms which make use of said floating point value and the amount of memory 

usage required for said floating point value also decrease 

2. If the amount of bits used to save a floating point value decreases, the runtimes of 

algorithms which make use of said floating point value and the amount of memory 

usage required for said floating point value also decrease 

3. Performing bit reduction after random noise detection on the used datasets will 

reduce the memory usage of the datasets by at least 50% 

These hypotheses will be evaluated in section 5c so that the obtained results can be used to 

discuss the hypotheses.  

4b. Loading & Pre-processing the Data 

There are two datasets that are used for this project, the OWEZ dataset and the weather 

dataset. Firstly, these two datasets both needed to be loaded into a Pandas dataframe. 

Then, the data needed to be pre-processed so that irregularities (such as outliers and 

missing values) can be detected and dealt with. Loading the weather dataset was a 

straightforward process with no unforeseen difficulties since the data had been stored as a 

simple CSV file. The OWEZ data on the other hand was less straightforward. However, no 

serious difficulties were encountered at this stage. The data was stored using 66 separate 

Excel files which needed to be combined to form a single dataset while making certain that 

the data is stored in a chronologically correct way. Once these files were loaded into a 

dataframe, the required features for both the OWEZ and the weather data were selected 

while the remaining features were removed. 

For the pre-processing of the data, there are two main irregularities that needed to be 

detected: missing values and outliers. Although the OWEZ data did not seem to include any 

clear missing values, upon further inspection it became clear that there were a few extreme 

outliers which were likely missing values that were given an extreme, impossible value to 

indicate that the value was missing. The weather dataset had a total of three missing values 
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over a total of 45,254 rows. Since this is not at all a significant portion of the data, these 

missing values were removed from the dataset by removing the entire row in which the 

missing value occurred.  

There are many possible methods for detecting and removing outliers from data. The 

methods used for this project was to firstly visualize the data for the relevant columns using 

a boxplot so that extreme outliers (substitutes for missing values) could be detected. For 

example, when the values of the column “StdDev” (for the chosen channel) were visualized 

for the OWEZ dataset, it yielded the following boxplot: 

 

 

 

 

 

 

 

 

 

 

 

Clearly, the data points around the value -100,000 are outliers which should be removed 

from the data. Removing these rows from the dataframe results in the following distribution: 

 

 

 

 

 

 

 

 

 

 

Figure 6: Extreme outliers in the “StdDev” column 

Figure 7: Remaining outliers in the “StdDev” column 
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Now that the extreme outliers have been removed one can see that there are still a lot of 

less extreme outliers that would need to be removed from the dataset. It is important to 

remove these less extreme outliers as well because as described in section 3b, the used data 

should be non-volatile for this method to work optimally. These less extreme outliers can be 

detected by taking the mean value μ of the column and the standard deviation σ of the 

column (which is not the same as the value of the standard deviation column). With these 

values one can construct the interval [𝑎, 𝑏] in which: 𝑎 = 𝜇 − 2.5𝜎  

𝑏 = 𝜇 + 2.5𝜎.  

Values which lie outside this interval can be considered outliers (Seo, 2006) which can be 

removed without losing usable, significant information. It is most common to consider 

values as outliers if they are either more than 2 or 3 standard deviations removed from the 

mean value. However, for these specific datasets, removing values which are more than 2 

standard deviations from the mean would have resulted in a substantial amount of data 

being removed. On the other hand, removing values which are more than 3 standard 

deviations from the mean resulted in hardly any potential outliers being removed. 

Therefore, in this project, outliers are defined as values which are more than 2.5 standard 

deviations removed from the mean value. It is crucial that the extreme outliers have already 

been removed before this step. After all, extreme outliers would affect the value of σ far too 

much for this technique to remain reliable. Once this technique had been applied on the 

data, 6,533 out of the 259,165 rows (2.52%) of the OWEZ dataset and 506 out of 45,250 

rows (1.12%) of the weather dataset were removed as outliers. This resulted in the following 

distribution for the StdDev column from the OWEZ dataset: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: “StdDev” column distribution after removing all outliers 
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4c. Implementing Storage and Runtime Analyses 

For the storage and runtime analyses of this project, there are 4 main questions that needed 

to be answered: 

1. What impact does saving a floating point number with fewer digits have on the 

runtimes of simple algorithms? 

2. What impact does changing a floating point number to an integer by rounding have 

on the runtimes of simple algorithms? 

3. What impact does the amount of bits used for floating point number have on the 

runtimes of simple algorithms? 

4. What impact does the amount of bits used for floating point number have on the 

required storage for the dataset? 

Note that these questions are in no way replacements for the previously stated research 

question and its sub questions. They are simply questions that (if answered correctly) will 

yield insights regarding storage and runtimes that can help answer the research question. 

To answer the first of these questions, the random dataset described is section 3e was 

generated with the use of the “Numpy” library. A second column was then created which 

consisted of the values of the first column rounded to 1 decimal digit. A third column was 

created that would consist of the values of the first column rounded to the nearest integer 

(the data type object of this column was also changed to integer). To test whether rounding 

float values or changing values to integers would have a noticeable effect on runtimes, a 

simple algorithms was created that would add the values of a column to each other a certain 

amount of times. To clearly show whether there was a significant effect, the sum of all 

values in the columns were added to each other 10,000 times. The results of this test clearly 

showed that the runtimes were not affected in any meaningful way by either of these 

changes. This means that simply “cutting off” digits would not have an effect on runtimes. 

This is likely due to the fact that the amount of bits used to store the value did not change 

when the value was changed to an integer. 

To find out whether the amount of bits used for floats would affect runtimes, two more 

columns were added to the dataframe. Both of these columns contained the values of the 

first column. However, fewer bits were used to store said values. One column used 32 bits to 

store the values and the other used 16 bits. The same algorithm as previously used was then 

run on these columns. The results of this test were quite unexpected. The total runtime of 

the original (64 bit) column was 7.724 seconds. The total runtime of the 32 bit column was 

1.868 seconds. The total runtime of the 16 bit column was 6.084 seconds. Thus, decreasing 

the amount of bits from 64 to 32 had a clear positive effect on the runtime while decreasing 

the amount of bits from 32 to 16 bits had a clear negative effect on the runtime. The reason 

for this is that consumer Intel processors like the one used for this analysis do not usually 

natively support FP16 arithmetic which is used for 16 bit calculations (Haidar, Tomov, 

Dongarra, Higham, 2018). Thus, float32 values seem to be the fastest option when it comes 

to computers with standard consumer processors. 
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The last question of this analysis was straightforward to answer. The Pandas library allows 

users to inspect the memory usage of each individual column of a dataframe. Unsurprisingly, 

the results of this function made it clear that halving the amount of bits used also halves the 

amount of memory that is required for the column. Since the required memory of datasets is 

the primary concern of this project rather than runtimes, float16 seems to be the optimal 

way to store data if the transition from float32 to float16 does not lead to significant non-

noise data being lost. 

After these analyses had been performed using the randomly generated dataset, the same 

analyses were performed using the OWEZ dataset. This dataset yielded results that led to 

the same conclusions as the analyses on the randomly generated dataset. Thus, the findings 

have further been confirmed. 

4d. Implementing F test Data Reduction 

Implementing F tests to reduce the memory usage of datasets proved to be significantly 

more complex than initially expected. Although writing code for performing F tests was not 

all that complex, there is an issue with the way this experiment was set up in the first place. 

As described in section 3d of this Thesis, the following null hypothesis was chosen for this 

experiment: 

H0: 𝛼1 = 𝛽1, 𝛼2 = 𝛽2, … , 𝛼𝑘 = 𝛽𝑘 

 

The problem resulting from this hypothesis is that there seems to be no good way to decide 

on a suitable significance level. Usually choosing a suitable significance level is quite 

straightforward, but for this situation there are some serious difficulties. Since βi is equal to 

αi with certain digits removed, these values will always be very similar. For example, if one 

takes the value 1.43 for α, then the value for β could be 1.40 if only a single digit is removed. 

Because the number 1.43 is very close to 1.40, the null-hypothesis would almost always hold 

true unless the significance level is extremely small. Therefore, extremely low significance 

levels would be required for any result to be statistically significant. Furthermore, deciding 

on how low exactly this significance level would need to be seems to be impossible without 

“overfitting” the significance level to the specific dataset that is being used (Ying, X., 2019). 

This would make the analysis unusable. It may very well be possible to find a suitable 

significance level for this problem using advanced statistical knowledge. However, due to the 

lack of relevant literature regarding this approach and since the use of this method is 

considered as an auxiliary objective for this project, this method will be written off for this 

project primarily due to a lack of statistical expertise and time constraints. 

4e. Implementing Random Noise Detection 

Implementing random noise detection in such a way that it would allow one to remove 

certain digits from the stored data was the biggest challenge of this entire project. After 

loading the pre-processed data, the first step was to find out at what digit to start the 

analysis. The proposed methodology stated that the analysis would start at the last digit of 

the decimal representation of the float values. If this last digit were to be judged as a 
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Figure 9: Simplified flowchart of Random Noise Detection Algorithm 

 

 

random noise digit, then it would be removed and the digit in in front of that one would be 

analysed as well. This would continue until a non-noise digit was found. At that point, the 

algorithm would stop. This way, the algorithm starts at the least significant digit and work its 

way up to the first digit that was still behind the decimal separator. To find the starting digit 

for this technique, the lengths of the stored float values was saved as an additional column 

so that one could filter the dataset on rows where the float value has at least a certain 

length. This allowed for the introduction of an additional parameter which will be referred to 

as Q. The desired initial digit would be the last digit where at least Q% of the stored float 

values has a length that is large enough to have that many digits. While creating the 

algorithm, the value of 33.333… was assigned to Q so that the initial digit would be present 

in the majority of float values. The initial digit is then saved under the variable name 

“current_digit”. The value of Q should not change for the selected datasets. Though 

changing the value of this parameter could result in more memory being saved, it could very 

well results in data being wrongfully deleted. 

To judge whether or not a digit is random noise or not, an interval was constructed over the 

rows of the dataset. This interval would make it possible to look at certain fragment of the 

dataset and judge whether the digit that is currently being checked would be considered to 

be random noise in that specific interval. Then, the interval would move slightly and the 

process would start again. The length of this interval was added as a customizable parameter 

for this algorithm. 2 extra columns were then added to the dataframe: “random” and 

“not_random”. These columns would contain simple integer values that would specify how 

many times a certain digit has been categorized as random and not random. Once the 

interval has moved enough to reach the end of the dataset, these extra columns would make 

it possible to judge whether a digit could be considered to be random or not given the 

results of all intervals (in which the specific row is included). Then, the algorithm would 

check whether there are digits at position “current_digit – 1”. If so, the process would start 

over to check the digit in front of the previous one. 

The following figure is a simplified visualisation of the process: 
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This method resulted in a large issue however. Since the detection of a non-random digit 

would immediately stop the algorithm, any faulty classifications would stop the algorithms 

while it should have continued. Furthermore, imagine a float value for which the 4th up until 

the 6th digit are all random noise but the 7th digit is not noise. The algorithm as described 

would not remove the 7th digit and then the algorithm would stop even if the classification 

were to be correct. This presents problems since a non-noise digit which is preceded by 

many random digit could be considered as non-significant. To prevent this from problem 

from occurring, the algorithm was changed so that it would no longer start the analysis at 

the last (displayed) digit of the number. Instead, the analysis would start at the 3rd digit and 

move towards the last digit. Furthermore, instead of only checking whether the current digit 

is random or not, the algorithm would also check whether the next digit is random. This led 

to the introduction of 2 more columns: “t+1_random” and “t+1_not_random” which also 

kept track of the results so far with integer values. By checking 2 digits simultaneously, the 

algorithm could also continuously check whether or not 2 digits in a row were considered to 

be random noise. If this is indeed the case, then all digits after these 2 random digits could 

be considered as insignificant. If the final digit of the float is reached without finding 2 

random digits in a row, then one would only need to check whether the last digit is random 

and remove it if so. Additionally, although for this project the algorithm would only check 

whether 2 digits in a row are random, it would be relatively straightforward to turn the 

amount of checked digits into a parameter to check whether X digits in a row are random 

instead. 

As stated before, for every interval, the algorithm would check whether a digit could be 

considered as random noise in that specific interval. In order to check whether this is or is 

not the case, it is important to keep in mind that every number that is possible for a single 

digit (0 to 9) would occur roughly 10% of the time if the digit is truly random noise. By 

calculating the true occurrence ratios for every possible number, the mean absolute error 

was then calculated. An “allowed mean absolute error” parameter was then added to the 

algorithm so that it could check whether the obtained mean absolute error is smaller than or 

equal to the allowed mean absolute error. If this is the case, then the digit is random. If the 

obtained error is greater than the allowed error, then the digit is not random. After these 

values have been calculated and compared for a specific interval, the columns that keep 

track of the results so far are updated and the interval moves forward. 

4f. Implementing Bit Reduction 

Once the amount of used digits had been reduced for many of the stored float values, the 

amount of bits used to store these values also needed to be reduced. After all, simply 

removing digits from floating point values does not reduce the amount of required storage 

(as explained in section 4b). For the bit reduction, it was crucial that the value of the number 

would not change. In order to achieve this goal, a function was created to would check 

whether or not the value of the float would remain constant if the number of bits were to be 

lowered. 

Firstly, 3 empty lists and 1 dictionary would be created, one list for each possible amount of 

bits (16, 32 and 64). The lists would be filled by the row numbers of the values that would be 
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changed to use the amount of bits linked to their respective list. The dictionary on the other 

hand would be created as follows: {“float16”: 0, “float32”: 0, “float64”: 0}. Every time a row 

number is added to one of the lists, the dictionary’s values would change accordingly to keep 

track of how many values will use each possible specific amount of bits. 

For every value in the dataset, the function checks whether the value remains constant if 16 

bits were to be used rather than 64, since using 16 would take up the least amount of 

memory and would thus be the ideal situation when it comes to memory usage. If this is the 

case, then the created float16 list and the dictionary will be updated. If this is not the case, 

then the function will check whether the value can be stored with 32 bits without changing 

it. If this is also not the case, then 64 bits must be used for the value and the amount of bits 

can therefore not be reduced for that specific row.   

The initial proposed methodology stated that the dataset would then be changed so that 

every row in the relevant column used the suitable amount of bits. However, this presented 

a problem since the Pandas library does not allow columns to contain multiple data type 

objects. This means that if all values are saved into the dataframe with the chosen amount 

of bits for every rows respectively, then the Pandas library would automatically use 64 bits 

for all rows which is undesirable. To solve this issue, 3 separate dataframes were created, 

one for each possible amount of bits. This way, the relevant column for each one of these 

dataframes only has a single data type object. Furthermore, both datasets that are used 

have an easy way to determine the chronological order (the OWEZ data uses multiple 

columns and the weather dataset uses the index). Therefore, it is not difficult to recombine 

these dataframes in the correct order when the dataset no longer needs to be compressed. 

4g. Runtime 

In order for the designed algorithm to be useful in a more practical setting, it is of critical 

importance that the runtime of said algorithm be acceptable. The runtime of the algorithm 

developed for this project has gone through many changes and the total time required to 

run the algorithm has been reduced drastically. 

Once the first version of the algorithm had been finished, it immediately became clear that 

the runtime would be an issue. The code was allowed to run for one hour and based on the 

progress it had made in that time, a prediction was made as to how long it would take to run 

the entirety of the algorithm. This resulted in the prediction that the algorithm would take 

roughly 140 hours to finish running over the OWEZ dataset (which contains 252,632 rows 

after pre-processing). Clearly, that would not be an acceptable runtime. Therefore, some 

changes were made to the code concerning how the interval would progress through the 

dataset. In the first version of the algorithm, an interval was constructed (the length of 

which is determined by the interval parameter) that checks whether a certain digit in said 

interval can be considered as random-noise. This interval would move down by a single row 

after it had finished categorizing digits as random or non-random. Since the interval was 

quite large (for the OWEZ dataset it was usually equal to 10,000), it was unnecessary to 

move only one single row every time the interval moved. Therefore, it was changed so that 

the interval would move 100 rows after every iteration rather than 1. This could make the 
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analysis slightly less accurate, but it made the code run drastically faster. Only if the size of 

the interval were to be greatly reduced would this change have the potential to cause issues. 

However, since (within the scope of this project) there seems to be no reason to decrease 

the interval size by such a degree, this change did not present any issues. After this change, 

the runtime of the algorithm on the OWEZ dataset was roughly 1 hour and 20 minutes. 

Though 1 hour and 20 minutes would be reasonably acceptable as a runtime, it is certainly 

not ideal. Luckily, there were still quite a lot of small changes that could be made to the 

algorithm to further improve the runtime. The most common way that runtime was further 

reduced at this point was by implementing built-in functions from certain libraries (most 

often the Pandas library). Although these functions served the same purpose and yielded the 

same output as my own code, the runtime was noticeably shorter for the built-in functions. 

Additionally, there were some situations where the algorithm would repeat a piece of code 

to calculate a value that had previously already been calculated and could be reused. By also 

ensuring that there would be as little repetition as possible, the runtime further decreased. 

After these steps, the runtime for the OWEZ dataset had been decreased to roughly 37 

minutes. For the weather dataset on the other hand, the final runtime was roughly 2 

minutes. This is because the weather dataset contains only 44,744 rows. 

 

5. Results 
 

The results of the performed analyses will be displayed and explained in this section.  

5a. Random Noise Detection Results 

As explained in section 4e, there are multiple parameters that can be altered in the Random 

Noise Detection algorithm. Firstly, there is the ‘interval’ parameter, which determines the 

size of the range of numbers that are considered when judging whether digits are random. 

Secondly, there is the ‘allowed mean absolute error’ parameter (or ‘allowed MAE’ for short). 

This parameter determines the maximum mean absolute error value for digits to be 

considered non-random. Lastly, there is the parameter ‘Q’, which will remain constant at a 

value of 1/3 as explained in section 4e. 

The inclusion of these parameters imply that the algorithm could yield different result based 

on different values of these variables. Before the effects of these parameters will be 

explored and explained, the results of the algorithm will be shown for the parameter values 

that were used during the creation of the algorithm. These values were judged to be the 

best fit for the datasets that were being reduced: 

Allowed MAE = 0.02 

Interval = 5,000 for the Weather dataset 

Interval = 10,000 for the OWEZ dataset 

For the weather dataset the following distribution of float types resulted from the algorithm: 
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Float16: 1208 (2.70%) 

Float32: 39050 (87.27%) 

Float64: 4486 (10.03%) 

These results show that the vast majority of floating point values are stored using 32 bits 

once the algorithm has finished. These changes have caused a clear reduction in the total 

amount of memory required for the columns. Whereas the relevant columns in the original 

weather dataset (after pre-processing) required 357,952 bytes to be stored. The columns 

only required a total of 194,504 bytes. This means that the required amount of memory has 

been decreased by 45.66%.  

The distribution of float types for the OWEZ dataset on the other hand looked as follows: 

Float16: 227,476 (90,04%) 

Float32: 3 (0.001%) 

Float64: 25,153 (9.96%) 

These results would suggest that compared to the weather dataset, a far larger portion of 

the OWEZ dataset has been changed so that only 16 bits are used. The fact that only 3 rows 

make use of 32 bits is quite unexpected though. The number of rows that would make use of 

32 bits was expected to be far larger, like it was the case in the weather dataset. The total 

amount of required bytes changed for the relevant column changed from a total of  

2,021,056 bytes to only 656,188 bytes. This is a reduction of 67.53%. 

5b. Effects of Parameters 

In order to show more results yielded by the Random Noise Detection algorithm, the results 

of multiple combinations of parameters will be shown. The tables below display the effects 

of changing these parameters for both used datasets. The numbers in the tables represent 

the total number of bytes required for the column for which noise was detected and 

removed and the number of bits that have been reduced. 

Weather Dataset: 

 Interval = 2,500 Interval = 5,000 Interval = 10,000 

Allowed MAE = 0.01 193,676 197,176 202,864 

Allowed MAE = 0.02 192,544 194,504 202,864 

Allowed MAE = 0.04 190,144 190,604 190,432 

 

OWEZ Dataset: 

 Interval = 5,000 Interval = 10,00 Interval = 20,00 

Allowed MAE = 0.01 656,366 656,296 656,188 

Allowed MAE = 0.02 656,074 656,188 656,164 

Allowed MAE = 0.04 655,166 655,826 656,040 
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Within these tables, the cell with the lowest number of required bytes has been given a 

green colour. The cell with the largest number of required bytes on the other hand has been 

given a red colour. However, it should be noted that a lower amount of bytes is not always 

desirable as will be explored in the discussion section of this paper. The tables above show 

that an increase in allowed MAE causes the total required amount of memory to decrease. 

This makes sense since an increase in allowed MAE causes more digits to be categorized as 

random noise. This in turn causes the removal of more digits which may allow the use of 

fewer bits to store the floating point value. Therefore, an increase in allowed MAE could not 

possibly cause an increase in the memory usage. Changes in the interval parameter on the 

other hand are less straightforward to interpret. The results on the weather dataset seem to 

suggest that an increase in the interval parameter generally causes an increase in the 

required memory. However, the results of the OWEZ dataset seem to suggest that an 

increase in the interval parameter certainly do not always cause the required memory to 

increase.  

5c. Evaluation of Hypotheses 

Now that the results of the project have been presented, the hypotheses from section 4a 

will be evaluated. The hypotheses of were formulated as follows: 

1. If the amount of digits used to save a floating point value decreases, the runtimes of 

algorithms which make use of said floating point value and the amount of memory 

usage required for said floating point value also decrease 

2. If the amount of bits used to save a floating point value decreases, the runtimes of 

algorithms which make use of said floating point value and the amount of memory 

usage required for said floating point value also decrease 

3. Performing bit reduction after random noise detection on the used datasets will 

reduce the memory usage of the datasets by at least 50% 

Hypothesis 1 has been shown to be false. Decreasing the amount of digits does not have a 

positive effect when it comes to reducing memory usage. This is because the memory usage 

of every value in a dataset depends on the amount of bits used for said value. Reducing the 

amount of digits does not change the amount of used bits and therefore the total memory 

required to store a floating point value does not decrease if the amount of digits is 

decreased. 

Hypothesis 2 on the other hand has been shown to be true. The storage and runtime 

analyses presented in section 4c clearly showed that saving floating point values with fewer 

bits does in fact lead to a decrease in memory usage.  

Hypothesis 3 would strictly speaking be false. This is because the hypothesis states that the 

memory usage for both datasets would need to decrease by 50% or more. However, it could 

be argued that the hypothesis does hold true for one of the datasets. The results have 

shown that the size of the OWEZ dataset has decreased by 67.53%. However, they have also 

shown that the required memory for the weather dataset has decreased by 45.66%. This 

means that it depends on the specific dataset (and the chosen values for the parameters) 

whether or not the size of the dataset can be reduced by 50% or more.  



27 
 

Even though hypotheses 1 and (arguably) 3 are incorrect, finding out that they are incorrect 

could not only lead to a better understanding of the topic, but it could also lead to the 

formulation of relevant and valuable follow-up research questions and hypotheses. 

 

6. Discussion 
 

Although the results have been shown and explained, they have not yet been interpreted. In 

order for research to be truly useful, the implications of the results have to be discussion in 

detail so that they can be put into perspective. This may lead to better understanding what 

caused the results to be a certain way. 

6a. Interpretation of Results 

When looking at the results in the previous section, one may ask why the combination of 

parameters that leads to the lowest amount of required memory is not the best 

combination. After all, the purpose of this research is to minimize the amount of memory 

required to store datasets. Usually it would be good to reduce the size of a datasets even 

further. Within the context of this specific technique though, it could lead to non-noise data 

being categorized as random noise. This could well lead to relevant data being removed 

entirely from the dataset which could lead to massive problems. For example, one could 

imagine a dataset used in an architectural setting for the construction of a building. If 

relevant non-noise data has accidentally been removed from said dataset, this could lead to 

miscalculations that could well cause stability and safety concerns for the entire building. 

Should a building collapse due to relevant data being removed, many people could be 

endangered. There are many similar examples of dangers that would be the (in)direct effect 

of the unintended removal of non-noise data. Therefore, one should not consider the 

combination of parameters that lead to the largest reduction in data size to be the most 

suitable combination. 

The resulting distribution of float types for the OWEZ dataset was unexpected to say the 

least. The extremely low ratio of values that were converted to the type float32 combined 

with the ~9% of values that still require 64 bits seems out of place. What makes this even 

more unexpected is that for the weather dataset, float32 was by far the most common type 

once the algorithm had finished. The low number of values stored with 32 bits could be 

caused by the value for the allowed MAE parameter being too large. This could lead to 

nearly all values that should be stored using 32 bits, being stored with 16 bits instead. 

However, this explanation would only make sense if the values that remained in the float64 

category have certain digits that simply cannot be considered to be noise even if the value 

for allowed MAE is too large. After all, if that would not be the case, then the float32 

category would still be filled by the values that change from using 64 bits to using 32 bits. 

However, additional experiments would need to be performed to find out with certainty 

whether or not this is indeed the reason. An alternative hypothesis for this phenomenon 

would be that all values in the OWEZ dataset can be stored using 16 bits. This would mean 

that certain digits are considered to be non-noise while they actually are noise. 
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Another oddity within the obtained results is that the required memory for the OWEZ 

dataset does not change much when the values of the parameters are altered. This is 

especially true when comparing the results for the OWEZ dataset with the results for the 

weather dataset. The results for the weather dataset seem to change far more when 

parameter values change. The most likely explanation would once again be that the value for 

the allowed MAE is too large. If the value of allowed MAE is too large, then very few values 

will be changed to use fewer bits as the allowed MAE increases further. This is because there 

would already be too many digits that are considered to be noise even though they may not 

be noise at all. This would cause changes in required memory to be quite small when 

parameters change in value. This possible explanation is further supported by the fact that 

the OWEZ dataset’s size is reduced far more than the weather dataset. Whereas the OWEZ 

dataset’s size decreases by 67.53%, the weather dataset’s size decreased by only 45.66%. 

This could be a sign that too many digits in the OWEZ dataset are being categorized as noise.  

6b. Ethical & Legal Considerations 

When research leads to the development of new technology, ethical and legal aspects need 

to be considered. The reason for this being that new technologies can often cause 

unforeseen issues for users or society as a whole. Considering aspects of new technology 

that could lead to these kind of issues before said technology is used in a practical setting 

can avoid a lot of (either financial or physical) harm. When it comes to the algorithm 

developed in this project, two aspects have been identified that could potentially lead to 

issues. 

The first of these aspects is the possible outcomes if the algorithm makes faulty 

classifications. Digits can sometimes be classified as random noise when they are in fact not 

the results of random noise. This could lead to significant data being removed from the 

dataset. One could imagine an engineer using the developed algorithm to compress a 

dataset. If this were to lead to significant information being lost, calculations performed by 

the engineer could end up being faulty as well. As a result, a product that was developed 

with the use of the faulty calculations could very well malfunction which would lead to 

financial and possibly physical harm. To avoid this, it is important to emphasise that the 

developed algorithm is a lossy compression algorithm. Even though the algorithm is centred 

around the removal of random-noise, the classification will not be correct 100% of the time. 

This means that small portions of significant data may unintentionally be removed 

occasionally. 

The second aspect of the algorithm that could lead to issues is the question of who would be 

considered to be responsible for harm that results from misclassifications by the algorithm. 

This mishandled, this aspect could lead to serious ethical and legal issues. If one considers 

the example provided in the previous paragraph, one could ask themselves whether the 

harm was caused by the engineer or by the algorithm. It could be said that the answer 

depends on the level of communication by the algorithm developer. If the developer does 

not communicate the possible disadvantages and what the algorithm can and cannot be 

used for, then one could argue that the developer would be responsible for harm caused by 

their algorithm. However, what if the developer is as transparent and open about the 
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algorithm as possible and communicates the purpose and possible disadvantages for the 

algorithm well? One could argue that this would be an entirely different situation in which 

the user of the algorithm could be considered to be responsible for misusing the algorithm. 

That is why proper communication can be considered to be the key to these ethical and legal 

considerations. 

 

7. Conclusion 

 

Now that the results of this project have not only been shown and explained, but also 

discussed, the final conclusions will be presented. As shown in the results section of this 

paper, the data reduction algorithm has successfully reduced the size of two datasets by a 

reasonable amount. Whereas the weather dataset decreased in memory usage by 45.66%, 

the memory usage of the OWEZ dataset decreased by 67.53%. This decrease in memory 

usage was achieved by only removing random-noise digits and by minimizing the amount of 

bits used for every entry in the used datasets. There are lossy compression methods that 

achieve larger decreases in memory usage than this methods. However, these lossy 

compression methods are more likely to remove relevant data since the algorithm 

developed in this project was created to only remove data that does not add any additional 

useful information. For the random noise detection and bit reduction algorithms developed 

for this project to truly be useful in a practical setting however, they could be combined with 

existing compression techniques to reduce the size of datasets even further.  

7a. Follow-up Research 

Though this project has yielded many valuable insights, there are still some questions that 

have not (fully) been answered. Unfortunately, it is impossible for one paper to answer all 

questions about a certain topic. This is where follow-up research can be of help. In the 

future, other members of the scientific community may be able to find answers for the 

questions that have been left unanswered in this paper. There are 5 main topics relating to 

this project that could be explored in follow-up research. 

Firstly, there is the question of what the optimal combination of parameters would be. In 

this project, the algorithm takes 2 parameter values and returns the required memory to 

store the dataset afterwards. A problem with this approach is that the output does not 

clearly show whether the effect of changes in parameters is positive or negative. This is 

because less required memory is not necessarily a good thing if it leads to non-noise data 

being removed from the dataset. It could be interesting to see research catered around 

finding the optimal combination of parameters. It could be possible for that an algorithm 

could be developed by researchers with the appropriate domain knowledge to (perhaps 

systematically) find the optimal combination of parameters for different datasets. 

Secondly, follow-up research could be conducted concerning the usage of F tests (or other 

hypothesis tests) for data size reduction. Although this project did not manage to reduce the 
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sizes of the used datasets with the use of F tests, it did yield some insights that could be 

useful for those with the statistical expertise to continue where this project left off.  

Thirdly, it could certainly be possible for machine learning algorithms to be developed for 

the detection of random-noise digits. However, to train a prediction model for this task, one 

would need to have a dataset in which every digit is marked as random or non-random. This 

would be necessary so that the prediction model can be trained on a training dataset. If this 

could lead to the development of an algorithm that more accurately predict whether digits 

are random noise, it could make the techniques described in this paper a lot more powerful 

and useful. 

Fourthly, follow-up research could be conducted regarding the binary representation of 

floating point values. While this project has focussed on the decimal representation of 

floating point values, these values are more commonly represented in a binary way. Altering 

the created algorithm in such a way that it would make use of the binary representation 

could yield valuable insights that may improve the effectiveness of the created algorithm. 

Lastly, there is one more topic of this project that could lead to follow-up research. In this 

project, if for an arbitrary value of X, the distribution of the Xth digit shows that all numbers 

from 0 to 9 are equally common, then the Xth digit is considered to be noise. However, there 

are situations where this may not be true. For example, if the first 10% of rows has the 

number 1 at the Xth digit, but after that, no rows have the number 1 at the Xth digit, that is 

very unlikely to be a coincidence. The Xth digit is therefore extremely unlikely to be random 

noise. However, the algorithm used for this project would not be able to detect these 

oddities and could very well categorize the Xth digit as random noise. Follow-up research into 

ways to detect these oddities could therefore be of great value. 

7b. Answer to Research Question 

As described in section 2d, the research question for this project was: “How can lossy 

compression methods be used to reduce the memory usage of a dataset without significant 

information being lost?”. To answer this question, one should first consider the two sub 

questions that were created to provide the required insights to answer it. 

The first of these sub questions asked how random noise detection can be used to remove 

insignificant digits from quantitative data in order to reduce the required memory usage for 

datasets. In this paper, the answer to this question has been explained in detail. However, to 

sum the answer up in one sentence: By checking whether the mean absolute error of a 

digit’s distribution is smaller than a pre-determined allowed mean absolute error, random 

noise digits can be detected and removed so that the amount of bits used to store the values 

can be minimized, thus reducing the memory usage of the dataset. 

The second sub question asked how F tests be used to remove insignificant digits from 

quantitative data in order to reduce the required memory usage for datasets. Unfortunately, 

this project did not yield any concrete methods to reduce data sizes with the use of F tests. 

However, the fact that this project did not find any viable data size reduction methods using 



31 
 

F tests does not mean these methods may not be developed in the future. The insights 

gained in this project concerning F tests can serve as the bedrock for follow-up research. 

With the gained insights from these sub questions, the main research question of this 

project can now be answered. Noise reduction followed by bit reduction (as described in this 

paper) can be used to reduce the sizes of datasets while keeping the loss of non-noise data 

to a minimum. F tests on the other hand have not yielded any usable compression 

techniques within the scope of this project. It should be noted however that there are many 

possible compression techniques and the ones researched in this project only show a small 

part of the bigger picture. 

In conclusion, random noise detection can be used to reduce the memory usage of datasets. 

This is done by removing digits with a random distribution and then minimizing the amount 

of bits used for values in the dataset. In combination with existing compression techniques, 

this method can be useful for the reduction of quantitative datasets containing floating point 

data.  
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