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Abstract

Although engineering changes are usually stored in databases, the historical data of engineering changes
is rarely utilized for extracting knowledge. Product developers have shown their interest in conducting
analysis on this data to detect recurring problems and eliminate their root causes. The literature shows that
retrospective root cause analysis could utilize historical data to reveal the causes of engineering changes
in order to prevent recurring changes in the future. However, retrospective root cause analysis is rarely
performed in practice and there is a lack of research on this subject within the engineering change field.
Additionally, there is a lack of methodologies prescribing how to conduct retrospective root cause analysis.

To provide a contribution in this research gap, this thesis aims at developing a methodology on the first
phase of retrospective root cause analysis of engineering changes: the detection of recurring problems. To
accomplish this aim, experts of the consulting company Atos are interviewed to elicit design requirements.
Based on these requirements and on the available literature, a new methodology is introduced. The meth-
odology involves clustering and keyword extraction to understand the causes of engineering change and to
detect recurring changes. The methodology is applied using real engineering change data of a company in
the automotive industry. The application shows that the methodology could potentially assist in the detec-
tion of recurring problems. Future research is needed to show that the detection of recurring problems can
lead to the prevention of engineering changes.

Keywords: Engineering Change, Engineering Change Management, Retrospective Root Cause Ana-
lysis, Recurring Changes, Problem Reports, K-means Clustering, Keyword Extraction, Dependency Pars-
ing, Natural Language Processing
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Executive Summary

During the lifecycle of a product, changes are inevitable (Radisic-Aberger, Weisser, Saßmannshausen,
Wagner & Burggraf, 2022; Reddi & Moon, 2012). The changes that are deemed necessary after the
product designs are finalised affect multiple stakeholders such as customers and suppliers and are asso-
ciated with greater time and effort (Reddi & Moon, 2011). To differentiate these changes from the changes
occurring during the product development iterations, the term engineering change (EC) is used (Ahmed &
Kanike 2007; Jarratt, Eckert, Caldwell & Clarkson 2011). Handling these engineering changes has become
increasingly important to meet changing customer requirements and to respond to dynamic markets (Ham-
raz, 2013; Acar, Benedetto-Neto & Wright, 1998; Ullah, Tang, & Yin, 2016; Jarrat et al., 2011). Junior
(2005) observed that approximately half of engineering changes are caused by errors in products, of which
39 percent could have been avoided. They view the highest potential for the avoidance of these unnecessary
changes in the identification of change causes. Although engineering changes are usually stored in data-
bases, the historical data of engineering changes is rarely utilized for extracting knowledge (Wickel et al.,
2014; Arnarsson et al., 2018). Product developers have shown their interest in leveraging data mining and
analytics on this data to locate repeated problems and eliminate their root causes (Arnarsson et al., 2018).
The literature shows that retrospective root cause analysis can utilize historical data to reveal the causes of
engineering changes in order to prevent recurring changes in the future (Chucholowski et al., 2013; Eckert
et al., 2009; Fricke et al., 2000; Sjögren et al., 2018). However, retrospective root cause analysis is rarely
performed in practice and there is a lack of research on retrospective root cause analysis within the engin-
eering change field (Sjogren et al., 2018; Chucholowski et al., 2013).

Lehtinen, Mantyla and Vanhanen (2011) identified three common stages to most methods of root cause
analysis: target problem detection, root cause detection and corrective action innovation. During the first
stage of the root cause analysis, the problems that will be subjected to a root cause analysis are identi-
fied and selected (Lehtinen et al., 2011). Since most projects have too many problems to conduct causal
analysis on all of them, multiple papers suggest to focus on recurring problems (Card, 1998; Mohammad-
nazar, Pulkkinen & Ghanbari, 2019; Lehtinen et al., 2011). The assumption is that recurring problems have
a common root cause (Shenvi, 2009; Rus, Nan, Shiva & Chen, 2009). Detecting these recurring problems
simplifies the root cause analysis, makes it more cost-effective and less error-prone (Card, 1998; Julisch,
2003)

Chucholowski et al. (2013) stated that retrospective analysis of the causes of engineering change has
been inadequately addressed by the literature. They have identified a lack of methodological support in
this area and suggested that procedures of root cause analysis specifically adapted to engineering change
should be developed. To provide a contribution in this research gap, the following main research question
is constructed:

Main research question: How could historical data of problem reports be analysed to detect recurring
changes?

To provide a contribution in this research gap, this research aims at developing a methodology on the
first phase of retrospective root cause analysis of engineering changes: the detection of recurring problems.
To accomplish this aim, experts of the consulting company Atos are interviewed to elicit design require-
ments. Based on these requirements and on the available literature, a new methodology is introduced. The
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methodology is demonstrated by applying it on real engineering change data of a manufacturing company.

The development of a methodology
In order to establish the design requirements for a methodology on detecting recurring problems, a group of
PLM experts from Atos was interviewed using a semi-structured approach. All interviews were recorded
and subsequently transcribed, coded and analyzed to derive design requirements for a methodology. The
participants agree that the search for recurrence of engineering changes is fundamental for the prevention
of engineering changes. This results in the first design requirement. The participants also stress that the in-
volvement of experts is essential for root cause analysis, leading to the second design requirement. Finally,
the participants are of the opinion that although you can analyse changes one by one to get an understand-
ing of the data, you need to analyse a large collection of changes to derive patterns and to find recurrence.

The literature is inquired to create design principles from the design requirements. These design principles
could directly assist in developing. Based on the first design requirement and the literature, it is concluded
that a methodology should aim at finding recurrence of engineering changes by utilizing a keyword ex-
traction and by utilizing a clustering method. Secondly, the methodology should involve experts for the
detection of recurring problems. Finally, the methodology should prescribe the collection and big data
analysis of both problem reports and engineering change requests.

Using the four elicited design principles, the literature guiding the elicitation and the interviews with the
experts, a new methodology is developed. The methodology is depicted in figure 4.2. The methodology
prescribes that firstly, relevant experts are interviewed to understand the context of the business and to get a
clear view on the EC data available. Secondly, the data on engineering changes, including problem reports
and engineering change requests, is collected and compiled in a suitable form for data analysis. The data
is then briefly analyzed to get a better understanding of the available data. The third step involves the fol-
lowing data preparation: linkage of data, lemmatization and the removal of HTML tags, punctuation and
stop words.

After the data has been prepared, three data analysis task are performed: data exploration and visualiz-
ation, clustering and keyword extraction. The data exploration and visualizations focus on getting a better
understanding of the data and how it could be analyzed to identify patterns (Arnarsson et al., 2018). Addi-
tionally, it aims at visualizing the structured data which could assist in narrowing down the analysis on a
subset of the data. To cluster the data, the problem reports are first vectorized using a word embedder. Next,
dimensionality reduction is conducted using the cosine distance as similarity measure. Furthermore, the
optimal number of clusters is determined using the elbow method, the silhouette score and the gap statistic.
After the optimal number of clusters has been found, K-means clustering is conducted on the projected
data using euclidean distance. The clusters are then visualized and analysed to find potential recurring
problems. The third method of data analysis consists of keyword extraction. Firstly, a wordcloud is gener-
ated to display the most occuring words in the problem reports. Furthermore, by using POS tagging, three
respective wordclouds are created for adjectives, nouns and verbs. To the nouns that are typically related to
the adjective presented in the wordcloud, dependency parsing is used. The related nouns are again visual-
ized in a wordcloud. By selecting combinations of adjectives and nouns, problem reports containing these
words could be generated. The resulting problem reports could potentially contain recurring problems.

Evaluation of the methodology
The methodology is applied on real engineering change data of a product in the product design phase. By
exploring the data and creating visualizations of the classifications of engineering change, a first idea of the
causes of engineering change could be created. Additionally, an observation is made that the description of
the problem report is the richest source of information. Therefore, it is decided that further analysis should
be conducted on the subset of the problem reports that were related to an engineering change request. For
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the K-means clustering algorithm, an optimal number of clusters using the elbow method, silhouette score
and gap statistic could not be found. Using logic and visual analysis of the clusters by 3d projection of
the data, the number of clusters is decided to be 90. However, although some of the clusters contains
similar sentences and words, the method does not seem to be very effective at providing good candidates
for recurring problems. A weakness of the algorithm is that it treats the text documents as a Bag-of-words
and does not exploit the structure of the sentences. Therefore, for the final method of keyword extrac-
tion, POS tagging and dependency parsing are explored. Firstly, a wordcloud is generated for respectively
verbs, nouns and adjective. The wordcloud containing adjectives such as ”high” and ”incorrect” is found
to contain most information on the problems. To further explore the nouns that these keywords are related
to, dependency parsing is used. By using a rule-based algorithm, the most occurring nouns related to the
adjectives displayed in the wordcloud are found. These nouns are again displayed in a wordcloud. A GUI
is created to allow a user to quickly generate a combination of an adjective and noun of interest. The GUI
presents the related problem reports to this combination. This method seems to display better potential
candidates for recurring problems.

The final step of the methodology consists of using the results of the data analysis to detect recurring
problems together with experts. Unfortunately, the manager of the company that provided that data, was
no longer fully available for this research. Therefore the final step of the methodology, the detection of
the recurring problems, could not be completely achieved. However, the manager was able to make a first
evaluation of the results presented in this research. He was of the opinion that although the results right now
might not be very useful, the methodology could lead to more useful results when the company reaches a
later stage in design and production.

Discussion
This research focuses on the development of a new methodology of the first phase of retrospective root
cause analysis: the detection of recurring problem. It provides new design requirements and design prin-
ciples for such a methodology by elicitation from interviews with experts and by inquiring the literature.
Secondly, a new methodology was developed that includes clustering and a new method of keyword ex-
traction. An expert of the company that provided the data evaluated the initial results of the analysis. He
concluded that although the current dataset does lead to very useful results, the methodology could be a
useful tool when the company is in a later stage of the product lifecycle and more data is available. Addi-
tionally, multiple experts within industry showed interest in the application of this methodology on larger
datasets within the manufacturing industry. Future research should therefore focus on the applicability of
this methodology on larger datasets. Furthermore, future research should examine whether the detection of
recurring problems could result in the prevention of engineering changes.
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Chapter 1

Introduction

This chapter firstly presents the background of this research. Secondly, the aim of this research is given,
leading to the formulation of the research questions. Furthermore, the key stakeholders and the scope are
discussed. Finally, a research methodology is introduced.

1.1 Background

During the lifecycle of a product, changes are inevitable (Radisic-Aberger, Weisser, Saßmannshausen,
Wagner & Burggraf, 2022; Reddi & Moon, 2012). The product lifecycle refers to the complete life of
a product: from product development which includes conception, design and testing to the production,
sale, customer use, service and decommissioning of a product (Cao & Folan, 2012). Product Lifecycle
Management (PLM) is the business activity of effectively managing a company’s products across their
complete lifecycle (Cao and Folan, 2012). Any change during the early stages of the product lifecycle,
such as concept development and detailed design phases, does not have impact on a lot of stakeholders
and are usually addressed by informal iterations (Reddi & Moon, 2011). However, the changes that are
deemed necessary after the product designs are finalised affect multiple stakeholders such as customers
and suppliers and are associated with greater time and effort (Reddi & Moon, 2011). To guarantee proper
control and documentation, these changes are handled by a formal change management process (Reddi &
Moon, 2012). To differentiate these changes from the changes occurring during the product development
iterations, the term engineering change (EC) is used (Ahmed & Kanike 2007; Jarratt, Eckert, Caldwell &
Clarkson 2011). The characterizing element of engineering change is that the product design is revisited
after it was assumed to be finished (Jarratt et al., 2011).

Handling these engineering changes has become increasingly important to meet changing customer re-
quirements and to respond to dynamic markets (Hamraz, 2013; Acar, Benedetto-Neto & Wright, 1998;
Ullah, Tang, & Yin, 2016; Jarrat et al., 2011). Companies that effectively and efficiently handle their en-
gineering changes, improve their competitiveness in the aspects of cost, quality, schedule and resources
(Hamraz, 2013). Deubzer, Kreimeyer, Rock and Junior (2005) observed that approximately half of en-
gineering changes are caused by errors in products, of which 39 percent could have been avoided. They
view the highest potential for the avoidance of these unnecessary changes in the identification of change
causes. Eckert, De Weck, Keller and Clarkson (2009) agree that errors are a key driver of engineering
change and that the challenge with errors is finding the root cause of the problem. According to Mahto
and Kumar (2008), root cause analysis is the process of identifying causal factors using a structured ap-
proach with techniques designed to provide a focus for identifying and resolving problems. It also identifies
the necessary countermeasures for eradicating root causes (Andersen & Fagerhaug, 2002). According to
Chucholowski, Langer, Behncke and Lindemann (2013), there are two types of root cause analysis of en-
gineering changes: Ad-hoc root cause analysis focuses on analysing the root cause when the change occurs
whereas retrospective root cause analysis refers to a root cause analysis when the change has already been
implemented. The objective of retrospective root cause analysis is to derive organizational measures in
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order to avoid engineering changes in the future.

Lehtinen, Mantyla and Vanhanen (2011) identified three common stages to most methods of root cause
analysis: target problem detection, root cause detection and corrective action innovation. During the first
stage of the root cause analysis, the problems that will be subjected to a root cause analysis are identi-
fied and selected (Lehtinen et al., 2011). Since most projects have too many problems to conduct causal
analysis on all of them, multiple papers suggest to focus on recurring problems (Card, 1998; Mohammad-
nazar, Pulkkinen & Ghanbari, 2019; Lehtinen et al., 2011). The assumption is that recurring problems have
a common root cause (Shenvi, 2009; Rus, Nan, Shiva & Chen, 2009). Detecting these recurring problems
simplifies the root cause analysis, makes it more cost-effective and less error-prone (Card, 1998; Julisch,
2003)

Although engineering changes are usually stored in databases, the historical data of engineering changes is
rarely utilized for extracting knowledge (Wickel et al., 2014; Arnarsson et al., 2018). Product developers
have shown their interest in leveraging data mining and analytics on this data to locate repeated problems
and eliminate their root causes (Arnarsson et al., 2018). The literature shows that retrospective root cause
analysis can utilize historical data to reveal the causes of engineering changes in order to prevent recur-
ring changes in the future (Chucholowski et al., 2013; Eckert et al., 2009; Fricke et al., 2000; Sjögren et
al., 2018). However, retrospective root cause analysis is rarely performed in practice and there is a lack
of research on retrospective root cause analysis within the engineering change field (Sjogren et al., 2018;
Chucholowski et al., 2013). Therefore, the symptoms of an error are often resolved while the root cause
remains (Chucholowski et al., 2013). Additionally, the literature shows that there is a lack of a widely
accepted methodology on retrospective root cause analysis that involves both qualitative and quantitative
methods on a complete dataset (Chucholowski et al., 2013; Fernandes et al. 2014; Arnarsson et al., 2018).

This research aims at developing a methodology on the first stage of a retrospective root cause analysis
of engineering changes, the problem detection stage. The goal of this stage is to detect recurring problems
in problem reports. This could simplify the other stages of retrospective analysis, make it less error-prone
and more cost-effective.

1.2 Research questions
Chucholowski et al. (2013) stated that retrospective analysis of the causes of engineering change has been
inadequately addressed by the literature. They have identified a lack of methodological support in this area
and suggested that procedures of root cause analysis specifically adapted to engineering change should be
developed. Multiple researchers suggest the detection of recurring problems as a first step of retrospective
root cause analysis (Card, 1998; Mohammadnazar et al., 2019; Rus et al.). To provide a contribution in this
research gap, the following main research question is constructed:

Main research question: How could historical data of problem reports be analysed to detect recurring
changes?

To answer the main research question, the following research questions are formulated:

RQ1: What is the existing research on root cause analysis and how could recurring problems be de-
tected?

This research question focuses on providing context to root cause analysis. Additionally, it focuses on
the different stages of a root cause analysis, why such an analysis should focus on recurring problems and
on how to isolate these recurring problems.

RQ2: What is the existing research in the field of retrospective root cause analysis of engineering
changes and what methodologies on retrospective root cause analysis are available?
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This research question focuses on defining and providing context to retrospective root cause analysis of
engineering changes. Additionally, it aims at elaborating the methodologies that can support the retro-
spective root cause analysis of engineering changes as described by the literature.

RQ3: What are the design requirements for a methodology on retrospective root cause analysis of en-
gineering changes and do existing methodologies satisfy these requirements?

The goal of this research question is to acquire a set of design requirements for a methodology on ret-
rospective root cause analysis that are deemed relevant by the industry. To achieve this objective, experts
in the industry are interviewed on the subject of retrospective root cause analysis of engineering changes.
Based on these interviews, a set of design requirements for a methodology on the first phase of retrospective
root cause analysis, the detection of recurring problems, is derived. Subsequently, an opinion is formed on
whether the existing methodologies satisfy these design requirements.

RQ4: How could a methodology on retrospective root cause analysis of engineering changes be de-
signed in order to detect recurring changes?

Based on the existing literature and the design requirements elicited in the previous phase, design prin-
ciples for a methodology are constructed. Using these principles, a concept for the first phase of a method-
ology on retrospective root cause analysis, the detection of recurring problems, is developed and proposed.
After the methodology has been applied, an initial evaluation by experts is conducted.

RQ5: What are the effects of the developed methodology when applied to real engineering change
data of a manufacturing company to detect recurring changes?

To answer this question, the developed methodology is demonstrated using real engineering change data of
a manufacturing company. Engineering change data is gathered and the first phase of a retrospective root
cause analysis, the detection of recurring problems, is conducted according to the developed methodology.

1.3 Scope
This research focuses on retrospective root cause analysis of engineering changes. Multiple types of data
analysis are discussed in the literature review. Of these analyses, only the root cause analysis falls within
the scope of these research and is conducted in the demonstration of the methodology. Additionally, the
literature review indicates that there are two types of root cause analysis: ad-hoc and retrospective. Only
the first phase of retrospective root cause analysis, the detection of recurring problems, falls within the
scope of this research and is conducted in the demonstration of the methodology. The experts that are
interviewed in this research are all from one consultancy company and consult manufacturing companies
that are located in Belgium, Luxembourg or the Netherlands (Benelux). This research therefore applies to
manufacturing companies, defined as companies that use raw materials, parts, and components to assemble
finished goods, within the Benelux region.

1.4 Key stakeholders
The proposed research project is conducted in collaboration with two companies: Atos and a not to be
named manufacturing company in the automotive and aerospace industry. Since sensitive data of this
second company will be used, the information on this company will be limited and the company will from
now on be referred to as ”Company X”. Atos is an IT corporation, focusing on system development and
consultancy. It is an international company with offices in 73 countries, employing approximately 110,000
employees worldwide. It considers both Product Lifecycle Management (PLM) and Data Analytics as part
of their expertise. Since engineering change falls within the scope of Product Lifecycle Managment, Atos’
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experience with both engineering change and data analytics would be valuable for developing a methodo-
logy to conduct retrospective root cause analysis on engineering changes. Atos observes that their clients
who are dealing with engineering changes are fixing their problems ad-hoc and are not analysing the data
to learn lessons. Experts within Atos recognize the potential of retrospective root cause analysis on engin-
eering changes to reduce recurring changes in the future.

Hans Kwaspen, PLM Business Consultant at Atos explains the problem that Atos observes at their cli-
ents: ”You have a lot of problem reports that lead to a number of change requests. And the classical
approach is to look at the change requests one by one to try to fix them, that’s the classical way of problem
fixing. But if you look at it from a higher perspective you see that there is a pool of change requests and
behind them a number of problem reports of which you could actually say: we could analyze the informa-
tion in another way again to find opportunities that you don’t find if you look at a single change request.
In that way you could find improvements. Because that is what it’s about, analyze the total of engineering
changes instead of a single one. There are companies who are aware that they are managing their changes
ad-hoc and have the idea of using lessons learned but the question is, how? Companies either don’t know
what to do exactly or simply don’t have the time. Because they don’t have access to a good methodology.”

The data of engineering changes that are analyzed as a demonstration of the methodology come from a
manufacturing company in the automotive and aerospace industry (Company X). Company X is a client of
Atos and has indicated that it already has been thinking about conducting data analysis on its engineering
change data. However, they did not have the time or expertise to conduct the analysis on a deep level.
Therefore, they would be interested in collaborating with this research project, since it could give insight in
the causes of engineering changes. This insight could help them to prevent recurring engineering changes.

A PLM manager at the company indicates: ”I’m interested in looking at the data on problem reports
to find potential improvements. Before we get to a change, we have a problem report where we report ex-
tensively what the problem is and what needs to happen. In the data, there could be insights in for example
if we deal with the same kind of changes again. I would be interested in that kind of data analysis since i
don’t have the expertise to do that.”

1.5 Research methodology
To guide this research, Design Research Methodology (DRM) by Blessing and Chakrabarti (2009) is used.
Horváth (2001) defines design research as “generating knowledge about design and for design”. Blessing
and Chakrabarti (2009) argue that design research has two objectives: Firstly, the formulation and valid-
ation of models and theories about the phenomenon of design. Secondly, the development and validation
of support founded on these models and theories, in order to improve design practice. DRM is a design
research methodology used to ensure scientific rigor and scientific validity (Arnarsson, 2020). Blessing
and Chakrabarti (2009) describe the methodology as “an approach and a set of supporting methods and
guidelines to be used as a framework for doing design research”. DRM assists in structuring design re-
search and is focused on guiding the introduction of new methods and tools to improve design (Blessing &
Chakrabarti, 2009). Hamraz (2013) argues that it is particularly helpful for the formulation and validation
of methods and tools because it incorporates clearly defined criteria of success measurement. In research
on Engineering Change Managmeent and on historical engineering change data in particular, it is found to
be the mostly used methodology (Hamraz, 2013; Wickel & Lindemann, 2014; Wickel & Lindemann, 2015;
Kattner & Lindemann, 2019; Arnarsson, 2020; Pan & Stark, 2022). This research adopts DRM for two
reasons: DRM is regarded highly in the field of Engineering Change Management, which is the context of
this research. Furthermore, the methodology is focused on developing new methods and tools, which is the
goal of this research.

DRM consists of the following four stages:

1. Research Clarification is concerned with identifying the research problems and goals that will de-
termine successful research. This involves acquiring an overview of the available understanding of
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the field of interest. The main source of information at this stage is a literature study and the main
deliverable of is an overall research project plan.

2. Descriptive Study I increases understanding of the research problem and goals by conducting literat-
ure review and/or empirical studies. The main outcome is the identification of factors that influence
the measurable success criteria and the formulation of models and theories. A basis of which support
can be developed to improve the design practice should be established in this stage.

3. Prescriptive Study focuses on the development of design support tools in form of an impact model
or theory describing the expected improved situation.

4. Descriptive Study II deals with evaluating the impact of the proposed study using measurable criteria
to determine whether the current situation is improved.

In this research, the four stages of the DSM are adhered to as follows (Figure 1.1):

1. In the Research Clarification stage, the literature is searched and reviewed to establish the context of
the research. The background regarding engineering change, engineering change management and
its challenges is explored. Additionally, the literature on the use of historical engineering change
data analysis is examined. Finally, the literature regarding retrospective root cause analysis is intro-
duced. Based on these findings, research goals are formulated and an overall research project plan is
developed.

2. In the Descriptive Study I stage, the literature on retrospective root cause analysis is reviewed in more
detail to increase understanding of the research area. In particular, the methodologies on conducting
retrospective root cause analysis that are introduced by the literature are reviewed. Additionally, in-
terviews with experts are conducted on the subject of retrospective root cause analysis of engineering
changes. From these interviews, design requirements for a methodology are elicited.

3. In the Prescriptive Study stage, the understanding obtained from the literature complimented with
industry experience from experts are used to develop a methodology on the first phase of retrospective
root cause analysis, the detection of recurring problems. Based on the existing literature and the
design requirements elicited in the previous phase, design principles for a methodology are first
constructed. Using these principles as guidelines, a concept for a methodology on the first phase of
retrospective root cause analysis, detecting recurring problems, is then developed and proposed.

4. In the Descriptive Study II stage, an initial application evaluation of the developed methodology is
conducted. The methodology is applied step by step using real engineering change data. Based on
this application of the methodology and a survey with experts in the industry, the methodology is
evaluated.

For the Research Clarification phase and for the beginning of Descriptive Study I, a literature review is
conducted. The literature review firstly describes the context of the research which consists of EC, ECM
and historical EC data analysis. Subsequently, it examines the subject of retrospective root cause analysis.

According to Blessing and Chakrabarti (2009), the objectives of the Descriptive Study I and the Prescriptive
Study are to obtain a better understanding of the existing situation and to provide a basis for the effective
development of support to improve design. Möller, Guggenberger and Otto (2020) provided a method
that aid designers in the development of an artifact by creating design principles. Design principles are
considered by Möller et al. (2020) as propositions that facilitate the successful transfer of requirements to
design. The researcher argue that designing an artifact starts with formulating a solution objective, which
indicates the specific task the artifact should be able to fulfill. They argue that there are three ways in which
design principles are created: Firstly, the design principles can be generated directly from relevant sources
of knowledge such as literature, theory, or case studies. Alternatively, they can be extracted from ongo-
ing or completed design processes. Finally, design principles can be formulated as a response to design
requirements, which can be derived from multiple sources such as literature reviews, interviews, or work-
shops. They categorize design principles based on two characteristics: Supportive design principles aid
in the pre-design process by justifying future design decisions, while reflective design principles emerge
during or after the design iterations of the artifact. The study also identifies three evaluation strategies
commonly used in studies aimed at developing design principles. The first strategy involves researchers
seeking the assistance of experts, such as through interviews or workshops. The second strategy involves
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Figure 1.1: The structure of this research

providing illustrative documentation through the instantiation or field testing of the corresponding artifact.
Finally, researchers may employ argumentative reasoning, such as constructing a scenario, to evaluate the
quality of the design principles.

This research aims at creating the design principles before the design process has started and with the
aim of justifying future design decisions. The solution objective of the design process is to design a meth-
odology on the first phase of retrospective root cause analysis: detecting recurring engineering changes.
To accomplish this objective, the design requirements are firstly elicited from the interviews with experts.
Secondly, design principles are formulated as a response to these requirements. The formulation of the
design principles is assisted by inquiring the literature. The design artifact is evaluated two fold: by
demonstrating the methodology using real engineering change data of a manufacturing company and by
seeking the opinion on the methodology on experts in the industry.

For the prescriptive study of this research, experts from the industry are interviewed on the subject of retro-
spective root cause analysis. The semi-structured interview follows the guidelines set forth by Myers and
Newman (2007). These researchers discovered an overall lack of documentation of the interview process
in Information System (IS) research. Myers and Newman (2007) argued that IS research generally does
not acknowledge the potential pitfalls and problems with the qualitative interview such as the artificiality
and intrusiveness of an interview. To address these problems, the researcher developed the ”dramaturgical
model”. This model approaches the interview from a drama perspective including a stage, script, actors and
an audience. It aims at allowing the interviewee to feel comfortable and promotes flexibility and openness.
The model prescribes that the interviewer may prepare some questions beforehand but should be flexible
and ready for improvisation during the interview.

For the descriptive study II of the research, the methodology is applied and evaluated. In DRM, Bless-
ing and Chakrabarti (2009) differentiate between three kinds of evaluation:

1. Support Evaluation involves the continuous checking of the method’s internal consistency and
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completeness throughout its development.
2. Application Evaluation is about the assessment of the usability (or feasibility and practicality) of

the proposed method and investigates whether the method can be used in the situation for which it
was intended.

3. Success Evaluation is about the assessment of the usefulness of the proposed method and identifies
whether the support contributes to an improvement of the success factor.

During this research, the methodology is applied as a demonstration of the methodology. By applying the
methodology, the usability, feasability and practicality of the proposed methodology are assessed (Applic-
ation Evaluation). Finally, after the methodology has been applied, the results are presented to experts of
the company Atos. These experts will give their opinion about the usefulness of the proposed method,
adding a contribution to the ”Success Evaluation”. However, this is only a minor contribution. As Blessing
and Chakrabarti (2009) argue: ”Evaluating success is far more difficult than evaluating applicability and
usability and the findings are not easy to generalise. Success can only be truly measured in the intended
situation, i.e., in practice, and in many instances only in the long term.” Therefore, the evaluation of this
research mainly focuses on the Application Evaluation by Blessing and Chakrabarti (2009).
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Chapter 2

Literature Review

To answer the first research questions, a literature review is conducted. The goal of this literature review
is to establish the background of engineering change and to provide a contribution to answering the first
research question:

RQ1: What is the existing research on root cause analysis and how could recurring problems be de-
tected?

RQ2: What is the existing research in the field of retrospective root cause analysis of engineering
changes and what methodologies on retrospective root cause analysis are available?

In section 2.1, the literature review methodology is first introduced. In section 2.2-2.7, the background
of engineering change, engineering change management and historical data analysis of engineering change
is discussed. Additionally, section 2.8 and 2.9 include the literature on retrospective root cause analysis.
Finally, section 2.10 focuses on retrospective analysis within the engineering change field.

2.1 Literature review methodology
The literature review follows the methodology of Webster and Watson (2002). These researchers identified
a lack in published review articles within the Information Systems (IS) field and therefore developed a
structured approach to conduct a literature review. The methodology consists of three steps:

1. Start by searching for contributions in the leading journals and conference proceedings. Use the
journal’s table of content to quickly identify the most relevant articles.

2. Go backward by reviewing the citations for articles identified in the first step to find prior articles
that are worth considering.

3. Go forward by using the Web of Science to identify articles citing the key articles identified in step
2. Evaluate if the articles should be included in the literature review.

Webster and Watson (2002) note that the systematic search is near completion when there are no more
new concepts in the literature set. Finally, Webster and Watson (2002) advise to synthesize the literature
in a concept-centric matrix. This can be achieved by first identifying the most important concepts in the
literature and subsequently classifying the articles found in the literature according to these concepts.

This literature review focuses on finding articles in electronic databases, including: Scopus, Web of Sci-
ence and IEEE Xplore. The research involving root cause analysis of historical engineering change data
is rather limited and in some cases buried in research papers that include multiple analyses of engineering
change data. Therefore, it is useful to start the search from a wider perspective and evaluate the literature on
historical engineering change data analysis in general. The following search query was inserted in Scopus,
Web of Science and IEEE Xplore:
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Title (engineering AND change AND (data OR information OR knowledge OR analysis OR analytics))

This search query resulted in 159, 59 and 25 research papers on respectively Scopus, Web of Science
and IEEE Xplore. The title and abstract of the resulting papers were scanned and the papers that seemed
relevant were read in full. Secondly, the forward and backward strategy of step 2 and 3 of Webster and
Watson (2002) was used to find new relevant literature. This process continued until no further papers
were found within the references that provided any additional insight. Tale-Yazdi, Kattner, Becerril and
Lindemann (2018) argue in their literature review on ”Approaches for the Retrospective Utilisation of Data
in Engineering Change Management” that the literature on historical engineering change data is not very
extensive. Therefore, it was possible to read all seemingly relevant papers relating to this subject. After all
the relevant literature was collected, the literature was synthesized in a concept-centric matrix (Table 2.2)
according to the methodology of Webster and Watson (2002). Since the field of data analytics has changed
significantly in recent years, it was decided to only include papers from 2007-2022 in the concept-centric
matrix. Within this range, 22 relevant research papers on historical engineering change data analysis were
identified. The most important concepts in the literature were derived and the articles were classified ac-
cording to these concepts (Table 2.2). Each of these concepts is further explored in the literature review.

Furthermore, to find research on root cause analysis and the detection of recurring problems, the following
search query was inserted in Scopus, Web of Science and IEEE Xplore:

Title, Abstracts, Keywords (”Root cause analysis” AND (recurrence OR reoccurence OR recurring OR systemic))

This search query resulted in 268, 106 and 25 research papers on Scopus, Web of Science and IEEE
Xplore. The forward and backward search strategy of Webster and Watson (2002) was applied again to
find all relevant papers. These papers were reviewed to further explore root cause analysis and the detec-
tion of recurring problems. The papers reviewed did not have a specific focus on the field of engineering
change.

To include more research on the causes of engineering change that could assist in answering the research
question, the following additional search query was inserted in Scopus, Web of Science and IEEE Xplore:

Title, Abstracts, Keywords (”engineering change” AND cause)

This search query resulted in 81, 29 and 28 research papers on Scopus, Web of Science and IEEE Xplore.
The forward and backward search strategy of Webster and Watson (2002) was applied again to find all rel-
evant papers. These papers were reviewed to investigate root cause analysis within the area of engineering
change.

2.2 Defining engineering change and engineering change manage-
ment

The first challenge when dealing with engineering change is adopting a definition. Different definitions for
engineering change can be found in the literature which are given in Table 2.1. The view that engineer-
ing change is an alternation of something that has already been released is agreed upon by all definitions
(Colombo, Cascinia & De Weck, 2016). However, the definitions differ in the timing of the change and the
subject of the change. Wright’s (1997) definition only covers engineering change to the production stage
and ignores the range of changes that occur during design and development of a product. Ullah, Tanga and
Leilei Yina (2016) and Jarratt, Eckert, Caldwell and Clarkson (2010) view that as a problem. Huang and
Mak (1999) define the scope of the change, but leave out the time aspect of the change (Ullah et al., 2016;
Jarratt et al., 2010; Hamraz, Caldwell Clarkson, 2012). Where Wright (1997) mentions components of
products as the entity that changes, Huang Mak (1999) focuses on forms, fits materials, dimensions and
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functions. Jarrat et al. (2004) and Terwiesch Loch (1999) however, restrict engineering changes to parts,
drawings and software. The definition of Jarratt et al. (2004) involves type, size, scope and time and was
considered by Hamraz, Caldwell and Clarkson (2012) and Shuh, Guetzlaff, Sauerman and Krug (2021) as
the most comprehensive definition. For this research, it is important to establish a definition that is gener-
ally used by the literature relating to the topic. In the literature on the subject of historical data analysis of
EC data, the definition of Jarratt et al. (2004) was encountered the most. Therefore, it is adopted in this
research.

Source Engineering change(s)
Wright, 1997 ... [is] a modification to a

component of a product, after that product has entered
production

Terwiesch & Loch, 1999 ...[are] changes to parts,
drawings or software that have already been released

Huang & Mak, 1999 ...[are] the changes and
modifications in forms, fits, materials, dimensions,
functions, etc. of a product or a component

Huang, Yee & Mak, 2003 ...[are] changes and/or modification in
fits, functions, materials, dimensions, etc. of a product
and constituent components after the design is released

Jarratt, Eckert & Clarkson, 2004 ... [is] an alteration made to parts,
drawings or software that have already been released
during the product design process. The change can be
of any size or type; the change can involve any number
of people and take any length of time.

Table 2.1: Definitions of engineering change

According to Jarratt et al. (2004), Engineering Change Management (ECM) refers to ”the organization
and control of the process of making alterations to products”. ECM is applicable to the entire product life
cycle from when the first designs are released to the end of production and support (Hamraz et al., 2013).

2.3 Importance of ECM
Engineering changes are a critical aspect of product development (Fricke et al., 2000; Jarratt et al., 2011;
Colombo et al., 2016). Koch, Brandl, Rofer, Reinhart (2015) conducted a survey on engineering change
management among more than 80 manufacturing companies in Germany. This survey showed that the
relevance of change management in manufacturing was expected to grow. Additionally, learning from
changes was considered as the area within ECM with the greatest improvement potential (Figure 2.1). The
importance of ECM could be explained by evaluating ECs from different perspectives:

Cost. Product improvement by engineering change is associated with lower cost compared to develop-
ment of new products and therefore often preferred (Rowell, 2013). Change initiated in one part of the
system tends to have knock-on effects, triggering follow-up changes to other parts (Fricke et al., 2000).
This is known as change propagation and is very common to engineering products due to the high inter-
connectivity between components (Terwiesch and Loch 1999; Fricke et al., 2000; Clarkson et al., 2004).
Change propagation can create a snowball effect of change activity that may affect the whole system (Eck-
ert et al., 2004). The result can be acute as it is often associated with an increase in costs and a delay in
schedules (Prasad, 1997). Additionally, engineering changes implemented in a late product lifecycle stage
are associated with significantly higher cost. However, a peak in the number of engineering changes during
the latter stages is not uncommon (Bhuiyan et al, 2006).
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Resources. Engineering changes require a significant part of the resources available withing product devel-
opment. Fricke et al. (2000) concluded from a survey with German companies that 30 percent of daily work
of engineers and managers is related to ECs. Maier and Langer (2011) confirmed this percentage based
on a survey with more than 90 engineering firms from different industry sectors in Denmark. Likewise,
Terwiesch and Loch (1999) reported that processing and implementation of engineering changes require
between a third and half the total engineering capacity of a project and 20-50 percent of the tools.

Product performance. However, ECs are not only regarded as a problem but also as an opportunity
(Wright, 1997; Maier and Langer, 2011). Acar et al.’s (1998) survey examined companies in the United
Kingdom in the mid-1990s. It reported that over 50 percent of the investigated manufacturing companies
viewed engineering changes as a major source of problems in their product development process. However,
more than 60 percent also felt that “it was possible for a well-managed EC process to provide a framework
for improved product innovation.” ECs can enhance the quality of a product and may save money in the
long run (Ficke et al., 2000). Product quality is directly related to customer satisfaction and product success
(Reddi, 2011).

Market response. In manufacturing, customer demand changes rapidly (Ullah et al., 2016). To remain
competitive, companies have to individualise their products and services and regularly improve and up-
date them (Hamraz, 2013). Engineering changes are the driving force for continuous product improvement
to meet the changing customer requirements (Acar et al., 1998; Ullah et al., 2016; Jarrat et al., 2011).
Additionally, markets with more intense global competition and faster changing customer needs require
companies to decrease their development times (Hamraz et al., 2013). When a new product is launched, a
faster response to the customers initial reaction to the new product will ensure better product reviews and
more demand (Reddi, 2011). Furthermore, products are increasingly released to a selected customer set
and improved according to customer feedback (Reddi, 2011). These responses are handled by engineering
changes (Reddi, 2011).

To conclude, ECs are increasingly important to fulfill changing customer requirements and to respond
to changing markets (Hamraz, 2013; Acar et al., 1998; Ullah et al., 2016; Jarrat et al., 2011). Additionally,
ECs are beneficial when the product is improved and product quality increases. Furthermore, ECs are asso-
ciated with significant cost and resources within product development (Reddi, 2011). Companies that adopt
an effective and efficient ECM improve their competitiveness in the aspects of cost, quality, schedule and
resources (Hamraz, 2013). Additionally, they would be more responsive to changing market which also
provides a competitive advantage. Therefore, the benefits of a successful ECM are two-fold: they lower
or avoid the costs of ECs and generate additional profit by improving the product continuously (Hamraz,
2013).
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Figure 2.1: Importance of change management in manufacturing; related challenges and improvement
potential (Koch et al., 2015)

2.4 Classifying engineering change

ECs can be classified according to different aspects (Reddi, 2011; Jarratt et al., 2011). The union of the
classes of Jarratt et al. (2011) and Reddi et al. (2011) includes ”causes”, ”timing” and ”urgency”. Reddi et
al. (2011) also uses the class ”origin”, which is included in this section since it provides some information
of what entities can initiate an engineering change.

Origin. This classification is based on the origin of the proposed change. A request for an engineer-
ing change can come from an internal department or from a supplier or customer (Frank, 1980; Jarratt et
al., 2006). Reddi (2011) provided examples of engineering changes coming from different departments.
Production could for instance initiate an engineering change to improve manufacturability or to reduce
costs. Quality and Testing could request an EC to address a detected issue or to improve the product.
An engineering change from the purchasing department could address the various differences with vendor
availability. Finally, the Sales and Marketing department could suggest a change to product specifications
to address a new development in the market.

Causes. This classification focuses on the reason why change arises in the first place. Eckert, Clarkson
& Zanker (2004) conducted a large case study at Westland Helicopters Limited, to describe and analyse
how the change in complex engineering products is handled. Westland Helicopters Limited was a large
aerospace company that developed and produced helicopters for the private and public industry. Eckert et
al. (2014) distinguished two types of change causes at Westland:

• Initiated Changes: The initiated changes are proposed to adapt the product or to improve the product
performance. At Westland, each helicopter version was designed according to specific customer
requirements. For military helicopters for instance, customers wanted to purchase a helicopter that
conformed with existing aircraft in terms of weapons systems, engines and avionics systems. Cus-
tomers were allowed to define requirements after the contract had been signed or when the helicopter
was already in production. Additionally, innovation in materials, components and aviation systems
could trigger an initiated change. The development of a new helicopter was typically 3 to 4 years.
Within this development time, some of the hardware in avionics tended to already be obsolete. Given
the long life span of the helicopter, it was therefore important to design the helicopter for potential
upgrades. This allowed many small innovative changes in avionics between the versions of a heli-

13



copter, which were all accomplished by engineering changes.

• Emergent Changes: These changes emerge from an error arising within the product and are proposed
to correct that error. The expectation is that these types of ECs should be implemented immediately
to address the problems with product performance. As computer technology has made designing
and testing products easier and faster, most companies aim to use simulation to find problems with
the product already during the design phase. Additionally, problems arise during testing and by
building a prototype. For Westland, prototypes allowed the company to more realistically test the
flight behaviour of a helicopter and expose unwanted functional behaviour that could not have been
predicted by simulation. Problems during manufacturing occur when a product cannot be produced
for a specific cost, when the product cannot be produced because the design is wrong or when the
capacity for production is missing. The product is ultimately tested when it is finally in use. In
this phase, many problems such as safety, maintainability and fatigue life come to surface. These
problems could result in an emergent engineering change.

Timing. ECs can be classified based upon the timing of their proposal during the product lifecycle. Sur-
veys show that more than half of all changes occur while the product is already in production or released to
the market (Ahmed & Kanike 2007, Maier & Langer 2011). This is notable since the costs of an engineer-
ing change increases exponentially along the lifecycle stages (Fricke et al. 2000; Arnarsson et al., 2018).
Eckert et al. (2004) observed that change processes tend to follow three clear patterns in terms of of the
number of number of changes required over time (Figure 2.2). In the ‘blossom’ pattern the changes begin
slowly, scale up quickly to a plateau and then taper off. The second commonly encountered pattern is the
‘ripple’ pattern where changes cause a large initial workload that tapers off over time as the changes are
absorbed. Both these patterns are often encountered when change propagation is reliable and predictable.
The third pattern is the ‘avalanche’ pattern where one engineering change leads to the next and the engin-
eering activity grows unbounded until drastic action is taken.

Urgency. This classification is based on the urgency with which the change should be addressed to en-
sure least damage or impact. DiPrima (1982) proposed three urgency categories: immediate for safety and
defect-related ECs that must be implemented immediately, mandatory for ECs that must be implemented
but have some flexibility in timing, and convenient for initiated ECs which should be phased-in.

Figure 2.2: Time behaviour of changes according to Eckert et al. (2004)

2.5 Engineering Change Process

The engineering change process that ECM controls and organizes, has been reported to vary across different
organisations and different types of product development project (Tavčar & Duhovnik 2005). Generally,
an EC Committee comprised of members from different departments such as Research & Development,
production, sales and service manage the lifecycle of an EC (Tavčar & Duhovnik 2005). The engineering
change process that has been encountered the most in the relevant literature regarding historical EC data
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analysis is the one by Jarratt et al. (2011). The detailed steps of Jarratt et al.’s (2011) engineering change
process (Figure 2.3) are as follows:

1. An engineering change is requested on paper or electronic form. The engineering change request
(ECR) contains the reason, priority level, type of change, and component or system involved.

2. Potential solutions to the change are identified. To reduce investigation, most of the time only one
solution is examined.

3. The impact of implementing the new solutions is assessed. Factors as impact upon design, produc-
tion, suppliers, and budget must be evaluated. The further through the product lifecycle the change
is implemented, the more potential for disruption there is.

4. The change committee does a cost-benefit analysis and either rejects or approves the change request.
5. Implementation of the change takes place immediately or is phased in later, depending on the urgency

of the change.
6. After some time, the change is evaluated to determine if the intended effects have been achieved.

Lessons learned are documented for potential improvement of the change process. This review is
often not properly done by companies (Jarrat et al., 2011).

According to Kocar (2006), the interactions between components of a product makes the EC process one of
the most complex processes in a company. A change in one of the components can lead to changes in other
components. Handling these interactions and coordinating the many different actors and roles involved, is
a significant challenge.

Figure 2.3: Engineering change process by Jarratt et al. (2011)

2.6 Improving ECM
Although the importance of ECM is getting more recognized, the industry still faces challenges with con-
structing an effective and efficient ECM (Storberg, Brunoe Nielsen, 2016; Maier and Langer 2011). Ullah
et al. (2016) note that the quality of ECM depends upon the engineering processes, management, engineer-
ing and information technologies. Based on a case study, Fricke et al. (2000) identified five strategies for
improving ECM: prevention, front- loading, effectiveness, efficiency, and learning. According to Wickel
and Lindemann (2014), these strategies are the most comprehensive and widely accepted list in the literat-
ure.

1. Prevention is intended to prevent ECs in order to reduce the total number of ECs within a company.
One could for example delay decisions in design until a high degree of information is reached or
reduce the number of unnecessary requirements.

2. Front-loading intends to influence the timing of a change. It pursues an earlier detection of emergent
changes, leading to lower cost and lower resource allocations. To front-load changes, one could
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verify designs in an earlier stage of product development by simulation and communication with the
user.

3. Effectiveness is focused on assessing the usefulness of an EC by analyzing the ratio of effort to
benefit for each requested EC. Companies could enhance the effectiveness of ECM by performing
an analysis of effects that is assisted by tools and simulation instead of only experience by employ-
ees. One could classify former changes and predict the effects of a requested change based on the
experience of similar former changes.

4. Efficiency concentrates on the implementation of necessary ECs by an optimal use of resources
such as time and cost. To increase the efficiency, communication, documentation and quality of
information could be enhanced. Additionally, change processes may be standardized and companies
could prepare for change by adopting a modular design.

5. Learning aims at supporting the already named strategies (prevention, front-loading, effectiveness
and efficiency) by learning from previously performed EC processes. By reviewing and critiquing
ECs, information about typical failures of product and process can be generated and used to improve
the ECM.

2.7 Historical data analysis of engineering changes
ECs and their management generate a large amount of data in most companies, particularly in the me-
dium sized enterprises and Original Equipment Manufacturers (Wickel et al., 2014; Kattner & Lindemann,
2017). To gain knowledge from the linking of data and information, there are various methods of data
analysis integrated into knowledge discovery in databases, which have great potential for increasing the
efficiency of ECM (Wickel et al., 2014; Kattner & Lindemann, 2017). However, Wickel et al. (2014) note
that the data of previous ECs is often not considered within companies and is rarely applied for extract-
ing knowledge. Siddiqi, Bounova, de Weck, Keller and Robinson (2011) also observed that each change
is typically treated individually and the collection of changes is not analyzed. Shuh et al. (2021) agree
that historical manufacturing data is still hardly used today as a way to learn from past changes and their
impact. Arnarsson (2020) note that few companies analyze engineering changes in a comprehensive and
structured fashion. Kattner and Lindemann (2017) argue that although most companies already document
change requests and orders, the generated data is rarely used to improve the company’s own change process.

Tale-Yazdi et al. (2018) provided a comprehensive literature research regarding the field of data analysis
in ECM from 1999 to 2017. They claim that data analysis has a great potential to increase the efficiency of
ECM. However, it has not been substantially researched in the field of ECM. Kattner and Lindemann (2017)
agree that although EC data is valuable, literature in the field of engineering change data analysis is rare.
Tale-Yazdi et al. (2018) distinguished two types of methods of data analysis, a priori and a posteriori. A
priori data analysis focusses on the phases before an engineering change, particularly by predicting change
propagation. A posteriori methods intend to provide insights on the effects of ECs when they have already
been completed. Tale-Yazdi et al. (2018) found that the majority of the research papers (55) contained a
priori methods, whereas only 14 a posteriori methods have been published. They note that the different a
posteriori analysis methodologies should be combined in future research to enable a comprehensive and
demand-oriented examination of ECs. Particularly, the digitalization in industry and the growing amounts
of EC data trigger the need for more research in this area (Tale-Yazdi et al., 2018). Kattner, Trepatschko,
Assmann, Becerril and Lindemann (2019) agree that the literature on ECM lacks a methodical approach to
analyze engineering change data retrospectively with the objective to improve future developments.

As a result of the search query discussed in section 1.1, 22 research papers on historical data analysis
of engineering change data could be identified. By deriving the most important concepts in the literature,
these research papers could be classified in a concept-matrix as described by Webster and Watson (2022).
Within the literature on historical EC data analysis, two main classes could be distinguished. Within each
class, the research papers could be arranged according to different type of analyses (concepts). Firstly,
there is a class of papers that aims at improving the decision making of either accepting or declining an
engineering change by leveraging historical EC data. By using techniques like clustering, they tend to first
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group similar engineering changes. By using similarity, it is then possible to predict change propagation,
lead time and effort of an upcoming engineering change. Secondly, there are research papers that focus
on statistical data analysis for providing insights in potential ECM improvements. These papers aim at
deriving patterns in past engineering changes and analyze ECs and their management from a time, cost
and location perspective. Additionally, they analyze engineering changes to derive their root causes and to
find the causes of iterations in the process. These analyses could lead to insights in potential improvements
of the engineering change management. In the end, eight types of analyses could be identified. The 22
research papers were classified according to these concepts in the concept-matrix given in Table 2.2 as
described by Webster and Watson (2002):

Prediction for assisting in decision making.

• Change propagation. One important issue in ECM is predicting change propagation, the phe-
nomenon of when a change to one part of a product requires change in another part (Pasqual &
Weck, 2011; Lee & Hong, 2017). Wickel and Lindemann (2015) provided an approach of using EC
databases of companies to derive general engineering change dependencies between components,
which can then be used to predict change propagation. Pasqual and Weck (2011) also developed a
data-driven approach to the management of change propagation. Furthermore, Kocar and Akgun-
duz (2012) developed an approach called ”ADVICE”, which used data involved in ECM to offer
advice on change propagation. Lee and Hong (2017) explored the capability of a Bayesian Network
to model and predict change propagation. Pan and Stark (2022) used machine learning to build a
decision support solution that predicted and explained the impact of an engineering change request.

• Lead time. Engineering change lead time is the time required to complete all the steps in the
engineering change process, including non-working hours (Shakirov, Kattner, Fortin, Uzhinsky &
Lindemann, 2021). Sharafi, Elezi, Zuber, Wolf, Krcmar and Lindemann (2012) applied data mining
and classification algorithms to predict if an engineering change needs more than average lead time.
Shakirov et al. (2021) aimed at using historical data to improve the accuracy of EC modelling and
thereby enable more precise prediction on the EC lead time and its standard deviation. They lever-
aged a digital representation of the EC process and the historical data to improve the assessment and
execution of upcoming ECs.

• Effort. Riesener et al. (2021) argue that engineering changes require a high amount of product
development resources and that the identification of effort for engineering changes is used in decision
making to identify necessary resources. However, the prediction of effort is usually done based on
experience, whereas data could be used to draw more valid conclusions and make better decisions.
Therefore, they introduced a method that uses a random forest algorithm on historical data to estimate
the effort needed of a future engineering change. The decision support model of Pan and Stark (2022)
also predicted and explained engineering change effort.

Statistical data analysis for providing insights in potential ECM improvements

• Root Cause Analysis. Root cause analysis is about examining how a change originated to pos-
sibly prevent the engineering change in the future (Chucholowski, Langer, Behncke and Lindemann,
2013). Sharafi, Wolf and Krcmar (2010) analyzed engineering changes at a large German car man-
ufacturer and observed that every change request contained a free text field, where the engineer
describes the cause in some sentences. Sharafi et al. (2010) used Text Mining to calculate the
occurrences of all terms in the cause text field. They noted that the distribution of keywords is a
starting point for further calculations and visualisations that could detect interesting patterns in the
data. Wickel and Lindemann (2014) examined engineering changes to derive indicators in EC data
that signal what ECM improvement strategy should be employed. They state that the comparison
of sequences and frequencies of EC reasons in a set of EC processes could either indicate avoidable
ECs, ECs due to failures and typical ECs. They argue that avoidable ECs and ECs due to failures
should be prevented and companies should learn from typical ECs. Since root cause analysis is the
focus of this research, it is further explored in the next section.

17



• Process analysis. Arnarsson, Malmqvist, Gustavsson and Jirstrand (2018) applied Markov chains
on engineering changes in a large product development project and displayed the results in a Markov
chain matrix. Markov chains and Markov transition matrices can be used for understanding the flow
of ECs through the different EC states. The matrix shows the statistical probability of a transition
pathway for an engineering change process. By analysing this matrix together with experts with
domain knowledge, Arnarsson et al. (2018) were able to identify patterns and improvement oppor-
tunities. The analysis showed that eight percent of the ECs were directly closed after creation, which
could be viewed as a waste of time and resources (Arnarsson et al., 2018). Therefore, the research-
ers argue that this insight should lead to an ECM improvement in this area. Elezi, Sharafi, Mirson,
Krcmar and Lindemann (2011) analyzed iterations in the engineering change process, which mainly
occur when an engineering change is rejected and additional solutions are assessed. They used a
dataset of historical engineering changes to extract the causes of iterations and to assess the impact
of iterations on the lead time of a change. By employing a semi-automatic text-mining process, Elezi
et al. (2011) found that cost and technical changes were the main reasons for occurrence of itera-
tions. Additionally, the analysis showed that iterations significantly increase the mean lead time and
the standard deviation. Reducing the number of iterations might therefore improve the average lead
time of an engineering change, reduce the amount of resources needed and improve the efficiency of
ECM.

• Time. As has been discussed in section 2.4, Eckert et al. (2004) distinguished three time patterns
of engineering changes: ‘blossom’, ‘ripple’ and the ‘avalanche’ pattern. Ward, Mundo, Frerking
and De Weck (2016) analyzed engineering changes in two space mission projects and identified two
different patterns in the projects, the blossem pattern and the avalanche pattern. Since the avalanche
pattern is associated with a high number of late changes and late changes involve high cost, this
insight could lead to an ECM improvement for that project. Siddiqi, Bounova, De Weck, Keller and
Robinson (2011) also analyzed engineering change data of a complex engineering project from a
time perspective and constructed change activity profiles over the project timeline. They state that
by determining the number of changes that arise per unit of time, it is possible to characterize the
change time profile. This can be helpful in providing a high-level understanding of the evolution and
dynamics of changes. Siddiqi et al. (2011) additionally plotted the rejection and approval ratio of
engineering changes for each month. They observed that towards the end of the project, the rejection
ratio starts rising sharply. In that phase of the project, it is reasonable to expect that changes would
be resisted since they are difficult to implement.

• Origin. Determining the origin of an engineering change can be used to identify hotspots, which
are subystems that give rise to most change requests (Sidiqqi et al., 2011). Isolating hotspots can be
important for informing future design decisions (Sidiqqi et al., 2011). To identify hotspots, Siddiqi
et al. (2011) first identified 22 change originating disciplines and showed the number of approved
engineering changes for each discipline. They found some clear hotspots such as Marine, Process and
Mechanical. Arnarsson et al. (2016) observed the frequency of emergent changes originating from
different design teams. They created a frequency graph, where individual design teams were plotted
according to amount of emergent changes each design team was responsible for. They observed that
roughly 20 percent of the design teams created 80 percent of the emergent changes. Ward et al.
(2014) investigated the subsystems that created the most engineering changes and the subsystems
that were mostly affected by an EC. Ward et al. (2014) identified the test activities and the system
integration as the top generators of change. They were surprised by the result that the mechanical
structure was a significant absorber of change, even though it is considered costly to change.

• Cost. Siddiqi et al. (2011) performed a cost-only analysis that involved constructing frequency plots
to identify the nature of change cost distributions. By analysing these plots, Sidiqqi et al. (2011)
found that the presence of few, yet very expensive, changes suggested that a significant impact on
change costs can be realized if these kinds of changes can be mitigated early in future projects.
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Table 2.2: Overview of literature on historical EC data

Statistical data analysis for insights in Prediction for assisting
potential ECM improvement in decision making

Publication Root Cause Process Time Cost Origin Change Lead time Effort
Analysis Analysis Propagation

Giffin et al. (2009) ✔

Krcmar (2010) ✔

Sidiqqi et al. (2011) ✔ ✔ ✔

Elezi et al. (2011) ✔

Pasqual & Weck (2011) ✔

Kocar & Akgunduz (2012) ✔

Sharafi et al. (2012) ✔

Fernandes et al. (2014) ✔ ✔

Wickel & Lindemann (2014) ✔ ✔ ✔

Wickel & Lindemann (2015) ✔

Arnarsson et al. (2016) ✔ ✔ ✔

Ward et al. (2016) ✔ ✔

Lee & Hong (2017) ✔

Jokinen et al. (2017) ✔

Arnarsson et al. (2018) ✔

Kattner & Lindemann (2019) ✔

Zheng et al. (2019) ✔

Pan & Stark (2020) ✔

Riesener et al. (2021) ✔

Shakirov et al. (2021) ✔ ✔

Pan & Stark (2022) ✔ ✔
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Since this research is scoped to the historical analysis of the root causes of engineering changes, the next
section further explores this subject.

2.8 Root cause analysis
Gerst and Stetter (1998) argue that when the symptoms of a problem are solved while the underlying causes
remain unknown, similar problems will arise in the future. The only way to prevent recurrence of a prob-
lem is by elimination of its root causes (Lehtinen, Mantyla & Vanhanen, 2011; Mahto & Anjani, 2008).
Root cause analysis (RCA) is a structured investigation of a problem to identify its underlying root causes
(Lehtinen et al., 2011; Mahto & Anjani, 2008). It could also identify the necessary process improvements
for eradicating these root causes (Andersen & Fagerhaug, 2002; Lehtinen et al., 2011). Lehtinen et al.
(2011) state that there is no unique and widely accepted definition of root cause analysis. Some researchers
view root cause analysis as a cause detection method only, whereas others present root cause analysis as
a problem prevention method that includes causal analysis and the development of corrective actions (Le-
htinen et al., 2011).

Lehtinen et al. (2011) identified three common steps to most methods of root cause analysis: target prob-
lem detection, root cause detection and and corrective action innovation. In the target problem detection
stage, the problems are identified. Lehtinen et al. (2011) are of the opinion that one should focus on sys-
temic problems. The problem detection is either done by qualitative analysis of problems by a team of
experts or by statistical analysis of problem reports. After the problems have been identified, their root
causes should be established during the cause detection stage. Several methods have been proposed for
tracking down the root causes of problems. Ma, Li and Thorstenson (2021) argue that emperical evidence
has shown that traditional RCA methods such as the 5-Why and the Ishikawa diagram are still very popular
and widely used in practice, since they are easy to use. The 5-Why technique aims at peeling the layers
of issues and symptoms away to get to the root cause by repeatedly asking the question “Why?” (Gangidi,
2019). The Ishikawa diagram, also refered to as the fishbone method, highlights the potential causes of a
problem in a fishbone shaped form to establish the cause and effects relations (Luca, 2016). The methods
typically prescribe a collection of causes from various stakeholders, using interviewing, questionnaires and
brainstorming methods (Lehtinen et al., 2011) . As soon as one has been able to use one of these methods
to identify the root causes of problems, corrective measures could be undertaken (Lehtinen et al., 2011).
Therefore, during the last stage of RCA, corrective actions are devised and undertaken to address the root
causes of problems (Lehtinen et al., 2011). Previous literature often cites brainstorming, brainwriting,
interviews, and focus group meetings as approaches for innovating corrective measures (Lehtinen et al.,
2011).

2.9 Detecting recurring problems
According to Card (1998), most projects have too many problems to even consider conducting a causal
analysis of them all. Leszak, Perry, and Stoll (2001) agree that analyzing all defect data to get a complete
picture of the defects and their causes is infeasible because of the required work. Shenvi (2009) states that
in software development, there are so many defects that it would be too time-consuming to have prevent-
ive action planning for each of them, as most of them could be symptoms of some common root cause.
However, Card (1998) argues that some problems tend to be repeated, which counts for a large portion
of the problems. Identifying and preventing these recurring problems can have a big impact on quality
for a relatively small investment (Card, 1998). Additionally, Card (2005) argues that finding recurring
errors indicates the existence of significant improvement opportunities for the project. Mohammadnazar,
Pulkkinen and Ghanbari (2019) and Lehtinen et al. (2011) agree that root cause analysis should focus on
these recurring or ”systemic” problems.

According to Mohammadnazar et al. (2019), the majority of RCA methods depend on statistical mod-
els of fault data for identifying recurring faults. In 1990, IBM introduced the Defect Causal Analysis,

20



a root cause analysis method specifically developed for software defects (Card, 1993). DCA has been
broadly adopted within the software industry and most published papers on DCA follow the traditional
DCA process (Kalinowski et al., 2008). Card (2005) summarizes this DCA process in six steps: (1) select
a sample of the defects, (2) classify selected defects, (3) identify recurring errors, (4) determine principal
cause, (5) develop action proposals, and (6) document meeting results.

For the DCA step of classifying the defects, there exist a number of different defect classification schemes
(Lehtinen et al., 2011). Kalinowski, Travassos and Card (2008) analyzed papers containing defect classi-
fication and found a partial consensus in the following classification: (1) the moment (or phase) in which
the defect was introduced, (2) the moment in which the defect was detected, (3) defect type. Moreover,
the severity or priority of the defect is also considered in some papers (Kalinowski et al., 2008). The
classification could help to narrow down the root cause analysis to a certain subset of the data and could
lead to practical improvement suggestions (Leszak et al., 2001; Raninen, Toroi, Vainio & Ahonen, 2012).
Leszak et al. (2001) for instance, used the defect classification to suggest focusing the root cause analysis
on defects that occur late in the software development. Raninen et al. (2012) noticed a high percentage of
functional defects and recommended to take a closer at this class. The researchers also used the analysis to
suggest different ways of recording the defect data.

Kalinowski et al. (2008) are of the opinion that the selection of the samples in the DCA process should
be supported by first finding the clusters of defects where recurring errors are more likely present. These
recurring defects should then be selected as samples for further analysis. Srivastava and Zane-Ulman
(2005) applied clustering on a dataset of approximately 2000 problem reports of software anomalies in the
Space Shuttle program to discover recurring problems. Srivastava and Zane-Ulman (2005) note that a lot
of information in problem reports is captured in unstructured text form. According to the researchers, one
therefore needs to analyse the text field where the problem is described to uncover the recurring anomalies.
They found that k-means clustering did not perform well as it divided very similar reports into different
clusters. They were not surprised by this results since k-means assumes that there are dense regions in the
area. As the data had a small number of data points and a high number of dimensions, it would not perform
well. Spectral clustering however, did appear to produce several small, separate clusters that could be in-
vestigated for recurring anomalies. Furthermore, they used Sammon mapping, a dimensionality reduction
technique, to visualize the data on a three dimensional plot. This visualization assists in the identification
of clusters that might contain recurring problems. They do note that the problems need to be carefully re-
viewed to decide whether they are recurring problems or different versions of the same report. Finally, the
researchers concluded that the methods should be validated on larger datasets and compared with human
clustering.

Julisch (2003) of IBM research applied clustering on a dataset of ”alarms” that notify that there are signs of
a network-based computer attack. IBM made the observation that the alarms of a given root cause are gen-
erally similar (Julisch, 2003). Therefore, their alarm-clustering method aimed at grouping similar alarms
together, assuming that these alarms also share the same root cause. IBM developed a heuristic algorithm
specified on this alarm clustering problem. They showed that although human expertise is still needed
for interpretation of the clusters, alarm clustering vastly simplifies root cause analysis. The clustering of
alarms made the root cause analysis more cost-effective and less error-prone.

Rus, Nan, Shiva and Chen (2009) aimed at clustering defect reports of an open source Mozilla project
to group together reports describing the same underlying problem. They stated that defect reports are typ-
ically manually analyzed which is error-prone and time consuming. Rus et al. (2009) noted that reports
include many details: an id that uniquely identifies the defect, the status of the defect (e.g. new, verified,
resolved) and a description field. Rus et al. (2009) agree with Srivastava and Zane-Ulman (2005) that
the description field is the richest source of information about the defect. Therefore, they applied three
different clustering algorithms on the TF-IDF vectorial representation of this description field: k-means,
Normalized Cut and Size Regularized Cut. Normalized Cut and Size Regularized Cut are both spectral
algorithms that slightly differ in the optimization of the clusters. The Regularized Cut penalizes the size
of the clusters, whereas Normalized Cut emphasizes the connectivity of the clusters. Just as in the case
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of Srivastava and Zane-Ulman (2005), the k-means algorithm performed worst and a spectral algorithm,
Normalized Cut, performed best.

2.10 Root cause analysis of engineering changes
Eckert, De Weck, Keller and Clarkson (2009) analyzed 12 presentations from practicing engineers at two
workshops held in 2008 to study the causes for engineering change. One of the discussions showed that
errors are a driver for engineering change and that the challenge with errors is finding the root cause of
problems. An example was given of a hardware failure. To solve this failure, the company needs to ana-
lyze whether the failure is due to a design error, in which case an engineering change should be raised,
or because of a manufacturing or implementation error. Eckert et al. (2009) note that the way to avoid
errors needs to be fitted to the cause of the change. They mention root cause analysis as a way to improve
the design process to avoid errors in the future. Deubzer, Kreimeyer, Rock and Junior (2005) also see
the highest potential for the avoidance of unwanted changes in the identification of change causes. They
identified in their study that 56% of ECs are caused by errors, of which 39% could have been avoided.
Fricke, Gebhard, Negele and Igenbergs (2000) argue that understanding causes and effects of a change
allows optimization of the development processes and the product itself. To improve the change processes
and product development processes, experiences with historical changes should be transferred back into
the product development system. However, Chucholowski et al. (2013) state that because of high time
pressure, root cause analysis of engineering changes is conducted insufficiently or not at all in industrial
practice. Therefore, the symptoms of a problem are often resolved but the root cause remains. Sjögren,
Fagerström, Kurdve and Lechler (2019) agree that establishing the root cause of engineering changes by
asking question like ”What is the actual cause of a change?” is rarely encountered in practice. Sjögren et
al. (2019) argue that structured collective reflection regarding root causes, both with others and through
proven experience, could lead to the discovery of opportunities. Sjögren et al. (2019) view opportunities
as ”factors, variations, and events that may lead to changes that make the project able to deliver the same
quality in less time or to lower price than was agreed upon in the beginning of the project.” Arnarsson, Ivar,
Gustavsson, Malqvist and Jirstrand (2017) investigated the questions and needs that product developers
face and what answers they are looking for from data mining and data analytics. The interviewed product
developers indicated that they were interested in learning how to locate repeated problems to eliminate
their root causes. They reasoned that explorative investigations on the current problems could help them
to take these problems into consideration for the next design. They argued that it is important to ask why
a problem occurred in the first place, why a problem was not foreseen earlier and what would be a good
testing method to detect these problems earlier in the future.

Wickel et al. (2014) analyzed approximately 53,000 engineering change orders to find indicators that
could induce strategies for coping with ECs. Engineering change orders are equivalent to the change no-
tices defined in the previous chapter. They found that the code of EC reason could identify the engineering
changes resulting from failures, which could induce the strategy of prevention. Additionally, they found
that ”the sequence and frequency of EC reasons, involved parts or assemblies, as well as departments, in
different development projects” could indicate typical engineering changes. This could induce the strategy
”learning”: by reviewing and critiquing ECs, information about typical failures or recurrences of failures
on product and process can be generated and used to improve the ECM. Wickel et al. (2014) however, did
not provide any information on how to conduct this analysis.

Sharafi et al. (2010) interviewed 16 of the most contributing EC creators of an automobile manufacturer
to formulate targets for a data analysis of ECs. The EC creaters recommended looking after similarities
concerning the cause of change, which induce the need of an engineering change. Sharafi et al. (2010)
stated that the cause of change is generally described with some sentences in a textfield. The objective
of Sharafi et al. (2010) was to prove the benefit of a keyword search for finding key issues in the change
history. To achieve this objective, they used the text mining platform RapidMiner to show the words that
occured the most. Sharafi et al. (2010) concluded that they could use these results to find out what kind
of circumstances lead to change requests. Additionally, they argued that further visualizations of term oc-
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currences could provide more insights. They showed a map with two words and its term occurrences in
different projects as an example of such a visualization.

Chucholowski et al. (2013) note that all engineering changes are triggered by a target deviations, which
is a deviation of the actual state from the nominal state. Resulting from the discussion with six industry
partners, Chucholowski et al. (2013) identified three types of root cause analysis used for engineering
change:

• Technical cause analysis: Identification of the technical cause (i.e. the definite target deviation) in
order to resolve the problem.

• Organizational cause analysis: Identification of organizational misfits that led to the target deviation
in order to derive measures for organizational improvements. The improvements aim at preventing
the emergence or anticipate the identification of comparable target deviations in future projects.

• Analysis of the reason: Analyzing the source of the engineering change request in order to assess the
necessity for the change.

Based on the literature and by observation of their industry partners, Chucholowski et al. (2013) distin-
guished two different root cause analysis procedures:

• Ad-hoc: When the target deviation is recognized.

• Retrospectively: When the change has already been implemented. The objective of retrospective
analyses is to derive organizational measures in order to avoid ECs in future projects.

The root cause analysis procedures that Chucholowski et al. (2013) found in most of their industry ex-
amples were conducted right after the recognition of the target deviation and before the change is imple-
mented. Only one example described the cause analysis in a project review where multiple change causes
were analyzed towards organizational deficiencies. According to Chucholowski et al. (2013), the applica-
tion of a retrospective cause analysis was not addressed in the investigated literature.

2.11 Methodologies on retrospective root cause analysis of engineer-
ing changes

Chucholowski et al. (2013) aimed at investigating the methods and procedures for EC cause analysis that
are provided in the literature and to discover which of them are actually used in industrial practice. They
organized a workgroup meeting and analyzed six examples of EC cause analysis in the industry. By com-
paring the results, they derived implications for the industry and for future research. Chucholowski et al.
(2013) found that cause analysis in industrial practice is conducted either ad-hoc when a target deviation
is recognized or retrospectively for more than one change case. However, they state that the retrospective
analysis of EC causes is not addressed in literature, although it induces other challenges where methodolo-
gical support needs to be provided by design research. Chucholowski et al. (2013): ”Design research needs
to provide cause analysis procedures and methods that are matched to the specific purposes and situations
appearing in engineering change management practice.” They therefore suggest that adapted cause analysis
procedures have to be developed.

Fernandes et al. (2014) analyzed the causes of change during the design process of a complex aerospace
system developed by Rolls-Royce. They developed a methodology that involves six steps. Firstly, an ex-
ploratory research is to be conducted that involves semi-structured interviews with experts to understand
the context and select the case. The second step includes a data collection of changes through archival
research in documents. After the data has been collected, the third step involves interviewing experts to
define a preliminary list of causes. To deal with the potential large size of the population of changes, the
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fourth step is about designing a sample representative of the population. The fifth step consists of root
cause assessment sessions with experts that have worked on the engineering changes in the change sample.
Finally, the sixth step of the methodology contains the realization of a series of group working sessions with
the engineers to discuss the statistical results characterizing the change evolution and the causes of change
during the project. This allows to elicit a series of management guidelines that could be used to further
improve engineering change management. Fernandes et al. (2014) proposed to front-load the requirements
engineering process as a way to reduce the impact of late change. Additionally, they recommended alloc-
ating more engineering resources earlier in the process. Finally, investing in example-based training across
the organization and setting-up validation and verification systems were recommended to ensure that the
amount of internally generated change was reduced in future projects.

Arnarsson, Malmqvist, Gustavsson, Jirstrand (2016) investigated late engineering changes by analysing
a dataset consisting of 4,000 deviation and error reports that were created during a truck development pro-
ject. As has been explained in section 2.5, late changes are associated with higher costs. Arnarsson et
al. (2016) aimed at developing data-mining tools to analyze the root cause of engineering changes. This
root cause analysis could provide insights in how to front-load or prevent these late engineering changes.
Arnarsson et al. (2016) developed a methodology that supports the process of extracting the data, analyze
the data to find the root causes, design solutions that eliminate the root causes and implement the solutions
in the next product. The methodology consists of the following steps: Firstly, the relevant data sources
are identified, exported, compiled and cleaned. Secondly, hypotheses on how the data is connected are
explored and formulated. Next, an initial set of graphs is created in order to get an overview of the data.
One graph created by Arnarsson et al. (2016) displays recorded errors per months throughout the project
lifetime. Another graph displays the errors in a terms of severity. Furthermore, a frequency graph was
created to display what design teams were responsible for the most engineering changes. In the next step
of the methodology, text mining tools are employed to find patterns in product deviations during late phases
of a product development project. Resulting from this analysis, three design teams were displayed with in
addition a list of the most frequent parts and words occurring in the error reports for each team. According
to Arnarsson et al. (2016), this analysis would provide insight that are not visible by looking at the raw
data and allow to correct repeated failures. Finally, solutions are sought that eliminate root causes and
these solutions are implemented in new products. Arnarsson et al. (2016) concluded in their discussion
that while the data mining analysis of the error report provides a good map of symptoms and patterns, they
rarely explain the “why” of a failure. Therefore, the next step should be qualitative: to conduct interviews
with engineers and managers to better understand the data and to get feedback on the quantitative analysis.
Interviews could focus on what is going on at each peak of change which could result in a deeper under-
standing of why the issues keep recurring.

The methodologies of Fernandes et al. (2014) and Arnarsson et al. (2016) were specifically developed
for a case study and have not been tested in other settings. As Arnarsson et al. (2016) mention themselves,
the application of big data mining technology to support engineering development projects is still in an ex-
ploratory phase. The methodologies differ significantly. Whereas Fernandes et al. (2014) used a sample of
the engineering change data to conduct a one-by-one analysis, Arnarsson et al. (2016) used text mining to
derive patterns on a complete dataset. Additionally, Arnarsson et al. (2016) exclusively used error reports
for their analysis and Fernandes et al. (2014) used data from a requirements change database. Arnarsson
et al. (2016) mention using data from multiple sources as a potential for future research. Finally and most
importantly, whereas Arnarsson et al. (2016) focused on deriving knowledge mainly from the data, the
methodology of Fernandes et al. (2014) relied heavily on interviews with the engineers responsible for the
changes. Arnarsson et al. (2016) evaluated that their quantitative methods provide good maps of symptoms
and patterns but lacks a necessary step of conducting interviews to get feedback on the quantitative analysis
and explain the ”why” of a failure. The weakness of the methodology of Arnarsson et al. (2016) is that it
does not include a qualitative methods of interviewing stakeholders to find the root causes of engineering
changes. The weakness of the methodology of Fernandes et al. (2014) is that it does not use a quantitative
method like Text Mining on a complete dataset to derive insights.
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Chapter 3

Formulating design requirements and
design principles

This chapter aims at providing a contribution to answer the following research question.

RQ2: What are the design requirements for a methodology on retrospective root cause analysis of en-
gineering changes?

According to Blessing and Chakrabarti (2009), the objectives of the descriptive phase and prescriptive
phases are to obtain a better understanding of the existing situation and to provide a basis for the effective
development of support to improve design. Möller, Guggenberger and Otto (2020) provided a method that
aids designers in the development of an artifact by creating design principles. This chapter will firstly focus
on eliciting design requirements for a methodology from semi-structured interviews with relevant experts.
Secondly, design principles are formulated as a response to these requirements. The formulation of the
design principles is assisted by inquiring the literature.

3.1 Semi-structured interviews
In order to establish the design requirements for a methodology on retrospective root cause analysis, a group
of experts were interviewed using a semi-structured approach, with each interview lasting approximately
one hour. The interview process followed the guidelines set forth by Myers and Newman (2007). These
researchers prescribe that the interviewer may prepare some questions beforehand but should be flexible
and ready for improvisation during the interview. The prepared interview questions can be found in the
Appendix. They were used as a guideline after which follow up questions were asked. The interviews were
structured around three key topics: engineering change, historical data analysis of engineering changes,
and retrospective root cause analysis of engineering changes. The first topic was chosen to establish a
common understanding of engineering change and to gain insight into the interviewee’s experience with
engineering change. The second topic focused on historical data analysis to better understand the existing
situation at companies, as prescribed by Blessing and Chakrabarti (2009). This part of the interview also
focused on the available data on engineering changes at companies. Finally, the topic of retrospective root
cause analysis was debated since this is the main topic of this research and most closely related to the
research questions. During this part of the interview, the value of retrospective root cause analysis and
the potential methods to apply the analysis at companies were discussed. Table 1.1 shows the distribution
of experts who participated in the interviews. Four of the participants have experience as a consultant
implementing Product Lifecyle Managment (PLM) software systems at manufacturing companies. One
participant has experience with managing the PLM system at an IT company (Participant 5). As has been
explained in section 2.2, PLM is the business activity of effectively managing a company’s products across
their complete lifecycle. According to the participants, historical data of engineering changes at matured
companies is captured by PLM software. Therefore, the participants have relevant experience about what
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engineering change data companies typically capture and some knowledge about what companies do with
this data. All participants were working at the time of the interview at the company Atos.

Name Functional title Years of PLM experience

Participant 1 Senior Industry 4.0 and PLM Business Consultant 33
Participant 2 PLM and IoT consultant 9
Participant 3 PLM Consultant 23
Participant 4 Business Consultant MES, PLM, IoT 28
Participant 5 IT Manager R&D Services 26

Table 3.1: Interviewed experts

All interviews were recorded and subsequently transcribed, coded and analyzed according to the thematic
analysis methodology by Braun and Clarke (2006). The main goal of the thematic analysis was to derive
design requirements for a methodology. Five themes were derived from the interviews according to which
the remainder of this chapter is organized. The first two themes describe the existing situation at companies
by discussing the available EC data and the current practices of historical EC data analysis at companies.
The next three themes each result in the elicitation of a design requirement. After each of these design
requirements have been elicited, a short evaluation is given on whether the existing methodologies on
retrospective root cause analysis meet the given requirement. This is done to provide a basis for the effective
development of support to improve design according to Blessing and Chakrabarti (2009).

3.2 Engineering change data captured at companies
According to the participants, data of engineering change that is recorded varies for every company and
is captured in different ways. Engineering change data could be captured in word, pdf and CAT files but
it could even involve a drawing on paper. Some companies do not capture a lot of data. They have some
basic change documents which are connected to a cost or impact analysis on which basis the change is
accepted or rejected. However other companies, for example in the aerospace industry, cannot work with
documents casually stored somewhere because of safety concerns. These companies are required to have a
formal engineering change process and capture their engineering change data carefully. They need to know
when a change has been accepted, who has accepted it and what the role of the approver is. According
to the participants, this generally requires a PLM system which captures engineering change data in the
following objects:

• Problem reports. In the problem report, the reason for thinking about a potential change is captured.

• Change request. Firstly, a change request consists of a text field with a description of the change
which also contains a proposed solution in some cases. Additionally, the type of change is captured
such as a quality improvement, a redesign, a supplier issue or a cost issue. Sometimes the initiator
is recorded, which could for instance be an internal department, supplier or customer. Moreover, the
impact of the change, the affected parts and the documents which needs a change are included. It is
also needed to record whether the change contains any form-fit-function changes to parts. A small
documentation change is for example a non form-fit-function and is handled as a revision of the same
part. However, when the form-fit-function does change, a new part identification number has to be
created. When a change request has been evaluated it also involves an impact analysis. This analysis
involves the cost of implementation and how much time will be required for the implementation.

• Change notice. A change notice could be considered as a job sheet for engineering change. Firstly it
provides information on when a change has been accepted, who accepted it and what the role of the
approver is. Additionally, it contains the strategy of the implementation, the planning, the required
time and the people who will be involved in the implementation.
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3.3 Use of historical engineering change data at companies

Participant 1 estimates that although there are some large technology companies that use data to optimize
their engineering change process, 90 percent of the companies do not use their data. Participant 2 agrees
that data is generally not used and argues that only the companies with a highly matured PLM system are
able to apply analytics on engineering change data. Participant 4 states that historical engineering change
data is barely used by companies. He reasons that this is because employees working with engineering
changes are under constant pressure to make the next product. Companies generally don’t give these em-
ployees the time to reflect on what has been done in the past. Participant 5 remarks that conservatism at the
workfloor is the main reason why historical data analysis is not done more often. However, he argues that
modern product development teams actually do capture and analyse engineering change data. Participant
3 emphasizes that larger companies do indeed analyse their engineering change data. These analysis are
often driven by a management team who are getting complaints of customers or who observe that certain
changes are very costly and take a lot of time. They bring in process excellence teams or business ex-
cellence teams to apply analyses on historical data to find correlations. They steer towards an increase in
quality and a decrease in lead time and costs.

The participants have given some examples of cases where historical data analysis of engineering changes
was conducted. However, they appear to agree that the analysis of historical engineering changes is not
standard practice at companies. This observation is in accordance with the literature.

3.4 Recurrence of engineering changes

Participant 4 argues that identifying recurrence is important to discover a potential fundamental problem.
He mentions an example where during the service of a car, the right headlight always appears to be broken.
In that case, one could wonder if there might be something fundamentally wrong with the design. It might
be important to investigate the design instead of simply fixing the headlight everytime. Participant 3 sug-
gests creating a Big Five and Fishbone to identify the most frequent problems and their causes. In the Big
Five, the five biggest issues are first named. The Fishbone then helps identify all the potential different
causes to each problem. This could provide insights in unnessecary changes and could raise awareness to
prevent these changes in the future. Participant 2 agrees that a root cause analysis could identify recurring
changes. He argues that it could lead to design process improvements for prevention of these changes in
the future. Participant 2 gives the following example: ”Suppose we find in the historical data that a change
was identified by the manufacturing engineer because for a certain material, it is hard to drill a hole. Say
during the analysis, or if you do some machine learning on that, these kind of cases are found more than
ten times. Then what you do is in your engineering review process, you will establish this check which
says: if this material is so and so, then verify if the drilling process is used or not. So for the review of
the new parts you will always check the material and if the material is the one which has been historically
reported difficult for drilling, this is kept as a check.” Participant 3 also provides an example of how identi-
fying recurring problems could lead to a process improvement. He brings up a case where a material is not
strong enough and often breaks because there is a mistake in the design. If this happens due to a quality
assurance issue, the representative products might have not been tested enough. In that case you could add
more testing to assure the quality of the product is sufficient. For the prevention of errors, participant 5 has
experienced a case where the logging data of a machine was traced for errors and wordings to identify root
causes that could otherwise never be identified. In this case, the power cords were breaking a lot and the
machines often gave software errors. Data analysis and machine learning on the wordings of these software
errors helped to identify the cause of these power cords problems.

Based on the statements of participants 2, 3, 4 and 5, the search for recurrence of engineering changes
appears to be fundamental for the prevention of emergent changes. Multiple examples were given by the
participants where data on errors and problems was analysed to identify potential improvements to prevent
these problems in the future. Therefore, the following first design requirement is derived:
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Design requirement 1: The methodology should aim at finding recurrence of engineering changes.

Arnarsson et al. (2018) used Text Mining on engineering changes to find common failures and there-
fore satisfy this requirement. Fernandes et al. (2014) solely focused on providing overview of the causes
and thus fail to fulfill this requirement.

3.5 Involvement of experts
Participant 1 states that although cause analysis could highlight interesting deviations in a dataset, you
need interviews with employees to find out what is really going on. Participant 3 agrees that purely on data
alone, you can get an identification of problems but you can never get to the root of the problem. He argues
that in order to get to the root of the problem you have to talk to people. By talking you will understand
the problem better and you can find solutions. Participant 2 also states that to derive the logic from the
data, you need the actual technical engineering knowledge from the engineers. Participant 4 argues that to
identify the root cause of a problem, you have to involve people to find root causes. Participant 5 states
that ideally one would create a cross functional team for interpreting the results. He reasons that if you
ask a engineer for a solution, you might get a completely different solution than if you ask a production
employee for a solution. If an engineer comes up with a great solution but a production employee says that
it is impossible to manufacture, it’s not a solution at all. Participant 5 reasons that that is why you would
want people from different backgrounds involved in a solution.

Based on these statements made by participant 1, 2, 3, 4 and 5, it becomes clear that the involvement
of experts is essential for root cause analysis. They could assist in understanding the problem better and to
get to solutions. Therefore, the following requirement is derived:

Design requirement 2: The methodology should involve experts for the understanding of the context
and the interpretation of the results of the analysis.

Arnarsson et al. (2018) did not involve any experts in their research, which is something they them-
selves viewed as a weakness of their research. Fernandes et al. (2014) did use the opinion of expert quite
extensively in their research and therefore satisfy this requirement.

3.6 Large collection of engineering changes
According to participant 2, you first need to scan the change requests one by one to recognize what kind of
changes are generally coming up. Participant 3 agrees that in order to understand the data you need to get a
sample of change data that represents all the type of changes and read through them one by one. You have
to get to know the labeling for the type of changes and get to know the process. However, participants 3
also states that in order to derive insights you need analysis on big data. He argues that you need a collec-
tion of changes on which you can do visualizations to get a further understanding of the data. Participant
5 also mentions that you can only find correlations by capturing a lot of data and conduct analysis on that
data. Participant 4 argues that to find recurring problems, you need to analyse the problem report as well
as the engineering change request. This is because the problem report only describes the problem itself,
whereas the engineering change request also lists the affected parts. It could be the case that four problems
arise because of a mistake in a part. In the problem report, that would not be identifiable. But by analysing
the engineering change requests, you could find that all these problems reports are linked to the same part.

Based on these statements, a conclusion could be made that although you can analyse changes one by
one to get an understanding of the data, you need to analyse a large collection of changes to derive patterns
and to find recurrence. The experts prefer a method that focuses on big data analysis rather than analysis
on a sample set of the problems. Additionally, they are of the opinion that a dataset of only problem reports
is not enough, engineering change requests should also be collected. Therefore, the following requirement
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can be derived:

Requirement 3: The methodology should prescribe the collection of a large dataset of both problem
reports and engineering change requests and should prescribe a big data analysis on this dataset.

Fernandes et al. (2014) only analysed a sample set of the data and did not conduct analysis on a large
dataset. Although Arnarsson et al. (2018) did use machine learning tools on a large dataset, they only
analysed the error reports and failed to include the engineering change requests. Therefore, Fernandes et
al. (2014) and Arnarsson et al. (2018) fail to satisfy this requirement.
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Chapter 4

Development of the methodology

This chapter aims at providing a contribution to answer the following research question.

RQ4: How could a methodology on retrospective root cause analysis of engineering changes be de-
signed in order to detect recurring changes?

In accordance with Möller et al. (2020), design principles are formulated as a response to design re-
quirements elicited in the previous chapter. The formulation is supported by relevant literature. The design
principles guide the development concept of a new methodology on the first phase of retrospective root
cause analysis, the detection of recurring problems.

4.1 Finding recurrence in engineering changes

In the previous section the following design requirement was elicited from the interviews:

Design requirement 1: The methodology should aim at finding recurrence of engineering changes.

Both the research of Sharafi et al. (2010) and Arnarrson et al. (2018) involved the identification of
keywords to find the most common issues that led to engineering changes (see section 2.10 and 2.11).
Given that both papers used this method, the following design principle is formulated.

Design principle 1: The methodology should aim at finding recurrence of engineering changes by
utilizing a keyword search.

As has been described in section 2.9, clustering of problem reports has been a successful method for the
detection of recurring problems. The clustering of problem reports for the detection of recurring problems
or changes has not been applied within the engineering change field. However, Arnarsson, Frost, Gustavs-
son, Stenholm, Jirstrand Malmqvist (2019) did test the applicability of Natural Language Processing (NLP)
algorithms for finding relevant documents in two databases with engineering changes. By using word em-
bedding models and a cosine similarity measure, they could find similar engineering change requests to a
certain query.

Multiple papers have showed that an application of NLP and clustering is useful for the detection of recur-
ring problems in other fields. Additionally, Arnarsson et al. (2019) showed that an NLP method could be
useful at identifying similar changes withing the engineering change field. Therefore, the following design
principle is derived.

Design principle 2: The methodology should aim at finding recurrence of engineering changes by
utilizing text clustering.
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4.2 Involvement of experts
In the previous section the following design requirement was elicited from the interviews:

Design requirement 2: The methodology should involve experts for the understanding of the context
and the interpretation of the results of the analysis.

Julisch et al. (2003) applied text clustering on alarm reports to make the root cause analysis more cost
effective and less error prone. However, they did note that human expertise is still needed to interpret the
clusters. Srivastava and Zane-Ulman (2005) also mentioned that the clusters of problem reports need to
be carefully reviewed to decide whether they are recurring problems or different versions of the same report.

Therefore, based on the experience by Julisch et al. (2003) and Srivastava and Zane-Ulman (2005), the
following design principle is derived:

Design principle 3: The methodology should involve experts for the understanding of the context and
the detection of recurring changes.

4.3 Large collection of engineering changes
In the previous section the following design requirement was elicited from the interviews:

Requirement 3: The methodology should prescribe the collection of a large dataset of both problem
reports and engineering change requests and should prescribe a big data analysis on this dataset.

Arnarsson et al. (2018) prescribed in their methodology how to collect the data. They argued that first
relevant data sources should to be identified. Next, data ought to be exported from these data sources
and compiled in a suitable form for data analysis. After this step, the data quality could be evaluated and
cleaned if needed.

Inspired by the approach of Arnarsson et al. (2016) the following design principle is derived:

Design Principle 4: The methodology should prescribethe collection of a large dataset of both problem
reports and engineering change requests from relevant databases and should prescribe a big data analysis
on this dataset.

In the figure 4.1, an overview is provided of how the design principles were elicited from the design
requirements.
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Figure 4.1: Design requirements and design principles

4.4 Introducing the methodology

In figure 4.2, the new methodology on the first phase of retrospective root cause analysis of engineering
changes, the detection of recurring problems, is given. The concept is based on the four elicited design
principles, the literature guiding the elicitation and the interviews with the experts. In the next section, the
methodology is explained step by step.

Firstly, relevant experts are interviewed to understand the context of the business and to get a clear view
of the goals of the analysis. During the interviews, it is essential to determine the availability and nature
of the engineering change data, as well as to identify the appropriate data source for retrieval. The data
should consist of both problem reports and engineering change requests. Furthermore, this data is collec-
ted from the identified sources and compiled in a suitable form for data analysis. The data collection step
also includes a brief exploration of the data to get a better understanding of what the data entails. Next,
the data is prepared for data analysis, which consists of different sub-steps: Since useful information on
engineering changes are scattered among the problem reports and the engineering change requests, these
two data objects ought to be linked by ID number. Additionally, standard data cleaning measures are taken
such as the removal of HTML tags. To prepare for the keyword extraction and similarity analysis, a few
NLP preprocessing steps need to be conducted. Firstly, tokenization is used to turn a stream of characters
into a stream of tokens where a token is basically a word (Kumbhar, Mhamane, Patil, Patil and Kale, 2020).
Secondly, the stop words, which are common words such as ”the”, ”that” and ”when”, should be removed.
This is because stop words do not carry any useful information for the similarity analysis (Kumbhar et
al., 2020). Additionally, it is essential for keyword extraction since a stop word would have no value as
a keyword although it is likely to have a high occurrence. Using a similar reasoning, the punctuation is
also removed in the unstructured data. Finally, lemmatization is conducted, which reduces a word to its
base form, the lemma (Korenius, Laurikkala, Jarvelin and Juhola, 2004). For instance, lemmatizing the
word ’caring’ would return the word ’care’. Lemmatization is useful for keyword extraction since different
words that have the same base form usually have the same meaning. When the text has been lemmatized,
these words are reflected as one keyword. It is important in similarity analysis since sentences that contain
the same information but use other variations of words would appear more similar. After the data has been
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prepared, three data analysis task are performed: data visualization, document clustering and keyword ex-
traction. In the remainder of this section, these three data analysis steps are discussed.

The data visualization could lead to a better understanding of the data and how it could be analyzed (Arn-
arsson et al., 2018). Additionally, Leszak et al. (2001) argued that classifications of defects could help to
narrow down the root cause analysis to a certain subset of the data and could lead to practical improvement
suggestions. As Kalinowski et al. (2008) noted, defect classifications typically focus on the following
structured data: the moment in which the defect was introduced, the moment in which the defect was de-
tected, defect type and defect severity. The visualization step of the methodology involves visualizing the
data according to these classifications. Note that the success of this step is depended on the availability and
quality of the structured data of problem reports.

However, Srivastava and Zane-Ulman (2005) and Rus et al. (2009) argued that the richest information
of problem reports is actually in the unstructured text data. Text clustering refers to the unsupervised prob-
lem of grouping together similar documents in text collections (Akritidis & Bozanis, 2022). This could
simplify the detection of recurring problems. To perform text clustering, the documents should be repres-
ented on a vector space model (Kumar, Fakhry, Abdel-Basset and El-henawy, 2019). For a vector, each
element indicates how many times a word occurs in the document (Kumar et al, 2019). Within this vector
representation, documents containing the same words appear closer together. However, sometimes differ-
ent words have very similar meaning. Word embedding techniques allow words having similar meaning
to have similar vector space representations (Agarwal, Sikka and Awasthi, 2021). Therefore, they are the
most popular way of vector space models for text analysis (Agarwal et al. 2021). One of these models,
Bidirectional Encoder Representations from Transformers (BERT), has showed impressive results on a
variety of NLP tasks (Agarwal et al. 2021). It is therefore utilised for this methodology to vectorize the
text documents.

The K-Means method is one of the simplest and most widely used clustering method (Kumar et al, 2019;
Syakur, Khotimah, Rohman, and Dwi-Satoto, 2018). It has the ability to group large amounts of data with
relatively fast and efficient computation time (Syakur et al. 2018). The K-means algorithm is an iterative
clustering algorithm that aims to partition a dataset into k distinct clusters based on similarity (Syakur et al.
2018). It starts by randomly initializing K cluster centroids, assigns each data point to the nearest centroid,
and then updates the centroids by computing the mean of the assigned points (Syakur et al. 2018). This
process iteratively repeats until convergence, where the centroids stabilize and the data points are effect-
ively grouped into K clusters (Syakur et al. 2018). Since the method has a lot of support in the literature
and it is relatively easy to understand, it is used for this methodology.

However, Srivastava and Zane-Ulman (2005) noted that k-means clustering did not perform well on prob-
lem reports because the data had a small number of data points and a high number of dimensions. Generally,
text is characterized by high degrees of diversity (Akritidis & Bozanis, 2022). This diversity is associated
with high dimensionality in the text data, which is considered a problem for clustering algorithms (Akri-
tidis & Bozanis, 2022; Kumbhar et al. 2020). One solution for this problem is dimensionality reduction
(Kumbhar et al., 2020; Akritidis & Bozanis, 2022; Darwish, Stefanov, Aupetit, and Nakov, 2020). Dimen-
sionality reduction algorithms essentially transform the original data by projecting it onto spaces of lower
dimensionality (Akritidis & Bozanis, 2022). In a lower dimensional space, good projection methods bring
similar documents closer together while pushing dissimilar documents further apart (Darwish et al., 2020).
Darwish et al. (2020) conducted experiments that involved clustering on high dimensional data and found
that all of them failed to provide meaningful clusters. Clustering after applying dimensionality reduction
however, did lead to useful clusters. Another advantage of dimensionality reduction is that it facilitates
visual cluster analysis (Xia, Zhang, Song, Chen, Wang and Liu, 2021). By plotting the data on a 2d of 3d
scatterplot, it allows analysts to visually identify cluster patterns (Xia et al, 2021). Visual cluster analysis
assumes that the projections are a faithful representation of the actual clusters (Xia et al, 2021). It is widely
used to evaluate automatic clustering algorithms (Xia et al, 2021). Document visualization in two or three
dimensions allows an observer to ascertain how separable documents are (Darwish et al., 2020). Srivastava
and Zane-Ulman (2005) used a dimensionality reduction technique to visualize problem report data on a
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three dimensional plot. This assisted in the identification of clusters that contained recurring problems. To
conduct dimensionality reduction, multiple different algorithms exist. The non-linear dimensionality re-
duction technique Uniform Manifold Approximation and Projection (UMAP) is widely used because of its
performance in separating clusters (Xia et al, 2021). Darwish et al. (2020) applied multiple dimensionality
reductions on text documents to cluster users of the social media platform Twitter. They found that the
UMAP algorithm performed best. Since the UMAP algorithms is widely used for clustering and performs
well on text documents, it is a suitable algorithm to use for this methodology.

The K-means algorithm is designed to group data according to a predefined number of clusters (Kodin-
ariya & Makwana, 2013). One of the main challenges with clustering algorithms like K-meanss is to
identify the optimal number of clusters, since it seldom known in practice (Kodinariya & Makwana, 2013).
The literature has proposed several approaches to determine the number of clusters for the K-means clus-
tering algorithm (Kodinariya & Makwana, 2013). Three of the more well known and relatively simple
methods are the elbow method, the silhouette coefficient and the gap statistic. The elbow method is based
on the metric Squared Error, which is the square of the distance of the point from its predicted cluster
center. The elbow method calculates the Within-Cluster-Sum of Squared Errors (WSS) for different values
of K. The optimal K is the point for which the decrease in mean WSS first starts to diminish, showing an
”elbow” in the graph representing mean WSS over K. Notice that the elbow method only focuses on the
distance between data points within a cluster. However, according to Zhou & Gao, 2014, the ideal cluster-
ing effect should not only be with the smallest distance inside clusters but also the largest distance between
clusters. The silhouette coefficient is a metric that accounts for both the intra-cluster cohesion and inter-
cluster seperation (Zhou & Gao, 2014). The coefficient indicates whether a point is correctly assigned to
the right clusters or whether the point is between clusters. The model with a K associated with the highest
average silhouette coefficient is preferred. Finally, the gap statistic compares the within-cluster dispersion
of the data to a reference distribution of the data that does not have any clustering structure (Tibshirani,
Walther and Hastie, 2001). If the data has a natural clustering structure, the within-cluster dispersion of
the actual data will be lower than that of the reference distribution. Tibshirani et al. (2001) suggests the
1-standard-error method to determine the optimal K. This involves identifying the point at which the rate
of increase of the gap statistic begins to ”slow down”. Sometimes, a method for determining the optimal
K does not present an obvious answer. For the elbow method for instance, the ”elbow” cannot always be
unambiguously identified (Kodinariya & Makwana, 2013). Therefore, using these three methods respect-
ively increases the likelihood that an optimal K is found.

Before clustering the documents, the similarity measure between the documents should be determined.
The most used similarity measures for clustering are euclidean distance and cosine distance (Janani and
Vijayarani, 2019). Whereas the euclidean distance measures the straight-line distance between two points
in Euclidean space, the cosine distance measures the angular distance between two vectors by computing
the cosine of the angle between them (Janani and Vijayarani, 2019). The cosine distance is the most widely
used similarity measure in the field of text mining such as document classification and document cluster-
ing (Janani & Vijayarani, 2019). Therefore, it is the preferred similarity measure for this methodology.
However, before k-means algorithm is applied, dimensionality reduction by the UMAP algorithm is used.
Therefore, UMAP algorithm should use the cosine distance as a similarity measure to do the dimensional-
ity reduction. The algorithm accepts this similarity measure as a hyperparameter. The resulting projection
is typically clustered with euclidean distance.

The final method of data analysis presented in the methodology is keyword extraction. The goal of ex-
tracting keywords is to obtain insights in the causes of engineering changes and to detect recurring prob-
lems. To get the keywords presented in a clear way, a wordcloud is created. A wordcloud shows the most
occurring words in proportion to font size: the larger the word, the more occurrences. Since a wordcloud
could contain any word, it could be rather chaotic. To get more insightful keywords and a more organized
overview, POS tagging is used. A POS is a grammatical classification such as verbs, adjectives, adverbs
and nouns. By using POS tagging, three distinctive wordcloud of respectively verbs, adjectives and nouns
could be created. The wordcloud of adjectives for example could contain words like ”high” or ”incorrect”
that give a little information on the type of problems typically found in the problem reports. However,
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such a wordcloud still raises questions such as: ”What was typically high?” and ”What was typically in-
correct?”. This information is hidden in the problem reports containing the words ”high” and ”incorrect”.
Therefore, a further exploration of these keywords is needed.

To find out what words are typically related to these adjectives, a machine learning technique called ”de-
pendency parsing” could be used. According to Dyer, Ballesteros, Ling, Matthews and Smith (2015),
dependency parsing is a series of decisions that read words sequentially from a buffer and combine them in-
crementally into syntactic structures. In essence, dependency parsing examines the dependencies between
the words in a sentence in order to determine its grammatical structure. By exploiting dependency parsing,
the words typically related to a certain adjective could be explored. These words could again be visualized
in a wordcloud. Furthermore, all the problem reports containing the adjective of interest and a related word
of interest, could be shown. This way, recurring problems could potentially be identified.

After the keyword extraction method has been completed, the final step of the methodology could be
started. This consists of the detection of recurring problems. This is done by evaluating the results given
by the visualizations, the clustering and the keyword extraction with the assistance of experts. Ideally, this
would happen in a group session where experts from different backgrounds are present. The results of the
visualizations, the cluster analysis and keyword extraction are presented to this group. Next, the group is
allowed to first individually analyze the results to detect potential recurring problems. Subsequently, the
group is encouraged to discuss whether the results contain any recurring problems. If such a group setting
is not achievable, the detection of recurring problems could also be done individually by an expert.
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Figure 4.2: A new methodology for detection of recurring engineering changes
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Chapter 5

Evaluation of the methodology

To evaluate the proposed methodology, the methodology is applied using historical engineering change
data of a manufacturing company. The main goal of this application evaluation is to assess the usability of
the proposed method and to investigate whether the method can be used in the situation for which it was
intended (Blessing and Chakrabarti, 2009). More specifically, this section focuses on evaluating whether
the methodology is suitable for the detection of recurring changes. It therefore aims at providing an answer
to the following research question:

RQ5: What are the effects of the developed methodology when applied to real engineering change
data of a manufacturing company to detect recurring changes?

The methodology is evaluated two fold: by applying the methodology on real engineering change data
and by seeking the opinion of experts on the methodology. The remainder of this chapter is structured
according to the steps of the methodology. Each step of the methodology is outlined, with a detailed
explanation of its application on the engineering change data. The chapter concludes by making a first
evaluation of the usability of the proposed method, aided by expert input.

5.1 Understanding of context

To get an understanding of the context, meetings with one Product Lifecycle Manager at Company X were
set up. During these meetings, Company X was first briefly introduced followed by a discussion on the
meaning of engineering change within the company. In addition, relevant details concerning the current
stage of the company’s product lifecycle, the level of maturity in terms of Product Lifecycle Management,
and the availability and quality of data were addressed. Company X disclosed that they were in the product
development phase and had yet to start production. They did have, however, implemented an advanced
Product Lifecycle Management (PLM) system. This system had captured a collection of two years’ worth
of high-quality engineering change data that was readily accessible. The available data was then subject to
a detailed discussion, with a particular emphasis on the company’s interests in conducting data analysis and
the feasibility of such an analysis given the available data. Company X indicated that they were interested
in lead time analysis and root cause analysis. The PLM manager: ”I’m interested in looking at the data
on problem reports to find potential improvements. Before we get to a change, we have a problem report
where we report extensively what the problem is and what needs to happen. In the data, there could be
insights in for example if we deal with the same kind of changes again. I would be interested in that kind of
data analysis since i don’t have the expertise to do that.” Finally, a strategy for collecting additional data
was discussed. It was decided to extract problem reports, change requests and change notices from the
PLM system.
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5.2 Data collection
Because of accessibility and security concerns, the data collection was conducted by the PLM manager of
Company X. The manager coded a script to extract the data files from the PLM system and convert them to
a .csv file. The .csv file would be a suitable format to conduct the data analysis on. For the data analysis, the
programming language Python, the IDE Jupyter Notebook and the data analysis library Pandas were used.
The .csv files were first loaded and converted to a Pandas dataframe. Next, the data was briefly analyzed to
get a better understanding of the data.

The dataset consisted of three types of data: 2189 problem reports, 599 change requests and 322 change
notices. These three types of data all contained the following columns:

Column Type Range

Number String ”PR” + six digits
Title String -
Description String -
State Categorial Implementation, Under Review, Resolved, Cancelled
Class Categorial Documentation, Design, Cost, Safety,

Product, Quality and Other
Date created Date 09/04/2019 - 14/12/2022
NeedDate Date 09/04/2019 - 14/12/2022
ResolutionDate Date 09/04/2019 - 14/12/2022

Table 5.1: Columns all data

For the problem reports an additional categorical column ”issuepriorrity” is given that assigns a priority to
the problem of ”Simple” and ”Complex”. For the change requests, the following additional columns exist:

Column Type Range

RequestPriority Categorical Low, Medium, High
ProposedSolution String -
Disposition Categorical Approved, Disapproved
Economic impact Categorial Low, Medium, High
Process objects created String ”PR”, ”CR” or ”CN” + 6 digits
Reference objects String ”PR”, ”CR” or ”CN” + 6 digits
ResolutionDate Date 09/04/2019 - 14/12/2022

Table 5.2: Change request data

Lastly, the Change Notice data contains an extra categorical column named ”Change Notice Complexity”,
consisting of the values ”Fast track” and ”Full track”.

5.3 Data preparation
During the collection of the data, some HTML tags remained in the unstructured data. These tags were
removed using the Python library BeautifulSoup. Additionally, duplicates were removed. The dataframes
Problem Reports, Change Requests and Change Notices were linked by ID to allow the analysis on which
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problem reports lead to what change request. Furthermore, the unstructured data of the description field
of these dataframes was prepared for NLP tasks. Firstly the punctuation was removed. Secondly, the stop
words were removed using the library NLTK and the text was converted to lowercase. The NLTK library
was also used to lemmatize all the words to its base form. For the clustering task, the text embedder BERT:
SentenceTransformer: all-MiniLM-L6-v2 was used. This text embedder is known for its fast but high
quality results. The text embedder converted the text to a vector representation.

5.4 Data exploration and visualization
Next, the classification according to the structured data is visualized to get a better understanding of the
data and of the causes of engineering changes. Additionally, the classification could lead to a decision to
focus on a subset of the data. As Kalinowski et al. (2008) noted, defect classifications typically focus on
the following structured data: the moment in which the defect was introduced, the moment in which the
defect was detected, defect type and defect severity.

Firstly, the classification of change requests are given in figure 5.1. It reveals that most changes are design
changes, which is expected considering the company is in the product development phase. Additionally,
fig. 5.2 shows the number of change requests for each month. As can be observed, the data shows an
increase in change requests over the two years of recorded data. Furthermore, it displays a few single
months with a surprisingly high peak of change requests. The PLM manager of company X noted that
the increase in change requests was expected since the change requests generally increase when the com-
pany advances through the product development phase. Additionally, the manager was not surprised by
the peaks in change requests as he explained that the company sometimes organizes workshops to im-
prove the product. These lead to an increased number of change requests. Figure 5.3 shows the amount
of changes for each of the four states of change requests. As can be observed, the amount of cancelled
change request is remarkably low. Upon discussion with the manager, it was discovered that declined en-
gineering changes were captured as resolved. The state cancelled means that the engineering change got
cancelled before a decision had been made. Figure 5.4 shows the amount of change requests according to
two complexities, simple and complex. Most change requests are considered complex. Figure 5.5 shows
the states for simple changes where figure 5.6 shows the states for complex changes. As can be observed,
the amount of resolved simple change request is remarkably high whereas the complex changes are mostly
in implementation. This could be explained because more complex changes had been started more recently.

Furthermore, an exploration was conducted that focused on finding out how problem reports lead to change
requests and how change requests induce change notices. A script was created to generate the title and de-
scription of different problem reports leading to a change request. It then showed the title and description of
the resulting change request and the title and description of the change notice that was created to implement
the change. This gave a better understanding of the content of the different dataframes and the process of
going from problem to a change. An observation was made that the description of the problem reports
was the most extensive compared to the description field of the change requests and change notices. Its
description is considered the most suitable for the detection of recurring problems and therefore possibly
recurring changes. Since the focus is on engineering changes, the problem reports that did not result in
an accepted change request are not of interest. This narrowed down the number of problem reports to a
selection of 1894 problem reports.
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Figure 5.1: Categories of change requests Figure 5.2: Number of CR/Month

Figure 5.3: States Figure 5.4: Complexity

Figure 5.5: States for simple changes Figure 5.6: States for complex changes
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5.5 Clustering
As has been explained in section 4.4, dimensionality reduction is utilised to improve the performance of
the clustering algorithm and to visualize the data. Specifically, the UMAP algorithm is applied to reduce
the vectorized text data to three dimensions. The similarity measure Cosine Distance is used as a hyper-
parameter for this algorithm. Next, an optimal number of clusters for k-means is to be decided. Firstly,
the elbow method is applied. The graph in fig. 5.7 shows the distortion measured in mean Within Cluster
Sum of Squared Errors (WSS) for each K. The K is measured from 2 to 150. Since a K of 150 would be
associated with a mean number of approximately 12 samples in one cluster, a higher K would not provide
further improvements. That is because 3 recurring problems would just be as easily identifiable in a cluster
of 12 as in a cluster of 6. For the elbow method, an ”elbow” in the graph should indicate the optimal K.
However, as one could can observe in fig. 5.7, the graph shows a smooth line and an elbow shape is not
identifiable. Therefore, this method does not provide an obvious optimal K. Next, the silhouette method is
applied. A silhouette score of -1 generally means that a data point would be better off assigned to another
cluster. Similarly, a silhouette score of 1 means that it is correctly assigned, whereas a silhouette score of
0 would mean that the point is between clusters. In fig. 5.8 the mean silhouette score is given for each K.
As can be observed, the score increases to a K of 5 and then drops. However, a cluster number of five is
undesirable for the analysis of 1894 problem reports. For the other K’s, the graph tends to hover around a
mean silhouette score of 0.31. The highest score is only 0.33 and the lowest score is 0.29. In conclusion,
the silhouette score barely changes with the number of clusters. The silhouette method therefore also does
not provide an obvious optimal number of clusters. Finally, the gap statistic is applied for determining
the optimal number of K (fig. 5.9). The 1-standard-error by Tibsharini et al. (2001) involves identifying
the point at which the rate of increase in the gap statistic begins to slow down. However, the gap statistic
already drops in value after a K of 1. According to the method, this should indicate an optimal cluster
number of 1, which is again not helpful. Observing the graph in fig. 5.9 does also not present an obvi-
ous optimal number of clusters. Unfortunately, the three methods have not produced an obvious optimal
number of clusters. This could indicate that the data is not easily clustered. The mean silhouette score for
example is rather low and does not increase when the number of clusters increase. To further explore this
and to select a number of K, the data is visualized in a 2d and a 3d plot (fig. 5.10, fig. 5.11). Note that the
clustering has originally been performed on the three dimensional data projection.

Figure 5.7: Elbow method: Distortion (mean
WSS) over K Figure 5.8: Silhouette score over K
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Figure 5.9: Gap statistic over K

.
As can be observed, most of the data points indeed don’t belong to an obvious cluster. However, there are a
few clear clusters to be identified, as can be observed in fig 5.11. To determine a good number of clusters,
it is desirable for the simplicity of the detection of recurring problems that the number of clusters is high.
This is because it is easier to detect recurring problems among a low number of documents than among a
high number of documents. However, the recurring problems should be identifiable within one cluster and
should not be split between different clusters. This also means that the data points containing to an obvious
cluster should not be split. Using this reasoning, the maximum number of clusters that did not split obvious
clusters was examined. This was approximated at 90 clusters. Ninety clusters contain a mean number of
21 documents, which seems an acceptable number for analysis.

Next, the clusters are analysed to explore whether they could potentially contain recurring problems. Based
on the visualizations given in 5.10 and 5.11, the clearest clusters were first examined. The documents that
are part of the purple cluster visible on the left in fig. 5.11 are given in fig. 5.12. As one can observe,
the documents are indeed quite similar. However, although they contain similar sentences, they cannot be
considered recurring problems. In this case, the problem reports are quite short and do not contain a lot of
valuable information on a problem. Additionally, it seems that some problem reports are duplicates. They
were not removed during the preprocessing since they are not exactly identical and only differ one or two
words. This was further examined by calculating the cosine distance score between all pairs of problem
reports in the corpus. Next, the problem reports were ranked according to their cosine similarity score.
Using this method, approximately 60 duplicate problem reports could be identified. Two of these are given
in fig. 5.14. Figure 5.13 shows some problem reports that a typical cluster contains. As one can observe,
although the problem reports contain some similar words, they also do not contain similar problems. The
problem with the clustering based on cosine distance between problem reports seems that although docu-
ments can contain similar words, the problem described may be quite different. This could be explained
by the fact that the model tends to treat each document as a “Bag-of-words” and does not take the structure
of the sentences into account. To improve the results, the clustering might need to take advantage of the
structure of the sentence with techniques such as POS tagging or dependency parsing. In the next section,
a method that exploits such techniques is applied.
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Figure 5.10: 2d plot of clusters

Figure 5.11: 3d plot of clusters
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Figure 5.12: Documents contained in the purple cluster

Figure 5.13: Typical result for problem reports within a cluster

Figure 5.14: Duplicate problem reports
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5.6 Keyword extraction

The goal of extracting keywords is to obtain insights in the causes of engineering changes and to detect
recurring changes. To get the keywords presented in a clear way, a wordcloud was created using the python
library WordCloud on the problem reports (fig. 5.16). The wordcloud shows the most occurring words in
proportion to font size: the larger the word, the more occurrences. To get more insightful keywords and
a more organized overview, POS tagging is used. By using POS tagging, three distinctive wordclouds of
respectively verbs, adjectives and nouns could be created. Of these three wordclouds, the wordcloud of ad-
jectives appeared to be most insightful on the causes of engineering changes. This wordcloud is displayed
in fig. 5.17. Words like ”incorrect” or ”short” appear to give some hint on what the problem is about.
However, the wordcloud still raises questions such as: ”What was typically incorrect?” and ”What was
typically short?”. This answers to these questions are hidden in the problem reports containing the words
”incorrect” and ”short”.

To find out what words are typically related to these words, a machine learning technique called ”de-
pendency parsing” could be used. Two examples of dependency parsing are given in fig. 5.15. In the two
examples, the noun of interest that is related to the adjective ”short” is ”bolt”. Using the dependencies, the
noun that is related to the adjective of interest could be derived. As can be observed in the two examples
presented in 5.15, it depends on the sentence how the noun could be extracted using the dependencies.
Therefore, a rule-based algorithm was created to automatically extract the related nouns to an adjective.
For finding and visualizing the dependencies, the Python package Spacy Displacy was used. The website
of Spacy Displacy provides a guideline on how to develop a rule-based algorithm using their package and
state: ”For complex tasks, it’s usually better to train a statistical entity recognition model. However, stat-
istical models require training data, so for many situations, rule-based approaches are more practical.”
(Spacy Displacy, 2023). The algorithm was created by using dependency parsing on a variety of problem
reports and reviewing the typical relations between an adjective and noun. A pseudocode of the rule-based
algorithm is given in fig. 5.18. Note that dependency parsing is applied on text data without stopword
removal, lemmatization and removal of punctuation.

Figure 5.15: Two examples of dependency parsing

.
For the relation in the first example given in fig. 5.15, the goal is to relate the input adjective ”short” to
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the noun ”bolts”. Notice that they are linked with the verb ”are”. The way these two are connected is that
”bolts” is the subject of ”are” and ”short” is the adjectival complement (acomp) of ”are”. Both ”bolts”
and ”short” are considered children of ”are”. To provide rules that link the noun to the input adjective,
an if-statement first checks whether there is an ”acomp” relation with the adjective. If there is, it will
determine the parent of the adjective, which is in this case ”are”. Next, it will extract the children of this
parent which are ”bolts” and ”short”. It will then select the child with the POS tag ”noun” as the related
noun to the input adjective. For the second example in fig. 5.15, the relation between ”short” and ”bolts”
is an adjectival modifier (amod). The adjective ”Short” is the child of ”bolts”. Therefore, the algorithm
identifies the parent of the adjective. If the parent is a noun, the parent is added as the related noun to the
input adjective.

By applying the algorithm with certain adjectives to the problem reports and evaluating the results, it
was observed that for most cases the related noun to an input adjective was indeed recognized. Exceptions
exist when a sentence for instance contains ”This is incorrect”. The algorithm rightfully would not capture
”This” as it is not a noun. However, ideally the algorithm would look back at the previous sentence to
figure out what noun represents ”This”. Unfortunately, as the dependency parser focuses on one sentence,
the algorithm is not able to catch these cases.

This technique of dependency parsing can generally capture the nouns that an adjective is related to in
a problem report. The algorithm was run on all the problem reports for each adjective presented in the
wordcloud depicted in fig. 5.16. Next, to show the most occurring related nouns to an adjective, a word-
cloud could again be created. This could be done for each adjective in figure 5.17. However, generating
a wordcloud for each adjective depicted in figure 5.17 would lead to a state of disorderliness. To improve
the organization of the generated outputs, a General User Interface (GUI) was created using the Python
library Tkinter. This GUI would allow a user to quickly generate a wordcloud of nouns for the adjective of
interest. In the following section, a user experience of the GUI is described.

The GUI first shows the user a wordcloud of the adjectives (fig. 5.19). Note that this wordcloud is very
similar to the wordcloud depicted in fig. 5.17. The user is allowed to click on the adjective she is mostly
interested in, such as ”High”. This will generate a new page with a wordcloud of nouns that are related to
the chosen adjective (figure 5.20). The user is now allowed to choose one of the nouns that she is mostly
interested in, such as ”friction”. This will result in a combination of an adjective and a noun, in this case
”High friction”. The GUI will now show a new page that includes all the problem reports that contain the
combination ”High friction” (figure 5.21). A similar result is shown for the combination ”Short bolts” in
figure 5.22.

The problem reports resulting from these combinations appear to be much more related to each other
than the problem reports in the clusters shown earlier. Combinations of these nouns and adjectives in some
cases appear to capture something fundamental about the problems described in the report. In the case
of ”high friction”, all problem reports describe problems of high friction that needed to be solved. The
problem reports containing ”short bolt” are all about cases where a bolt was intended to be installed, but
appeared to be too short. These problems could be recurring problems that should be prevented. Presenting
them grouped together in a GUI allows the user to evaluate whether the problems are recurring and to think
about if these problems could be prevented. Note that not all combinations lead to useful results. The
combination ”short term” for instance, frequently occurs in the problem reports but does not contain any
valuable information on a problem. The advantage of using the GUI though, is that is easy for the user
to only select the combinations that have a high change of showing recurring problems. The clustering
algorithm tended to group together problem reports containing similar words. The problem with this clus-
tering method was that the words that the reports were clustered on, were not always saying something
descriptive about the problem. The advantage of the GUI is that the user is allowed to choose the words
she is interested in. Therefore, she is ”weighing” the importance of the words that the problem reports are
grouped on. The GUI is therefore able to exploit the experience of the expert using the method. This could
potentially increase the probability of detecting recurring problems.
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Figure 5.16: WordCloud: problem reports

Figure 5.17: WordCloud: adjectives of problem reports
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Algorithm 1: Linking nouns to an input adjective
Result: list nouns for adjective
for Problem Report in List Problem Reports do

for Token in Problem Report do
token = lemmatize(token)
if token = adjective input then

if token.dependency = ”amod” then
pos tag parent = pos tagging(token.parent)
if pos tag parent = ”NN” or ”NNS” or ”VBG” then

add token to list nouns for adjective
end

else if token.dependency = ”acomp” then
for child in token.parent.children do

pos tag child = pos tagging(child)
if pos tag child = ”NN” or ”NNS” then

add token to list nouns for adjective
end

end
end

end
end

Figure 5.18: Pseudo-algorithm for linking an input adjective to related nouns

Figure 5.19: Interactive WordCloud, step 1
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Figure 5.20: Interactive WordCloud, step 2: High

Figure 5.21: Interactive WordCloud, step 3: High Friction

50



Figure 5.22: Interactive WordCloud, step 3: Short Bolts

5.7 Detecting recurring problems
In this last step of the methodology, the recurring problems should be detected with the assistance of ex-
perts. Both the clustering method and the keyword extraction method aim at detecting recurring problems.
However, as has been discussed, it is possible that the methods suggest similar problems that are in reality
not similar at all. Therefore, to establish whether the problems that the methods suggest are indeed similar
and could be identified as a recurring problem, expert input is needed. For the first method, this means
that the expert should analyse the clusters and decide whether the cluster contains a recurring problem. For
the second method, this means that the expert uses the GUI to create combinations of nouns and adject-
ives that produce problem reports containing those keywords. The user should then establish whether the
results contain a recurring problem. Unfortunately however, this step could in this case not be completely
successfully completed. The PLM manager that was involved with this research experienced a peak of
busyness because of a departure of his manager. Therefore, the manager no longer had time for meetings
to extensively evaluate results. However, based on a first evaluation of the results presented in this thesis,
he stated the following:

”I think this would be a useful tool for the analysis of problem reports and change requests. The cur-
rent dataset probably does not display very useful results, but I think it would become more valuable when
we are in a later stage of design and production. Beside from the design process, I can imagine it would
also be a useful tool to explore reported anomalies during production.”

5.8 Evaluation of the methodology by experts
To evaluate the methodology, the research was presented and discussed with consultants of Atos. Eleven
consultants were present during this meeting that lasted 45 minutes. Menno Blanken is the Atos manager
responsible for the Product Lifecycle Management and Manufacturing Engineering Systems consultants
working in the Netherlands, Belgium and Luxembourg. He thought that the methodology could add value
to all manufacturers. He mentioned two large technology companies that deal with problems that the meth-
odology could be applied to. This initiated a discussion on what opportunities could be sought after by
Atos as a result from this research. A meeting was planned with a manager of an AI search engine team
within Atos to further discuss these opportunities.

The participants of the meeting were asked to complete a short survey for the evaluation of the meth-
odology. Eight consultants responded to this request. One should be aware that of these eight consultants,
half of them had little to no experience with engineering changes (figure 5.23). The respondents either
agreed or strongly agreed with the statements that the methodology could be effective at providing useful
insights in the causes of engineering changes (figure 5.24). One consultant noted: ”The methodology can
be very effective due to the fact it is based on data. Also it helps that the insights are reviewed by experts
of the particular company.”. Another indicated ”I feel value in the structured approach, the possibilities of
combining words for further analysis.”. Additionally, the consultants largely agreed that the methodology
could be effective at the prevention of engineering changes by finding recurring problems (figure 5.25).
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However, two consultants added critical sidenotes. One consultant shared the following opinion: ”I think
this solution could definitely work and help to prevent changes. However in practice the situation is always
more complex, there may be some confounding variable that is difficult to locate. In theory strongly agree,
in practice, agree as there are some added complexities that are nearly impossible to model.” Another
consultant mentioned: ”The methodology finds the root-cause of changes, but doesn’t provide directly a
solution of preventing problems.”. Finally, the consultants either agreed or strongly agreed with the state-
ment that the methodology is a useful artifact to implement at clients of Atos (figure 5.26). One consultant
noted: Every manufacturing company can use this methodology to improve their engineering change man-
agement. Another consultant provided the following comment: I am typically not involved in this area. But
based on discussions going on during meeting, I can imagine there is sufficient applicability.

This research was presented at the PDM Platform, a national conference involving representatives of man-
ufacturing companies who are experienced in the field of Product Data Management en Product Lifecycle
Management. Approximately thirty experts were present during the presentation which lasted 35 minutes.
After the presentation, questions were raised on the cost-benefit ratio of the analysis and on how problem
report data could possibly be captured better to improve the results. One manager of a major techno-
logy company in the Netherlands indicated that their company had captured a huge dataset of engineering
changes. He saw potential in the application of the methodology on this dataset. He inquired whether the
presentation could be presented at his company to inspire colleagues for this type of analysis. This is a
small indication that there is interest in the application of the methodology within the industry.
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Figure 5.23: How much experience regarding en-
gineering changes do you have? This text is hidden,
but cool that you found it!

Figure 5.24: The methodology could be effective at
providing useful insights in the causes of engineer-
ing changes.

Figure 5.25: The methodology could be effective
at the prevention of engineering changes by finding
recurring problems.

Figure 5.26: The methodology is a useful artifect
to implement at clients of Atos. This text is hidden,
but cool that you found it!
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Chapter 6

Discussion

This chapter summarises and concludes the thesis. The answers to the four research questions developed
throughout the thesis are briefly summarised and their contributions are presented. Additionally, the lim-
itations of this research are discussed, the opportunities for further work are highlighted and the thesis is
concluded.

6.1 Main findings

The objective of this research was to provide a contribution to answering the following question:

Main research question: How could historical data of problem reports be analysed to detect recurring
changes?

To answer the main research question, five research questions were formulated (Chapter 1). The main
findings of this thesis can be summarised under the answers to these four research questions:

RQ1: What is the existing research on root cause analysis and how could recurring problems be de-
tected?

Lehtinen et al. (2011) identified three common stages to most methods of root cause analysis: target
problem detection, root cause detection and corrective action innovation. During the first stage of the root
cause analysis, the problems that will be subjected to a root cause analysis are identified and selected (Le-
htinen et al., 2011). Since most projects have too many problems to conduct causal analysis on all of them,
multiple papers suggest to focus on recurring problems (Card, 1998; Mohammadnazar et al., 2019; Le-
htinen et al., 2011). The assumption is that recurring problems have a common root cause (Shenvi, 2009;
Rus et al. 2009). Detecting these recurring problems simplifies the root cause analysis, makes it more cost-
effective and less error-prone (Card, 1998; Julisch, 2003). Srivastava and Zane-Ulman (2005) note that a
lot of information in problem reports is captured in unstructured text form. According to the researchers,
one therefore needs to analyse the text field where the problem is described to uncover the recurring anom-
alies. Srivastava and Zane-Ulman (2005) applied clustering on a dataset of approximately 2000 problem
reports of software anomalies in the Space Shuttle program to discover recurring problems. IBM made
the observation that the alarms of a given root cause are generally similar (Julisch, 2003). Therefore, they
applied clustering on a dataset of ”alarms” that notify that there are signs of a network-based computer
attack. They showed that although human expertise is still needed for interpretation of the clusters, alarm
clustering vastly simplifies root cause analysis. The clustering of alarms made the root cause analysis more
cost-effective and less error-prone. Finally, Rus et al. (2009) aimed at clustering defect reports of an open
source Mozilla project to group together reports describing the same underlying problem. A spectral al-
gorithm, Normalized Cut, performed best for this task.
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RQ2: What is the existing research in the field of retrospective root cause analysis of engineering
changes and what methodologies on retrospective root cause analysis are available?

The literature study showed that product developers are interested in applying data analytics on engineer-
ing changes to locate recurring problems and eliminate their root causes. Retrospective root cause analysis
involves a historical analysis of multiple engineering changes that have already been implemented. The
objective of retrospective analysis is to derive organizational measures in order to prevent recurring engin-
eering changes in the future. However, retrospective root cause analysis of engineering changes is poorly
addressed in literature and methodological support needed to developed. Only two methodologies on ret-
rospective root cause analysis could be identified, one by Fernandes et al. (2014) and one by Arnarsson
et al. (2016). The methodologies differ significantly. Whereas Fernandes et al. (2014) used a sample of
the engineering change data to conduct a one-by-one analysis, Arnarsson et al. (2016) used text mining to
derive patterns on a complete dataset. Additionally, Arnarsson et al. (2016) exclusively used error reports
for their analysis and Fernandes et al. (2014) used data from a requirements change database. Finally,
whereas Arnarsson et al. (2016) focused on deriving knowledge mainly from the data, the methodology of
Fernandes et al. (2014) relied heavily on interviews with the engineers responsible for the changes.

RQ3: What are the design requirements for a methodology on retrospective root cause analysis of en-
gineering changes and do existing methodologies satisfy these requirements?

In order to establish the design requirements for a methodology on detecting recurring problems, a group of
PLM experts from Atos was interviewed using a semi-structured approach. All interviews were recorded
and subsequently transcribed, coded and analyzed to derive design requirements for a methodology. The
participants agreed that the search for recurrence of engineering changes is fundamental for the prevention
of engineering changes. This resulted in the first design requirement. The participants also stressed that
the involvement of experts is essential for root cause analysis, leading to the second design requirement.
Finally, the participants were of the opinion that although you can analyse changes one by one to get an
understanding of the data, you need to analyse a large collection of changes to derive patterns and to find
recurrence.

The literature was inquired to create design principles from the design requirements. These design prin-
ciples could directly assist in developing. Based on the first design requirement and the literature, it was
concluded that a methodology should aim at finding recurrence of engineering changes by utilizing a
keyword extraction and by utilizing an NLP clustering method. Secondly, the methodology should involve
experts for the detection of recurring problems. Finally, the methodology should prescribe the collection
and big data analysis of both problem reports and engineering change requests.

RQ4: How could a methodology on retrospective root cause analysis of engineering changes be de-
signed in order to detect recurring changes?

Using the four elicited design principles, the literature guiding the elicitation and the interviews with the
experts, a new methodology was developed. The methodology is depicted in figure 4.2. The methodology
prescribes that firstly, relevant experts are interviewed to understand the context of the business and to get a
clear view on the EC data available. Secondly, the data on engineering changes, including problem reports
and engineering change requests, is collected and compiled in a suitable form for data analysis. The data
is then briefly analyzed to get a better understanding of the available data. The third step involves the fol-
lowing data preperation: linkage of data, lemmatization and removal of HTML tags, punctuation and stop
words.

After the data has been prepared, three data analysis task are performed: data exploration and visualiz-
ation, clustering and keyword extraction. The data exploration and visualizations focus on getting a better
understanding of the data and how it could be analyzed to identify patterns (Arnarsson et al., 2018). Ad-
ditionally, it aims at visualizing the structured data which could assist in narrowing down the analysis on
a subset of the data. To cluster the data, the problem reports are first vectorized using a word embedder.
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Next, dimensionality reduction is conducted by the UMAP algorithm using the cosine distance as similarity
measure. Furthermore, the optimal number of clusters is determined using the elbow method, the silhou-
ette score and the gap statistic. After the optimal number of clusters has been found, K-means clustering
is conducted on the projected data using euclidean distance. The clusters are then visualized and analysed
to find potential recurring problems. The third method of data analysis consists of keyword extraction.
Firstly, a wordcloud is generated to display the most occuring words in the problem reports. Furthermore,
by using POS tagging three respective wordclouds are created for adjectives, nouns and verbs. To find
out what nouns are typically related to the adjective presented in the wordcloud, dependency parsing is
used. The related nouns are again visualized in a wordcloud. By selecting combinations of adjectives and
nouns, problem reports containing these words could be generated. The resulting problem reports could
potentially contain recurring problems.

These three data analysis tasks should lead to the final step: detection of recurring problems. The res-
ults of the visualizations, the clusters and the keywords are presented to the experts. Together with experts,
preferably in a group session, recurring problems could be detected.

RQ5: What are the effects of the developed methodology when applied to real engineering change
data of a manufacturing company to detect recurring changes?

The methodology used three data analysis methods to provide insights: data visualization, clustering and
keyword extraction. By exploring the data and creating visualizations of the classifications of engineering
change, a first idea of the causes of engineering change could be created. Additionally, an observation was
made that the description of the problem report was the richest source of information. Therefore, it was
decided that further analysis should be conducted on the subset of the problem reports that were related to
an engineering change request. For the K-means clustering algorithm, an optimal number of clusters using
the elbow method, silhouette score and gap statistic could not be found. Using logic and visual analysis of
the clusters by 3d projection of the data, the number of clusters was decided to be 90. However, although
some of the clusters contained similar sentences and words, the method did not seem to be very effective
at providing good candidates for recurring problems. It was hard to evaluate whether that is due to lack
of recurring problems in the data or because of the performance of the algorithm. However, a weakness
of the algorithm is that it treats the text documents as a Bag-of-words and does not exploit the structure
of the sentences. Therefore, for the final method of keyword extraction, POS tagging and dependency
parsing were explored. Firstly, a wordcloud was generated for respectively verbs, nouns and adjective. The
wordcloud containing adjectives such as ”high” and ”incorrect” was found to contain most information
on the problems. To further explore to what nouns these keywords were related, dependency parsing was
used. By using a rule-based algorithm, the most occurring nouns related to the adjectives displayed in the
wordcloud were found. These nouns were again displayed in a wordcloud. A GUI was created to allow a
user to quickly generate a combination of an adjective and noun of interest. The GUI presents the related
problem reports to this combination. This method seemed to display better potential candidates for recur-
ring problems.

The final step of the methodology consists of using the results of the data analysis to detect recurring
problems together with experts. Unfortunately, the PLM manager of Company X was no longer fully avail-
able for this research. Therefore the final step of the methodology, the detection of the recurring problems,
could not be completely achieved. However, the manager was able to make a first evaluation of the results
presented in this research. He was of the opinion that although the results right now might not be very
useful, the methodology could lead to more useful results when the company is in a later stage in design
and production.

6.2 Scientific contributions
The general aim of this research was to develop a methodology on the first phase of retrospective root
cause analysis, the detection of recurring problems. In particular, this research has made the following
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contributions:

• Provided an observation of the current state of the use of engineering change data by manufactur-
ing companies. The literature indicated that companies rarely use their engineering change data to
extract knowledge (Wickel et al., 2014; Arnarsson et al., 2018). The interviews that were conduc-
ted for this research with consultants closely involved with engineering changes at manufacturing
companies confirmed this observation. Additionally, these consultants were of the opinion that data
analysis of this engineering changes data could be valuable and currently is an unrealized potential
for companies.

• Provided design requirements for a methodology on the first phase of retrospective root cause ana-
lysis, the detection of recurring problems. Based on the existing literature, it was not clear what
design requirements such a methodology should comply with. Therefore, semi-structured interviews
with experts in the field of Product Lifecyle Management were conducted. Using these interviews,
three design requirements were elicited: the search for recurrence in engineering changes, the in-
clusion of experts on the detection of recurring problems and the collection of a large dataset of
problem reports and engineering changes. These three design requirements could be used to design
new methodologies for retrospective root cause analysis of engineering changes.

• Provided a new methodology on the first phase of retrospective root cause analysis for engineer-
ing changes, the detection of recurring problems. Chucholowski et al. (2013) observed a lack of
literature regarding retrospective root cause analysis of engineering changes and suggested that a
procedure on how to conduct such an analysis should be developed. Only two methodologies in this
area could be identified: one by Arnarsson et al. (2018) and by Ferndandes et al. (2014). These
methodologies differed significantly. The weakness of a methodology of Arnarsson et al. (2016) is
that it does not involve experts to interpret the results of the analysis. The weakness of the meth-
odology of Fernandes et al. (2014) is that it does not use a quantitative method like Text Mining
on a complete dataset to derive insights. A new methodology was developed that addresses these
weaknesses and that satisfies the design requirements developed in this research.

• Applied clustering to detect recurring problems on engineering change data. Multiple research pa-
pers showed the effectiveness of clustering for the detection of recurring problems (Rus et al., 2009;
Srivastava & Zane-Ulman, 2005; Julisch, 2003). Although the literature within the area of engineer-
ing changes showed that product developers are interested in locating recurring changes, clustering
had not yet been applied for the detection of recurring changes (Arnarsson et al., 2016).

• Introduced a new method of conducting keyword analysis on engineering change data. The keyword
analysis described by Sharafi et al. (2010) and Arnarsson et al. (2017) involved showing the most
occurring keywords in the unstructured data of engineering changes. However, applying this method
in this research did not yield very useful results. The keywords mostly included words that did not
contain any information on the cause of an engineering change. To get more insightful keywords and
a more organized overview, POS tagging was used to show the most occurring adjectives. To show
the nouns that are typically related to these adjectives in the problem reports, a machine learning
technique called dependency parsing was used. The combination of an adjective and a noun appeared
to reveal something fundamental about the problem report. A GUI was introduced to allow a user to
quickly create combinations of an adjective and a noun. The tool shows all the problem reports of
a combination of interest. This allows the user to think about whether these problems are recurring
and whether they could be prevented in the future.

6.3 Industrial contributions
Two companies were involved with this research because of their interests in the industrial application of
it. The industrial contributions are as followed:

• Identified different types of analysis on historical engineering change data to improve ECM. The
literature shows that historical engineering change data is rarely used to extract knowledge (Wickel
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et al., 2014; Arnarsson et al., 2018). The experts interviewed in this research agreed with that
observation. The literature review of this research identified different types of analysis that are
possible with the historical engineering change data. Especially the application of machine learning
in the recent years was identified in the literature. This research was presented at a PLM conference
including PLM representatives from major manufacturing companies in the Netherlands. These
representatives showed interest in the different types of analysis that are possible with engineering
change data. Additionally, the overview of the different types of data analysis on historical EC data
is valuable for the consultancy company Atos, a key stakeholder for this research. It allows them to
recognize opportunities at their clients to initiate future projects.

• Demonstrated a proof of concept for the first phase of retrospective root cause analysis on engin-
eering changes: the detection of recurring problems. A PLM manager of company X thought that
the retrospective root cause analysis could provide useful results when the product of Company X
is in the next phase of the product lifecycle and more engineering change data is available. One
PLM representative of a major technology company in the Netherlands showed interest in applying
the methodology on their huge dataset of engineering changes. He asked for a presentation of this
research within the company. Finally, the consultancy company Atos declared that this methodology
could be applied at their customers. They showed interest in further discussions with their Data
analytics and AI teams and for a potential continuation of this research within the company. These
intentions show the interest of the industry in the potential usefulness of the methodology.

6.4 Limitations and future research
This research has some significant limitations to it. Further research is needed to address these limitations.
The limitations and opportunities for future research are as followed:

• The interviews that were used to elicit design requirements for a methodology were all conducted
with experts from the consultancy company Atos. These experts are consultants assisting clients
with the implementation of PLM software. This means that they might have a limited view of
engineering change and view engineering change from one perspective. The data on engineering
change is captured within a PLM system and the consultants therefore have experience with how
companies tend to capture their data. However, they might not be fully aware of the data analysis
that companies might conduct with the data extracted from the PLM system. Additionally, they do
not have any experience from a product developers perspective such as creating or implementing an
engineering change. Therefore, they might have a limited view and imagination on what a useful
retrospective root cause analysis of engineering changes entails. This could hamper the value of
the design requirements elicited from the interviews. Future research involve experts from different
backgrounds to elicit design requirements for a methodology on retrospective root cause analysis.

• The methodology could not be completely demonstrated, since the involvement of the company
providing the engineering change data for the last step of the methodology was limited. The R&D
manager of the company suddenly left, which resulted in the PLM manager who assisted with this
research in gaining a higher workload. Therefore, the company was hard to reach and they were no
longer available for active participation for the last step of the methodology, which consist of gaining
insights from the analysis. Since the involvement of experts is desirable in this stage, the methodo-
logy was not completely demonstrated as intended. This has a negative impact on the evaluation of
the methodology. Future research should apply all the steps of the methodology and include active
participation of experts to gain insights from the results of the analysis.

• The evaluation of the methodology by experts was limited. This research was presented to consult-
ants of Atos. Eight participants participated in a survey to evaluate the methodology. The amount
of participants is rather low. More importantly, half of the participants indicated that they have little
experience with engineering change. This negatively affects the quality of the evaluation. Future
research should evaluate this methodology more extensively.
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• The methodology was tested on a small dataset. The goal of this research was to detect recurring
problems as the first phase of retrospective root cause analysis. However, the company that provided
the dataset only develops one product which is in the product design phase. Therefore, a limited
amount of data on engineering changes was available. This potentially means that there are a small
amount of recurring problems in the data. The PLM manager of company X expected that the method
could provide better results when the company is in a later phase and more data is available. The
effects of the methodology using a large dataset of engineering changes should be explored in future
research.

• This research focuses on the first phase of a retrospective root cause analysis: the detection of recur-
ring problems. Future research should focus on the other phases of retrospective root cause analysis:
root cause detection and corrective action innovation. Most importantly, future research should ex-
amine whether the detection of recurring problems could result in the prevention of engineering
changes.
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Appendix A

Appendix

A.1 Questions for semi-structured interview
The interview starts with an introduction of the research, engineering change and historical data analysis
of engineering change data. A definition of engineering change is also given.

1. Based on this introduction, do you already have any questions or comments?

2. How do you view engineering changes? Do you recognize the definition?

3. What is your experience regarding engineering change?

4. What are the problems and challenges regarding engineering changes that companies are dealing with?

5. What data regarding engineering changes do companies capture?

6. In what databases do companies capture this data?

7. Are companies using historical data analysis to analyse their engineering change data? What is your
experience?

8. Do you see the potential value of historical data analysis on engineering change data?

A short introduction on retrospective root cause analysis is given.

9. Do companies already apply retrospective root cause analysis?

10. What causes of engineering changes would you identify?

11. What data of engineering changes would help for identifying the causes?

12. How could you extract the causes from the data?

13. Could retrospective root cause analysis help to prevent unnecessary changes?

14. Could retrospective root cause analysis lead to improvements?
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