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Abstract

This thesis explores the field of behavioral operations management with
a focus on planners’ enrichments and accuracy. The literature shows mixed
results regarding the planners’ ability to add value to forecasts. Even though, a
large number of organizations use statistical forecasts with human enrichments
to predict upcoming demand. Within this thesis, we utilize a dataset from a
company in the process sector with the aim to discover the significant features
of effective forecast enrichments to guide planners in making more accurate
enrichments. Findings from the literature are confirmed since the real data
reveals that planners are more likely to overestimate sales volumes. When
planners do make an enrichment that is less than the statistical forecast, they
are more likely to improve the forecast accuracy. Planners vary from one and
another when it comes to accuracy, but they are consistently less accurate
when dealing with products with a high variance We also find that planners are
exposed to optimism, overreaction, and anchoring biases. A prediction model is
created based on LightGBM with automated feature generation with 14 base
features. We find that enrichment size, the statistically forecasted quantity, and
the previous forecast value add are the most important indicators of enrichment
quality. Lastly, notifications are explored to see if the model could support
planners to improve both the forecast accuracy and their forecast value add.
Guidelines for the implementation of notifications are discussed.
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Management Summary

Introduction

Within the field of behavioral operations management, results regarding human fore-
cast enrichments are mixed. In theory, human forecast enrichments are able to combine
the stable statistical forecasts with the human cognitive flexibility. Within this thesis,
we investigate the dataset of a company to identify what the feature importances are of
effective forecast enrichments and when to notify the planners in order to prevent harmful
enrichments. Five research questions will be answered to find the results. First, literature
about forecast enrichments is explored. Then, appropriate machine learning models are
selected. As the majority of the literature is focused on the pharmaceutical and consumer
products industry, it is interesting to see if the results also show up within this dataset
in the process sector. Through conversations with service owners within EyeOn, a better
understanding of the business context is created. This will improve the interpretability
of the results. Then the models will be created, tuned and tested and afterwards, the
importance of different features is evaluated to generate actionable insights towards the
prevention of harmful enrichments. To achieve these results, we are answering the following
research questions:

RQ1: What patterns do planners exhibit when adjusting system-generated forecasts and
how does this influence the overall forecasting accuracy?

RQ2: How can tree-based models and neural networks be applied to estimate enrichment
quality and how can their results be explained?

RQ3: What characteristics from human forecast enrichments that are described in the
literature show up in this dataset?

RQ4: What features are of great importance to the quality of forecast enrichments?

RQ5: In what conditions could planners be notified about their expected enrichment quality?

Literature Review: Behavioral Operations Management

Within the field of behavioral operations management, the way in which humans
operate in forecasting is well researched. Demand planners often anticipate higher sales
volumes than actually occur. This is due to their overoptimism bias (Fildes et al., 2009;
Eroglu & Croxton, 2010; Syntetos et al., 2009; Trapero et al., 2013). Enrichments that
predict less volume than the statistical forecast are often well-founded and will most
likely be accurate. However, humans are only inclined to adjust the forecast downwards
when they have a clear piece of unmodeled information, but this does not occur frequently.
Furthermore, demand planners are more accurate when they are dealing with stable demand
patterns compared to very noisy ones (Sanders, 1992) and there is a lot of variance between
planners. The propensity of a forecaster to enrich a forecast varies between different
sectors, with lower levels in the retail sector (Fildes et al., 2009; Khosrowabadi et al.,
2022). To expand upon the overoptimism bias stated previously, human planners have
limited cognitive abilities which inhibits them from being rational decision makers. Next
to overoptimism, they are also exposed to a range of other biases, like anchoring and
overreaction biases. To reduce these biases, one can advice planners in their decision
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making. However humans are also hesitant to incorporate advice, especially when this
advice comes from an algorithm (Dietvorst et al., 2015).

Literature Review: Machine Learning

There are a large number of machine learning models that can be applied. Within
this thesis, we implement a neural network and a LightGBM model. The neural network
is selected since it is able to incorporate difficult and intricate non-linear relationships
between the predictor and target variables (Chollet et al., 2015). The LightGBM model is
an extremely popular model through its high performance and accuracy (Ke et al., 2017).

Exploratory Data Analysis

The company studied within the thesis consists out of 3 BUs, each with their own
characteristics. The performance within this company is in line with the literature through
its mixed results. In BU 3, planners are improving forecasting accuracy, while they
deteriorate the accuracy in the other BUs. Planners within the BUs are also clearly biased
when it comes to Anchoring Bias, Overreaction Bias and Optimism Bias. Planners tend
to not anchor on a statistical forecast. Instead, they overreact and are overoptimistic
about expected demand. This results in over-forecasting. Planners follow the advice to
more often adjust high-value, high-variance products (Scholz-Reiter et al., 2012). However,
performance also strongly varies between planners and they enrich forecasts better when
dealing with more stable demand patterns.

Results Prediction Model

There are a total of 14 basic features, spread across 4 different categories. These are
fed into both the LightGBM and Neural Network models under various conditions. The
models are tested with data scaling, clipping of the target variable, certain combinations of
BUs and, several steps of automated feature engineering. In the end, a LightGBM model,
with scaled data, clipped target and a single step of feature engineering provides the best
results for a dataset only including BU 1 & 3.

Through the implementation of Shapley values, we are able to rank the importance of
several features. In descending order, the Enrichment Size, Statistical forecast, Previous
FVA are strong indicators of enrichment quality. Furthermore, we include ABC-XYZ anal-
ysis from Scholz-Reiter et al. (2012) to create the product categorization. Certain product
categories like BY and CZ are strong indicators of bad enrichment quality. Overreaction
bias is the bias that has the strongest presence.

Notifications

The study by Dietvorst et al. (2015) shows people often distrust computer programs
when they make mistakes. To avoid false warnings, we need to be careful when alerting
planners. Our data shows many adjustments that lower the FVA. Considering our model’s
behavior, it would not be a good idea to warn every time it predicts a negative FVA. This
could result in too many false alarms. To tackle this, we are exploring certain cut-off
points. We can use Shapley plots to understand these low predictions and decide a suitable
cut-off point based on planners’ comfort with predictions and trust in our model. For all
explored thresholds, intervening by utilizing the statistical forecasts leads to a baseline of
performance that is higher than both enriched and statistical forecasts.

Effective Forecast Enrichments - Driving Factors Behind Enrichment Quality 3
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1 Introduction

To put it bluntly, all forecasts are wrong. But, for companies it is of great importance
to create accurate forecasts. Accurate forecasts increase efficiency, reduce waste, and costs
(Sanders & Manrodt, 2003; Lin et al., 2014). Often, organizations utilize a statistical
forecast as a baseline, which is enriched afterward (i.e., adjusted by a planner) to increase
accuracy. Forecast enrichments could allow planners to incorporate unmodeled external
events within the forecast. In theory, this method combines the stable, predictable factors
of a statistical forecast (e.g., naive forecast, moving average, exponential smoothing), with
the flexibility of the mental ability to incorporate factors unknown to the statistical model.
However, letting humans tinker with the forecasts does expose the forecasts to the cognitive
limitations of the human mind, known as biases (Eroglu & Croxton, 2010; Fildes et al.,
2009; Trapero et al., 2013).

1.1 Company Description

The project will be executed at EyeOn. EyeOn is a consultancy firm based in Eindhoven
(EyeOn, 2022). From this location, the organization has been expanding rapidly since the
late 90s and is now based in 6 offices worldwide. The other locations are Antwerp (Belgium),
Geneva and Zurich (Switzerland), Dublin (Ireland), Dusseldorf (Germany) & New York
(USA). Their team consists of more than 110 experts, from more than 20 countries and
with a total of more than 500 years of experience. EyeOn’s employees concern a group of
forecasting and planning specialists with the mission to realize impactful results that get
your business years ahead.
Core challenges are to: i) increase customer service levels, ii) raise forecasting performance,
iii) balance inventories, and iv) reduce waste and save costs. Their expertise areas concern:
end-to-end transformation, sustainable value chains, future supply chain design, S&OP/IBP,
Forecasting & Demand management, supply planning, and inventory optimization.
They are specialized in five different fields: sales forecasting, demand management, sales
& operations planning, integral business management, and inventory management. The
specialist working at EyeOn provide additional services like interim planning, planning
systems, and visual insights, turning data into actionable insights.
EyeOn’s client base consists out of large national and multinational companies in the process,
life science, consumer products, high-tech, and marine & offshore industries. Examples of
such companies are Johnson & Johnson, Heikenen, Jumbo, and Etos.

1.2 Problem Context

The process of forecasting can vary among different organizations. Some frequently
used forecasting methods are judgmental forecasts, statistical forecasts, advanced Machine
Learning (ML) and Artificial(ly) Intelligent (AI) models, and models in which a human
enriches the statistical baseline forecast. Especially the latter is often employed among
companies since it theoretically combines both the rigor and consistency of statistical
methods while creating flexibility to incorporate unexpected or irregular events. However,
human forecast adjustments also include potentially damaging human biases. While some
enrichments improve the accuracy, others can deteriorate it, which undermines the rationale
for this approach. EyeOn often encounters this phenomenon among customers who want
to avoid these bad enrichments. There lies great potential in being able to label forecast
enrichments that are expected to reduce the accuracy based on their features. Prevention
of damaging forecasts could significantly reduce costs and improve efficiency.
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1.3 Literature Gap

There has been a large flow of information created by literature over the last 30 years
concerning human forecast enrichments. Different aspects have been evaluated, concerning
the accuracy of judgmental forecast enrichments, the accuracy of statistical forecasting
methods, and aspects of human interaction with machines and statistics (e.g., algorithm
aversion). Most papers purely focus on the way in which humans adjust forecasts without
regard for the features of the respective enrichment. They tend to center around the human
and not around the enrichment. Some recent papers like Khosrowabadi et al. (2022) have
identified specific product characteristics that would drive the enrichment performance, but
did not broadly explore specific planner-related features. Furthermore, many papers (Fildes
et al., 2009; Trapero et al., 2013; Khosrowabadi et al., 2022) focus on forecast enrichments
within the retail sector, while there are other sectors like the process industry. There are
differences between these sectors in the fact that the retail sector is more promotion driven,
is focused on the B2C market, and has different manufacturing processes. However, forecast
enrichments are also prevalent within the process industry, and it is yet unclear if the
results are generalizable.

1.4 Scope

Within this thesis, we will focus on a quantitative analysis to accurately predict the
forecasting accuracy through enrichments of planners. These enrichments will consist of
features that can be expressed quantitatively based on the setting or previous behavior.
One could take a qualitative approach in predicting the enrichment accuracy. It is common
practice for planners to add comments to their enrichments. These comments give planners
the opportunity to express their reasoning. In order to properly assess and incorporate
these comments, approaches within the field of Neural Language Processing (NLP) are
required. We will not be considering this in this thesis.

1.5 Research Questions

To guide the thesis, the aim is to resolve the following research questions. The first two
questions are based on literature research. The third research question verifies the findings
from the literature within the dataset used for this thesis. Then, the fourth question
explains the results created by the prediction model while question five interprets the
features and transforms these into tangible advice for EyeOn and its customers.

RQ1: What patterns do planners exhibit when adjusting system-generated forecasts and
how does this influence the overall forecasting accuracy?

RQ2: How can tree-based models and neural networks be applied to estimate enrichment
quality and how can their results be explained?

RQ3: What characteristics from human forecast enrichments that are described in the
literature show up in this dataset?

RQ4: What features are of great importance to the quality of forecast enrichments?

RQ5: In what conditions could planners be notified about their expected enrichment quality?
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2 Literature Operations Management

2.1 Forecast Enriching

Petropoulos et al. (2016) defines three different adjustments that a planner can make
when adjusting the forecast (wrong direction, undershoot, and overshoot). Within Figure
2.1 the different kinds of adjustments are visualized. The dark blue line indicates the actual
demand, the light blue line indicates the statistical forecast and the orange line indicates
the final forecast after a human enrichment.

(a) Wrong Direction (b) Undershoot (c) Overshoot

Figure 2.1: Three kinds of forecast enrichments

First, and most detrimental, are wrong direction adjustments. These are adjustments
that are in the incorrect direction from the statistical forecast. Such an adjustment always
reduces the forecast accuracy of the final forecast and should be avoided at all costs.
Unfortunately, small adjustments in the wrong direction are very prevalent in a business
environment. The second type of adjustment is an undershoot. Such adjustments occur
most frequently and always increase the forecasting accuracy. An undershoot is an ad-
justment that has been made in the correct direction and reduces the forecast inaccuracy,
however, the adjustment has not been large enough to completely negate the error. Small
adjustments constitute a total of 57% of all adjustments which show that planners are
inclined to only adjust the statistical forecast slightly (Petropoulos et al., 2016). The last
kind of adjustment is a so-called overshoot. This is an adjustment in the correct direction
but of a too large magnitude. Small overshoots are often beneficial to the overall accuracy
since they can be very close to the actual demand. However, large overshoots can be
disastrous for the overall accuracy and indicate that something has either gone wrong or at
least not as planned.

2.2 Enrichment Quality

Several studies have researched how forecast enrichments are executed and what their
results are.

Firstly, the propensity of planners to enrich forecasts is a widely researched topic. It
seems that the sector in which a planner operates is the strongest indicator of this propensity.
The papers by Fildes et al. (2009); Franses (2013); Baecke et al. (2017); Baets & Harvey
(2018) all find that planners are extremely likely to enrich forecasts, with probabilities
ranging from 70% up to 98% of all forecasts. Franses (2013) also found that average
enrichment sizes were extremely large ranging from 70% to 130% of the statistical forecast.
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However, this does not hold true for other sectors. The paper by Fildes et al. (2009)
has a dataset that combines data from organizations in different sectors. The data from
organizations in the retail sector show a much lower percentage of enrichments, slightly
above 10%. The same holds true for the paper by Khosrowabadi et al. (2022), situated in
the retail sector, in which only about 5% of forecasts are enriched. Within the retail sector,
there are often higher order frequencies and a higher number of SKUs. Thus, there are
often too many forecasts to be enriched by hand. Within the retail sector, the propensity
to adjust does increase when dealing with perishable/fresh products.

The proposed increase in accuracy by enriching forecasts is not clearly seen. Syntetos
et al. (2009) found an improvement in accuracy in 61% of the forecasts, while Petropoulos
et al. (2016) and Goodwin et al. (2007) only saw improvements around the 50% mark.
The influence on the total forecasting accuracy does differ among studies. For some, the
total forecasting accuracy keeps hovering at the same level after enrichments. Some studies
report slight decreases in accuracy (Petropoulos et al., 2016) (-2.1%) and others report
minor increases (Goodwin et al., 2007) (+0.37%). Broeke et al. (2019) stated that the
accuracy of enriched forecasts was in no situation beneficial and Belvedere & Goodwin
(2017) reported a 20% decrease in accuracy. Sanders & Ritzman (1995) found an increase
in accuracy again by enriching forecasts.

Since enriching forecasts consists of two complementary aspects of both the stability of
statistical forecasts with the flexibility of human judgment, the complementary strengths
should be utilized correctly. According to Goodwin (2002), in the situations in which
humans adjust forecasts, for best accuracy, they must have a clear rationale for the reason
why they adjust the forecasts. In general, humans should only adjust the forecast when they
obtain contextual information that is not integrated into the system-generated model. One
example is the classic ‘promotional activity’ in which a product is priced at a discounted
rate to boost sales for a limited period (Lee et al., 2007). In such a situation, it would
be wise to expect a higher sales volume, and thus a higher number of products would be
forecasted to satisfy customer demand and increase forecast accuracy. This is proven to
indeed be the case by Trapero et al. (2013).

Different studies found uniformly that different adjustment directions and sizes have
different effects on forecasting accuracy. To start, adjustments upwards are more prevalent
in forecasting compared to downward adjustments (Fildes et al., 2009; Goodwin, 2002; Syn-
tetos et al., 2009; Trapero et al., 2013; Broeke et al., 2019). In addition, these adjustments
are also larger which further increases average forecast sizes. When getting closer to the
forecasting deadline, the adjustments are more frequent, large in size, and more often in
an upwards direction. Planners seem to react with higher levels of volatility when coming
closer to the actual moment of sales. Trapero et al. (2013), Fildes et al. (2009), Broeke et
al. (2019), Khosrowabadi et al. (2022) and Syntetos et al. (2009) all found that downwards
adjustments are more likely to be beneficial to forecast accuracy.

However, given clear indications of an external event like a promotional activity,
upwards adjustments can increase the accuracy (Trapero et al., 2013). This study also
showed that when a forecast was enriched upwards, it was more likely that it would have a
significant negative impact on the overall forecasting accuracy.

This binary classification used in literature was refined by Khosrowabadi et al. (2022)
who designated also the sizes of up- and downward adjustments. They found that only
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39.8% of large upwards adjustments are valuable, while 66.6% of small upwards adjustments
are beneficial. The total accuracy of all upwards adjustments was reduced by a very
significant 22.7%. Fildes et al. (2009) found that it does also matter for which industry the
forecast is made. Their subset of retailers improved forecast accuracy with each negative
adjustment since they were consistently over-forecasting. There are very limited situations
in which an upwards adjustment turns out to increase the accuracy. Amongst others,
these concern situations in which the statistical forecast expects 0 sales, after which the
smallest upwards adjustments lead to large gains, and negative adjustments are not possible.

Syntetos et al. (2009) further confirms that negative adjustments between 50% and
100% can lead to extremely high gains in accuracy. As stated before, the size of the judg-
mental adjustment also often influences the quality of the improvement. Depending upon
the industry in which the forecast is made, most often, the smallest 25% of adjustments
lead to a reduced forecast accuracy (Fildes et al., 2009).

From this section, we can see the consensus that planners have a high propensity
to enrich forecasts, given they have enough resources to do so. Furthermore, planners
are more likely to adjust forecasts upwards. Large upwards adjustments are more often
damaging compared to small upward adjustments. However, when planners adjust forecasts
downwards, they should aid the accuracy, on the basis that there are no clear external
influential factors like promotional events.

2.3 Enrichment Factors

As seen in the previous section, the ability of a planner to effectively enrich forecasts
depends upon many situational factors. This section explores what specific factors could
influence the quality of forecast enrichments.

The first factor that could influence a planner’s enrichment quality is the utilization of
causal information. Lim & O’Connor (1996) stated that human planners are very capable
to select important variables for enrichment, and can adjust them appropriately. However,
on the other hand, Goodwin & Fildes (1999) stated that humans are not up to this task by
over-weighting external cues and neglecting the statistical baseline forecast.

Also, Broeke et al. (2019) found that the time lag in a forecast enrichment also influ-
enced planners’ behavior, with more frequent and significant changes being made when the
time lag was lower.

Another enrichment factor could be the type of product that is being forecast given
certain levels of variance and sales volume. Scholz-Reiter et al. (2012) created a framework
in which all the products can be placed. The parameters of the framework are shown in
Figure 2.2. If a product is in the top 80% of the highest revenue, it would get labeled by
an A. Given its coefficient of variation, it would be assigned to a certain column. If the
coefficient of variation would be higher than 1, it would be assigned to AZ. One can also
see the two columns of NPI (New Product Introduction) and EOL (End Of Life). For these
products, there is not sufficient accurate/recent sales data available, and thus are they
very hard to forecast using statistical methods. Given the proposition that statistics work
well in situations where the variance is low, one would recommend categories in the lower
left-hand side (low value, low variance) to be forecasted purely by statistics while products
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on the top right (high value, high variance) to be left to human supervision.

Figure 2.2: Product Category Division

Lastly, Khosrowabadi et al. (2022) investigated what kind of product-specific fea-
tures influence a forecaster’s enrichment ability. These features, in descending order of
importance, turn out to be price, perishability, promotions, and weather. An interesting
note is the fact that both promotions and weather were already taken into account by
the forecasting system in this paper, and thus, planners suffered from a double-counting bias.

2.4 Variance among Planners

Given the factors that influence enrichments, next one could look at the variance
between different planners to see if they significantly differ from one another and why.

Eroglu & Croxton (2010) found that basic demographics are not related to the accuracy
of forecast enrichments. However, there are clear differences between different forecasters
when it comes to quality, with some being able to outperform statistical methods, while
others consistently perform significantly worse (Sanders, 1992; O’Connor et al., 1993). The
delta between good and bad forecasters did not evolve during the experiments, indicating a
limited learning potential (Syntetos et al., 2009; Lim & O’Connor, 1996). Franses (2013)
revealed that many planners do not have a clear view of their forecasting behavior, often
forecasting more than expected. Emotional product involvement also decreases a forecaster’s
ability to forecast accurately (Belvedere & Goodwin, 2017).

2.5 Limitations of Planners

As stated before, planners have significant cognitive limitations (Lee et al., 2007;
Goodwin, 2002). In the past, it was assumed that people were rational decision-makers but
this turned out to be incorrect (Tversky & Kahneman, 1974).

Noisy time series are often extremely difficult to forecast. Humans tend to try and
match patterns within the noise which is methodologically incorrect. This often results in
reduced forecast enrichment quality (Sanders, 1992; Franses, 2013). Combined with the
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product categorization based on the value and variance, it should be interesting to see if
human planners are able to enrich forecasts of these product categories in the dataset.

Next to that, people can be stubborn and neglect advice. Both Goodwin & Fildes
(1999) and Petropoulos et al. (2016) support this and explore why humans exhibit this
behavior. Reasons for this are that planners can be subject to asymmetric loss, either in an
upward or downward direction given situational factors. For instance, if management only
evaluates planners on the number of stock-outs of products, planners will generally order
more to prevent stock-outs. However, this behavior will lead to overstocking many products
and increased inventory costs, potentially outweighing the benefits of having no stock-
outs. Furthermore, incentives can be misaligned that elicits certain wrong and non-desired
behavior. In addition, special events can be integrated into the forecast, but forecasters
can neglect advice on the timing. Lastly, planners can make extreme interventions based
on misinterpreted information and keep their views even though they are proven to be wrong.

Planners will not only discard advice given by other humans but also the advice that
is given by an algorithm. This links to the so-called ‘algorithm aversion’ that is explored
by Dietvorst et al. (2015). Humans seem to be less accepting of advice when it has been
provided by either mathematical or AI methods. The main drivers for this behavior are that
algorithmic behavior can be harder to explain to laymen (Franses, 2013), people believe in
the ability of others to learn while they do not for algorithms, and humans seem to ‘punish’
algorithms harder than other humans. These behaviors remain after a human has been
exposed to the superior performance of the algorithm.

The cognitive limitations to which planners are exposed are known as ‘biases’. The
most famous research on this topic was executed by Tversky & Kahneman (1974) and
further expanded upon by Eroglu & Croxton (2010). The most important biases that were
put forward were the so-called optimism bias, overreaction bias, and anchoring bias. A
planner exhibits an optimism bias when forecasts are more often adjusted in an upward
adjustment, in combination with a large adjustment size. A planner expects to sell an
unreasonably high number of products which is incorrect. This bias has been highly
prevalent in various datasets (Fildes et al., 2009; Khosrowabadi et al., 2022; Trapero et
al., 2013; Sanders & Manrodt, 2003). A second kind of bias is the overreaction bias in
which a forecast is adjusted in the correct direction, but the magnitude of the adjustment
is significantly too large which increases the forecasting error but in the other direction.
Such adjustments are also prevalent in industry (Eroglu & Croxton, 2010). Lastly, there
is often an anchoring bias in which humans influence their decision too much based on
previous sales, forecasters, or certain types of information. It has been shown several times
by Sanders (1992), Baets & Harvey (2018) and Tversky & Kahneman (1974). It is also
prevalent after promotional periods, in which forecasters are not able to appropriately
adjust the forecasts due to the performance during the promotion.

3 Machine Learning Review

The goal of machine learning (ML) models is to automatically identify meaningful
relationships among different variables or identify patterns within a dataset (Bishop, 2006).
Machine learning models are trained by iteratively adjusting the applied algorithms based
on the training data that it has been fed. Thus, considering good data quality and tuned
hyperparameters, the performance of the model should increase given more iterations of
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improvement. This allows the model to identify hidden relations in very complex data
without it having to be programmed explicitly by a human being (Bishop, 2006). Such
models can thus be powerful for modeling intricate and complex tasks with high-dimensional
data for classification, regression, and clustering (Janiesch et al., 2021).

3.1 Learning Methods

There are different methods by which a machine learning model can fit itself to the
data. Each method has its benefits and drawbacks and can be applied to different situations.
In total, there are three kinds: ‘supervised’, ‘unsupervised’, and ‘reinforcement’ methods.

In supervised models, training data needs to consist of an input and a ‘label’, also
known as output or target. Pairs of the input and output data are utilized to calibrate the
parameters of the ML model. Once the model has been made, it can be utilized to predict
a target variable y based on unseen input data (Janiesch et al., 2021). Such models could
be utilized for time series forecasting like done by Khosrowabadi et al. (2022). Based on
historical input and output data (e.g., different product features as input and sales quantity
as output), one could make a supervised ML model to predict upcoming sales, utilizing
unseen input parameters. Within the supervised machine learning models, a division can be
made between regression problems (where a numerical value is predicted) and classification
problems (where a certain class is predicted).

Unsupervised models are not trained based on a given target, but they are used to
identify patterns within the data. Often such models are used for clustering certain groups
of data. Reinforcement models learn through a process of trial and error, where they receive
feedback in the form of rewards or punishments to maximize their performance in a given
environment or task. These two models are not aligned with the objective of this thesis
and will not be explored further.

3.2 Tree-based Models

3.2.1 Decision Trees

A decision tree is a method that is the foundation of many other tree-based machine
learning methods. It can be used for both regression and classification. The goal of a
classification decision tree is to take an unorganized ‘bag’ of data and sort it into sev-
eral classes that are unique from each other. A decision tree consists of several separate
components. Based on the paper of Quinlan (1986), we start with the nodes. These
can either take the shape of a root (node), decision node, or leaf (end node). At each
node, a decision is taken based on the properties of the sample of data that is fed to
the node. The nodes are connected by branches, which represent the path that one
should follow to purify the class. The root node concerns the entire set of inputs origi-
nally provided, and the other nodes concern subsets of the original data, specified based
upon previously taken decisions. The leaves are ending nodes of the tree in which the
classes are identified as ‘pure’ in a classification tree or as a finalized numerical result in
a regression tree. No further adjustments or specifications are made from this point onwards.

The model has to choose questions to split the data as efficiently as possible. There
are several metrics used to describe the purity of the class, with a common measure
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being entropy. Decision trees that base themselves on entropy are called ID3 (Iterative
Dichotomiser 3) trees. In Equation 3.1, the formula for entropy is displayed, with pi being
the probability of a class ‘i’ in the data.

E(S) =
c∑

i=1

−pilog2pi (3.1)

The scale ranges from 0 to 1, with 1 being a high level of impurity (e.g., highly unsorted
data). When the data in a node represents only one class, it can be considered pure and the
entropy value is 0. To uncover the decision on which the data will be split within a node,
the metric information gain is utilized. Information gain (IG) (displayed in Formula 3.2)
measures the reduction in entropy, or the increase of purity, given a new piece of information
(i.e., a decision). The goal is to maximize the information gain, which corresponds to a
minimization of entropy.

IG(Y,X) = E(Y )− E(Y |X) (3.2)

When dealing with larger, more complex trees that are fed incomplete or unfiltered data,
it might be hard to classify all inputs as cleanly. In such a situation, you need certain
‘stopping criteria’. This prevents the tree from overfitting the data and increases general ap-
plicability. Stopping criteria could be: a) using a minimum number of records per leaf, b) a
minimum number of instances in a node before splitting, or c) setting a maximum tree depth.

Utilizing decision trees has several benefits and drawbacks. To start with the benefits,
decision trees can be very simple to comprehend. The methods utilized by them are
straightforward, which on the one hand limits its potential, but increases its acceptance
by laypeople. Furthermore, decision trees can easily be utilized for both regression and
classification problems, making them applicable in many situations. On the other hand,
the decision-making mechanism can be simple which leads to incorrect decision making.
Furthermore, the decision tree can achieve a high depth which increases its calculation
complexity and decreases its understandability (Jijo & Abdulazeez, 2021). As a main
takeaway, one should remember that the ultimate challenge in decision tree creation is to
strike the balance between flexibility and robustness.

3.2.2 Gradient Boosting Trees

A large number of methods can be utilized to create decision trees. A certain group
of these methods is called ‘ensemble’ methods and they can be very powerful by utilizing
several decision trees in a single model. The main two methods are random forests (RF)
and gradient boosting (GBDT). Gradient boosting will be explored further, since they
can achieve the highest accuracy and performance when tuned properly. Through these
advantages, gradient boosting has gained its popularity. Performance is very high which
is due to its balance between complexity and applicability. Gradient boosting works by
iteratively fitting negative gradients.

To show what this means, we will run through the basic steps a GBDT takes. First,
take a labeled dataset and average all labels. This average output value will be the first
prediction or a base from which the tree operates. One has to add a new column in the
dataset next to the output, which is called ‘residual’ (or the negative gradient). This residual
value is the difference between the actual output and predicted output and indicates how
‘wrong’ the prediction is. This residual is extremely important since the input factors are
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trying to predict this value. So, given a dataset, and an initial prediction which is the
average of all outputs, a GBDT tries to predict residual value through a decision tree.
The number of leaves in the tree must be smaller than the number of residuals. This will
create situations where several instances end up together in a leaf. When there are several
instances in a leaf, the average value of the residuals is taken. However, to create well-fitted
trees, this prediction is multiplied by a ‘learning rate’. This learning rate is utilized to
conservatively update the predictions made by the tree. This concerns one cycle, to better
fit the tree, this cycle will be repeated several times, and through several decision trees.

However, this process can be very computationally intensive and would not be practical
in real life. Thus, algorithms have been created to reduce this computational intensity. Ke
et al. (2017) have created a methodology called ‘LightGBM’. It utilizes two solutions to
reduce the number of data instances.

Gradient-based One-Side Sampling (GOSS) is used as the first solution. Within GOSS,
larger gradients, are weighted much more since these are most damaging to the overall
result. It takes the highest a% of gradients and randomly selects b% from the remaining
data. The sampled data of the small gradients will be multiplied by a constant (1− a)/b to
calculate their information gain. Thus, the instances with a large gradient will be focused
upon, while the smaller gradients will get compensated for their reduced data instances
and retain the original data distribution. Taking into account the values of the gradients,
which will greatly outperform the data reduction method through random sampling.

Exclusive Feature Bundling (EFB) is the other proposed solution. While in real
datasets, there are often many features available, the feature space is normally quite sparse.
In other terms, there are more features reported than features that exist. In turn, if an
event occurs, certain features will act in the same manner, while other features will operate
in the opposite manner (i.e., they show signs of mutual exclusivity). EFB has the ability to
thus reduce these (almost) exclusive features in a sparse feature window and thus increase
computational performance.

3.2.3 Hyperparameter Tuning

To set up a LightGBM model, a large number of hyperparameters can be tuned to
optimize model performance. According to an article by Bex (2021), there are several
categories in which these parameters can be placed: structure & learning, accuracy & speed,
and overfitting. The guide created by Microsoft (n.d.) also explains how to tune parameters,
what their function is, and what values are advised. Within Section 5.3.2 regarding the
methodology, we will take a deeper dive into parameter optimization.

3.3 Neural Networks

Another type of ML model will be described in this section, neural networks. Compared
to tree-based models, these are designed in a vastly different ways, have different use cases,
and have different strengths and weaknesses. This section of the thesis will explore how
these models work, what variants there are, and what their respective (dis)advantages are.

Effective Forecast Enrichments - Driving Factors Behind Enrichment Quality 17



3.3.1 Feedforward Neural Network

To fully understand the concept of neural networks, one should have skills in and
knowledge of the fields of mathematics, biology, neurophysiology, cognitive science, physics,
and many more. The neural network tries to bridge the gap between standard machine
learning approaches and the brain of a living animal. Machines can quickly outperform
humans when it comes to highly complex or fast calculations, while they are no match
to a human brain in complex perceptual problems. Humans can learn from examples, be
adaptive and fault-tolerant, and can be robust in complex tasks. A neural network op-
erates by mimicking the neural networks found in humans (Zou et al., 2018; Jain et al., 1996).

Like a decision tree, a neural network also consists of nodes. However, in a neural
network, a node performs a simple mathematical operation on the input that it is provided.
In the simplest sense, it would be a single perceptron that performs a weighted sum of
its inputs and applies a non-linear activation function to provide its output. Through the
non-linear activation function, nodes can add non-linearity to the model which can make it
more complex and accurate. Several kinds of functions can be used for activation (Softmax,
Sigmoid, ReLU). Examples are shown in Appendix A.1.

The nodes are components of layers, of which there are three types. The first type is
the input layer. These nodes receive and pass through the input data to the next layers.
The second type is the output layer, in which the output of the neural network is provided.
Between the input and the output layers, the hidden layers are situated. These layers are
the most interesting since they apply mathematical transformations of their respective
input data. Each neural network has a minimum of one hidden layer, but the more layers
it has the higher complexity it will exhibit (Jain et al., 1996).

Nodes between the different layers are connected through connectors. In a feed-forward
neural network, these connectors only connect nodes between different layers with a down-
stream flow (i.e., they cannot connect nodes within one layer). The connectors can have
different weights. Weights influence the importance of certain nodes, with a higher weight
leading to higher importance. Furthermore, bias can be introduced in the connectors. This
bias is added to the input before the mathematical transformation is executed within the
node. The goal of including this bias is to better fit the data. It does this by moving the
prediction on the axes (Jain et al., 1996).

The basic process of the neural network is visualized in Figure 3.1. This shows a
small neural network, with a singular input and output. In between, there are two hidden
layers. We can see input X1 traveling across the connector, being adjusted with the
respective weight and bias. The output of this connector is called x1’ since it has been
adjusted from the original x1 value. This is fed into the activation function, which will
provide a y value. This y value will be sent across the three connectors toward the next
hidden layer. In the nodes in hidden layer 2, multiple input connectors come together. For
them, x’ values from the connectors are summed together before being put into the activa-
tion function. This also holds true in the output node, where three inputs are being summed.

Neural networks have to be trained in order to achieve good results. In the learning
process, the weights and biases are tuned based on their gradients. This will be done
through the process of backpropagation. Backpropagation consists out of two phases, the
forward phase and the backward phase. In the forward phase, data inputs are passed
through the network in order to calculate the node outputs. In the backward phase,
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Figure 3.1: Concept Neural Network

gradients of the loss function compared to the weights of the network are computed.

The two main ideas of backpropagation are: i) to use the chain rule in order to calculate
derivatives and ii) plugging these derivatives into gradient descent to optimize parameters.
For a deeper dive into the mathematics, Appendix A.2 explains the backpropagation
process.

3.3.2 Hyperparameter Tuning

Like LightGBM, neural networks offer a large number of methods by which they can
be adjusted. This section will be based on the article by Radhakrishnan (2017). The first
important hyperparameters are the number of nodes and layers that the neural networks
encompass. Both the number of hidden layers and the number of nodes will influence
the level of over- or underfitting. Increasing this will increase precision at the risk of
overfitting. To combat this, one could use the dropout technique in which neurons are
canceled from the network, making the model more general. Rates between 20% and 50%
are recommended. In addition, the weights in the network are usually initialized according
to a uniform distribution, giving them the same weight. However, it is possible to adjust
this given different activation functions on different layers of the network. The learning
rate is another highly important parameter in the system. This rate indicates the speed
at which a neural network updates its parameters. A low learning rate leads to smooth
convergence of the network, while a larger learning rate could increase the speed of learning,
at the risk that the network will never converge since it overshoots constantly. The number
of epochs represents the times that the full training data is shown to the neural network
in the training phase. A higher number of times could increase precision at the risk of
overfitting.

3.4 Fitting of Machine Learning Models

Previously, we stated that the hyperparameter tuning should create a model that
does not over- or underfit the data. The goal of our model is to perform well on unseen
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data based on relationships and patterns it finds in the training set. However, there is
a trade-off since the training data often includes noise (i.e., patterns that are not ac-
tually there). When you include this noise, the model will perform very well on the
training set, but worse on unseen data. On the other hand, underfitting occurs when
the model is too simplistic and is unable to extract the nuances of the training data.
It is unable to capture relevant patterns which will lead to poor performance on both
training and testing data. Ideally, one would strike a balance between over- and underfitting.

To test whether a hyperparameter configuration shows over- or underfitting, one can
check the error measure for predictions on the training and testing sets. When the training
data performs much better than the testing data, we see overfitting. When the training
data performs about as badly as the testing data, we see underfitting. In Figure 3.2 we can
see a visual representation of the concept of over- and underfitting.

Figure 3.2: Example of Fitting

3.5 SHAP: SHapley Additive exPlanations

As discussed before, ML models are capable to create decisions to efficiently classify
data. ML models are often referred to as ‘black boxes’, to which one can only provide input,
and only receives one output. The steps in between can be hard to fathom for an ordinary
user. Furthermore, such models can incorporate systematic errors. A classic example of
which could be an ML model that tries to classify if the animal in the image is either a
wolf or a dog. Often, the model was able to correctly classify wolves as wolves and dogs as
dogs. However, it stumbled when it was provided with the picture of a dog in the snow
(Figure 3.3). It turned out that wolves are more often seen in snowy environments. Thus,
the model was just very good at classifying snow. If an ML model is not closely monitored
or understood, it can very easily develop these systematic errors (Ribeiro et al., 2016). This
is something that should also be prevented within the context of this thesis.

(a) Input Image (b) Explanation of Decision

Figure 3.3: XAI Example
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A popular method in the field of explainable AI (XAI) is SHAP (SHapley Additive
exPlanations) based on the work of Shapley (1952). Although his work is based in the field
of cooperative game theory, it found new uses within AI. In SHAP, each feature can be
interpreted as a player in a cooperative game. The contributions of each feature to the
overall outcome can be regarded as its own importance. It shows the default prediction
that the ML model makes, together with all the features that made the model alter its
prediction. Thus, the user will be able to understand the rationale behind a single decision.

4 Setting and Data

Within this section, we will look at the dataset that is used for all analysis and research
in this thesis. Since the dataset concerns real company data, we will also explore the
business environment from which the data is extracted. This context will improve the
clarity of results later in the thesis. Furthermore, the data cleaning will be explained in
this section.

4.1 Research Setting

The dataset provided for this thesis originates from a large multinational company in
the process industry. The company will be referred to as ‘Company A’ in the remainder of
this thesis. Within Company A, data from 3 Business Units (BU) (1, 2 & 3) is utilized.
Since these BUs all stem from the same company, they sell roughly the same products,
however, they are aimed at different industries and therefore show different characteristics.
The BUs operate like separate entities.

In total, Company A serves 1204 customers with 5,888 products, further specified in
Table 4.1. To show the broad range and skew of the data, it also shows the mean, median,
minimum, and maximum sales volumes per BU. Within this table, one can clearly see that
each BU is skewed to the left, with a long tail to the right. This means that there are a lot
of low sales volumes, but the average becomes large due to some very large sales. The sales
quantities are also plotted in Figure 4.1. These figures use a logarithmic scale to show the
long tail.

BU Products Customers Mean Median Minimum Maximum

1 936 230 776.82 236.55 1.18 38,140.00
2 1923 106 2,170.78 350.00 1.31 135,080.00
3 2788 847 2,993.12 1180.00 2.00 156,975.00

Table 4.1: Descriptives per BU

Company A uses EyeOn’s services to help them in forecasting. Every month, EyeOn
provides statistical forecasts and business insights to help them improve their forecasting
performance. After the planners receive the forecast, they can adjust the forecasts in
software called Jedox. Planners are linked to a BU and only enrich forecasts within this
specific BU. Before looking further into the data, we should set up some assumptions about
the planners on which this thesis and the results of it are based:

• Planners strive towards creating forecasts with the highest possible accuracy
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(a) BU 1 (b) BU 2

(c) BU 3

Figure 4.1: Sales Quantity Distribution per BU

• Forecasts that are created are unconstrained (if the planner at Company A knows
they are unable to deliver 300 units of product 1, they will still order 300 if they
deem this to be the right quantity)

• Planners also have no gain to stock up warehouses for future demand and thus they
do not do this.

The first assumption recognizes the underlying goal of planners. The second assumption
indicates that planners have the freedom to create the forecast without external constraints
or limitations, which is essential for the importance of their ability to judge the situation.
The last assumption indicates that planners have no incentive or motivation to build
stock. Planners are thus purely focused on creating the best possible enrichment regarding
accuracy.

4.2 Data Description

Given we are working with company data, the creation of a clean and useful dataset
can be challenging. Each BU has separate datasets for its master data, categorization
of products, and performance. All enrichments are stored in a different database. Joins
between these databases have to be made to incorporate data from each BU. After merging
and stacking all data, we can connect enrichment values, statistical forecasts, sales quanti-
ties, planner IDs, and many more variables.
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In total, there is data based on 237,996 enrichments (Table 4.2). However, a large
number of these cannot be used for analysis. Firstly, some products have a missing sales
quantity (34,117). Sales quantities can be missing for a variety of reasons, among which
are the discontinuation of a product, or a change in hierarchy. Furthermore, if Company
A decides that certain branches (e.g., a certain region or customer group) do not need
the statistical forecasts from EyeOn, their sales information is no longer shared, while an
enrichment created previously could still be reported within the database. Such enrichments
are deleted since they cannot be evaluated based on their accuracy. Furthermore, there are
a large number of products (24,958) that are part of the product categories ‘EOL’ or ‘NPI’.
For these products, there is too little data to accurately tune a statistical forecast, necessary
to predict an accurate sales quantity. Next, there are also a lot of sales quantities (65,354)
that are less than 1. In most cases, the sales quantity will be 0. However, sometimes, the
sales are only slightly above 0. Given that errors for these enrichments can be exponentially
large, and will misrepresent the overall performance of a forecaster, these are also removed.
Next, there are several duplicate rows (70,952) in the database due to many merges and
different product categorization levels. These categorizations levels can change over time
and thus it will report all categorizations it has ever found. Only the latest categorizations
are selected, corresponding to the moment of the last enrichment for a certain month. Some
planners also only make a small number of adjustments (less than 50). Planners with such
low statistics only adjust forecasts incidentally and are removed from the dataset (1,765).
Lastly, the dataset is corrected for outliers (310). Data points are selected to be outliers
when they are more than 1.5 standard deviation higher or lower than the mean.

Total enrichments 237,996

Missing Sales 34,117
EOL/NPI 24,958
Sales quantity <1 65,354
Final Forecast = 0 8,147
Duplicates 70,952

Deleted Planners 1,765

Outlier Correction 310

Final 32,393

Table 4.2: Data Cleaning

4.3 Performance Overview

Diving deeper, we will look into the actual performance measures. It can be measured
in several different ways and from different perspectives. Within Table 4.3, all abbreviations
and variables are labeled.

We will briefly explain potential error measures, before selecting one for further analysis.
Firstly, we will investigate FA based on % MAE, which is defined by the Formula 4.1. This
measure checks the absolute error or deviation (eit,k) in units between the sales quantity
and the forecasted quantity. This is then divided by the sales quantity (Ai

t). FA can be
calculated for each i which represents the perspective from which the accuracy is measured
(i ∈ {Planner,BU,Category}). Furthermore, FA can also be measured for different kinds
of forecasts which are represented by k (k ∈ {Enriched,Statistical}).
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This method is robust because smaller errors on small sales quantities are summed
together with larger errors on larger sales quantities. Thus, one identifies the total absolute
error of the forecast and then divides them based on the total sold quantity. This ratio
only defines the ‘error’ of the data. To transform this to ‘accuracy’, one has to start at one
and subtract this error ratio. In turn, when a forecast is perfectly accurate, it would result
in a value of 1. However, if the error ratio is larger than 1, the FA can become negative.
This method is also utilized by EyeOn to measure and evaluate forecast accuracy.

FAi
k = 1−MAEi

k% = 1−
∑n

t=1 |F i
t,k −Ai

t,k|∑n
t=1 |Ai

t|
(4.1)

FV Ai = FAi
Enr − FAi

Stat (4.2)

Another important measure is the FVA, which is also known as the ‘Forecast Value
Add’. This metric will compare the accuracies of the statistical and enriched forecasts.
This metric has its center at 0 and a positive value will indicate an increase in accuracy,
while a negative value will show the opposite.

Next to FA, there are a lot of other measures that could be used with different proper-
ties. Three other metrics will be described below. Compared to previously, the metrics
measure error and not accuracy. In turn, a lower value will indicate a better result for any
of these three measures.

RMSDi
k =

√∑n
t=1(A

i
t − F i

t,k)
2

n
(4.3)

The first alternative is the RMSD (Root Mean Square Deviation) represented by
Equation 4.3. This measure squares the errors of each forecast and divides the sum of
these by the number of enrichments to get the average value. The RMSD is proportional
to the size of the error, and thus very sensitive to large outliers. It will also indicate a
non-negative value, with a value of 0 indicating perfect accuracy. Another point of note
is the fact that the RMSD is scale-dependent and thus difficult to compare with other
metrics.

sMAPEi
k =

1

n

n∑
t=1

∣∣∣F i
t,k −Ai

t

∣∣∣
(Ai

t + F i
t,k)/2

(4.4)

The second alternative would be the sMAPE (symmetrical Mean Absolute Percent-
age Error). It is seen as an alternative to the normal MAPE but improved towards the
MAPE’s largest shortcoming, its asymmetric property. The sMAPE limits errors for over-
forecasting to prevent this asymmetric property from showing. However. sMAPE is still
sensitive to lower sales quantities and errors are disproportionally large. Furthermore, the
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sMAPE does not penalize large over-forecasts effectively, and thus promotes over-forecasting.

MAPEi
k =

1

n

n∑
t=1

∣∣∣∣∣Ai
t − F i

t,k

Ai
t

∣∣∣∣∣ (4.5)

The last alternative is the most familiar and most often used: MAPE (Mean Absolute
Percentage Error). MAPE has been known for its limitations and is often not the best
method to measure errors. Just like sMAPE, it is sensitive to low sales quantities. Fur-
thermore, its asymmetric property makes it so over-forecasting can exceed values of 100%
while under-forecasting cannot.

Biasik =

∑n
t=1 (F

i
t,k −Ai

t)∑n
t=1A

i
t

(4.6)

Next to error measures, it is also important to define how we measure the bias of a
forecast. The bias shows if a forecasting method is either over- or under-forecasting. In
Formula 4.6, the bias definition is shown. The bias measure ranges from -1 in a situation
where no products are forecasted, up to infinity. The bias measure is thus also inherently
asymmetric. When the bias value approaches zero, we can consider the forecast to be
unbiased.

Metric Definition

i Perspective: Planner, BU, Product Category
k Type of Forecast: Enriched or Statistical
t Period of time for which the metric is calculated
n Number of observations
FAi

k Forecast Accuracy for Perspective i, using Forecast k
MAEi

k% Percentage Mean Absolute Error
FV Ai Forecast Value Add for Perspective i
RMSDi

k Root Mean Square Deviation for Perspective i, using Forecast k
MAPEi

k Mean Absolute Percentage Error for Perspective i, using Forecast k
sMAPEi

k Symmetrical Mean Absolute Percentage Error for Perspective i, using Forecast k
F i
t,k Forecasted Quantity for Perspective i, using Forecast k, at time t

Ai
t Actual Sold Quantity for Perspective i, at time t

eit,k Forecasting Error in Units for Perspective i, using Forecast k, at time t
Biasik Bias for Perspective i, using Forecast k

Table 4.3: Summary of Metrics

4.3.1 BU - Perspective

Since the BUs operate separately from each other, this section will also report the
performance per BU.

Within Table 4.4 the FVA levels are reported on a BU level. We can see one BU
(2) that exhibits very different behavior from the other two. BU 2 has been known to be
difficult to forecast due to the nature of the product. Customers of this BU often work on
project basis, with large projects starting unpredictably. This unpredictability relates to
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BU Statistical Forecast Enriched Forecast

1 0.37 0.24
2 -0.59 -2.82
3 0.50 0.51

Table 4.4: FA: Comparison between Statistical and Enriched Forecasts per BU

both the time and location of the project. Once the job starts, there needs to be definitely
enough products in order to finish the project. Therefore, enrichments within BU 2 do not
contribute positively to the FA compared to the statistical forecast. Later, we will look
into this topic further. BU 1 starts off with a more accurate statistical forecast, but also
experiences a decrease in accuracy through forecast enrichments. However, this reduction
is much less dramatic. Last, BU 3 has the best benchmark for their statistical forecast at
0.50. Their accuracy increases slightly through enrichments to 0.51.

RMSD sMAPE MAPE MAE%
BU Stat Fcst Enr Fcst Stat Fcst Enr Fcst Stat Fcst Enr Fcst Stat Fcst Enr Fcst
1 1,381.55 1,781.92 0.75 0.69 1.63 1.96 0.63 0.76
2 12,789.90 34,752.47 1.05 1.15 12.93 31.70 1.59 3.82
3 3,948.22 4,041.99 0.65 0.56 2.60 3.34 0.50 0.49

Table 4.5: Comparison Error Measures

Within Table 4.5, the statistics for the alternative measuring methods are reported.
It is interesting to see how results and in turn conclusions would change based on the
use of a certain error measure. Under RMSD, each BU would decrease the accuracy of
their forecasts through their enrichments. This situation is also shown under the MAPE.
However, within the sMAPE, something interesting happens. Both BU 1 and 3 seem to be
able to improve their forecasts through enrichments, while BU 2 only reduces their accuracy
by a slight margin. Since we know that the sMAPE is not punishing over-forecasting as
harshly, together with the improved enriched forecasts, we can see that all BUs have a
tendency to over-forecast. Especially for BU 2, their error is a bit under 3 times the size in
other measures, while in the sMAPE it is only about 10%. For the remainder of this thesis,
we will continue to employ the FA as defined in Equation 4.1.

Looking further, it would be interesting to see how the FA is affected over time. Figure
4.2 compares the FA over time for each BU for both forecasts. For each BU, the length of
the dataset varies. Some BUs have data for about a year, while BU 1 only stores results
for the last 6 months, with older performance being discarded. If we plot the graphs for
both statistical and enriched methods, we can see two BUs where the FA is decreased
consistently over the time-series, namely BU 1 and 2. Especially in BU 2, the performance
of the enrichments is rather erratic. During July 2022, BU 2 shows a very low performance
in their enriched forecasts. This is due to some very bad enrichments combined with a
low sales quantity. For BU 3, the FA of enriched forecasts hovers around the statistical
forecasts. In some months, the statistical forecast performs better, in other other months,
the enrichments perform better.

Now we have seen the performance of each respective BU, we can look if the forecasts
are biased. Both statistical and enriched forecasts can be biased in different ways. A
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(a) FA Comparison BU 1

(b) FA Comparison BU 2

(c) FA Comparison BU 3

Figure 4.2: Comparison of FA in BU

statistical forecast can be considered to be biased if it constantly predicts either too much
or too few products. If this is the case, the parameters behind the statistical forecasts
might be inaccurately tuned, causing this behavior. Enriched forecasts can be biased since
they are exposed to human behavior and in turn to human cognitive limitations. In Figure
4.3 we will look at the bias per BU.

In Figure 4.3, we can observe several things. Firstly, the statistical forecasts for BU
1 and 3 seem to be slightly pessimistic. For these BUs, the statistical forecast predicts
fewer sales than occur. After these forecasts have been enriched their bias seems to reduce.
Especially the enriched forecasts of BU 3 hover around 0, indicating almost no bias. BU 1
becomes slightly optimistic. On the other hand, BU 2’s performance could be explained by
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(a) Bias Comparison BU 1

(b) Bias Comparison BU 2

(c) Bias Comparison BU 3

Figure 4.3: Comparison of FA in BU
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its bias. The statistical forecast for this BU also consistently over-forecasts and this is only
amplified after enriching the forecasts. Human planners thus adjust the forecasts in the
wrong direction, which causes a higher error.

The performance of BU 2 seems to be incredibly low (Figure 4.2b) and strongly biased
(Figure 4.3b), which could raise some questions. One could wonder if the data is correct
if something major happened (e.g., product failure, pandemic, production issues) or if
something went wrong within the reporting. We can see this BU over-forecasting excessively,
over every month, and with large dips in performance for certain months. The BU works on
a project basis, at a large scale, and with a tight schedule. Thus customers, require a large
sales volume at very short notice. Such projects can also not afford to be delayed once they
have been started. It would be a financial disaster if the customer starts the project, without
enough quantity to finish it. Projects can often also be canceled last minute. This results
in a sales quantity of 0 at the given customer. However, we cleaned the data for this as
reported in Section 4.2. Enrichments with a final sales quantity of zero are removed from the
dataset since one cannot calculate error terms for this. Conversations with the responsible
person at EyeOn (i.e., the service owner) cleared up why these statistics could very well be
correct. Within Jedox, planners are able to enrich products at several hierarchy levels. At
the highest level, products can be enriched for an entire region, while at the lowest level, an
enrichment concerns a specific customer key. Higher level enrichments are proportionally
disaggregated to end up at customer-product level. The aggregation level between the
forecast and the reporting differs for some arbitrary reason. Thus, the reported data within
the dataset looks at the data at a higher level than just product-customer. Once combined
with this uncertain project-based nature of sales, this can lead to such large errors. To give
an example: imagine you sell your product (called ‘product 1’) within Region A. Region A
consists of 10 customers that can demand this product. Customer 1 orders 2 units of product
1 every month while the remaining customers normally demand 0. For the upcoming month,
we expect there to be a large project at customer 4, expected to sell 100 products. Thus,
the total demand for this region would be 102 for the upcoming month. However, last
minute, this project is canceled while the products have already been forecasted. The sales
quantity now drops to 2 for the region and the forecasted amount remains at 102. This
would lead to a FA of −51. This phenomenon also occurs in BU 2 creating these large errors.

4.3.2 Category - Perspective

As seen in Section 2.1, products are divided into 1 of 9 categories based on their value
and variance. Products that are high in variance and high in value are recommended to
be carefully examined by hand before adjustments are made. It is common advice to not
enrich products that have both a low variance and a low value, since statistical methods
should suffice. We see that in general, planners are indeed more inclined to adjust forecasts
or products that are more valuable and variable, as is advised. The added value to the
forecast differs greatly between different BUs. As seen before, the performance of BU 2 is
significantly lower compared to the other two. For BU 1 and 3, the FVA is very close to
zero for pretty much all product categories. BU 1 shows good results for categories CX and
AZ. It does seem that planners’ expertise improves the FVA in this area. BU 3 improves
the FVA in CX and AY categories. Their improvements in CX are very good, however,
there are only a very small number of adjustments (35). It is interesting to see that their
performance for CZ products is particularly low. Given its low value, planners might not
spend a lot of effort on forecasting this highly variable category of products.
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All BU X Y Z

A -1.22 -0.76 -0.44
B -1.12 -2.53 -1.11
C 0.17 -2.19 -0.99

Table 4.6: FVA Categorization of all
BUs

All BU X Y Z

A 4029 11644 3491
B 422 5154 3412
C 38 677 1414

Table 4.7: # Adjustments
Categorization of all BUs

BU: 2 X Y Z

A -3.61 -2.16 -1.39
B -3.30 -7.35 -3.26
C - -6.42 -2.00

Table 4.8: FVA Categorization BU 2

BU: 2 X Y Z

A 349 1774 1422
B 24 472 902
C 159 490

Table 4.9: # Adjustments
Categorization BU 2

BU: 1 X Y Z

A -0.03 -0.15 0.10
B -0.01 -0.17 -0.05
C 0.11 -0.04 -0.09

Table 4.10: FVA Categorization BU 1

BU: 1 X Y Z

A 452 1180 588
B 120 524 504
C 3 91 247

Table 4.11: # Adjustments
Categorization BU 1

BU: 3 X Y Z

A -0.01 0.02 -0.02
B -0.04 -0.07 -0.00
C 0.39 -0.11 -0.87

Table 4.12: FVA Categorization BU 3

BU: 3 X Y Z

A 3228 8690 1481
B 278 4158 2006
C 35 427 377

Table 4.13: # Adjustments
Categorization BU 3

4.3.3 Planner - Perspective

Planners and their enrichment behaviors are at the core of this master thesis and are
thus a very valuable ‘asset’ that should be investigated further. In this section, we will
zoom in on the actual contribution each individual planner has toward the FVA. Given the
results in the previous section, one could ask themselves if planners actually add value at all.

Within Table 4.14, each planner is noted in descending order based on their FVA.
Within this table, we can identify some interesting points of notice. Firstly, out of a total
of 23 planners, only 7 managed to add value on average. However, even those planners
that managed to achieve a positive FVA, only improved the FVA by a small amount.
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Furthermore, these planners only operated within BU 1 or 3. The best planner in BU 2
reduced the FA by 0.199. The number of enrichments a planner has made does not seem
to be an accurate indicator of their FVA since we can see planners with both high and
low numbers of enrichments operate on both ends of the spectrum. It does seem that
planners that are being given an inaccurate statistical forecast are more likely to reduce FVA.

User BU Number of Enrichments FA Statistic FA Enrichment FVA

13 1 259 0.25 0.35 0.10
15 1 57 0.54 0.61 0.06
7 1 990 0.37 0.43 0.06
27 3 316 0.29 0.35 0.06
26 3 633 0.37 0.39 0.02
25 3 3,692 0.50 0.51 0.01
10 1 362 0.37 0.37 0.00

24 3 16,394 0.52 0.52 -0.00
22 1 60 0.72 0.65 -0.07
6 1 594 0.44 0.33 -0.10
1 1 1,056 0.46 0.28 -0.18
4 2 1,115 0.09 -0.11 -0.20
11 2 333 -0.70 -1.11 -0.41
14 1 174 -2.92 -3.74 -0.81
19 2 59 0.14 -0.75 -0.89
2 2 1,744 -0.02 -1.06 -1.05
12 1 442 -0.31 -1.51 -1.21
18 2 53 0.26 -1.16 -1.42
3 2 1,381 -0.04 -1.47 -1.44
9 2 1,046 -0.66 -2.35 -1.69
5 2 668 -0.82 -2.83 -2.01
16 2 113 -0.05 -2.73 -2.68
8 2 852 -2.71 -8.24 -5.53

Table 4.14: Planner Performance, ranked by FVA

Looking at the enrichment descriptives (Table 4.15) for each planner, we can see that
in most situations, planners do not improve the FVA, as indicated by the column ‘%
Corrected Adjusted’. The information from this column is quite worrying given that most
are far below 50% and in some cases even drop down into single digits. In addition, by
looking at the difference between the mean and median values, we can get more information
about their behavior. In almost all situations, the mean value seems to deviate more from
0 than the median. This indicates that in most cases, planners only add or subtract a
smaller amount of value, while there are a few adjustments with a very large size that
influence the mean heavily. When comparing the positive and the negative adjustments
to each other, the median negative value deviates further from zero compared to the
median positive value for each planner. For almost all planners, the worst negative adjust-
ment is also much larger than their best positive adjustment. Given the high values here,
it does seem that forecasters’ best enrichments are unable to compensate for their worst ones.
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Planner % Correct
Adjusted

Mean
Positive

Median
Positive

Best
Positive

Mean
Negative

Median
Negative

Worst
Negative

1 35% 0.47 0.22 18.21 -1.93 -0.47 -198.13
2 18% 1.20 0.42 33.11 -12.60 -3.88 -297.00
3 20% 4.02 0.37 211.25 -19.83 -4.39 -680.54
4 7% 0.55 0.35 3.80 -17.73 -2.03 -642.69
5 25% 8.62 0.33 243.26 -28.96 -5.87 -1,346.61
6 7% 0.45 0.24 6.88 -0.59 -0.35 -1.68
7 23% 0.34 0.18 7.68 -2.16 -0.51 -39.63
8 16% 30.41 0.49 1,637.80 -137.34 -15.60 -3,754.51
9 28% 2.68 0.26 439.68 -36.05 -3.84 -1,153.95
10 5% 8.67 0.26 47.53 -1.32 -0.72 -7.76
11 24% 29.12 0.41 817.93 -20.72 -2.91 -876.92
12 22% 1.84 0.33 43.12 -20.07 -2.84 -783.75
13 67% 0.38 0.32 1.99 -2.31 -0.66 -31.30
14 27% 2.74 1.01 20.69 -3.62 -2.13 -86.42
15 47% 0.38 0.30 1.10 -1.33 -0.94 -3.80
16 37% 0.84 0.43 9.50 -96.26 -11.67 -984.50
18 36% 1.97 0.53 27.65 -12.58 -0.58 -287.95
19 25% 19.00 0.43 274.71 -52.00 -5.40 -614.26
22 37% 0.12 0.00 0.66 -0.32 -0.01 -1.54
24 51% 0.41 0.18 81.73 -2.56 -0.31 -1,816.18
25 45% 1.97 0.20 1,187.15 -2.12 -0.28 -272.48
26 61% 0.43 0.27 29.60 -2.72 -0.37 -111.40
27 54% 0.38 0.29 1.87 -4.80 -0.35 -180.16

Table 4.15: In-depth Statistics FVA Descriptives per Planner

4.4 Correlations

As a part of the exploratory data analysis, we will also investigate the correlations of
the variables. Correlations can tell us a lot about the feature space of the dataset. We will
investigate both the correlations between the independent variables and the correlations
between the independent variables and the FVA.

When independent variables are correlated strongly with each other, several variables
predict the same phenomenon and this can lead to biased predictions. Effectively, you
will have a single phenomenon that is double or triple-counted. However, depending on
the business context, it is sometimes inevitable. An example of this would be taking into
account both the statistical forecast and the size of the enrichment. Most likely, if there is
a large statistical forecast, there could also be a larger adjustment. However, these are two
separate pieces of information. On the other hand, in Table 4.16, you will find that higher
correlations are actually preferred. Higher correlations indicate that there is some relation
between the independent variable and the target, and this would be a good sign for the qual-
ity of the prediction model. However, one must always remember that correlation is not the
same as causation. If there is a high correlation, this might not be caused by a relationship
between the variables, but it could be caused by an external factor that affects both variables.

Looking closer at the correlations between the features and the FVA in Table 4.16,
there do not seem to be very large variables. However, the largest ones are ‘Optimism
Bias’, ‘Enrichment Size’ and ‘Number of Adjustments’ & ‘Overreaction Bias’. Negative
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correlations indicate that when the value of, for example, Optimism Bias is high, the FVA
is low, and thus that the forecast is likely to be less accurate.

Feature Correlation

Optimism Bias -0.26
Enrichment Size -0.19
Number of Adjustments -0.17
Overreaction Bias -0.17
Previous Forecast -0.13
Hour of the Day (cos) -0.06
Hour of the Day (sin) -0.03
Timelag -0.03
Day of the Month (sin) -0.02
Statistical Forecast -0.02
Day of the Week (sin) -0.01
Day of the Week (cos) -0.01
Anchoring Bias 0.03
Day of the Month (cos) 0.06
Previous FVA 0.15
Hierarchy Level 0.15

Table 4.16: Correlations between Features and FVA

Correlations between the different independent variables are also calculated. Table
4.17 has been created to show the most strongly related independent variables. Within
this table, correlations above 0.5 have been marked in bold. For reference, a table with all
correlations is present in Appendix E.1. There are a few that seem to be strongly related.
Any features that are directly related to the forecasted quantity; i.e., statistical forecast,
previous forecast, and enrichment size have higher correlations. This is especially true for
the relations regarding the previously forecasted quantity. Between the statistical forecast
and the enrichment size, the correlation is much lower.

In addition, there are strong correlations between the number of adjustments, hierarchy
levels, and the various planner-related biases. An interesting statistic here is the correlation
between the hierarchy level and the overreaction bias. It states that when the hierarchy
level is low, the overreaction bias is expected to be high. This makes sense, as when one
enriches forecasts on a higher hierarchy level, their enrichment encompasses a larger number
of products and customers and it is expected that they are less precise. Combined with
the tendency to over-forecast, the results are not surprising. Furthermore, there is a large
negative correlation between the hierarchy level and the number of adjustments. Indeed, if a
planner enriches a forecast for a single customer, this enrichment is generally less important
than when a planner enriches a forecast for a large number of customers in one go. Thus, for
a higher hierarchy level, it is logical that planners spend more time adjusting the forecast, or
in other words, adjusting the forecast several times before coming to a final enriched forecast.
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Statistical
Forecast

Previous
Forecast

Hierarchy
Level

Number of
Adjustments

Optimism
Bias

Anchoring
Bias

Overreaction
Bias

Enrichment
Size

Statistical
Forecast 1.00

Previous
forecast 0.78 1.00

Hierarchy
Level -0.08 -0.14 1.00

Number of
Adjustments 0.24 0.25 -0.65 1.00

Optimism
Bias 0.22 0.26 -0.60 0.57 1.00

Anchoring
Bias 0.06 not sig 0.40 -0.21 -0.10 1.00

Overreaction
Bias 0.12 0.17 -0.73 0.58 0.68 0.13 1.00

Enrichment
Size 0.33 0.62 -0.15 0.19 0.22 -0.03 0.16 1.00

Table 4.17: Correlation Table (Subset)

5 Methodology

In this section of the thesis, we will explain what methods have been used in order to
create the models. Analysis has been conducted within Dataiku. Within Dataiku one will
build a ‘flow’ with several recipes that transform the data to the desired output. Many
recipes are standardized functions, however, for this thesis, Jupyter notebooks have been
added as recipes in many cases.

5.1 Variables

5.1.1 Dependent Variable

As a reminder, within this thesis, the goal is to accurately predict the accuracy of
forecast enrichments based on a number of features. Given certain feature importances, one
would be able to predict which enrichments might improve or harm the forecasting accuracy.
Thus, we will create a prediction model that will predict the FVA of a specific enrichment.
The FVA is calculated by subtracting the FAs (Statistical Forecasting Accuracy) from the
FAa (Actual Forecasting Accuracy). The FAs can be calculated using Formula 4.1 and the
FVA by Formula 4.2.

As explained before, this variable is corrected for outliers. However, values can still
range from -3,044.96 to 1,637.80. This large spectrum makes it extremely hard to predict
accurately. Prediction models will become very erratic and volatile while trying to fit them-
selves into the training dataset and it is also not necessary to be able to identify good or bad
enrichments. Therefore, the FVA has been capped at a maximum of 5 and a minimum of -5.
This might seem like a narrow range, but there are only a very small number of enrichments
that have such dramatic high values and these do not add too much information at the end
of the project. For BU 1 and 3, 97.52%, and 97.40% of values will fall within the capped
range. Only BU 2’s volatility will be significantly affected since only 72.62% falls within this
range. Values that fall outside the range will thus be capped and not deleted, since these
can still inform the machine-learning model about the characteristics of extreme enrichments.
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5.1.2 Independent Variables

To accurately predict the FVA, one needs a number of independent variables on which
the predictions will be based. There are 14 base features that can be assigned to four
different groups: enrichment, time, product, or planner.

• Forecast-Related
These concern factors regarding the size of the original forecast, the size of the
adjustment, and the direction of the adjustment. One interesting variable is the
number of adjustments. Within the dataset, one can identify when a forecast for a
specific product has been adjusted multiple times. A large number of adjustments
could indicate that the forecast is heavily investigated and could be a predictor of
higher accuracy.

• Time-Related
The second group of features is related to the time at which an enrichment is made.
As seen in the paper of Broeke et al. (2019), planners can become more volatile
in their adjustments when nearing the moment of sale. Furthermore, it could be
interesting to see if planners are affected by the time of day or the day of the month
at which they make enrichments. Being pressured by a deadline, planners might act
with less care and this could affect the FVA.

• Product-Related
The number of features in the third group is rather limited. These features concern a
specific product and are categorical in nature. In this dataset, we incorporate the
business unit in which the product is sold and its category based on the theory of
Scholz-Reiter et al. (2012).

• Planner-Related
The last group of features is related to the planners and their biases.

In total, 3 biases are calculated: Optimism Bias (Bi
o), Anchoring Bias (Bi

a), and
Overreaction Bias (Bi

r). The calculations follow the formulas defined by Eroglu & Croxton
(2010). The formulas for bias are based on the percentage error of the statistical forecast
pit,stat (Equation 5.1) and the percentage error of the enriched forecast pit,enr (Equation
5.2). As expected by the name, these formulas check the error per forecast and divide them
by the sales quantity. Positive values indicate an over-forecast and negative values indicate
an under-forecast.

Percentage error of statistical forecast pit,stat = 100% ∗

(
F i
t,stat −Ai

t

Ai
t

)
(5.1)

Percentage error of enriched forecast pit,enr = 100% ∗

(
F i
t,enr −Ai

t

Ai
t

)
(5.2)

To identify optimism bias, Equation 5.3 is used. One only has to look at the percentage
error of the enriched forecasts and the number of enrichments made (n). If a planner
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shows a tendency to enrich optimistically, the value will be larger than 0, while it will be
lower than 0 if the planner is frugal with their adjustments. This value is thus tied to an
individual planner. To give an example, if a planner forecasts 150 units and the actual
demand is 100, pit,enr is 50%. In turn, optimism bias Bi

o will also be 50%. When there are
more enrichments, one takes the average of all percentage errors. In order to test if the bias
is significant, a statistical test has to be identified. When one wants to identify if a sample
deviates from a mean of 0, and is dealing with a continuous variable, a studentized t-test
can be executed with a significance level of .05. This test is further explained in Appendix
C.4.

Bi
o =

1

n

n∑
i=1

pienr (5.3)

The second bias is the anchoring bias (Equation 5.4), which indicates the tendency of a
planner to anchor their enrichments on the statistical forecast. For this measure, two binary
variables xi and yi must be calculated. Variable xi indicates if the planner undershoots
in their forecast. The undershoot is represented by the fact that the absolute error of the
enriched forecast is lower than the error of the statistical forecast, but multiplying the
errors should indicate a value that is larger than 0. This happens in situations where either
both errors are positive or both are negative. If the planner overshoots the error would
be below 0 since a positive error is multiplied by a negative error. yi only checks if the
absolute forecast error of the final forecast is smaller than that of the statistical one. To
give an example, imagine that pienr is +30% and pistat is -50%. yi will be reported as 1 since
the absolute error is reduced, but xi will report as 0 since the product of the error terms
will be negative. This metric is centered in 0.5, meaning that in half of the cases in which
they improve the accuracy they overshoot, and in the other half they will undershoot. If
the metric reports below 0.5, they overshoot in more instances than they undershoot.

In order to test this statistic, we use a binomial test that is centered around 0.5.
This test is chosen since we are dealing with a metric based on two binary variables. The
significance level is also 0.05 (Appendix C.1).

Bi
a =

∑n
i=1 x

i∑n
i=1 y

i
(5.4)

xi =

{
1 if

∣∣pienr∣∣ < ∣∣pistat∣∣ and pienrp
i
stat > 0

0 otherwise (5.5)

yi =

{
1 if

∣∣pienr∣∣ < ∣∣pistat∣∣
0 otherwise (5.6)

The last bias is the overreaction bias. Overreaction bias shows if a planner is prone
to adjust forecasts erratically, which leads to a larger forecasting error in the opposite
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direction. If the statistical forecast error would be 20% below the actual sales quantity,
then overreaction bias would show if the planner enriches the forecast by such an amount
that the final forecast error is more than 20% over the sales quantity. In order to check this,
an additional binary variable zi has to be calculated. An overreaction is identified when
the absolute final forecast error is larger than the absolute statistical forecast error and
their multiplication is below zero. As seen before, the multiplication is below zero when one
forecasting method undershoots while the other overshoots. Overreaction bias can range
from 0 to 1, and its significance is tested using a Wilcoxon Signed Rank test (Appendix
C.5) since we are dealing with a continuous outcome and one categorical predictor variable.

Bi
r =

1

n

n∑
i=1

zi (5.7)

zi =

{
1 if

∣∣pienr∣∣ > ∣∣pistat∣∣ and pienrp
i
stat < 0

0 otherwise (5.8)

Variable Type Description

Forecast-Related:
Enrichment Size Numerical Size of the enrichment (either negative or positive)
Statistical Forecast Numerical Number of products statistically forecasted by

EyeOn
Previous Forecast Numerical Forecast of last month
Number of Adjustments Numerical Number of times a single product-customer com-

bination is adjusted
Time-Related:
Timelag Numerical Time in months from enrichment to forecasted

period
Hour of the Day Numerical Hour of the day at which enrichment is created
Day of the Week Numerical Day of the week at which the enrichment is created
Day of the Month Numerical Day of the month at which the enrichment is cre-

ated
Previous FVA Numerical Represents the last reported FVA for this product-

customer combination at the time of adjustment
Product-Related:
Business Unit Categorical Business Unit: 1,2,3
Product Category Categorical ABC-XYZ product designation
Planner-Related:
Optimism Bias Numerical Numerical representation of the optimism bias of

a planner
Anchoring Bias Numerical Numerical representation of the anchoring bias of

a planner
Overreaction Bias Numerical Numerical representation of the overreaction bias

of a planner

Table 5.1: Independent Variables Overview
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5.2 Scaling & Encoding

Within our models, we will be dealing with both numerical data as well as categorical
data. The categorical data will be one-hot encoded in order for the models to properly
incorporate this data. This concerns the columns regarding the Business Unit and the
Product Category. We have opted for the one-hot encoding compared to the numerical
encoding for its ease of use. This method is namely supported by the LightGBM model,
Neural Network, and the Automatic Feature Engineering package ‘AutoFeat’. Furthermore,
time-related features are cyclically encoded. Certain features like the hours of a day or days
in a week are cyclical, e.g., Monday is the day after Sunday, or the first day comes after the
last day. Humans can understand this through context, but machine learning models only
understand this by this encoding. One can transform these features by dividing them and
transforming them to a sine and a cosine value. This encoding can improve the accuracy of
a ML model (Bescond, 2020).

The features are also scaled using a Standard Scaler (Pedregosa et al., 2011). The
features encompass different phenomena and different ranges of values are used. Features
with a large spectrum of potential values could mislead the model into thinking that they
are more important than the other features. Therefore, scaling transforms all features
to roughly the same range of values (Brownlee, 2020). The transformation is shown in
Equation 5.9.

xscaled =
x− µ

σ
(5.9)

5.3 Models

In total, three types of models have been created: Linear Regression, LightGBM, and
Neural Networks. All models are regression models which predict the expected FVA. Each
model has their respective strengths and weaknesses which will be explored in the section
below.

5.3.1 Linear Regression

As a baseline, we will try to predict the FVA through the use of Multiple Linear
Regression. This baseline utilizes the principles of simple linear regression while incorporat-
ing multiple independent input variables predicting one single dependent output variable.
Linear regression is a modeling technique that assumes a linear relationship between an
independent input variable and a dependent output/target variable. The assumption of
linearity makes such a model very simple to create and interpret. Furthermore, it only
requires limited computational resources and is robust against overfitting, especially for
small datasets. Within this dataset, we have more than one input variable, which means
that Multiple Linear Regression should be executed. The premise is the exact same,
however, n input features are used which leads to a projection to a n+1 dimensional space.
Such an extension of the original model can make it more complex to interpret, but it is
still built of simple mathematical principles. From this baseline, we can also investigate
what additional value machine learning models would add. The Multiple Linear Regression
model will be created through the Scikit-learn package in Python (Pedregosa et al., 2011).

Y = β0 + β1X1 + β2X2 + ...+ βnXn + ϵ (5.10)

Equation 5.10 shows the mathematical representation of multiple linear regression.
Y is the predicted variable, β0 is a constant and the remaining βs are multipliers for the
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values of each independent feature Xi. The ϵ at the end represents the error term that
encapsulates various factors that are not modeled into the model.

5.3.2 LightGBM

As explained before, a LightGBM model is a gradient-boosting decision tree that is
built iteratively (Ke et al., 2017). In the model, the data is first split into a training and a
testing set. The split is randomly sampled within the data and 20% of the data is utilized
to verify and measure the model performance, stratified per the sizes of the different BUs.
Then we can create the LightGBM model. We do not have to specify the categorical
variables since these are one-hot encoded. Next, the data is scaled. Even though it should
not be too important for a tree-based model, it is still recommended to scale the numerical
values. The data is scaled through the StandardScaler within the Sci-kit learn package in
Python.

Hyperparameter Type Range

‘boosting_type’ Fixed ‘goss’
‘metric’ Fixed ‘mae’
‘max_depth’ Integer 5, 7, 9, 11
‘num_leaves’ Integer 32, 128, 512, 2048
‘num_iterations’ Integer 100, 200, 300, 400, 500
‘learning_rate’ Float 0.05, 0.10, 0.15, 0.20, 0.25
‘colsample_bytree’ Float 0.50, 0.75, 1.00
‘min_child_samples’ Integer 25, 50, 75
‘reg_lambda’ Integer 25, 50, 75, 100

Table 5.2: Hyperparameter Tuning LightGBM

One of the most crucial steps in any machine learning model is hyperparameter
tuning. The performance of the model can vary greatly based on the values of the
hyperparameters. Identifying what the best hyperparameters are, is a computationally
intensive task. Especially since in this thesis, we will be using a grid search. In a grid
search, a machine learning model is built for each combination of hyperparameter values
(i.e. 14400), and the best option is chosen based on the testing MAE. In order to get good
results, balanced with a good runtime, a two-step process of hyperparameter tuning is
proposed. Firstly, a wide grid search is executed based on the parameter values in Table
5.2. This provides an initial estimate from which will be searched further. In the second
step, a narrower grid search is defined, a so-called local search. To identify the search space
of the local grid, one has to extract the hyperparameters. Then, one calculates the averages
for a higher range and a lower range. To give an example: the global grid search states
that the optimal number of iterations is 400. Then the local grid search would investigate
values 350, 400, and 450. When the global grid search identifies parameters that are either
a maximum or a minimum of a hyperparameter value, you only check the value below. For
instance, the global search finds the value of lambda to be 100, in the local grid search only
87 and 100 are tested.

5.3.3 Neural Network

The neural network operates very differently compared to the LightGBM model. Keras
has been utilized as the package at the base of the network (Chollet et al., 2015). The type
of neural network is a feedforward neural network. Within the model, one first converts all
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the categorical variables to one-hot encoded equivalents. Then, it uses the same scaler and
train-test splits as before. Just like the LightGBM model, a grid search is employed to test
all the various options for the hyperparameters. These hyperparameters are also shown in
Table 5.3. The neural network has a higher runtime compared to the LightGBM model,
and thus the hyperparameter optimization is limited by reducing the number of parameter
values.

The neural network follows the following best practices (Ranjan, 2019):

• 2 hidden layers, with a dropout percentage and activation function ‘relu’ (An extra
layer is tested as well).

• 1 singular output layer, with the ‘linear’ activation function, of size 1

• Number of nodes per layer as a power of 2, converging to a lower number further
down the network.

The hyperparameter search will however test if an additional third hidden layer would
increase the accuracy of the model. The ‘num_neurons’ parameter only applies to the first
hidden layer. The input layer is, of course, equal to the number of features provided to
the model. The next layer is thus equal to the selected value for the hyperparameter. The
following layers all divide the number of neurons by 2, making a converging network. The
last layer is indeed a singular, linear output layer.

Hyperparameter Type Range

‘learning_rate’ Float 0.001, 0.05, 0.010
‘num_epoch’ Integer 50, 100, 200
‘batch_size’ Integer 8, 32, 64
‘num_neurons’ Integer 32, 64, 128
‘num_hidden_layers’ Integer 2,3
‘kernel_regularizer’ Categorical L2(0.01)
‘dropout’ Float 0.2
‘activation’ Categorical ‘relu’

Table 5.3: Gridsearch Neural Network

5.3.4 Feature Engineering

Machine Learning models can be run using the basic set of features. However, in order
to improve accuracy, one could explore changing or adding features that better predict the
dependent variable. Adding features might be done through the use of domain knowledge,
or finding additional data sources from which features can be generated. An example could
be to add weather information when predicting the number of ice cream sales. Changing
features concerns the exploration of mathematical transformations that can be done on
the current features. Examples of this could be to take the log, square (root), or a ratio of
the current features. Then, one can test if this adjusted feature predicts the dependent
variable better.

Feature engineering can be done in several steps, with each succeeding step increasing
the number of features and interaction effects. In the first step, only the mathematical
transformations are executed. In the second step, interaction effects between different
features are also incorporated. As an example, it could create a feature called ‘(Number of
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adjustment)**2 × (log(1/anchoring bias))’. As one can imagine, comparing all features in
this manner, the number of features will grow exponentially. For the adjustment of features,
the open-source Python package ‘AutoFeat’ is utilized (Horn et al., 2019). Since manual
feature transformations can be very labor intensive, this package is designed to remove this
burden from the researcher. AutoFeat can automatically generate new features, and select
features that it deems useful for the model accuracy. One can identify the number of steps
that they deem necessary. Within the results, feature engineering is also explored in the
varying machine learning models.

6 Results

Within this section, the methodology will be executed and its results will be reported.
We will check if biases are present among the planners, what the characteristics of the
dataset are, and how the various prediction models function together with their validity.

6.1 Bias

In Section 5.1.2, we described the ways in which planners can be biased. Results
from the literature indicate that planners are often biased and we will apply the formulas
by Eroglu & Croxton (2010) to verify the biases among the planners in the dataset. For
each planner, the biases that they exhibit in their enrichment behavior are noted in Table 6.1.

User BU Number of Adjustments Optimism Anchoring Overreaction

1 1 1,056 2.25 0.33 0.18
2 2 1,744 12.58 0.19 0.31
3 2 1,381 22.44 0.18 0.30
4 2 1,115 3.34 0.03 0.04
5 2 668 38.27 0.42 0.38
6 1 594 0.12 0.02 not significant
7 1 990 0.73 0.04 0.03
8 2 852 133.80 0.20 0.39
9 2 1,046 41.35 0.24 0.23
10 1 362 0.97 0.05 0.02
11 2 333 19.45 0.28 0.23
12 2 442 23.76 0.16 0.35
13 1 259 0.76 0.12 0.07
14 1 174 8.46 0.34 0.24
15 1 57 0.44 0.11 0.11
16 2 113 72.13 0.28 0.35
18 2 53 12.35 not significant 0.26
19 2 59 52.61 not significant 0.36
22 1 60 0.52 0.28 not significant
24 3 16,394 2.78 0.29 0.12
25 3 3,692 4.10 0.27 0.10
26 3 633 1.39 0.18 0.07
27 3 316 not significant 0.25 0.10

Table 6.1: Bias Table per Planner
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It is clear that optimism bias is very prevalent among planners and that their values are
very high. Accordingly, the spectrum ranges from 0.12 up to 133.80. Every single planner
(with the exception of planner 27) has a significant optimism bias. On average, they all
forecast more than the sales quantity. The values for planners in BU 2 are extremely high.
For anchoring bias, almost all forecasters show a significant bias. This metric is centered
at 0.5, and values below 0.5 indicate that when a planner reduces the forecasting error
through their enrichment, they are more inclined to overshoot. Just like with optimism
bias, no planners (with a significant bias value) show clear anchoring on the statistical
forecast. Lastly, the overreaction bias is also prevalent across this set of planners.

From Table 6.1, it seems that there could be a relation between optimism and overre-
action bias. Therefore, the correlations are calculated between the biases. Table 6.2 shows
that there indeed is a strong correlation between optimism and overreaction biases. From
this correlation, we can deduce that planners who have a high optimism bias, are also likely
to overreact. Figure 6.1 shows also that planners from BU 2 are especially prevalent to be
exposed to these biases. Anchoring bias also has significant correlations with the other two,
but these values are much smaller.

Figure 6.1: Optimism Bias versus Overreaction Bias

Optimism Anchoring Overreaction

Optimism 1.00
Anchoring -0.10 1.00
Overreaction 0.68 0.13 1.00

Table 6.2: Bias Correlations
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6.2 Prediction Models

Within this section, we will investigate the models that were proposed in Section 5.3.
In particular, we will evaluate their performance, both in terms of accuracy and speed,
their validity, and their behavior. The results of the most important models can be found
in Table 6.5. For conciseness, this table only represents a subset of all models that have
been created and the full table can be found in Appendix G.

6.2.1 Linear Regression

The first prediction method will be linear regression. It is a simple method that can be
utilized as a baseline to compare the machine learning models. We find that a large number
of assumptions are violated in Appendix F (Linearity, Normality, Homoscedasticity). Since
these assumptions are not required for a prediction model, we will still utilize it as a baseline.
However, it does show us that linear regression might not be a good fit for the data. In
Appendix G, a table is shown with the results and information of all models. Given the low
performance for both training and testing sets, combined with the violated assumptions,
we decide to not utilize linear regression for the final model.

6.2.2 LightGBM

For the second prediction model, a LightGBM algorithm is used. Compared to the
linear regression model, there are no clear assumptions, but there are a few things to keep in
mind. To create a good LightGBM model, its hyperparameters have to be tuned correctly.
This ensures convergence of the model and in turn, good results. Additionally, one has to
keep a close eye on the behavior of the model. Certain configurations of hyperparameters
can cause the model to either under- or overfit which reduces the overall quality. In theory,
the data does not have to be scaled in order to produce correct results, but models are
created both with and without scaling to check this. Lastly, in the best models, feature
engineering will be explored to further improve the prediction quality.

The basic models, without scaling and clipping, seem to easily surpass the quality of
their respective linear counterparts. Scaling does indeed not seem to improve the accuracy
of the model. However, clipping does improve the quality of the model. Just like with the
linear regression model, the model operates better when only using data from BUs 1 &
3. For the clipped and scaled model, feature engineering is also implemented. By using
one-step feature engineering (i.e., only mathematical transformations of the features), a
handful of new features are created. These new features seem to have a significant effect
on model quality by reducing the MAE of the test set from 0.507 to 0.435 (BUs 1 & 3) and
from 0.669 to 0.594 (all BUs). However, the second step of feature engineering does not
seem to add any additional value. For some subsets of BUs, the testing MAE is improved
slightly through this second step, but for others, it slightly deteriorates the performance.
Due to feature engineering, it seems that models are searching for patterns in the noise of
the data (i.e. overfitting) since their training MAE is quite a bit lower compared to the
testing MAE.

Without feature engineering, the models are largely unbiased. Through feature en-
gineering, it seems that the models are more inclined to predict pessimistically. In other
words, it seems that the models predict a more negative FVA on average, especially when
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focusing purely on BUs 1 & 3.

Compared to the linear regression model, the runtime is significantly longer. This is
mainly due to the large number of models it has to train to optimize the hyperparameters.
However, increasing the steps in the feature engineering also increases the runtime, since the
dataset is larger through the additional features. The chosen hyperparameter configuration
leads the model to converge on both the training and testing sets. There is not a very
strong ‘elbow’ visible in the training set. That seems to improve iteratively within the
predefined parameter set. The testing set does show a clear ‘elbow’ and remains roughly
equal while the training set reduces error. This means that the model has a tendency to
overfit. A visualization of the convergence is shown in Figure 6.2.

Hyperparameter Parameter Value

‘boosting_type’ ‘goss’
‘metric’ ‘mae’

‘max_depth’ 10
‘num_leaves’ 512

‘num_iterations’ 500
‘learning_rate’ 0.125

‘colsample_bytree’ 0.63
‘min_child_samples’ 13

‘reg_lambda’ 87

Table 6.3: Hyperparameter Tuning LightGBM

For the LightGBM model, the recommendation for this dataset would be to only
use a single step of feature engineering and only focus on BUs 1 and 3. Single-step
feature engineering has a lower runtime and similar accuracy compared to a 2-step feature
engineering configuration. Furthermore, using fewer features makes it easier to explain
the results to a ‘layperson’. BU 2 is also very dissimilar to BU 1 and 3. This reduces the
accuracy of the model significantly. Combined with the information we have about BU
2 (Section 4.3.1), we will only focus on BU 1 and 3 in the remainder of this thesis. This
leads to the hyperparameter configuration shown in Table 6.3. On the testing data, it
has the ability to predict the FVA with an MAE of 0.435. However, the model forecasts
pessimistically so in most cases the LightGBM model will predict a FVA that is less than
the actual FVA.

6.2.3 Neural Network

The last explored prediction method is the feed-forward neural network. Within
Section 5.3.3, the design of the model and the hyperparameter tuning are described. Just
like the LightGBM model, certain combinations of the NNs are tested and the results can
be seen in both Table 6.5 (Subset) and Appendix G.

Unlike the LightGBM model, the NN does seem to benefit from the 2-step feature
engineering. The testing MAE remains roughly equal between no (0.495) and one-step
(0.497) feature engineering but manages to go down a bit further after the second step
(0.486). The NN seems to predict more pessimistically compared to the LightGBM model
and in turn, also more pessimistic than the actual results. Additionally, the highest testing
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Figure 6.2: LightGBM Convergence

MAE is also slightly higher (0.486 for NN compared to 0.435 for LightGBM). The most
striking difference is the increase in the time required for hyperparameter tuning, which is
roughly double. One also has to take into account the significantly smaller grid space in
which the hyperparameter tuning is executed.

After hyperparameter tuning, Table 6.4 shows the best parameters for the model
together with two-step feature engineering. With this parameter configuration, the model
converges quickly as visualized in Figure 6.3.

Hyperparameter Parameter Value

‘activation’ ‘relu’
‘batch_size’ 64

‘dropout_rate’ 0.2
‘epochs’ 200

‘kernel_regularizer’ L2(0.01)
‘learning_rate’ 0.001

‘num_hidden_layers’ 3
‘num_neurons’ 128

Table 6.4: Hyperparameter Tuning Neural Network
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Figure 6.3: NN Convergence

# Model BU Scaled Clip FE #
Feat

Training
MAE

Testing
MAE

Training
Bias

Testing
Bias

Runtime
(hh:mm:ss)

7 LR All Yes Yes No 29 0.801 0.812 -0.000 0.003 00:00:00
8 LR 1 & 3 Yes Yes No 28 0.556 0.553 0.000 0.083 00:00:00
16 LGBM All Yes Yes No 29 0.494 0.669 -0.001 -0.024 03:09:10
17 LGBM 1 & 3 Yes Yes No 28 0.489 0.507 0.018 -0.033 02:07:26
19 LGBM All Yes Yes 1 35 0.491 0.594 -0.172 -0.201 02:56:44
20 LGBM 1 & 3 Yes Yes 1 33 0.334 0.435 -0.695 -0.697 04:02:14
22 LGBM All Yes Yes 2 104 0.436 0.592 -0.166 -0.188 06:03:11
23 LGBM 1 & 3 Yes Yes 2 102 0.324 0.437 -0.670 -0.694 04:52:25
31 NN All Yes Yes No 28 0.627 0.649 -0.272 -0.294 14:16:02
32 NN 1 & 3 Yes Yes No 27 0.474 0.495 -0.945 -0.953 10:42:31
34 NN All Yes Yes 1 37 0.622 0.649 -0.376 -0.390 13:56:15
35 NN 1 & 3 Yes Yes 1 32 0.472 0.497 -0.936 -0.930 10:45:24
37 NN All Yes Yes 2 112 0.599 0.652 -0.283 -0.290 14:32:10
38 NN 1 & 3 Yes Yes 2 97 0.456 0.486 -0.767 -0.759 10:52:21

Table 6.5: Results Prediction Models (Subset)
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6.2.4 Prediction Behavior

Next to just a numerical measure to check the accuracy of a prediction model, we
will dive deeper into this section by visualization and closer analysis of the predicted
values. This will be done for both the one-step feature engineering LightGBM model and
the two-step feature engineering Neural Network. Both predictions are based on BU 1 and 3.

Figure 6.4: Histogram Predictions vs Actuals For FVA - LightGBM

We will begin with a visualization in which the predicted and actual FVAs are com-
pared. The y-axis represents the frequency with which the values occur and the x-axis
represents the FVA. Figure 6.4 shows the histogram for the LightGBM model while Figure
6.5 shows the Neural Network. Both models seem to show similar prediction behavior,
being slightly pessimistic and cautious. The models do not like to predict extreme values
and predict most often a slightly negative FVA. Both models also show very small tails,
which also indicates that they do not frequently forecast extreme values. Between the
LightGBM and the Neural Network, there is also a difference visible. The Neural Network
is more cautious and has smaller tails to its histogram.

Actual LGB Prediction LGB Abs Error LGB Error NN Prediction NN Abs Error NN Error

Mean -0.175 -0.041 0.436 0.134 -0.024 0.481 -0.171
Std 1.018 0.443 0.811 0.911 0.349 0.923 1.027
Minimum -5.000 -6.004 0.000 -5.288 -6.050 0.000 -5.519
25% -0.217 -0.078 0.030 -0.118 -0.000 0.044 -0.208
50% 0.000 0.004 0.147 0.001 -0.000 0.167 0.000
75% 0.169 0.099 0.457 0.190 0.029 0.449 0.145
Maximum 5.000 4.094 5.537 5.537 3.206 5.989 5.989

Table 6.6: Prediction Descriptives

Within Table 6.6, a deeper dive is taken numerically. The pessimistic behavior sug-
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Figure 6.5: Histogram Predictions vs Actuals For FVA - Neural Network

gested in the figures is not actually correct. On average, the actuals have a lower FVA
which is mainly caused by a tail of forecast enrichments with a value of -5. Furthermore,
the predicted values have a lower standard deviation which shows that it is more ‘cautious’
in predicting values. To confirm that the Neural Network is more cautious compared to
the LightGBM model, its standard deviation is also lower (0.349<0.443). Furthermore, the
LightGBM models in the range from 25% up to 75% encompass only enrichments that
either improve or decrease the forecasting accuracy slightly, while this is exacerbated for the
Neural Network with values even closer to 0. Lastly, the highest prediction of the Neural
Network is much lower than that of the LightGBM model (3.206<4.094)

Table 6.7 shows the absolute error of the predicted FVA and how often this occurs.
We can see that it often is able to predict the FVA rather accurately, but there are some
instances in which the model seems to mispredict error terms completely. For every thresh-
old, the Neural Network has a higher count of occurrences, indicating worse behavior.

Absolute Error Count LightGBM Count Neural Network

>0 4,398 4,953
>1 540 570
>2 236 274
>3 133 181
>4 84 127
>5 31 78

Table 6.7: Prediction Errors per Model

Lastly, we can look at both BU and product categories (Tables 6.8 and 6.9 show the
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LightGBM performance and Tables 6.11 and 6.12 show the NN performance) further to
identify the models’ strong and weak points. The LightGBM model seems to have a higher
variance in accuracy across the product categories. For instance, within BU 1, it is able
to predict category BX with an average error of 0.068, while category AZ has an average
prediction error of 0.665. Especially for BU 1, it is interesting to dive into the average
enrichment sizes. Table 6.10 shows that the best-performing categories AX and BX have
average enrichment sizes close to zero. Even though it does not hold true for each category,
however, it does seem that the prediction errors increase together with the sizes of the
enrichments. Given that the enrichment sizes are also all highly positive in the top right of
Table 6.10, this is very likely to be the case. The Neural Network is much more consistent
ranging from 0.496 up to 0.668. This pattern is also mirrored by the results in BU 1.

BU 3 X Y Z

A 0.264 0.433 0.825
B 0.258 0.426 0.553
C 0.468 0.387 0.784

Table 6.8: Prediction Error - BU 3 -
LightGBM

BU 1 X Y Z

A 0.181 0.429 0.665
B 0.068 0.233 0.455
C 0.280 0.268 0.352

Table 6.9: Prediction Error - BU 1 -
LightGBM

BU 1 X Y Z

A 1.99 585.97 81.12
B 0.23 64.46 107.27
C 12.26 5.28 8.13

Table 6.10: Average Enrichment Size - BU 1 - LightGBM

BU 3 X Y Z

A 0.582 0.668 0.513
B 0.505 0.551 0.522
C 0.496 0.501 0.496

Table 6.11: Prediction Error - BU 3 -
Neural Network

BU 1 X Y Z

A 0.515 0.534 0.504
B 0.469 0.520 0.539
C 0.475 0.451 0.443

Table 6.12: Prediction Error - BU 1 -
Neural Network

Taking all these findings into account, the LightGBM model is selected as the best-
performing model. It has a lower MAE, lower hyperparameter optimization time, and
only requires a single step of feature engineering. Therefore, in the explainability and
notification sections, the results from the LightGBM model are used.

6.3 Explainability

To explain the important features of the machine learning model, a Shapley summary
plot is created through the SHAP package (Lundberg et al., 2017). The SHAP package
will run a permutation explainer that will identify the ‘rationale’ behind each prediction.
After this, one can explore the results through a number of plots. Results for the entire
dataset or singular predictions can be explored. The summary plot shows the overall feature
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importances in Figure 6.6.

On the vertical axis, all features are shown in descending order (i.e., the most important
feature is at the top). On the horizontal axis, the different instances of a feature are labeled
based on their SHAP value, which indicates the impact on model output. Points that are
on the right of the divider indicate that it was beneficial to the prediction (i.e., predicted a
higher FVA), while points on the left indicate that this instance was negative for model
prediction (i.e., lower FVA). Lastly, each point on this horizontal axis is labeled with a
color, representing its value for the feature it belongs to, with magenta indicating a high
feature value and blue a low feature value. Below the features are itemized and explained
per category for clarity.

• Forecast-Related:

– Enrichment Size: According to SHAP, enrichment size is considered to be the
most important feature. The colors in the plot show that a small enrichment
size (i.e., a large negative adjustment) is beneficial to the expected FVA. The
second most important feature is the squared enrichment size, a feature created
by AutoFeat. By taking the square, negative adjustments become positive values
and thus, it looks purely at the magnitude. There are numerous red dots on
both sides of the divider, indicating that large adjustments can both improve or
decrease the FVA. However, the original feature also indicates the importance
of the direction.

– Statistical Forecast: Amongst a lot of blue dots, we can see a few red ones on the
right side of the divider. The small number of red dots indicates that there are a
few very large statistical forecasts. However, these are expected to improve the
FVA. Due to the scaling, it is hard to see what effect smaller statistical forecasts
have on the expected FVA.

– Previous Forecast: Apparently, when the last forecasted quantity was low, it
indicates that the FVA is predicted to be higher.

– Number of Adjustments: Both the number of adjustments, and its logarithmic
counterpart, show interesting behavior for their effect on FVA. Whenever an
enrichment has been adjusted a great number of times, it can either be a predictor
of both a good or bad FVA. This could be through the fact that a planner often
receives new information and updates the forecast accordingly, or they tinker
with the forecast for a long time to find the best value. When the number of
adjustments is closer to 1, it is not a clear predictor of FVA.

• Time-Related:

– Time-lag: Time-lag seems to have a small effect on the predicted FVA. The
behavior seems to follow the number of adjustments, i.e., high values can either
indicate that the FVA will be good or bad.

– Previous FVA: A product-customer’s previous FVA is a good predictor for an
upcoming FVA, especially when previous enrichments were successful. Planners
are thus consistent in improving FVA through either good information availability,
easy forecastable products or some other factors beyond the scope of this dataset.
For this feature, AutoFeat has also added its squared variant, looking at absolute
values.
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Figure 6.6: Shapley Summary Plot
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– Time: Due to the sine-cosine encoding, it is hard to interpret the feature
values for these features. They are also scattered around the plot, making
their interpretation hard. We do see that the cosine of the day of the week is
the strongest predictor out of all time features. However, feature values are
scattered.

• Product-Related:

– Product Category: Product categories are scattered around the SHAP summary
plot. We can see that product categories BY, CZ, and CY are clear predictors of a
low FVA. This is not surprising since these categories all deal with relatively high
variance, at which planners struggle (Sanders, 1992; Franses, 2013). Categories
AY & AX are enrichments predictors of a better FVA. However, these predictors
are less important according to SHAP values. These categories concern the
products with the highest value and are thus important to enrich correctly.

• Planner-Related:

– Optimism Bias: This feature is not considered to be very important in predicting
the FVA, since it is reported in the lower region of the summary plot. There is
also not a clear relation between the height of the value and the predicted FVA.

– Anchoring Bias: Just like the statistical forecast, the colors on the graph do not
clearly indicate the values for the feature. There are a large number of red dots
that indicate that the predicted FVA will be lower.

– Overreaction Bias: The most important planner-related feature is a planner’s
overreaction bias. There is a clear indication that a high overreaction bias
predicts a lower FVA.

From the analysis of Figure 6.6, it is clear that ‘Forecast-related’ features are the most
important in predicting FVA. ‘Product-related’ features are also very important, given
that the product falls in a certain product category. ‘Time-related’ features are not strong
predictors apart from the lagged FVA and overreaction bias seems to be the most important
‘Planner-related’ feature.

For each enrichment, a separate SHAP plot could be made to understand the decision
of the prediction model. Within Figure 6.7, a single enrichment is explained. As a basis,
the model makes a default prediction of -0.037 as seen on the X-axis. From this initial value,
it moves the expected FVA based on the features. As expected, the enrichment size is the
dominant factor for the adjustment. Since we seem to be dealing with an averagely-sized,
downward adjustment, the FVA is improved slightly. We know this since the base feature
indicates a feature value of -1.071 (scaled) while the squared features indicate a value close
to zero. The fact that one adjusts downwards is very good, while the average size is not.
Furthermore, the lagged FVA and its squared counterpart both predict an improvement in
FVA. The previous forecast is slightly below average, which predicts a good FVA and the sta-
tistical forecast is slightly above average and this is also beneficial for the FVA. Furthermore,
there is quite some time-lag for this prediction which reduces the FVA slightly. Lastly, the
product is not a BY category, and since this is not the case, it predicts a slightly higher FVA.
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Figure 6.7: Individual Enrichment - SHAP

6.4 Notifications

A prediction model that is accurate in predicting the FVA is only useful up to a certain
level. The real value comes through its ability to preventively identify when enrichments
are expected to reduce the FVA and notify the planner accordingly. Below, we will explore
when planners should be alerted and what gains this could result in.

When we look at the overall statistics of BU 1 and 3, the average FVA is slightly below
zero (-0.005), which indicates that on average, planners reduce the forecasting accuracy. In
most cases, planners will subtract or improve the FA by small values, but in some cases,
they reduce the value significantly. Ideally, you want to alert planners when you identify
that an enrichment might damage the accuracy. The LightGBM prediction model is able
to predict the FVA based on the enrichment factors, while SHAP is able to explain why
this prediction leads to a certain value. In this section, we have to identify at what value
we notify planners about a potential bad enrichment, the so-called threshold FVA.

Based on the literature about algorithm aversion by Dietvorst et al. (2015), we know
that giving advice can be a difficult task. Humans are more inclined to receive advice from
other humans than from algorithms, even if the algorithms are better. This is exacerbated
when the algorithm makes mistakes. The threshold FVA determines when the planner
receives an alert. We consider an alert to be correct when the actual FVA also turns out
to be below zero. For instance, when the model predicts an FVA of -2.5, an actual FVA
of -0.5 is considered correct. We also do not want to alert planners too frequently, since
they are more likely to discard notifications. Thus, we must identify a threshold FVA that
balances the number of notifications and the percentage of correct notifications.

Whenever a notification is sent, the Shapley values for the individual forecast can be
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used to explain why the model predicts a low value. As an example, Figure 6.8 shows an
enrichment that the prediction model selected for a notification. This notification explains
the low predicted FVA through a number of features. The planner gets notified about
features that they can adjust, like the enrichment size, but also about features that are
related to their overreaction bias and the hierarchy level at which they adjust. Currently,
this enrichment is executed at a very high hierarchy level, which means that it will affect
a lot of products. Based on this advice, the planner should reconsider executing the
enrichment at a lower hierarchy level or reconsider the enrichment size. When the planner
would look at a lower hierarchy level they could be more precise in adjusting each product
individually based on the information available for each product.

Figure 6.8: Individual Notification

Within this thesis, we focus on an implementation plan without implementing it in
Company A. The results from this section are drawn from the testing set of the LightGBM
model. Therefore, we are not aware of how effectively planners will incorporate the advice
from the alerts, and if this will result in a positive FVA. Therefore, we will set a baseline
by using the statistical forecast. Whenever the model identifies a ‘harmful enrichment’, the
enrichment is replaced by the original statistical forecast, resulting in an FVA of 0. This
method is robust and easy to implement, since planners’ behavior is unknown.

In Table 6.13, we have tested a range of FVA thresholds for quantity of notifications
and its accuracy. Like displayed in Table 6.6, most predictions are located around an FVA
of 0. The number of notifications sent will reduce greatly when the threshold value is moved
further down. Not all notifications that are sent are correct and the extent to which this
happens is seen in the ‘% Incorrect’ column. For a threshold FVA of -1.25, this value is
lowest, and it increase when the threshold is moved further up. Without notifications, the
FA of enriched forecasts is 0.478 and the statistical FA is 0.483. This results in a negative
FVA of -0.005. Through notifications, we are able to improve the forecast accuracy for
every threshold value. The FVA also becomes positive for all options.

According to Table 6.13, a threshold value of 0.00 will result in the best performance,

Effective Forecast Enrichments - Driving Factors Behind Enrichment Quality 54



since the FA is highest. However, this would lead to a large number of alerts of which many
are incorrect. This threshold value should be preferred when the planners’ acceptance of the
model is not taken into account. When one would implement this model at an organization,
we have to understand that: i) planners could have the ability to improve the forecast
beyond the statistical forecast and ii) that they should not receive too many alerts. To
see at what threshold level the notifications could be most effective, we also calculated the
‘FVA per notification’. As the name suggest, this column divides the improvement of the
FVA compared to the number of notifications required to achieve this. At a threshold level
of -0.50, the FVA improves most per notification.

Threshold % Notification Notifications % Incorrect FA FVA FVA per Notification

-1.50 1.42 70 15.71 0.484 0.002 8.21 ∗ 10−5

-1.25 1.94 96 13.54 0.468 0.003 7.63 ∗ 10−5

-1.00 2.77 136 14.60 0.487 0.005 6.49 ∗ 10−5

-0.75 4.25 209 17.62 0.490 0.007 5.45 ∗ 10−5

-0.50 7.27 356 20.61 0.511 0.028 9.10 ∗ 10−5

-0.25 14.05 686 27.23 0.524 0.042 6.66 ∗ 10−5

0.00 50.56 2222 28.99 0.532 0.050 2.43 ∗ 10−5

Table 6.13: Notification Summary Table

Further research should be conducted on planners’ ability to actually incorporate the
notifications from such a model and see the extent by which they can improve their FVA.
Based on their ability and acceptance of the model, the threshold shall vary. However,
if we utilize the method described before (i.e., a notification will result in the enriched
forecast to be reset to the statistical forecast), we achieve an FA that is better than either
the original enriched or statistical forecasts.
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7 Conclusion

In conclusion, we will start by answering the research questions that have been defined
in the introduction, providing answers, and putting them in relation to the literature. After
which, we delve into the scientific and practical implications combined with recommenda-
tions for application.

RQ1: What patterns do planners exhibit when adjusting system-generated
forecasts and how does this influence the overall forecasting accuracy?

There are mixed results regarding the ability of planners to add value to the statistical
forecast. Literature reveals a pattern of over-optimism among planners in their forecasts
(Fildes et al., 2009; Eroglu & Croxton, 2010; Syntetos et al., 2009; Trapero et al., 2013),
often anticipating higher sales quantities than statistical methods would predict. An
effective forecast enrichment should be an intervention based on a statistical method when
the human planner can incorporate a clear piece of information that is not modeled by
the system. More often, good enrichments are adjustments downwards compared to the
statistical forecast and these have been found to increase the accuracy (Fildes et al., 2009).
However, for planners, it is also more difficult to model a noisy time series since they are
inclined to search for patterns in the noise (Sanders, 1992). Planners also adjust forecasts
more frequently and significantly when the timelag is lower. Furthermore, planners can
have a large number of biases, since humans have cognitive limitations that prevent full
rationality. Additionally, humans can be hesitant to incorporate external advice, especially
when this advice is not generated by another human (Dietvorst et al., 2015).

RQ2: How can tree-based models and neural networks be applied to estimate
enrichment quality and how can their results be explained?

As we have seen in the literature, these two models go about their predictions in a
completely different manner. Both kinds of models can be used for either regression or
classification tasks. Given the fact that we have labeled training data available both can
be utilized in a supervised manner. Decision trees purify their data by creating splitting
points of nodes based on certain criteria that maximize purity. There are a large number
of tree-based models available, of which LightGBM (Ke et al., 2017) has a preference due
to its properties of Gradient-based One-Sided Sampling (GOSS) and Exclusive Feature
Bundling (EFB).

Neural networks operate by executing mathematical transformations within the nodes
and require tuning of weights and biases in order to create accurate predictions. These
are trained through the use of backpropagation. Within the neural network, the user can
specify the number of nodes, activation functions, and the number of hidden layers, together
with the dropout rates. Overall, neural networks can map more intricate relations, at the
cost of potential overfitting and more computational resources.

In order to explain the decisions of the models, SHAP (Lundberg et al., 2017) can be
used to find the contribution of each individual feature. In turn, it is able to explain which
features are deemed to be important to the overall prediction and which features are not.
It can be investigated at either model or individual prediction level.

Effective Forecast Enrichments - Driving Factors Behind Enrichment Quality 56



RQ3: What characteristics from human forecast enrichments that are de-
scribed in the literature show up in this dataset?

Conclusions regarding a planner’s ability to add value have often been mixed within
this field as results from Petropoulos et al. (2016), Goodwin et al. (2007), Sanders &
Ritzman (1995) and Belvedere & Goodwin (2017) have shown. Building on these mixed
results, the BUs and planners show largely varying results, where in some cases value is
being added and in other cases, value is being subtracted. Some patterns that underline
these results are found amongst planners at Company A, through their over-optimistic
behavior in their forecast enrichments. This bias is also found in the results of Fildes et
al. (2009); Eroglu & Croxton (2010); Syntetos et al. (2009); Trapero et al. (2013). Even
though planners within each BU exhibit this bias, the extent by which it occurs varies,
with much higher values in BU 2.

These results are also found regarding overreaction bias, with a clear correlation
between the level of optimism and overreaction bias. The low and non-significant values for
anchoring bias indicate that planners do not rely strongly on the statistical forecast. This
opposes the findings by Sanders (1992) and Baets & Harvey (2018). Although planners
adjust forecasts mainly for products that are highly variable and high in value which is
suggested by Scholz-Reiter et al. (2012), their performance varies and does not consistently
improve the accuracy of these categories, except for category CX. Thus, there is no clear
evidence that planners are able to complement the statistical forecasting methods in product
categories that have higher variances. In most product categories, planners reduce the
forecasting accuracy compared to the statistical baseline forecast. This is in line with the
conclusion from Sanders (1992) that humans are less accurate in noisy data.

RQ4: What features are of great importance to the quality of forecast
enrichments?

Khosrowabadi et al. (2022) researched what kind of features have an influence on good
forecast enrichments. Within their paper, they find out that the adjustment direction,
sales quantity, price, freshness, and enrichment size are important factors. In this thesis,
different features have been taken into account. It expands on the previous research by
combining both planner, forecast, time, and product-related features in a single prediction
model. This gives us an understanding of which kinds of features are the most important
indicators. After selecting the LightGBM model, with capped FVA and 1-step feature
engineering, we are able to predict the FVA of a forecast enrichment at an accuracy level
of 0.432 (MAE) based on a number of features. The most important features include
Enrichment Size, Lagged FVA, Statistical Forecast, Previous Forecast, Product Category,
Number of Adjustments, and Overreaction Bias. A positive FVA is more likely when the
enrichment size is large and negative, the FVA has been high in the past, the statistical
forecast is high, and the previous forecast is low.

RQ5: In what conditions could planners be notified about their expected
enrichment quality?

Providing humans with advice can be a complex subject as seen in the paper by
Dietvorst et al. (2015). Humans seem to distrust algorithms, especially when they see
the algorithm struggle in a certain scenario. Therefore, one must be careful in notifying
planners by preventing incorrect alerts. This dataset contains numerous enrichments that
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lead to a decrease in FVA. When combined with the mean average prediction error of
the model, it is advisable not to alert planners in every instance where a negative FVA is
projected, since there will be a large number of notifications of which many will be false
(i.e., FVA turns out to be positive). In order to solve these two problems, certain threshold
values are explored. The predictions can be explained through their individual Shapley
plots that show what features cause the prediction to be below the threshold. Based on
the planners’ ability to effectively enrich these forecasts and their acceptance of the model,
a threshold value could easily be selected.

Taken together, we can conclude that behaviors from planners in literature also
are represented within the process industry. We support the literature’s mixed findings
regarding planners’ forecast-enhancing capabilities. A LightGBM model has been created
to predict the quality of an enrichment based on features that are related to the forecast,
time, product, or planner. We expand the number of features that are predictors of FVA
and create a method through which planners can be alerted about a predicted bad forecast
enrichment.
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8 Discussion

8.1 Practical Implications

Besides academic findings, there are also practical implications for EyeOn. We have
seen that planners within Company A do not always add value through their enrichments.
This situation has been clear for consultants at EyeOn for a long while. However, it was
not clear what features affected the accuracy and what their importances were. The first
practical implication is that the findings in this thesis give EyeOn a clearer overview of
how various features affect accuracy of forecast enrichments. This expanded knowledge
makes consultants able to quicker identify reasons for lacking forecast enrichments for their
customers.

Furthermore, through this prediction model, EyeOn could expand its Jedox software
to include a notification system to prevent planners from drastically reducing the FVA.
EyeOn should investigate how planners would respond to the notifications and if they are
able to effectively improve the FVA. If they would like to utilize the system in its current
state, we have shown that certain enrichments could be replaced by the statistical forecast
to achieve a higher accuracy than either method separately. EyeOn could try to sell an
additional forecast enrichment service to their customers. Since it is a general model that
can be applied to several companies. EyeOn would be able to provide additional service
and business insights to their customers, while the customers will enjoy better forecasting
performance. Through their previous research on decisional guidance, they have a lot of
information to effectively guide planners.

This thesis is also a blueprint from which the system can be implemented for other
customers. Once they have data available from another organization, they can investigate
what features they can utilize. The data only has to be cleaned and categorical columns
have to be indicated, after which the LightGBM model can be tuned and the SHAP values
can be calculated to give them the required insights. This can then be translated to an
appropriate notification threshold for that specific customer.

8.2 Limitations

The results are based on the results of a single company within the process sector.
Therefore, we know that the results are true for this organization, but we do not know for
sure if they are mirrored by others. Additionally, there are some oddities within the dataset.
For BU 2, the hierarchy levels do not completely line up with the actual customer-product
level, creating skewed results. Therefore, this data has not been utilized in the final machine
learning models, and is the overall dataset reduced in size. There are also a lot of data
points that are removed from the dataset due to missing sales data, or sales quantities
of zero. Lastly, planners have the ability to upload all their enrichments in a single file.
This might be very useful for the planner at Company A but does not give EyeOn the full
picture of their enrichment behavior.

The limited data points also play a part in the next limitation, namely the model
accuracy and hyperparameter tuning. Machine Learning models perform better when they
are being fed larger datasets and have sufficient time to train. The dataset in this thesis is
relatively small for a machine learning model to identify all patterns and thus accuracy
could be improved with more input data. Additionally, the hyperparameter tuning uses a
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two-step grid search. This method is used to reduce computational intensity since further
specifying hyperparameter values would exponentially increase run time. In turn, it is not
sure the hyperparameter will find the optimal parameter tuning, however, it will find a
pretty good tuning. Either expanding runtime, using more powerful hardware or a different
optimization methodology could improve results.

The notification methodology has also not been tested by actual planners to capture
their behavior toward it. The recommendations are based on guidelines and results from
the testing dataset. Planners will not accept the alert in every situation, and they will
not perfectly adjust their enrichment every time. Thus, an experiment or a roll-out at a
customer could confirm these results and show how planners handle this advice in a real
business setting.

8.3 Future Research

This thesis is a stepping stone within the field of behavioral operations management.
From this work, several new paths could be explored to deepen our knowledge about
effective forecast enrichments.

The main suggestion is focused on exploring how planners would react to the alerts
suggested by the algorithm. Prior work by Dietvorst et al. (2015) has shown that humans
have trouble working with advice from an algorithm, especially when they stumble. How-
ever, since then, more research has been executed on decisional guidance, and the rise of AI
models to the public knowledge might affect positively have affected people’s perception.
People might be more willing to accept advice through increased trust in AI and improved
clear guidance on how they should adjust forecasts. Furthermore, it should be investigated
if planners are able to effectively add value based on notifications.

Additionally, prior research has found that there are more product-related features
that can predict enrichment quality (Khosrowabadi et al., 2022). However, the dataset in
this thesis did not include any. Thus, one could for instance not discern between the value
of different products or their levels of perishability. Hence, we do not know where these
features slot in among the importances of the features in this thesis. Another feature that
is common but lacking in the dataset is a promotion indicator. Within the process industry,
this is also not applicable, however, in other industries, one could include all these features
for a complete overview.

Lastly, we briefly touched during this thesis on the comments that planners can add
to their enrichments. An expansive analysis using NLP could provide the company with
more clear insights into their enrichment behavior and improve the explanation for their
performance. Another option could be to create a predefined set of comments that planners
can select from. Hereby, the comments will be more structured and generalizable.
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A Machine Learning

A.1 Activation Functions

In Figure A.1, the different available activation functions are visualized.

(a) SoftMax Activation
f(x) = log(1 + ex)

(b) Sigmoid Activation
f(x) = ex

ex+1

(c) ReLU Activation
f(x) = max{0, x}

Figure A.1: Activation Functions

A.2 Backpropagation

This section of the Appendix will focus on how backpropagation works to optimize the
parameters in the Neural Network. To optimize an unknown bias in the network, it first
has to be initialized at a certain value (0 by default). We shall assume that all parameters
in the neural network have been optimized, apart from the last bias. One could look at
Figure 3.1 to visualize this problem. All weights and biases are optimized apart from the
bias that is added in the end node. After the bias in this node has been initialized with the
value of 0, the sum of the squared residuals is calculated. The residuals are the difference
between the observed values and the predicted values. This difference is calculated between
each observed and predicted value. Each residual is squared after which it is summed, then
one can find the overall model quality. Now we know what the sum of squared residuals
(SSR) is for a bias of zero, the bias parameter can be adjusted to another value that is
tested to see what its SSR is.

SSR =
n∑

i=1

(Observationi − Predictioni)
2 (A.1)

However, testing a large number of values can be computationally intensive, and thus
the gradient descent method is preferred. To utilize the gradient descent one has to employ
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the chain rule:

dSSR

dBias
=

dSSR

dPrediction
∗ dPrediction

dBias
(A.2)

dSSR

dPrediction
=

n∑
i=1

2 ∗ (Observationi − Predictioni) ∗ −1 (A.3)

dPrediction

dBias
=

d

dBias
(
∑

(input) + bias) = 1 (A.4)

dSSR

dBias
=

n∑
i=1

2∗(Observationi−Predictioni)∗−1∗1 =

n∑
i=1

−2∗(Observationi−Predictioni)

(A.5)
In Equation A.2, the basic chain rule is shown, given that one wants to differentiate the

SSR over the bias. Equation A.3 shows the derivation of the first fraction. One multiplies
the residuals by 2 and reduces the exponent by 1, and multiplies it by the derivation of the
inner part (Observationi − Predictioni) for prediction, which is -1. Equation A.4 derives
the prediction over the bias. As we have seen in the previous section, the prediction can be
seen as the weighted activation function outputs plus the bias that is introduced at the end
node. This leads to an answer of 1. Equation A.5 shows the final solution for the chain
rule.

Now gradient descent can be applied. First, dSSR
dBias has to be filled in for the initial bias

level. This output will be the slope in the gradient descent. The slope is multiplied by the
learning rate to find the step size. Finally, one will take the initial bias value and decrease
it by the step size, which creates a new bias that can be re-introduced in the system. This
process is repeated until the step size is close to zero. At that point, the system is not
making any real improvements anymore, and the bias is finalized.

B Forecasting Behavior

B.1 Forecasting Behavior

This section will explore the time-related behavior of planners. Within the models, we
have included the hour of the day, day of the week and day of the month as predictors of
FVA. We will identify when and how planners adjust forecasts.

For each enrichment, we have a timestamp feature, that saves the exact time (UTC)
at which a forecast enrichment has been submitted. Through this information, we can
see during what days of the week an enrichment has taken place. For each BU, enrich-
ments can be made on different days, some of which include weekend days, but these
are limited. However, all enrichments are labeled using UTC and this could distort the
picture. For instance, planners in the US or Japan might adjust forecasts on Monday
or Friday but they are reported in UTC as being adjusted on the weekend. We do not
have data on each planner’s location. The specific days at which forecasts are adjusted
seem to be very different based on the BU and do not seem to show clear general phenomena.

When zooming in on the specific time during which adjustments are made, we can see
that most adjustments are made in the morning for each BU. Within BU 3, all planners
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Figure B.1: Adjustment Count Per Day of the Week

likely operate within the same timezone, since there are no forecasts in the evenings or
nights. For BU 2, the large majority of adjustments are made during ‘Western-European
working times’, but there are still several adjustments executed at night. BU 1 seems to
have a slight dip during the night but adjustments seem to be made around the clock.

Figure B.2: Adjustment Count Per Hour of the Day

Lastly, we can have a look at probably the most interesting set of graphs regarding the
timing of adjustments, the day of the month at which the enrichments are executed. For
each of these BUs, EyeOn provides a monthly statistical forecast, which the BUs can adjust
on a monthly level. Adjustments that are made during this month, will be delivered in
the following month. Within these graphs, we can see several interesting things happening.
Firstly, for BU 1 and BU 2, we can see a peak at the beginning of the month. This
corresponds with Market Intelligence (MI) updates that the planners receive. Based on this,
planners make the adjustments within the Jedox software. We can see a large peak across
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all three BUs towards the end of the month. This can be either due to ‘deadline-seeking
behavior’ or the wait until the last moment to utilize the most up to date information.
Additionally, it could be the case that planners maintain their adjustments in Microsoft
Excel during the month and upload them at the end of the month.

Figure B.3: Adjustment Count Per Day of the Month

We can further zoom in on a single planner to improve the understanding of their
behavior. As a prime subject, we will select planner ‘24’. This planner works within BU
3 of Company A and has made by far the most enrichments in the last year. Within 11
months, they managed to execute over 16,000 enrichments. Planner 24 does execute various
adjustments during the month, however, those are limited to a few adjustments per day. At
the end of every month, they can adjust several thousand forecasts within 90 minutes. We
cannot be sure if they input everything by hand or upload an Excel file into Jedox, however,
the interval between adjustments is too small for planners to decide on order quantities.
Within Table B.1 we have identified the peaks by filtering out the days on which more than
100 adjustments are made by this planner. Apart from August and November, planner 24
enriches the forecasts, in the same manner, every month.

Date First Time Last Time # Adjustments Total Time
(min:sec)

Mean Interval
(sec)

25-02-2022 07:46:23 08:18:29 1,999 32:06 0.96
28-03-2022 08:59:29 09:54:57 2,170 55:28 1.53
27-04-2022 12:18:57 13:09:28 2,322 50:31 1.31
30-05-2022 06:54:11 08:13:05 2,318 78:54 2.04
28-06-2022 08:44:51 10:19:50 2,170 94:59 2.63
28-07-2022 09:06:26 10:25:13 2,292 78:47 2.06
26-09-2022 10:57:28 12:17:47 1,888 80:19 2.55
27-10-2022 10:34:05 14:21:33 804 227:28 16.98

Table B.1: MI Adjustments Planner 24
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C Statistical Methods

In this appendix, the statistical methods used in this thesis are briefly explained in
alphabetical order.

C.1 Binomial Test

The Binomial Test is used when when dealing with dichotomous outcomes (i.e.,
success/failure, yes/no, 1/0). The test checks if the observed proportion of successes in a
sample matches a pre-specified proportion under the null hypothesis. The binomial test
provides a p-value, to verify if the observations deviate significantly from the expected
proportion. The test assumes that each trial is independent and has an equal probability
of success (“Binomial Test”, 2008).

C.2 Breusch-Pagan Test

The Breusch-Pagan Test by Breusch & Pagan (1979) is used to check if the linear
regression model is heteroscedastic. The null hypothesis for this test assumes that the error
variances are all equal (homoscedasticity), and the alternative hypothesis assumes that the
error variances are not equal (heteroscedasticity). A significant test statistic rejects the
null hypothesis, indicating the presence of heteroscedasticity in the data.

C.3 Shapiro-Wilk Test

The Shapiro-Wilk Test is a widely used method for testing the normality of a data
set (Shapiro & Wilk, 1965). The null hypothesis presumes that the population is normally
distributed. The test measures the degree of data deviation from a normal distribution.
The test statistic, W, is a ratio of the best estimator of variance to the sample variance.
A smaller value of the Shapiro-Wilk test statistic suggests that the sample distribution
deviates more from normality. A p-value less than the significance level (usually p<0.05)
enables us to reject the null hypothesis, implying that the data is not normally distributed.

C.4 Student’s t-test

The Student’s t-test is a popular statistical test that checks if there are significant
differences between the means of two groups. The test relies on the Student’s t-distribution,
which is shaped according to the degrees of freedom. The standard deviation is derived
from the sample data. By comparing the means and variability of two datasets, the t-test
enables us to test the null hypothesis that the means of the two groups are equal. A
significant result implies a significant difference in the means of the groups (Field, 2009).

C.5 Wilcoxon Signed-Rank Test

The Wilcoxon Signed-Rank Test is a non-parametric statistical method used to compare
two paired groups and determines if their population mean ranks differ. The test does not
make assumptions regarding the normality of the data and is therefore appropriate for data
that does not meet this requirement. The test employs the rank of the absolute differences
between pairs, followed by a comparison of the sum of ranks with the expected sum under
the null hypothesis. The p-value derived from this test indicates whether the differences
between pairs are significantly different from zero (Wilcoxon, 1945).
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D Insight in MAE%

Within this section of the appendix, figures for the behavior of the MAE% are shown.
Within the figures, we can see that the MAE% still has the potential to show very high
value and can be strongly asymmetric. Keep in mind that for readability, a logarithmic
scale has been utilized.

Figure D.1: Histogram of MAE% of Statistical Forecasts

Figure D.2: Histogram of MAE% of Final Forecasts
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E Correlations

E.1 Correlations towards FVA

Figures in this section show the correlations between the independent variables and
the FVA.

Figure E.1: Correlation - Anchoring Bias - FVA

Figure E.2: Correlation - Optimism Bias - FVA
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Figure E.3: Correlation - Overreaction Bias - FVA

Figure E.4: Correlation - Enrichment Size - FVA
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Figure E.5: Correlation - Hierarchy Level - FVA

Figure E.6: Correlation - Lagged FVA - FVA
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Figure E.7: Correlation - Number of Adjustments - FVA

Figure E.8: Correlation - Previous Forecast - FVA
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Figure E.9: Correlation - Statistical Forecast - FVA

Figure E.10: Correlation - Time-lag - FVA
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E.2 Correlations amongst Biases

The figures below show the correlations between the various biases.

Figure E.11: Correlation - Anchoring Bias - Overreaction Bias

Figure E.12: Correlation - Optimism Bias - Anchoring Bias
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E.3 Correlation Table

Timelag Statistical
forecast

Previous
forecast

Hierarchy
Level

Number of
Adjustments

Optimism
Bias

Anchoring
Bias

Overreaction
Bias

Previous
FVA

Enrichment
Size

Hour of the
Day_sin

Hour of the
Day_cos

Day of the
Week_sin

Day of the
Week_cos

Day of the
Month_sin

Day of the
Month_cos

Timelag 1.00
Statistical
forecast not sig 1.00

Previous
forecast 0.03 0.78 1.00

Hierarchy
Level -0.32 -0.08 -0.14 1.00 -

Number of
Adjustments 0.19 0.24 0.25 -0.65 1.00

Optimism
Bias 0.11 0.22 0.26 -0.60 0.57 1.00

Anchoring
Bias -0.34 0.06 not sig 0.40 -0.21 -0.10 1.00

Overreaction
Bias 0.08 0.12 0.17 -0.73 0.58 0.68 0.13 1.00

Previous
FVA not sig -0.08 -0.13 0.10 -0.13 -0.18 0.02 -0.12 1.00

Enrichment
Size 0.06 0.33 0.62 -0.15 0.19 0.22 -0.03 0.16 -0.23 1.00

Hour of the
Day_sin -0.03 0.04 0.03 0.05 not sig 0.12 0.28 0.09 -0.02 0.02 1.00

Hour of the
Day_cos 0.22 0.01 0.05 -0.44 0.27 0.27 -0.35 0.24 -0.06 0.05 0.14 1.00

Day of the
Week_sin 0.12 -0.02 -0.02 -0.15 0.04 0.06 -0.07 0.08 not sig not sig -0.2 -0.02 1.00

Day of the
Week_cos -0.02 0.02 0.01 -0.03 0.04 0.06 0.1 0.10 not sig not sig 0.07 0.13 0.13 1.00

Day of the
Month_sin 0.18 -0.02 not sig -0.09 -0.02 -0.04 -0.31 -0.15 not sig 0.02 0.11 0.22 0.24 0.16 1.00

Day of the
Month_cos -0.19 -0.05 -0.07 0.19 -0.2 -0.14 0.32 -0.05 0.04 -0.08 not sig -0.13 0.1 0.18 -0.07 1.00

Table E.1: Correlation table
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F Linear Regression

In this section of the appendix, the assumptions of linear regression are explained and
tested. The assumptions are based on the information of Hair et al. (2019), who explains
the assumptions which will be explored.

1. Linearity:
Given the name of the model is ‘Linear Regression’ it makes sense that the linearity
assumption should be met. The assumption indicates that the dependent and inde-
pendent variables are linked through a linear relationship. In order to test this for
multiple linear regression, one should plot the residuals and predicted value for y. The
assumption is met once the residuals are located randomly along the x-axis. Within
Appendix E we can see that none of the figures show a particularly strong linear
relationship between the independent and dependent variables. To further check if
there is linearity, the ‘rainbow test’ is executed (Utes, 1982). This test is executed
through the statsmodel python package statsmodels.stats.diagnostic.linear_rainbow
(2023). The statistic reports a value of 1.134 with a p-value of 0.001. Thus, the
linearity assumption is violated.

2. Normality:
Ideally, the residuals should follow a normal distribution, centered at 0. This property
should guarantee the validity of statistical tests and correct parameter estimation.
The estimation techniques like Ordinary Least Squares (OLS) or Maximum Likelihood
Estimation (MLE) require that the residuals are normally distributed. To assess
the assumption, you can make a p-p or a q-q plot. If the assumption is satisfied,
the data points should closely follow this linear relationship. In Figure F.1, we have
plotted the residuals and we can see that it does not follow the normal distribution
closely. The left tail of the distribution is larger than the right tail. We can also
see very high peaks at the center and some ‘lumps’ in the left tail as well. When
investigating further with a Q-Q plot, we would like to see the dots closely follow the
plotted red line. In Figure F.2, we can see that this is also not the case. The residuals
deviate significantly from the desired behavior. One can also execute a Shapiro-Wilk
Test ((Shapiro & Wilk, 1965)) to check numerically if the residuals follow a normal
distribution. For this data, the test statistic is 0.832 with a p-value of 0.000. This
further substantiates that the residuals are not normally distributed and thus, the
assumption of normality is violated.

3. Homoscedasticity:
Homoscedasticity means that the errors are spread equally across the values. When
X either increases or decreases, the variance stays equal. However, when the errors
do vary in size depending on their location, the data can be considered to be het-
eroscedastic. Heteroscedasticity could be caused by either the variables selected, the
presence of outliers, omitted important variables, or incorrect data transformation.
To identify if your data is heteroscedastic, one can easily plot residual plots. If the
data is considered to be heteroscedastic, the plot should produce a distinctive fan or
cone shape. Furthermore, you can also use statistical tests like the Breusch-Pagan
test (Breusch & Pagan, 1979). In Figure F.3, the dots should be randomly scattered
around an imaginary line of y=0. However, this is not the case and this shows
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Figure F.1: LR - Normality Assumption - Residuals Plot

Figure F.2: LR - Normality Assumption - QQ Plot
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that the data is also strongly heteroscedastic. There is also a numerical test to
identify the level of heteroscedasticity. This is the so-called Breusch-Pagan test
(Breusch & Pagan, 1979) as described in Section 5.3.1. Table F.1 shows the calculated
values for the statistics. Based on the high Lagrange and f-values, combined with
the extremely low p-values, the table shows strong evidence that the null hypoth-
esis can be rejected and in turn, that heteroscedasticity is clearly present in the model.

Figure F.3: LR - Homoscedasticity Assumption

Statistic Value

Lagrange multiplier statistic 894.43
p-value 2.83 ∗ 10−170

f-value 40.18
f p-value 8.09 ∗ 10−187

Table F.1: Breusch-Pagan Test

4. Autocorrelation/Exogeneity :
The last assumption states that error terms are independent within linear regression.
In other words, the error term of a certain observation does not influence the error term
of another observation. The presence of autocorrelation leads to an underestimated
true standard error. This can lead to a lower p-value and state that certain variables
are significant even when they are not. To test this assumption, the Durbin-Watson
statistic can be utilized for the presence of autocorrelation.

d =

∑T
t=2 (et − et−1)

2∑T
t=1 e

2
t

(F.1)

where et represents the residuals at time t, and T is the number of observations. The
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statistic ranges from 0 to 4, with values closer to 0 indicating positive autocorrelation
while values closer to 4 indicate negative autocorrelation. Values around 2 are desired
since they suggest that there is no clear autocorrelation. For the linear model,
the Durbin-Watson statistic is 1.9845, which indicates that there is no significant
autocorrelation. Thus, this assumption is met.

Ideally, we would also like no multicollinearity between variables. Even though it is
often referred to as an assumption, it is not. Multicollinearity is the case when several
explanatory variables are very closely related to one another. Thus, this makes it difficult
for the results of a single variable to be identified. One can check for multicollinearity by
using both a scatter plot and a Variance Inflation Factor (VIF) (Formula F.2) . If the
scatter plot shows a strong linear correlation between two different variables, we can infer
that multicollinearity is taking place. Since we have a highly dimensional dataset, we are
not plotting a scatterplot but we aim purely at the VIF , which is a statistical method to
test the multicollinearity. A higher value of VIF, indicates a larger extent of collinearity,
starting from a VIF of 1 (no multicollinearity). If the VIF is higher than 2, one should
consider respecifying the model.

VIF(Xi) =
1

1−R2
i

(F.2)

Feature VIF

Timelag 1.32
Statistical Forecast 2.78
Previous Forecast 3.68
Hierarchy Level 7.01
Number of Adjustments 2.05
Optimism Bias 2.32
Anchoring Bias 4.60
Overreaction Bias 6.99
Previous FVA 1.09
Enrichment Size 1.82
Hour of the Day (sin) 1.51
Hour of the Day (cos) 1.56
Day of the Week (sin) 1.23
Day of the Week (cos) 1.14
Day of the Month (sin) 1.48
Day of the Month (cos) 1.22

Table F.2: Multicollinearity Test

Values closer to 1 indicate that there is little or no multicollinearity, while Table F.2
presents the results for each predictor. They can roughly be divided into three different
groups.

The features of Timelag and Lagged FVA have very low values for their VIF which
indicates almost no multicollinearity. There is another group with Hierarchy, Anchoring
Bias, and Overreaction which have strong correlations which indicate that there could
be multicollinearity. The remaining features suggest low levels of multicollinearity. The
categorical features have been removed from this statistic since it cannot be calculated.

Effective Forecast Enrichments - Driving Factors Behind Enrichment Quality 81



G Performance Table

# Model BU Scaled Clip FE #
Feat

Training
MAE

Testing
MAE

Training
Bias

Testing
Bias

Runtime
(hh:mm:ss)

1 LR All No No No 29 8.922 8.716 0.000 0.166 00:00:00
2 LR 1 & 3 No No No 28 2.017 2.215 0.000 -0.068 00:00:00
3 LR 2 No No No 26 34.282 35.008 0.000 0.137 00:00:00
4 LR All Yes No No 29 8.923 8.717 0.000 0.166 00:00:00
5 LR 1 & 3 Yes No No 28 2.017 2.215 0.000 -0.068 00:00:00
6 LR 2 Yes No No 26 34.282 35.008 0.000 0.137 00:00:00
7 LR All Yes Yes No 29 0.801 0.812 -0.000 0.003 00:00:00
8 LR 1 & 3 Yes Yes No 28 0.556 0.553 0.000 0.083 00:00:00
9 LR 2 Yes Yes No 26 1.772 1.838 0.000 -0.051 00:00:00
10 LGBM All No No No 29 6.490 7.704 -0.013 0.156 01:42:46
11 LGBM 1 & 3 No No No 28 1.027 1.560 -0.037 0.267 01:21:56
12 LGBM 2 No No No 26 24.235 26.406 0.004 -0.159 00:44:08
13 LGBM All Yes No No 29 6.432 7.612 -0.011 0.115 01:51:20
14 LGBM 1 & 3 Yes No No 28 1.015 1.535 -0.031 0.334 01:23:17
15 LGBM 2 Yes No No 26 23.943 26.656 -0.000 -0.184 00:49:34
16 LGBM All Yes Yes No 29 0.494 0.669 -0.001 -0.024 03:09:10
17 LGBM 1 & 3 Yes Yes No 28 0.489 0.507 0.018 -0.033 02:07:26
18 LGBM 2 Yes Yes No 26 1.031 1.064 -0.001 0.000 01:04:29
19 LGBM All Yes Yes 1 35 0.491 0.594 -0.172 -0.201 02:56:44
20 LGBM 1 & 3 Yes Yes 1 33 0.334 0.435 -0.695 -0.697 04:02:14
21 LGBM 2 Yes Yes 1 39 0.608 0.954 0.027 0.046 01:33:12
22 LGBM All Yes Yes 2 104 0.436 0.592 -0.166 -0.188 06:03:11
23 LGBM 1 & 3 Yes Yes 2 102 0.324 0.437 -0.670 -0.694 04:52:25
24 LGBM 2 Yes Yes 2 84 0.641 0.959 0.036 0.067 02:22:24
25 NN All No No No 29 5.213 6.941 -1.000 -1.000 14:15:53
26 NN 1 & 3 No No No 27 1.308 1.420 -1.001 -1.001 10:52:18
27 NN 2 No No No 26 22.665 23.602 -0.776 -0.782 04:10:59
28 NN All Yes No No 29 6.167 4.833 -0.717 -0.715 14:08:08
29 NN 1 & 3 Yes No No 27 1.123 1.285 -0.682 -0.794 10:52:31
30 NN 2 Yes No No 26 19.212 21.844 -0.640 -0.604 03:28:26
31 NN All Yes Yes No 28 0.627 0.649 -0.272 -0.294 14:16:02
32 NN 1 & 3 Yes Yes No 27 0.474 0.495 -0.945 -0.953 10:42:31
33 NN 2 Yes Yes No 26 0.955 1.242 -0.027 -0.027 03:31:58
34 NN All Yes Yes 1 37 0.622 0.649 -0.376 -0.390 13:56:15
35 NN 1 & 3 Yes Yes 1 32 0.472 0.497 -0.936 -0.930 10:45:24
36 NN 2 Yes Yes 1 36 0.968 1.184 -0.049 -0.060 03:33:02
37 NN All Yes Yes 2 112 0.599 0.652 -0.283 -0.290 14:32:10
38 NN 1 & 3 Yes Yes 2 97 0.456 0.486 -0.767 -0.759 10:52:21
39 NN 2 Yes Yes 2 77 0.744 1.162 0.014 0.027 03:33:29

Table G.1: Results Prediction Models
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