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Abstract

This study aims to address two key challenges hindering the reliable incorporation of domain

knowledge into Machine Learning (ML) projects for data-driven decision-making. The first

challenge is the lack of methods for eliciting and validating domain knowledge in ML projects.

The second challenge stems from the limited interpretability of black box ML models, which

makes it difficult for domain experts to understand and verify the reasoning behind the model’s

decisions. To overcome these challenges, a novel framework called DMN-D3M is proposed,

which integrates domain knowledge and generates interpretable ML models. The framework

combines the Decision Model and Notation (DMN) with the Cross Industry Standard Process

for Data Mining (CRISP-DM) to provide a unified approach for incorporating domain knowledge

throughout the ML project. By formalizing domain knowledge using the Decision Requirements

Diagram (DRD), the framework provides a visual and intuitive tool that facilitates discussions

and generates insights into the decision-making process, acting as a foundation for subsequent

activities. However, in complex scenarios, the interpretability of the ML-based decision tables

may become a concern, as they can become challenging to comprehend and validate for domain

experts.

Keywords: Data-driven decision-making, Machine Learning, Domain knowledge, Decision Model

and Notation (DMN), Decision Requirements Diagram (DRD)



Executive Summary

Problem statement

The ability of ML models to learn from data presents an opportunity for organizations to leverage

their historical data to improve their decision-making process (data-driven decision-making).

However, the integration of domain knowledge into ML projects is often hindered by two key

challenges. First, there is a lack of methods for eliciting and validating domain knowledge in

ML projects. Second, black box ML models lack interpretability, making it difficult for domain

experts to understand and verify the reasoning behind the system’s decisions. Overcoming these

challenges is essential to ensure the successful integration of ML as a decision support tool that

benefits from the knowledge of domain experts. This leads to the following problem statement:

Problem statement: The lack of methods for eliciting and validating domain knowledge in

ML projects, coupled with the limited interpretability of black box models, hinders the reliable

incorporation of domain knowledge into ML projects aimed at data-driven decision-making.

Research objective

Based on this problem statement, our research objective is to develop a novel framework for

data-driven decision-making that integrates domain knowledge and generates interpretable ML

models to enhance the decision-making process. The goal is to create a process framework

that integrates a deep understanding of the decisions and their requirements through DMN’s

requirements level, while producing interpretable ML models at the DMN’s decision logic level.

This framework is designed for scenarios where the decision logic is not explicitly known in

advance and can potentially be derived from historical data using ML algorithms.

Methodology

The research follows the Design Science Research Methodology (DSRM) by Peffers et al. (2007)

for Design Science (DS) in Information Systems (IS) research. DS creates and evaluates IT

artifacts intended to solve organizational problems (Venable et al., 2016), which aligns with our

focus on the development and evaluation of a novel framework for ML in decision-making that

incorporates domain knowledge.

The artifact design, development, and evaluation is spread over four phases with each phase

building upon the previous phase (Figure 1). In the first phase, we conduct a literature review to

explore existing studies that combine ML and domain knowledge through DMN. In the second

phase, we define the solution objectives of our artifact and evaluate these solution objectives

with practitioners. In the third phase, we develop an initial version of the artifact, based on

prior ML and DMN literature, and evaluate it with the same practitioners. In the fourth

phase, the framework is demonstrated and evaluated in a rail maintenance setting at Royal

HaskoningDHV (RHDHV). In the final three phases, focus groups are conducted in combination

with individual questionnaires to evaluate several predefined criteria. For these sessions, we

selected 6 practitioners from RHDHV in the role of data analyst (3) or domain expert (3).

Literature review
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Figure 1: Research process model

A systematic literature review focusing on the intersection of DMN and ML reveals a research

gap in studies that connect domain knowledge and ML knowledge through DMN, specifically in

integrating domain knowledge at the decision requirements level with data-driven approaches

to extract the decision-logic level. Existing studies incorporating domain knowledge mainly

focus on DMN’s decision requirements level, while ML techniques typically focus on decision

tables from the decision logic level. By using DMN at both levels, organizations can potentially

integrate domain knowledge and improve the interpretability of their ML models.

Framework: DMN-D3M

The proposed DMN-based data-driven decision-making (DMN-D3M) framework consists of five

phases (Figure 2). It integrates the two levels of DMN with the Cross Industry Standard Process

for Data Mining (CRISP-DM) to create a decision-focused process framework that prioritizes

the involvement of domain knowledge. DMN and CRISP-DM are considered complementary

methodologies, and the proposed framework systematically integrates both, providing a uni-

fied approach to formalize domain knowledge and generate interpretable decision logic. The

framework specifically focuses on scenarios where the decision logic is not explicitly known in

advance, making ML-based approaches valuable for extracting this logic from the data.

DMN-D3M demonstration

The framework is demonstrated in a rail maintenance setting at RHDHV. This setting involves

a condition-based maintenance strategy, which involves yearly inspections to monitor the rail’s

condition and make preventive maintenance decisions. The rail maintenance context at RHDHV

provides a suitable context for this research as RHDHV is aiming to be more data-driven, and

less dependent on experts with specialized knowledge.

Three scenarios were explored to extract decision logic in this rail maintenance setting: (1)

predicting whether a rail section should be included in the maintenance plan covering the next

four years, (2) predicting whether maintenance should be scheduled in the upcoming year, and

(3) predicting the exact number of years until the next maintenance. However, scenarios (2) and

(3) resulted in unsatisfactory performance measures, leading us to focus on scenario (1) for this
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Figure 2: DMN-D3M Framework

report. While the extracted decision rules in scenario (1) demonstrate reasonable performance,

their practical applicability is currently limited due to several factors. These factors include their

inability to take into account cost considerations, changes in the network’s overall condition over

time and the subjective nature of the underlying condition grades. In the real-world context,

decision-makers rely on more detailed observations beyond what is captured in the data, allowing

them to make more informed decisions. Therefore, RHDHV is recommended to explore more

precise and reliable data collection methods to transition towards a more data-driven process

that is less dependent of domain experts.

Discussion

Our findings suggest that the Decision Requirements Diagram (DRD), which specifies DMN’s

decision requirements level, is valuable for ML projects in a decision-making context. It for-

malizes domain experts’ decision knowledge into a single diagram, which can be presented back

to domain experts for validation and serves as a tool for facilitating discussions and generating

insights into the decision-making process for data analysts. Additionally, the DRD acts as a

foundation for subsequent activities, such as data collection and feature engineering. However,

our findings also suggest that the decision table, which specifies DMN’s decision logic level, may

not always be as understandable and interpretable as previously discussed in research. Partic-

ularly, decision tables with a high number of rows and columns increase complexity and reduce

comprehensibility. Therefore, the feasibility of a purely DMN-based approach depends on the

complexity of the decision logic and the cognitive capabilities of individuals in dealing with such

complexity.

Conclusion

In conclusion, this study is the first to integrate domain knowledge through the decision re-

quirements level and employ ML to extract the decision logic level within a process framework

for guiding data-driven decision-making. By providing a structured framework, this research

contributes to the standardization of incorporating domain knowledge in data-driven decision-

making.
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1. Introduction

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that focuses on the develop-

ment and application of algorithms and models to learn from data and improve their performance

on specific tasks without being explicitely programmed. These models have shown outstanding

results in various tasks such as image recognition, Natural Language Processing (NLP), recom-

mender systems, and have applications in diverse fields such finance, healthcare, social media

and more.

The ability of ML models to learn from data presents an opportunity for organizations to leverage

their historical data to improve their decision-making (data-driven decision-making). However,

while ML algorithms excel at extracting patterns from data, they may lack the necessary context

to fully interpret and comprehend the implications for the decision-making process (Bork et al.,

2023). Many studies have focused primarily on the technological aspects of ML, such as data

or algorithms, and have neglected the decision aspect (Akter et al., 2019; Chiheb et al., 2019a).

This disconnection between the knowledge derived from ML and the actual decision-making

process hinders the full potential of data-driven decision-making.

To overcome this limitation, it is crucial to adopt a more holistic and effective approach to

data-driven decision-making by integrating a deep understanding of the decisions and their

requirements through the incorporation of domain knowledge. In this study, domain knowledge

refers to the knowledge of an expert encompassing a comprehensive understanding of a specific

decision, including its underlying processes, goals, and requirements. This knowledge often

takes the form of business knowledge, as it represents the rules of practice of a specific company

(Kopanas et al., 2002).

In our research, we explore the application of the Decision Model and Notation (DMN) as a

notation to model and incorporate domain knowledge in ML models. DMN is considered the

industry standard for modeling decisions and was introduced the Object Management Group

(OMG, 2015). It consists of two levels: the decision requirements level (Figure 3), which captures

the high-level dependencies between decision elements, and a decision logic level, which specifies

business knowledge through the use of business rules, such as decision tables. By leveraging

DMN to incorporate domain knowledge, organizations can potentially enhance the contextual

understanding and interpretability of ML models.

1.1 Problem statement

The integration of domain knowledge into ML projects is often hindered by two key chal-

lenges. First, there is a lack of methods for eliciting and validating domain knowledge in ML

projects. While incorporating domain knowledge into ML through feature engineering is com-

mon (Von Rueden et al., 2021; Deng et al., 2020), the process of collecting and incorporating

this knowledge is not well-defined and may result in unreliable knowledge. Wagner (2017) noted

1



Figure 3: Decision Requirements Diagram

that a large number of papers provided no or very little information about the elicitation pro-

cess, for example, only making cursory references to talking to the domain expert. At the same

time, evidence shows that how knowledge is elicited can affect the usefulness of the information

(Kerrigan et al., 2021). Similarly, there is a lack of emphasis on validating expert’s knowledge in

ML projects (Kerrigan et al., 2021). This is especially difficult as domain knowledge is often not

quantified and needs to be formalized first (Von Rueden et al., 2021). Validating experts’ knowl-

edge can involve presenting it back to them for discussion and confirmation, aggregating it with

other experts’ responses, or ensuring that it is consistent upon repeated elicitation (Kerrigan et

al., 2021). Failing to do so can lead to conflicting or inconsistent knowledge being incorporated

into the model, which can negatively affect its accuracy and reliability. Consequently, there is

a need for approaches to formalize and validate domain knowledge in ML projects, facilitating

more informed decision-making.

The second challenge relates to the limited interpretability of black box ML models. These

models operate with internal logic and workings that are hidden from users, making it diffi-

cult for domain experts to verify, interpret, and understand the reasoning behind the system’s

decisions (Montavon et al., 2017). This lack of transparency introduces uncertainty, increases

the risk of bias, and decreases trust in the system (Adadi & Berrada, 2018; Carvalho et al.,

2019). Consequently, interpretability becomes crucial to ensure that the algorithm performs

as expected, particularly in highly regulated domains where decision verifiability is mandatory

(Carvalho et al., 2019). Furthermore, providing interpretable ML models enables domain ex-

perts to effectively leverage their knowledge and intuition, facilitating a deeper understanding

of the model’s inner workings. Domain experts can reflect on the model’s outputs, analyze

its decision-making process, and gain insights into how their domain knowledge aligns with the

model’s predictions. This reflective process allows experts to identify potential biases, assess the

model’s limitations, and provide valuable feedback for improvement. Hence, it is essential for

ML models to not only be accurate but also to offer interpretability, allowing users to leverage

their intuition and reasoning (Varshney et al., 2018).

Overcoming these challenges is essential to ensure the successful integration of ML as a decision

support tool that benefits from the knowledge of domain experts. This leads to the following

problem statement:
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Problem statement: The lack of methods for eliciting and validating domain knowledge in

ML projects, coupled with the limited interpretability of black box models, hinders the reliable

incorporation of domain knowledge into ML projects aimed at data-driven decision-making.

1.2 Research objective

The primary objective of this research is to address this problem by developing a novel framework

for data-driven decision-making that effectively incorporates domain knowledge in ML projects.

Research objective: Develop a novel framework for data-driven decision-making that inte-

grates domain knowledge and generates interpretable ML models to enhance the decision-making

process.

The goal is to create a comprehensive process framework that integrates a deep understanding

of the decisions and their requirements through the DMN’s requirements level, while producing

interpretable ML models at the DMN’s decision logic level. This framework should provide

explicit guidance for executing ML projects within a decision-making context, covering the

various stages involved in ML and incorporating domain knowledge as a critical element. Its

primary focus is on scenarios where the decision logic is not explicitly known, aiming to uncover

the decision logic that is implicitly captured in historical data by leveraging the capabilities of

ML algorithms.

This study contributes to the field of Information Systems (IS) research, which is an applied

research discipline at the intersection of Information Technology (IT) and organizations (Peffers

et al., 2007). The developed framework holds scientific value by advancing the field and providing

a novel approach to address the challenges of incorporating domain knowledge and interpretable

ML in a decision-making context. Moreover, companies and organizations benefit from adopting

such a framework, as it provides a structured approach to execute ML projects in a decision-

making context.

1.3 Thesis outline

The proposed framework, called DMN-based data-driven decision-making (DMN-D3M) has

been developed using the Design Science Research Methodology (DSRM) by Peffers et al. (2007).

This framework integrates DMN and the Cross Industry Standard Process for Data Mining

(CRISP-DM), and has been demonstrated in a real-world rail maintenance setting at Royal

HaskoningDHV (RHDHV). Its evaluation has been conducted through both ex-ante and ex-

post evaluations based on the principles by Sonnenberg & Vom Brocke (2012). Additionally, to

ensure a rigorous evaluation strategy, we have employed the Framework for Evaluation in Design

Science (FEDS) proposed by Venable et al. (2016) and selected several evaluation criteria for

Design Science (DS) in IS from Prat et al. (2014). Furthermore, a comprehensive literature

review was conducted as a first step in our DS process, exploring existing studies that combine
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ML and domain knowledge through DMN, motivating the subsequent design and development

of the DMN-D3M framework.

The report is structured as follows. In Chapter 1: Introduction, the context of this research,

the problem statement and research objectives are introduced. Thereafter, the research design

is elaborated in Chapter 2: Methodology. Existing research in this direction is then evaluated

based on a literature study on DMN and ML in Chapter 3: Phase 1: Literature Review. The

three chapters that follow describe the three subsequent phases in our research design: Phase

2: Solution Objectives (Chapter 4), Phase 3: Artifact Design & Development (Chapter 5) and

Phase 4: Artifact Demonstration & Evaluation (Chapter 6). Lastly, we discuss the results in

Chapter 7: Discussion and draw our final conclusions in Chapter 8: Conclusion and future work.
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2. Methodology

2.1 Design Science Research Methodology

In this research, we employ the Design Science Research Methodology (DSRM) by Peffers et al.

(2007) for Design Science (DS) in IS research (Figure 4). Design science creates and evaluates

IT artifacts intended to solve organizational problems (Venable et al., 2016), which aligns with

our focus on the development and evaluation of a novel framework for ML in decision-making

that incorporates domain knowledge.

Figure 4: DSRM Process Model (Peffers et al., 2007)

This methodology consists of 6 activities, some of which may require multiple iterations to

refine the artifact. A problem-centered initiation is the basis of the nominal sequence, which

starts with the identification of the main problem and motivation. The second activity involves

inferring the objectives of a solution from the problem definition. The problem definition and

objectives of a solution are then used to develop an artifact that provides a solution to the

problem (activity three). The use of the artifact is demonstrated in the fourth activity by solving

one or more instances of the problem. After that, the effectiveness of the artifact as a solution

to the problem is evaluated. Lastly, the problem, artifact, design rigor, and its effectiveness

are communicated to relevant audiences in the final activity. This process is structured in a

nominally sequential order, but researchers may start from of one the first four activities and

move outward from there (see other possible research entry points in Figure 4). This research

employs a problem-centered approach, building on the problem identification and motivation

discussed in the previous chapter.

2.2 The Build-Evaluate Pattern in Design Science

DS in IS comprises of two high-level activities: Build and Evaluate (March & Smith, 1995).

These activities can be projected onto the DSMR process model, as illustrated in Figure 5. Eval-

uations are considered to be crucial in DS and require researchers to rigorously demonstrate the
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utility, quality, and efficacy of the artifact (Hevner et al., 2004). Without such evaluations, DS

must conclude with only theorizing about the utility of design artifacts, without any empirical

evidence (Venable et al., 2016). Typically, such evaluations focus on proving the usefulness of

an artifact and less on the artifact design itself (Pries-Heje et al., 2008). However, Sonnenberg

& Vom Brocke (2012) argue that evaluations should also consider the importance of design deci-

sions made during the build phase of an artifact. They encourage these decisions to be justified

and validated by means of evaluations before an artifact has been put into use, allowing us to

make inferences on the usefulness of an artifact, but also its expected suitability, importance,

validity and correctness of its design. To accomplish this, Sonnenberg & Vom Brocke (2012)

suggested that DS evaluations should be conducted according to the three principles described

in the three subsections below.

Figure 5: The Build-Evaluate pattern projected to DSRM (Sonnenberg & Vom Brocke, 2012)

2.2.1 Interior and exterior modes

First, a distinction should be made between the interior and exterior mode in DS (Figure 6). The

interior mode refers to producing prescriptive statements about how the artifact can be designed

and developed. On the other hand, the external mode is concerned with producing descriptive

knowledge about the artifact, treating the artifact more as a black box and only assessing

significant design features for their utility (Gregor, 2009). Rather than relying solely on ex-post

evaluations (Table 1) in the exterior mode, Sonnenberg & Vom Brocke (2012) emphasize that

it is essential to conduct ex-ante evaluations as part of the interior mode to validate design

decisions.

Table 1: Evaluation terms [I]

Ex-ante evaluation is “the predictive

evaluation which is performed in order

to estimate and evaluate the impact of

future situations” (Stefanou, 2001, p.

206).

vs Ex-post evaluation is an assessment of

“the value of the implemented system

on the basis of both financial and non-

financial measures” (Stefanou, 2001, p.

206).

2.2.2 Documenting design theories

Second, the prescriptive design knowledge in the interior mode should be documented by means

of a design theory (Gregor & Jones, 2007). It should document the artifact such that it reveals
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Figure 6: Interior and Exterior mode in DS (Sonnenberg & Vom Brocke, 2012)

its purpose, its rationale, its inner structure, the conditions under which the artifact is expected

to work, the steps required to actually use the artifact in practice, or testable propositions

that can be evaluated in the exterior mode. According to Gregor & Jones (2007) Information

Systems Design Theories (ISDT) consists of 8 components (see below). It also connects the

interior mode to the exterior mode through components 5, 6, and 8.

1. Purpose and scope: Defines the goals and objectives of the artifact, and the context in

which it will be used.

2. Constructs: Refers to the representations of entities of interest, and the methods and

techniques used to construct them.

3. Principle of form and function: Includes the principles of form and function that

define the structure, organization, and functioning of the artifact.

4. Artifact mutability: Specifies the degree to which the designed artifact can be changed

or adapted over time.

5. Testable propositions: Refers to hypotheses about the artifact to be constructed, which

can be validated through testing and experimentation.

6. Justifactory knowledge: Comprises the theoretical frameworks, empirical evidence,

and practical experience that explain why the artifact might work in a given context.

7. Principles of implementation: Includes the methods and techniques used to develop

the method.

8. Expository instantiation: Refers to the methods and techniques used to assess the

usefulness and applicability of the artifact when applied to some reality.

2.2.3 Continuous assessment

Third, the progress of the artifact achieved in the DS process should be continuously monitored.

For example, evaluation criteria have to be defined to systematically demonstrate the progress
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and to guide evaluation activities (Aier & Fischer, 2011). In the next section, we describe the

four-phase approach we adopt in this study to approach such continuity.

2.3 Artifact Design & Development

The artifact design, development, and evaluation is spread over four phases with each phase

building upon the previous phase (Figure 1). In the first phase, we conduct a literature review to

explore existing studies that combine ML and domain knowledge through DMN. In the second

phase, we define the solution objectives of our artifact and evaluate these solution objectives

with practitioners. In the third phase, we develop an initial version of the artifact, based on

prior ML and DMN literature, and evaluate it with the same practitioners. In the fourth phase,

the framework is demonstrated and evaluated in a real-world setting at Royal HaskoningDHV

(RHDHV).

Figure 7: Research process model

2.4 Artifact Demonstration

More specifically, the framework is demonstrated in a rail maintenance setting at RHDHV, an

international engineering consultancy firm founded and headquartered in the Netherlands. The

rail maintenance context at RHDHV provides a suitable context for this research as RHDHV

is aiming to be more data-driven, and less dependent on experts with specialized knowledge.

Decision-making in rail maintenance heavily relies on such domain knowledge, which aligns

with the scope of this study. However, while data is available in rail maintenance, it is unclear

how to extract value from it to improve decision-making. RHDHV’s motivation for data-driven

decision-making in this specific setting is threefold:

1. The maintenance decision-making process currently employed by domain experts is not

yet well understood. Although condition data is systematically collected, the conversion
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of this data into maintenance decisions is unclear (relying on expert judgement). This is of

particular concern as the lack of transferability of such expert judgement combined with

difficulty finding experienced replacement staff can threaten the continuity of operations.

2. Asset owners are increasingly seeking predictability, stable costs and safety through well-

grounded investment plans and want to move away from solely relying on expert judgement

for maintenance decisions.

3. The current condition-based maintenance strategy requires a high inspection frequency,

which could potentially be reduced if we can accurately predict maintenance decisions in

advance.

To learn from underlying patterns in the data, we have access to 12 years of yearly inspection

and maintenance data, which includes both condition grades (e.g. 0-10) and measurements (e.g.

2235 mm). This dataset includes maintenance on almost all rail assets in the network (approx-

imately 45km of rails). Our focus will be on large maintenance, such as lifetime extensions and

replacements.

2.5 Artifact Evaluation

In this research, the Framework for Evaluation in Design Science (FEDS) by Venable et al. (2016)

is employed to evaluate and develop the artifact. FEDS comprises four steps: (1) explicate the

goals of the evaluation, (2) choose the evaluation strategy or strategies, (3) determine the

properties to evaluate, and (4) design the individual evaluation episode(s). The implementation

for each step in this study is elaborated below. Thereafter, we also discuss the evaluation

method and participant selection.

2.5.1 Evaluation goals

We have three main goals when designing the evaluation component of this study. First, we

want to ensure scientific rigor. For example, we want to establish that the artifact works in

a real-world situation, but also that the artifact causes the observed outcome, and not some

confounding independent variable or circumstance. Second, we aim to reduce human social/use

risks (risks that the artifact will not fit well into the use or social situation and therefore not

work or cause further problems; Venable et al., 2016). Third, we want to ensure a high efficiency

of the evaluations by balancing the two aforementioned goals against the available resources for

evaluations.

2.5.2 Evaluation strategy and episodes

Our strategy to reach these goals is to conduct an ex-ante formative artificial evaluation (Table

2) in the first and second phase and end with an ex-post summative naturalistic evaluation

in the third phase (Table 3). This approach helps us to identify weaknesses and areas for

improvement as early as possible, which supports the development of a high quality artifact
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and also reduces costs by resolving uncertainties and risks earlier. Furthermore, conducting a

formative evaluations as early as possible in the evaluation trajectory helps to reduce human

social/use risks (Venable et al., 2016).

Table 2: Evaluation terms [II]

Formative evaluations are used to pro-

duce empirically based interpretations

that provide a basis for successful ac-

tion in improving the characteristics or

performance of the evaluand (Venable

et al., 2016).

vs Summative evaluations are used to

produce empirically based interpreta-

tions that provide a basis for creating

shared meanings about the evaluand in

the face of different contexts (Venable

et al., 2016).

Artificial evaluation includes labora-

tory experiments, simulations, criteria-

based analysis, theoretical arguments,

and mathematical proofs (Venable et

al., 2016).

vs Naturalistic evaluation explores the

performance of a solution technol-

ogy in its real environment, typically

within an organization (Venable et al.,

2016).

Table 3: Evaluation episodes

Evaluation

phase

When? Why? How? Goal

Phase 2 Ex-ante Formative Artificial Verify solution objectives

Phase 3 Ex-ante Formative Artificial Verify artifact

Phase 4 Ex-post Summative Naturalistic Explore real-world application

2.5.3 Evaluation properties

In the initial evaluation (Phase 1), we assess the solution objectives based on a relevant subset

of the evaluation criteria for DS in IS listed by Prat et al. (2014). The criteria are as follows:

• Validity: the degree to which the solution objectives accurately represent the problem

and the desired outcomes.

• Completeness: the degree to which all necessary aspects are included in the solution

objectives.

• Generality: the degree to which the solution objectives can be applied beyond a specific

domain context.

The artifact evaluations (Phase 2 and 3) focus on a different subset of the criteria listed by Prat

et al. (2014):

• Understandability: the degree to which the artifact can be comprehended.

• Completeness: the degree to which all necessary aspects are included in the artifact.

• Efficacy: the degree to which the artifact produces its desired effect (Venable et al.,

2012).

• Generality: how broad the goal addressed by the artifact is (i.e., the broader the goal

addressed by the artifact, the more general the artifact) (Prat et al., 2014).
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2.5.4 Evaluation method

In all three phases, focus groups are conducted in combination with individual questionnaires

to evaluate these criteria. Focus groups are moderated discussions among selected participants

who discuss a topic under the direction of a moderator, whose role is to promote interaction and

keep the discussion on the topic of interest (Stewart et al., 2007). Focus groups are considered a

relevant and rigorous approach for improving and evaluating design artifacts for several reasons:

1. Flexibility: ”Focus groups allow for an open format and are flexible enough to handle a

wide range of design topics and domains” (Hevner et al., 2010, p.123).

2. Direct interaction with respondents: ”This allows for the researcher to clarify any

questions about the design artifact as well as probing the respondents on certain key design

issues” (Hevner et al., 2010, p.124).

3. Large amounts of rich data: ”The rich data allow deeper understandings, not only

on the respondents’ reaction and use of the artifact but also on other issues that may be

present in a business environment that would impact the design” (Hevner et al., 2010,

p.124).

4. Building on other respondent’s comments: ”The group setting allows for the emer-

gence of ideas or opinions that are not usually uncovered in individual interviews. Ad-

ditionally, causes of disagreement can point to possible problem areas with the proposed

artifact” (Hevner et al., 2010, p.124).

However, a limitation oƒ focus groups is that a strongly opinionated member may bias the results

and discourage other participants from speaking (Hevner et al., 2010). Therefore, individual

questionnaires are conducted before initiating the group discussion to ensure all opinions are

discussed. For each criterion, statements are presented, and respondents are asked to indicate

the degree to which they agree with these statements on a 5-point Likert scale (Likert, 1932),

which then serves as input for the discussion. For example, if a respondent indicates the artifact

is not understandable, follow-up questions are asked explore the underlying reasons and potential

ways to address it. Lastly, traditional focus group are adapted to the goals of DS in the form

of exploratory focus groups (Phase 1 and 2) and confirmatory focus groups (Phase 3) (Hevner

et al., 2010).

2.5.5 Participant selection

For these interviews, we selected 6 practitioners from RHDHV in the role of data analyst or

domain expert based on the selection criteria in Table 4. More detailed information on these

roles will be provided in the artifact description in Phase 3: Artifact Design & Development.

Each participant will receive a unique identifier to track their responses, as shown in Table 5.

Data analysts play an essential role in all three phases due to their expertise that allows them

to reason about the abstract concepts and terminologies in the artifact, coupled with their high

availability. On the other hand, domain experts often lack the background knowledge to grasp

the discussed concepts and terminologies, making it challenging for them to provide valuable

feedback. This mismatch can lead to domain experts losing interest in the project, which we
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want to avoid. Moreover, their availability is often limited due to changing job roles within the

company. As a result, data analysts participate in all three phases, while domain experts are

involved in the third phase only.

Table 4: Participant selection criteria

Role Selection Criteria

Data Analyst Education level: Bachelor of Science or higher

Experience level: At least 3 years in data analytics or similar

(including internship experience)

Domain Expert Experience level: At least 1.5 years in rail maintenance

Table 5: Participants overview

ID Function Role Experience level

(years, rounded)

Education

level

DA1 Consultant Data & IT Data analyst 12 MSc.

DA2 Consultant Data & IT Data analyst 3 BSc.

DA3 Data engineer Data analyst 7 MSc.

DE1 Asset Manager Domain expert 37 BSc.

DE2 Project Manager Domain expert 40 <BSc.

DE3 Project Manager Domain expert 2 MSc.
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3. Phase 1: Literature Review

To address the challenges described in the introduction and to better understand decision-

making in organizations, we perform a literature review that focuses on the intersection of

DMN and ML. It should be noted that this literature review is a subset of a larger literature

study that was performed, focusing on the most relevant parts. Additionally, we added section

3.2.4 in response to a significant publication in the field after the completion of this literature

study.

3.1 Methodology

3.1.1 Research questions

Based on the research direction described in the Introduction, we formulate the following main

research question:

What are the current methods for using the Decision Model and Notation (DMN) in

combination with Machine Learning?

To answer this main question, we divide the question into two parts based on the two DMN

levels: decision requirements and decision logic.

1. How does the decision requirements level of DMN interact with ML?

2. How does the decision logic level of DMN interact with ML?

3.1.2 Sources

The research questions described above will be answered through a systematic review of the

scientific literature. This review will be based on a search of the reputable scientific databases

Scopus and Web of Science (WoS). These databases are considered to be the primary sources

for citation data (Mongeon & Paul-Hus, 2016), and are complementary to each other due to

their differing coverage (Mongeon & Paul-Hus, 2016; Burnham, 2006). While there may be

some limitations to these databases, such as a focus on journals and an over-representation of

English-language journals (Mongeon & Paul-Hus, 2016), they are not expected to be major

limitations for this review, as the focus will be on journal articles written in English.

• Scopus is a database from Elsevier that is considered to be the largest abstract and

citation database of research literature and quality web sources (Guz & Rushchitsky,

2009). Journals included in Scopus are reviewed annually to ensure high-quality results.

• Web of Science, owned by Clarivate Analytics, is a publisher-independent global citation

database with almost 1.9 billion cited references from over 171 million records. It is known

for its high level of trustworthiness.
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3.1.3 Search terms

To identify relevant literature for this review, a list of search terms was developed based on

the main research question (Table 6). These terms include the primary topics ”Decision Model

and Notation” and ”ML,” as well as relevant acronyms and variants. For the Decision Model

and Notation, the acronym ”DMN” was included as a search term. For Machine Learning,

the acronym ”ML” was used, as well as related variants such as ”Artificial Intelligence” (”AI”),

”Data Mining,” and ”Analytics.” These terms were chosen to capture a broad range of literature

related to the use of DMN in combination with ML.

Table 6: Search terms

Keywords Acronyms and variants

Decision Model and Notation DMN

ML ML, Artificial Intelligence, AI, Data

Mining, Analytics

It should be noted that the acronym DMN has multiple definitions beyond Decision Model and

Notation. To ensure that only relevant literature is included in the review, search results with

definitions not related to Decision Model and Notation were excluded. A list of these excluded

definitions is provided in Table 7.

To ensure that the review is comprehensive and covers all relevant literature, search terms were

also developed for the specific levels of DMN (decision requirements and decision logic). For

the decision requirements level (sub-question 1), the search term ”Decision Requirements” was

used in place of ”Decision Model and Notation” and the acronym ”DMN” was omitted. This

term also captures articles that specifically refer to the Decision Requirements Diagram. For

the decision logic level (sub-question 2), the search term ”Decision Logic” was used instead of

”Decision Requirements”, ”decision table” table was added as a variant for the decision logic in

classification, and both ”rule extraction” and ”rule mining” were added variants for ”ML” in

this specific context.

Table 7: Undesired DMN definitions

Acronym Definition

DMN default mode network, deep material

network, dendrite morphological neurons,

dynamic memory network, dense

semantic matching, deep maxout

network, dynamic Markov network,

dynamic neural network,

disease-associated metabolite network,

deep multimodal network, directional

mesh network, dynamic manufacturing

network, deep matching network
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3.1.4 Search queries & results

To identify relevant literature for this review, a search query was developed based on the

acronyms and variants listed in Table 6, and the excluded definitions listed in Table 7. This

search query was used to search the Scopus and WoS databases for articles in relevant subject

areas and in the English language (Table 8). To reduce the number of irrelevant papers, the

search was limited to specific subject areas and the language was limited to English as all stake-

holders are proficient in this language. The number of results for each database and the total

number of unique results is shown in Table 8 as well.

The search queries and results for the specific levels of DMN are shown in Table 9 (decision

requirements) and Table 10 (decision logic). Note that, to improve the relevance of the results

for the decision logic level, the search query was modified to search only in titles. While this

approach may have led to the exclusion of some potentially relevant papers, it was necessary

to reduce the high number of irrelevant results (1387 in Scopus and 371 in WoS). It is worth

noting that the goal of this review is to provide an overview of the key findings and trends in the

existing research, rather than to be exhaustive. Additionally, the use of (reversed) snowballing,

a technique that involves following the references cited in papers to find additional relevant

papers, can help to ensure that highly relevant papers that may have been missed in the initial

search are still identified.

The results from the three search queries are merged into a long list with 67 unique articles.

3.1.5 Selection criteria

To identify the most relevant articles for this review, a selection process was implemented based

on the following criteria: language, availability of full text, peer review, and relevance to the

research question. We reviewed each article using the following selection and inclusion criteria:

1) the article must be written in English to ensure that all researchers and stakeholders can

understand it; 2) the full text of the article must be available online in order to properly evaluate

and extract information from it; 3) the article must be peer-reviewed to ensure that it meets

good quality standards; 4) most importantly, the article must describe how at least one level of

DMN is combined with ML. In addition to these criteria, we will also exclude articles that are not

in line with the direction of our research (e.g. those with a focus on incomplete or inconsistent

decision tables). We also employed (reversed) snowballing whilst reading the selected papers to

identify additional relevant literature. The final short list, as a result of this process, contains

18 unique articles.

3.2 Analysis

In this section, we explore the various methods used to combine DMN and ML. The methods

used for the discovery of these DMN models include using domain knowledge, ML and text

mining. It is worth noting that there can be overlap between ML and text mining, but for the

purpose of this analysis, we categorize an article as utilizing text mining if the data source is

text.
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Table 8: Main search query

Scopus Web of Science

Search
query

( ”decision model and notation”
OR ”DMN” )
AND ( ”ML”
OR ”ML”
OR ”artificial intelligence”
OR ”AI”
OR ”data mining”
OR ”analytics” )
AND NOT ( ”default mode
network”
OR ”deep material network”
OR ”dendrite morphological
neurons”
OR ”dynamic memory network”
OR ”dense semantic matching”
OR ”deep maxout network”
OR ”dynamic markov network”
OR ”dynamic neural network”
OR ”disease-associated metabolite
network”
OR ”deep multimodal network”
OR ”directional mesh network”
OR ”dynamic manufacturing
network”
OR ”deep matching network”)

( ”decision model and notation”
OR ”DMN” )
AND ( ”ML”
OR ”ML”
OR ”artificial intelligence”
OR ”AI”
OR ”data mining”
OR ”analytics” )
AND NOT ( ”default mode
network”
OR ”deep material network”
OR ”dendrite morphological
neurons”
OR ”dynamic memory network”
OR ”dense semantic matching”
OR ”deep maxout network”
OR ”dynamic markov network”
OR ”dynamic neural network”
OR ”disease-associated metabolite
network”
OR ”deep multimodal network”
OR ”directional mesh network”
OR ”dynamic manufacturing
network”
OR ”deep matching network”)

Search in Title, Abstract and keywords Title, Abstract and keywords

Subject
area

Computer Science; Engineering;
Business Management & Account-
ing; Decision Sciences

Computer Science, Engineering,
Operations Research Management
Science

Language
filter

English English

Results 38 15

Unique re-
sults

42

• Domain knowledge: This method involves manually gathering knowledge through dis-

cussions between the domain expert and the decision modeller until a satisfactory descrip-

tion of the decision is obtained (Etikala & Vanthienen, 2021).

• Machine Learning: This method uses historical data, such as case data or event logs,

to extract knowledge through ML.

• Text Mining: This method involved discovering knowledge through text analysis, which

may, or may not, involve ML.
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Table 9: Decision requirements search query

Scopus Web of Science

Search query

”decision requirements”
AND ( ”ML”
OR ”ML”
OR ”artificial intelligence”
OR ”AI”
OR ”data mining”
OR ”analytics” )

”decision requirements”
AND ( ”ML”
OR ”ML”
OR ”artificial intelligence”
OR ”AI”
OR ”data mining”
OR ”analytics” )

Search in Title, Abstract and keywords Title, Abstract and keywords

Language filter English English

Results 9 3

Unique results 11

Table 10: Decision logic search query

Scopus Web of Science

Search query

(”decision logic”
OR ”decision table”
AND ( ”ML”
OR ”ML”
OR ”artificial intelligence”
OR ”AI”
OR ”data mining”
OR ”analytics”
OR ”rule extraction”
OR ”rule mining”)

(”decision logic”
OR ”decision table”
AND ( ”ML”
OR ”ML”
OR ”artificial intelligence”
OR ”AI”
OR ”data mining”
OR ”analytics”
OR ”rule extraction”
OR ”rule mining”)

Search in Title Title

Language filter English English

Results 16 3

Unique results 15

Our analysis revealed that the majority of the selected articles are in the healthcare and banking

industries. This is likely due to the high demand for complex decision-making processes in these

fields, as well as the availability of large amounts of data to train ML models. For example,

in healthcare, there are many complex decisions that need to be made, such as diagnosis and

treatment plans, which can benefit from the use of DMN to model the decision-making process.

Additionally, healthcare institutions generate and collect large amounts of patient data, which

can be used to train ML models to assist in decision-making. Similarly, in the banking field,

there are many decisions that need to be made, such as credit risk assessment, fraud detection,

and customer segmentation, and they also have access to a large amount of customer data.

A summary of the selected articles, including their discovery method and field is presented in

Table 11.
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3.2.1 Domain knowledge

In several studies, the utilization of domain knowledge as a discovery method for creating DMN

models has been shown to be an effective approach. The majority of these studies focus on

the decision requirements level, which allow modellers to make the decision knowledge readily

interpretable for all the business stakeholders by highlighting key concepts and relationships.

Both Chiheb et al. (2019a) and Chiheb et al. (2019b) have incorporated the decision require-

ments level within a theoretical framework to better integrate the decision aspect into ML

projects. Servadei et al. (2016) used it to formalize a new decision process that includes a newly

trained ML model. Li et al. (2017) used it to form a high-level decision network, visualizing the

connections between the data, prediction models, and resulting decisions. In Car (2018), full

DMN models (including decision logic) were created based on domain knowledge to investigate

its potential use in agriculture decision support. We summarize several advantages of leveraging

domain knowledge in the discovery of decision requirements for ML projects:

• Communication and collaboration: One of the key benefits of using DMN in ML

projects is its ability to facilitate communication and collaboration between domain ex-

perts and data professionals. The DRD serves as a bridge between these two groups,

allowing them to better understand the business problem or opportunity at hand (Chi-

heb et al., 2019a; Chiheb et al., 2019b). The relevant knowledge can be visualized and

presented to decision-makers in a structured and understandable format, which facilitates

the extraction of knowledge and participation among decision-makers.

• Contextualization: DRDs and its integration with other industry standards, such as

BPMN, allows for contextualization of decisions, showing where ML can be implemented

and how they add value (Car, 2018; Servadei et al., 2016). It enables stakeholders to

understand the context surrounding a decision, such as the objectives or metrics that are

affected by the decision, the required input data, relevant knowledge sources, and other

potential decisions that are needed to make the main decision.

• Documentation: Documenting the extracted knowledge through DMN can lead to better

process execution (Bazhenova et al., 2016) , enable potential reuse at a later stage (Chiheb

et al., 2019b; Car, 2018), and serve as guidance or training for new employees.

3.2.2 Machine Learning

In contrast to discovery through domain knowledge, studies employing ML techniques primarily

focus on extracting the underlying decision logic in the form of decision tables from historical

data. Various algorithms have been utilized in the selected studies, which will be discussed in

more detail below.

• C4.5 (Quinlan, 1993) is a decision tree learning algorithm that converts trained trees into

sets of if-then rules and uses the gain ratio to determine the best split at each step of the

tree-building process.

• Trepan (Craven & Shavlik, 1995) is an algorithm for extracting comprehensible, symbolic

representations from trained neural networks by relabeling the training data according to

the classifications made by the neural network and then using the relabeled data to train
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a decision tree that mimics the behavior of the neural network. These trees have a high

level of fidelity to their respective networks while being comprehensible and accurate.

• Neurorule (Setiono & Liu, 1996) is a system for extracting symbolic rules from neural

networks to understand their behavior. The rule extraction algorithm is able to extract

rules that obtain the same accuracy as a pruned neural network, and simpler rules can be

obtained by further pruning the network at the cost of accuracy.

• Neurolinear (Setiono & Liu, 1997) is a system for extracting compact and comprehensible

oblique (as opposed to propositional) decision rules from neural networks, where each

condition represents a separating hyperplane given in the form of a linear inequality. e.g.:

If 0.84 Income + 0.32 Savings account ≤ 1000 then Applicant = bad

• Layered ensemble model is an ensemble learning method with complexity reducing

techniques proposed by Simić et al. (2020). The overall complexity of the model is config-

urable, and it suggests a decision with the first decision tree if the purity of the decision

leaf is above a preconfigured threshold. If the confidence does not meet the threshold,

the decision is passed to the next decision tree until the threshold is met. If the model’s

confidence never meets the threshold, the final decision is left to the human operator.

Etinger et al. (2019) present a method for creating DMN decision tables from a decision

tree model.

The decision rules discovered through these algorithms are presented as decision tables, which

has several advantages.

• Interpretability: Decision tables are widely recognized for their interpretability, which is

a crucial factor in their adoption for automating or supporting decision-making (Simić et

al., 2020; Lima et al., 2009; Mues et al., 2005; Baesens et al., 2003). They also generate a

high level of confidence and are considered easy to use (Huysmans et al., 2011; Martens et

al., 2007). The clear and simple representation of decision-making logic makes them easy

to understand and use, even by non-technical stakeholders. This is particularly important

when validating new knowledge discovered through data before implementing it in the

existing business and decision support environment (Mues et al., 2005).

• Learnability: The interpretability of decision tables also allows domain experts to iden-

tify the key elements in their data that drive decision-making, enabling them to learn and

define new strategies (Lima et al., 2009).

• Maintainability: Decision table-based systems are also easily maintainable and require

minimal effort to modify (Mues et al., 2005). This is a crucial consideration, as ML

models can often fail to be successfully integrated into existing business environments due

to difficulties with implementation, management, and maintenance of black-box models

(Mues et al., 2005).

A minority of studies have aimed to extract complete DMN models, including both decision

requirements and decision logic, by using ML techniques. Specifically, if decision trees are

used to extract the decision logic level of the DMN model, the decision requirements level can

be inferred from the decision logic level. This approach has been attempted using event logs

(De Smedt et al., 2019; Bazhenova et al. 2016) and a combination of event logs and process

models (Bazhenova & Weske, 2016). Although these studies aim to extract full DMN models,

the primary focus remains on discovering the decision logic. Additionally, these studies may
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include the decision requirements level as part of the DMN standard, but they do not provide

specific argumentation or justification for its inclusion.

3.2.3 Text Mining

More recently, studies have also employed text mining to derive DMNmodels automatically from

text (Arco et al., 2021), primarily in the healthcare domain (Goossens et al., 2023; Quishpi et

al., 2021; Etikala et al., 2020). These studies primarily use NLP techniques to extract decision

requirements (Etikala et al., 2020), decision logic (Arco et al., 2021) or both (Quishpi et al.,

2021). While some researchers argue that manually modeling business decisions is tedious and

time-consuming and therefore focus on decision requirements (Etikala et al., 2020), others argue

that the creation of DRDs is relatively trivial and may seem redundant, and therefore focus on

decision logic (Arco et al., 2021). Some also adopt deep learning techniques to extract full

DMN models from text (Goossens et al., 2023). The main advantage of this approach is the

ability to create DMN models with less effort and without the need for a deep understanding

of the decisions. However, these studies come with several limitations, including the lack of

inclusion of other DMN constructs such as knowledge sources and business knowledge models,

and the difficulty in handling sentences with multiple outputs (Quishpi et al., 2021) or covering

sentences with more than two decision dependency levels (Goossens et al., 2023). Additionally,

the identification of relevant sentences from a given business text is often performed manually,

which can be problematic in real-world scenarios where sentences with and without relevant

decision information are mixed.

3.2.4 Hybrid approaches

After the completion of this literature study, Bork et al. (2023) published a paper that explores

the mutual benefits of combining human-driven DMN modeling with the computational power

of ML. Their approach, named DMN&ML, uses DMN models to generate ML training data and

shows how the trained ML models can enhance human decision modeling by superimposing the

feature importances within the original DMN models. By manually modeling DMN and gener-

ating datasets that conform the valid input sets and decision rules, they analyze the significance

of input features on the decision outputs. This analysis helps in identifying redundant and

unnecessary input parameters, which supports the simplification and refactoring of the decision

logic. Additionally, this modelling process may provide insights into the explicit and implicit

domain knowledge on which the decision logic is based.

3.3 Discussion and conclusion

We found that the combination of DMN and ML has the potential to be a powerful approach

for data-driven decision-making. However, there is currently a lack of studies that integrate

both domain knowledge and ML approaches through the two levels of DMN in a unified man-

ner. Studies that incorporate domain knowledge mainly focus on DMN’s decision requirements
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level, which has several advantages such as improved communication and collaboration, bet-

ter contextualization of the decision-making and documentation of the extracted knowledge.

On the other hand, studies that employ ML techniques typically focus on decision tables from

the decision logic level, which also has several advantages such as interpretability, learnability

and maintainability. More recently, a few studies have also started using text mining to au-

tomatically discover DMN models from texts, thereby creating DMN models with less effort

and without the need for a deep understanding of the decisions. However, limitations such as

the need for manual selection of relevant sentences and their limited capacity to handle the

complexity within these sentences restricts their applicability in most real-world scenarios.

Only very recently, Bork et al. (2023) made the first contributions towards combining manual

DMN modeling with the computational power of data-driven approaches (ML). They confirmed

such hybrid approach is lacking entirely in research, and aimed to enhance human decision

modeling by superimposing the feature importances within the original DMN models. However,

it is important to note that such approach assumes assumes prior knowledge of the decision

logic and therefore still heavily relies on human modeling.

In conclusion, a research gap has been identified in studies that connect domain knowledge

ánd ML knowledge through DMN, specifically in the integration of domain knowledge at the

decision requirement level with data-driven approaches for extracting the decision-logic level.

By using DMN at both levels, organizations can potentially integrate domain knowledge and

improve the interpretability of their ML models. Therefore, we believe that further research

in this area has the potential to yield significant benefits for organizations seeking to leverage

their data to make better decisions.
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4. Phase 2: Solution Objectives

As part of the initialization and development of our artifact, we first determine its solution

objectives (SO). These objectives are inferred from the problem statement and objective of this

research as discussed previously and will guide the design and development of our artifact.

4.1 Define Objectives of a Solution

The first objective of the artifact aligns with three out of the four evaluation criteria defined in

2.5.3: Evaluation properties: understandability, completeness and generality (Prat et al., 2014).

Among these properties, understandability plays a crucial role as it enables users to quickly

grasp the underlying concepts, principles, and components of the artifact, leading to a more

efficient and effective application. Additionally, completeness is important as it ensures that

the artifact encompasses all the necessary features and functionality for an effective applica-

tion. Moreover, generality is a critical property that ensures the usability of the artifact across

different applications. These three properties are also interconnected, as an incomplete artifact

may hinder understandability, and a generic artifact simplifies complex implementation details,

thereby enhancing understandability.

• SO1: The artifact provides an understandable, complete and generic process framework

for data-driven decision-making.

The subsequent solution objectives align with the fourth evaluation criterion: efficacy (Prat et

al., 2014). The second solution objective of the artifact addresses the structured incorporation

of domain knowledge. It emphasizes the importance of formalizing and aggregating domain

knowledge from various experts, such that it can be presented back to the experts for further

discussion and validation. This iterative process ensures the accuracy and relevance of the incor-

porated knowledge, directly addressing the specific aspect of domain knowledge incorporation

stated in the problem statement.

• SO2: The artifact describes how to formalize, aggregate and validate domain knowledge

relevant for decision-making.

The third solution objective of the artifact focuses on enhancing the interpretability of the

resulting ML model. By prioritizing interpretability, we aim to create a model that can be

easily understood by its users, which enables them to trust and validate the decisions made by

the model (e.g., Adadi & Berrada, 2018; Carvalho et al., 2019). Building upon the advantages

identified in our literature review, our aim is to develop decision logic that is interpretable,

but also learnable and maintainable. The interpretability allows domain experts to identify the

key elements in their data that drive decision-making, enabling them to learn and define new

strategies (Lima et al., 2009). By focusing on maintainability, we aim to develop a model that

can be updated over time as new data and insights become available. This is crucial as black-

box models often pose challenges in terms of implementation, management, and maintenance,

hindering their successful integration into existing business environments (Mues et al., 2005).
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These objectives contribute to the overall transparency and effectiveness of the ML model in

supporting decision-making.

• SO3: The artifact generates decision logic that is interpretable, maintainable, and learn-

able.

The fourth solution objective of the artifact emphasizes the integration of domain knowledge

into ML projects and the utilization of interpretable ML models to establish a shared under-

standing between domain experts and data analysts. By incorprating domain knowledge, we

aim to enhance communication and collaboration between these two groups (Chiheb et al.,

2019a; Chiheb et al., 2019b). The use of interpretable ML models further facilitates this shared

understanding. When domain experts and data analysts can easily interpret and comprehend

the underlying decision logic of the model, it enables effective communication and collabora-

tion (Lundberg & Lee, 2017). The transparency of interpretable models allows for meaningful

discussions, validation of decisions, and alignment of perspectives, leading to a stronger shared

understanding between domain experts and data analysts.

• SO4: The artifact creates a shared understanding between domain experts and data

analysts.

The fifth solution objective of the artifact focuses on the learning from data element of data-

driven decision-making. It aims to enable decision-makers to extract meaningful insights from

data by identifying patterns, understanding them, and reflecting upon the extracted decision

logic. This objective aligns with the learnability goal of the extracted decision logic, allowing

decision-makers to acquire knowledge and insights from the model’s decision logic. By leveraging

these insights, decision-makers can assess risks, identify opportunities, and make well-informed

decisions based on data-driven evidence. The extracted decision logic can also aid decision-

makers as a decision support tool, further assisting them in their decision-making process.

• SO5: The artifact improves the overall decision-making process by learning from data.

Finally, the sixth solution objective of the artifacts is to address the gap identified in our

literature review by incorporating domain knowledge at the DMN’s decision requirements level

and leveraging ML to extract the decision logic at DMN’s decision logic level. Incorporating

domain knowledge at the decision requirements level ensures that the decision-making process

aligns with the specific needs and requirements of the domain. Simultaneously, the utilization

of ML techniques at the decision logic level allows the artifact to extract the underlying decision

logic, which may be implicitly contained in historical decision-making data (Bazhenova et al.,

2016).

• SO6: The artifact incorporates domain knowledge at the decision requirements level and

machine learning at the decision logic level.

4.2 Demonstration & Evaluation

These initial solution objectives are presented to practitioners through exploratory focus groups

combined with individual questionnaires. The structured questions align with the evaluation

24



criteria defined earlier and are presented in Table 12.

Table 12: Evaluation questions

Criterion ID Question

Validity Q1 The solution objectives accurately represent the prob-

lem and desired outcomes.

Completeness Q2 The solution objectives cover all necessary aspects of

the desired outcomes.

Generality Q3 The solution objectives can be applied to various de-

cision domains.

4.2.1 Results

All three data analysts (DA1, DA2, and DA3) found the solution objectives to be understand-

able, complete and generic. Their responses to the evaluation statements have been presented

in Table 13.

Table 13: Evaluation 1 responses

ID Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

Q1 DA1, DA3 DA2

Q2 DA1, DA3 DA2

Q3 DA1, DA2,

DA3

However, during the discussions, DA1 raised a concern that real-world data limitations could

constrain the results of the project. To address this, it was suggested to add an additional

solution objective (SO7) that would specify the identification of data limitations that restrict

data-driven possibilities. This objective aims to explore and understand factors such as missing

data or data quality issues that may hinder the utilization of data for decision-making purposes.

By identifying and acknowledging these limitations, the project can provide valuable insights

into the limitations of the available data. DA2 and DA3 agreed with DA1’s proposal and

indicated that revealing such data limitations is important to properly evaluate the results and

could help improve data collection and thereby decision-making processes in the long term.

• SO7: The artifact reveals data limitations relevant for data-driven decision-making.

DA1 also emphasized that even with data limitations, the artifact should ensure a best effort is

made with the data currently available. However, both DA2 and DA3 expressed their perspec-

tive that such best effort with the available data is already implicit in the proposed solution

objectives. The objectives encompass the utilization of data for data-driven decision-making,

inherently implying a commitment to maximizing the value derived from the available data.

Therefore, while acknowledging the point made by DA1, it is concluded that the emphasis on

making a best effort with the available data is already embedded within the scope of the solution

objectives.
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5. Phase 3: Artifact Design & Development

In this chapter, we describe the third phase of the artifact development. Based on the solution

objectives determined in the previous chapter, an initial version of a DMN-based data-driven

decision-making (DMN-D3M) framework is developed. We describe the artifact along with its

design decisions and underlying motivation below.

5.1 Artifact description

The framework is described as hierarchical process framework, comprising three levels of ab-

straction: phases, generic tasks and process instances (Figure 8). At the highest level, the

framework is organized into five phases (Figure 9). Each phase consists of several second-level

generic tasks. The process instance level captures the actions, decisions, and outcomes of im-

plementing the framework, based on the specified phases and generic tasks. The participation

of two key roles, domain experts and data analysts, forms the foundation of the framework’s

execution (both defined in Table 14).

Figure 8: Framework structure

Table 14: Role definitions

Role Definition

Data analyst A professional who specializes in transforming data into insights by

using a variety of analytical tools and techniques.

Domain expert A professional who possesses a comprehensive understanding of the

decision-making within a specific field, including its underlying pro-

cesses, goals, and requirements.
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Figure 9: DMN-D3M Phases

The first version of the framework integrates DMN (OMG, 2015) with the widely adopted

Cross Industry Standard Process for Data Mining (CRISP-DM; Wirth & Hipp, 2000) reference

model. CRISP-DM offers a structured approach that guides organizations through the data

mining process, making it a crucial element in the design of our framework. It is is considered

the de-facto standard in ML (Schröer et al., 2021) and complementary to DMN, making the

exploration of alternative options unnecessary. By systematically integrating DMN and CRISP-

DM, we provide a decision-focused process framework for ML that prioritizes the involvement

of domain knowledge throughout the process. Such frameworks are considered to be success

factors in ML projects (Saltz et al., 2018) and support in understanding and managing the

interactions within these complex projects (Wirth & Hipp, 2000).

At the top level, our framework consists of five phases: Decision Requirements Formalization,

Data Understanding, Data Preparation, Decision Logic Extraction, and Evaluation. These

phases align with the corresponding phases from CRISP-DM (Table 15), providing a compre-

hensive structure that ensures the formalization of domain knowledge and the generation of

interpretable decision logic. Our framework leverages the decision requirements level of DMN

to extend the business understanding phase of CRISP-DM, enhancing the formalization of de-

cision requirements and capturing the decision-related aspects explicitly. Additionally, at the

modeling phase of CRISP-DM, our framework incorporates the decision logic level of DMN,

allowing for the modeling of decision logic using DMN’s decision tables. The framework specif-

ically targets scenarios where decision logic is not explicitly known in advance but is implicitly

present in the data. In these cases, ML-based approaches are particularly useful for extracting

this logic from the data (Bork et al., 2023).

To generate reliable and accessible insights, we recognize the importance of involving both

data analysts (in blue) and domain experts (in orange). Therefore, we aim to create a shared
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Table 15: Comparison of phases in CRISP-DM and DMN-D3M

CRISP-DM DMN-D3M

Business Understanding Decision Requirements Formalization

Data Understanding Data Understanding

Data Preparation Data Preparation

Modelling Decision Logic Extraction

Evaluation Evaluation

Deployment -

understanding of both decision requirements and decision logic by their collaboration, ensuring

that the data analysis is not isolated from the domain knowledge and vice versa. The framework

emphasizes this continuous communication and collaboration by connecting the two roles in the

middle. Furthermore, the outer circle symbolizes the cyclic nature of ML projects itself. The

insights gained during the process often lead to new initiatives, making it an iterative and

ongoing process.

We describe each phase and its corresponding generic tasks (summarized in Table 20 in Ap-

pendix A) along with its underlying motivation below. While these generic tasks provide a

high-level description of the activities that should be carried out during each phase, they are

not meant to be taken as an exhaustive or obligatory guide. Finally, the resulting artifact is

documented through an ISDT (Table 21 in Appendix B).

5.1.1 Decision Requirements Formalization

The initial phase of the framework focuses on gaining an understanding of the decision-making

process and its requirements. To achieve this, data analysts collaborate closely with domain

experts to elicit their relevant domain knowledge, while utilizing DRD as a formalization tech-

nique to aggregate and represent this knowledge. Conceptual models, such as DRD, are par-

ticularly valuable in this context as they highlight relevant aspects that aid in understanding

and communication among stakeholders, as highlighted by Mylopoulos (1992). The formalized

decision-making knowledge is then presented back to domain experts to ensure its accuracy and

completeness. This validation process not only confirms the correctness of the of the captured

information, but also fosters a shared understanding of the decision-making process among

stakeholders. In cases where additional contextual information is helpful, the formalization

process can potentially be extended using additional conceptual modeling techniques such as

BPMN or CMMN.

This initial phase of the framework builds upon the business understanding phase of CRISP-

DM, focusing specifically on the decision-making process with the use of DMN’s DRD. It marks

the beginning of the project and forms the foundation for the execution of the remaining phases.

Notably, Sharma & Osei-Bryson (2008) found that the real-world implementation of this phase

in CRISP-DM is often performed in a rather unstructured and ad-hoc manner due to the absence

of appropriate tools and techniques. To address this issue, our framework incorporates the DRD

as an essential technique. This suggestion to use DRD as part of the development of business

understanding draws inspiration from the work of Chiheb et al. (2019a and 2019b) who proposed
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two conceptual models that utilize DRD to bridge the communication gap between domain

experts and data analysts. However, these models have not yet been empirically validated in

real-world scenarios.

5.1.2 Data Understanding

The data understanding phase starts with the initial data collection and proceeds with activities

to gain an understanding of the data. However, it is crucial to recognize that data analysts

cannot accomplish these tasks in isolation. While data analysts lead this phase, it requires

collaboration and communication with domain experts. The active involvement of domain

experts is essential to provide valuable context, domain-specific insights, and interpretations

that contribute to a better understanding of the data.

By explicitly involving domain experts and emphasizing their integration within the data un-

derstanding phase, our approach extends the standard CRISP-DM framework to create a more

holistic and mutually beneficial process that leverages the collective expertise of both data ana-

lysts and domain experts. Furthermore, the data understanding phase provides an opportunity

for data analysts to assess the data quality and identify potential discrepancies between the

available data and the required data specified in the DRD.

5.1.3 Data Preparation

The data preparation phase is a crucial step in the data analysis process and follows the method-

ology outlined in CRISP-DM. During this phase, data analysts perform all the necessary pre-

processing steps to construct the final dataset, which should then be ready for the subsequent

phases of the framework. This involves data cleaning, such as handling missing values, address-

ing outliers, and resolving inconsistencies. Additionally, if the data originates from different

sources, data merging may be necessary to create a unified dataset. Furthermore, data analysts

may build upon the insights generated from domain knowledge (DRD) to select and create

relevant features that are considered relevant for the decision-making. This feature engineering

step may involve transforming, combining, or creating new features that enhance the dataset’s

predictive power. It is important to note that there is a close link between data preparation

and the previous phase, as raw data typically needs to be preprocessed before insights can be

generated.

5.1.4 Decision Logic Extraction

The decision logic extraction phase involves selecting and applying algorithms to extract decision

rules from the data. While the CRISP-DM modelling phase allows for the selection of any

modeling technique, our framework specifically focuses on rule mining algorithms, or models that

can be translated into decision rules. In this way, we can present the decision logic as decision

tables, which has shown to offer several benefits, such as interpretability (e.g., Huysmans et al.,

2011; Martens et al., 2007), maintainability (Lima et al., 2009) and learnability (Mues et al.,
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2005). These ML-based decision tables align with the decision logic level of DMN and integrate

with the DRD specified earlier.

To train a model, it is crucial to split the data into a train-test set, and potentially further

divide the train set in a training and validation set to optmize the model’s hyperparameters.

This two-step approach is essential to prevent both overfitting and data leakage. Overfitting

happens when the trained model is overly complex and fits the training data too closely, which

results in over-optimistic performance on the training data, but poor generalizatibility to unseen

data (e.g., test set). Data leakage occurs when information from the test data is used to train

the model (e.g., hyperparameter selection), inflating the test performance.

It is important to recognize that the quality and relevance of the extracted decision rules is

closely linked to the data preparation carried out in earlier phases. As such, the insights

generated from the decision rules may necessitate revisiting the preprocessing steps to ensure

that the decision rules reflect the underlying patterns present in the data as best as possible.

5.1.5 Evaluation

The evaluation phase plays a crucial role in assessing the performance and validity of the decision

logic extracted from the data. It involves presenting one or more decision tables to domain

experts, allowing for collaborative evaluation and obtaining their feedback. The purpose of

this evaluation is twofold: to collaboratively assess the performance and meaningfulness of the

extracted decision logic, and to reflect upon the insights generated through the analysis.

During this collaborative evaluation, domain experts have the opportunity to reflect on the deci-

sion logic extracted from the analysis and evaluate its alignment with their domain knowledge.

This validation process is crucial as it ensures that the decision logic is not only technically

accurate but also resonates with the expertise and expectations of domain experts. In an

optimal scenario, the decision logic can be validated by domain experts and immediately incor-

porated into the decision-making process without a specific deployment activity, distinguishing

our framework from the CRISP-DM framework.

Moreover, the evaluation phase also allows for the identification of potential mismatches between

the derived decision logic and the modelled decision-making process through domain knowledge.

For example, the DRD may represent an idealized scenario, but the analysis exposes shortcuts

or deviations that occur in real-world decision-making. Additionally, this phase enables ex-

perts to reflect on the importance of variables in decision-making, leading to the discovery that

certain variables previously considered crucial may have less influence than expected, or un-

covering previously overlooked important factors. This reflective process enhances the overall

understanding of the decision-making process and encourages experts to critically assess and

refine their existing domain knowledge.

Furthermore, the evaluation phase may reveal that the available data is insufficient to capture

relevant decision-making patterns effectively. Such findings represent crucial insights for future

data-driven projects, emphasizing the need for specific data improvements. Still, it is important

to acknowledge that this phase provides insights that may necessitate revisiting the decision logic
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extraction, emphasizing the close connection between the evaluation phase and the previous

phases of the framework.

5.2 Demonstration & Evaluation

This initial version of the artifact is then presented and evaluated through an exploratory focus

group. The structured questions again align with the specified evaluation criteria (Table 16).

Table 16: Evaluation questions

Criterion ID Question

Understandability Q1 The DMN-D3M framework is presented in a clear and

easy-to-understand manner.

Q2 The Decision Requirements level is clear and under-

standable.

Q3 The Decision Logic level is clear and understandable.

Completeness Q4 The DMN-D3M framework covers all necessary as-

pects of data-driven decision-making.

Efficacy Q5 Relevant decision-making knowledge is formalized

through a Decision Requirements Diagram.

Q6 Interpretable decision logic is extracted from the data.

Q7 The framework suggests improvements for the overall

decision-making process by learning from data.

Generality Q8 The concepts and activities in the DMN-D3M frame-

work are generalizable to other decision-making sce-

narios.

5.2.1 Results

In the second focus group, the data analysts agreed upon most aspects of the framework,

including its understandability, efficacy and generality (Table 17). After a short presentation,

the group found the framework to be clear and easily understandable, and both DMN levels

were also clear to them. They also agreed that the DRD could be used to formalize relevant

decision-making knowledge and that decision tables were interpretable representations of the

extracted decision logic. Additionally, the group believed that executing this framework could

improve the overall decision-making process by learning from the available data. Although DA2

initially disagreed with question 7, the response was revised to agree after receiving clarification

from the group. The group as a whole also confirmed the generality of the framework.
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Table 17: Evaluation 2 responses

ID Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

Q1 DA1, DA2,

DA3

Q2 DA1, DA2,

DA3

Q3 DA1, DA2,

DA3

Q4 DA1 DA3 DA2, DA3

Q5 DA1 DA2, DA3

Q6 DA1, DA2 DA3

Q7 DA2 DA2 DA1, DA3

Q8 DA1 DA2, DA3

However, the data analysts did not form a shared opinion on the completeness of the framework

during the focus group. While DA2 and DA3 confirmed its completeness, DA1 strongly disagreed

and argued for the inclusion of guidelines to handle missing data. Specifically, DA1 suggested

making assumptions on the decision logic if data is missing to generate artificial data based

on the assumed decision rules (e.g., through simulation). This suggestion is similar to the

approach by Bork et al. (2023), although they were unaware of the paper at that time. DA1

emphasized that this is especially relevant in the civil engineering field, where missing data is

common and artificial data generation could potentially address this. DA3 initially agreed with

the completeness, but started to doubt during the discussion and ultimately revised to neutral.

However, the suggestion to improve the completeness by incorporating guidelines for handling

missing data was not implemented. The framework focuses on extracting the decision logic from

historical data and making assumptions on the decision logic to generate artificial data does

not to contribute to this goal. The generated data based on assumptions would only confirm

the existing decision logic, offering no new insights. If data limitations exist, SO7 states that

they should be revealed. Additionally, the proposed addition assumes incomplete data, which

may not be applicable to all decision domains. Moreover, adding artificially generated data may

reduce the interpretability of the results, which goes against one of the main objectives of the

framework. Therefore, considering the objectives established in the first focus group, guidelines

for dealing with missing data were not included in the framework. Upon explanation, DA1

agreed with this decision.
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6. Phase 4: Artifact Demonstration & Evaluation

In this chapter we first demonstrate the framework through a process instance in a real-world

setting. Thereafter we perform the ex-post evaluation to assess the artifact.

6.1 Artifact Demonstration

As described earlier, a rail maintenance setting at RHDHV has been selected to demonstrate the

artifact. In this setting, a condition-based maintenance strategy has been implemented, which

involves yearly inspections to monitor the rail’s condition and make preventative maintenance

decisions. To demonstrate the framework, we focus on the maintenance decisions for curves, as

these are some of the most critical sections where the risk of derailment increases with curvature.

Furthermore, additional measurements are taken in curves, which provides us with more data

compared to straight sections. Within the possibilities of the available budget, the safety of

the rail network is the top priority. Nevertheless, RHDHV acknowledges the need to enhance

its understanding of how rail experts make maintenance decisions and aims to leverage the

historical data to improve their decision-making process.

6.1.1 Decision Requirements Formalization

The first phase of our framework involves collaborating with domain experts to formalize the

decision-making process using a DRD, as shown in Figure 10. The maintenance decision is

central to this process and forms the basis for a multi-year investment plan (MIP) that outlines

the anticipated maintenance activities for the upcoming four years. In this maintenance plan, the

upcoming year is fixed, while the plan for the next three years is flexible and can be adjusted

based on the level of degradation in the upcoming years. This approach has two benefits

according to the decision-makers. First, it ensures that maintenance decisions are based on

the current condition of the rail system, rather than predetermined plans. Second, it enables

decision-makers to spread the anticipated maintenance based on their estimated costs, ensuring

that the total costs remain stable. As observed in the DRD, the maintenance decision depends

on three high-level inputs: condition grades, measurements and contextual factors. Each of

these input groups is described below.

First and foremost, condition grades are collected annually for 4 components: rail, sleeper,

ballast and dimensions (Figure 11). While there are several criteria for each component that

domain experts evaluate, the final grade is determined based on the worst part of the section,

relying on expert judgment. The four individual grades are also combined into an overall grade,

with pre-determined weights assigned to each component (2, 4, 1, and 2 respectively).

In addition to grading these four components, three additional measurements are taken for

curved sections: abrasion, cant, and track gauge. Abrasion is wear that results from the contact

between the train’s wheels and the rail. Cant refers to the angle between the left and right rail
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Figure 10: DRD rail maintenance decisions

(Figure 12), which is intentional in curvatures to alleviate forces acting on the track. However,

an excessively varying cant along the track can lead to track twist. Track gauge refers to

the horizontal difference between the left and right rail (also shown in Figure 12). For all

measurements, a cautionary and safety threshold is in place to identify abnormal values. When

a measurement exceeds the cautionary threshold, caution is advised, but the section can still

operate. However, if a measurement crosses the safety threshold, maintenance should be planned

accordingly. At RHDHV, the goal is to maintain all measurements within both thresholds to

prevent any potential safety hazards.

Figure 11: Grade components

Finally, several contextual factors are taken into account when making maintenance decisions.

For instance, rail sections are prioritized based on their usage (A, B, or C). And curved sec-

tions are also assigned to either category 1 or 2, depending on the radius of the curvature,

which affects the amount of force acting on the track. Each component’s material is another

factor that is considered, as some materials are more vulnerable than others to degradation and

wear. Additionally, the budget is a key consideration, as a fixed budget is available each year,

and decision-makers must optimize its use to ensure that the costs remain stable. From that

perspective, the current maintenance strategy can be also be considered budget-driven, as it

prioritizes maintenance activities based on the available budget.
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Figure 12: Cant and track gauge example

6.1.2 Data understanding

In the second phase of our framework, we collect and examine the relevant data from the past 12

years of inspection records. To provide an initial overview of the data, we present a visualization

of the overall grade distributions over the years in Figure 13, as well as visualizations of the

individual component’s grades in Figures 19 to 22 (Appendix C). It should be noted though

that the component weights (to combine the four component grades) were different before 2019,

but have been updated with the latest component weights to ensure consistency across all years.

Also, the sleeper grade used to be split based on the type of rail mount on the sleeper (direct

or indirect). In such cases, we kept the lowest grade of the two, as discussed with the domain

experts.

The visualizations reveal several noteworthy trends that provide insight into the maintenance of

the railway network. First, the number of curves graded in the network has remained consistent

over the years, indicating the completeness of our data. Second, there is a clear downward trend

in the proportion of curves with low condition grades. In 2011, the average condition grade was

6.0, while in 2022, it had improved to 7.2. This suggests that the network’s condition has

gradually improved over time, a trend that domain experts attribute to effective maintenance

decisions made within the available budget. However, the 2011 data was excluded from our

analysis due to a significant increase in the grades between 2011 and 2012 that could not be

explained by maintenance events. Upon further investigation, domain experts confirmed that

the grading procedure had been slightly modified after the first year of grading. Third, a shift

in grading is observed in the high grades from 2018 to 2019, where higher grades (e.g., 9) seem

to have been replaced with slightly lower grades (e.g., 8). This change was unexplainable by

domain experts.

The measurement data, such as abrasion (Figure 14a) and cant (Figure 14b), also show a

decreasing trend in abnormal values over time, indicating an improvement in the rail network.

However, this trend is not apparent in track gauge (Figure 14c), where abnormal values have

always been rare. It’s worth noting that the number of measurements in these visualizations

is approximately a factor 250 higher than in the condition grades, as measurements are taken

every 10 sleepers, while condition grades are assigned per section.

In terms of contextual data, the sections are categorized as approximately 25% category A, 41%

category B, and 34% category C. The distribution of sleeper materials over the years is shown
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Figure 13: Condition Grades by Year

(a) Abrasion (b) Track twist (c) Gauge

Figure 14: Measurements by Year

in Figure 15, indicating a gradual replacement of wooden sleepers with concrete ones, which

generally have a longer lifespan. However, the curve categories are incomplete, with 65% of all

sections missing. In the available data, 20 sections fall under category 1 and 17 sections fall

under category 2.

The final dataset comprises 143 maintenance events, which we plotted against against the overall

condition grade (Figure 16) as recommended by the rail experts, who rely mainly on the grad-

ing system for their maintenance decisions. Indeed, maintenance activities are predominantly

scheduled when the section’s condition grade is relatively low, indicating the significance of

condition grades in decision-making. However, we identified several outliers that were discussed

with the domain experts. During this discussion, we discovered and removed one incorrectly

registered maintenance event and one incidental event. Two outliers were explainable through

individual component’s grades. The remaining outliers left the experts puzzled, suspecting that

higher grades were assigned to the section than it’s weakest part (inconsistent grading).
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Figure 15: Material Distribution by Year

Figure 16: Maintenance events per year against the overall condition grade

6.1.3 Data Preparation

To extract meaningful insights from the raw data and to prepare the final dataset for rule extrac-

tion, we utilized the Pandas and NumPy libraries in Python to perform various preprocessing

steps. The data was originally stored across multiple Excel files and the management system

with varying formats used over the years. To address this, we began by extracting all relevant

inspection data, and then standardizing and cleaning it. We then (inner) merged the inspection

data by matching the year and object combination. However, we encountered several challenges

during this process.

1. The first challenge we encountered was that the measurements (abrasion, cant and gauge)

are taken at every 10 sleepers, which results in a varying number of measurements per

object as sections have varying lengths. To address this issue, we transformed the measure-

ments based on the corresponding thresholds of the specific measurement type, ensuring
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the same number of variables per section, independent of its length. Additionally, we

included both the mean and maximum measurement per section to mimic how inspectors

analyze the data (e.g., not only look at abnormal values, but also skim through the data

to get a feeling of the measurements). The mean value provides insight into the overall

condition of the specific measurement, while the maximum value shows how close a section

may be to crossing a threshold. For cant measurements, we transformed this into track

twist based on the difference in cant for every 20 sleepers (12 meters).

2. The second challenge was that sometimes multiple measurements are taken at the same

section in the same year, especially when abnormal measurements are found. In such cases,

the measurements are reproduced to confirm or disprove the abnormal values, since these

manual measurements are prone to errors, and inspectors may question their reliability.

We only retained the latest measurements in our dataset, which are considered most

reliable.

3. The third challenge was that some sections are sometimes divided into sub-sections when

they are separated by an obstacle (e.g., a crossing), resulting in multiple objects in the

dataset (e.g., 700-1 and 700-2) that refer to the same section (e.g., 700). This is partic-

ularly challenging in combination with the previous issue, as some sub-sections may be

remeasured, while others are not.

4. The fourth challenge was missing values in the datasets. For variables with few missing

values, we removed rows with missing data. However, we faced challenges with several

variables that had many missing values: all component materials and the curve category.

Given the importance of the sleeper material, we leveraged domain knowledge to impute

the missing sleeper materials and completed the data. Other components were excluded

from the analysis as they were deemed of lesser importance by domain experts. For curve

categories, obtaining this data would require extensive measurements, and we decided to

create two separate datasets, one including curve categories and another without them.

Additionally, with a fixed yearly budget spent on maintenance and a continuously changing

distribution in the network’s condition, it is important to determine the criticality of sections

relative to each other. To achieve this, we ranked each section based on its overall condition

grade and minimum component’s grade for every year. This enables us to assess each section’s

importance relative to others, regardless of its absolute grades.

After this initial data preparation phase, we extracted the maintenance data from the manage-

ment system and (outer) merged it with the inspection data. We then calculated the number

of years until the next maintenance event using this data. Since maintenance is always planned

one year ahead, we removed rows with exactly zero years until the next maintenance event.

To ensure the correctness and completeness of the dataset, we evaluated the maintenance data

against the condition data and removed incorrect maintenance events and added missing main-

tenance events (already included in Figure 16). We also slightly adjusted some maintenance

dates to match the observations made in the data. Furthermore, we excluded all rail sections

that were or had been out of use based on the information in the management system.

In the Decision Logic Extraction phase, we explored three scenarios to extract decision logic:

(1) predicting whether a rail section should be included in the MIP covering the next four

years, (2) predicting whether maintenance should be planned in the upcoming year, and (3)
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predicting the exact number of years until the next maintenance event. Figures 17a, 17b, 17c

present the target variable distribution and dataset size for each scenario respectively. In order

to incorporate instances where the exact number of years till the next maintenance event is

unknown (as it has not yet occurred) in scenarios (1) and (2), we included data from sections

where no maintenance was performed within 4 years as negative examples for scenario (1), and

within 1 year for scenario (2). To encode the categorical features, we used one-hot-encoding,

which transforms categorical variables into binary representations, creating dummy variables

for each unique category.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 17: Prediction scenarios

6.1.4 Decision Logic Extraction

To facilitate decision logic extraction, the dataset is split into a train (80%) and test (20%) set

using using stratified sampling with the target variable as strata. We then used 10-fold cross

validation within the training set to determine the model’s optimal set of hyperparameters.

This approach using cross validation rather than a separate validation set is suitable for our

relatively small dataset (with less than 1000 instances) and simple algorithms (that do not

require extensive compute).

In order to extract the decision rules from the data, we selected two tree-based algorithms:

C4.5 and an optimized version of CART (Classification And Regression Tree; Steinberg, 2009).

C4.5 constructs decision trees that can have more than two child nodes, while CART constructs

binary decision trees. We also made an attempt to incorporate the algorithm proposed by Simić

et al. (2020), but the provided description was insufficient for full replication. Unfortunately,

its performance suffered when we made assumptions about how the algorithm worked, and it

did not align with the results reported in their paper. This discrepancy suggests that either our

assumptions or their reported results may be incorrect.

Due to the imbalanced target variable distribution in all three prediction scenarios, the accuracy

metric is not suitable to measure the model’s performance. This is because a model could

achieve a seemingly good accuracy by simply predicting the majority class for all instances,

while misclassifying all minority classes. Precision and recall are more appropriate metrics

for evaluating model performance in such scenarios. Precision measures the model’s ability to

avoid false positives, while recall measures its ability to identify all positive instances. However,

a higher recall typically leads to a lower precision, so the F1-score represents a useful single

score metric that summarizes the model’s performance, which is also used for hyperparameter

optimization.
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Recall = TP
TP+FN

Precision = TP
TP+FP

F1-Score = 2 ∗ Recall∗Precision
Recall+Precision

For each scenario, we followed the procedure as described above. However, we obtained unsat-

isfactory performance measure in scenarios (2) and (3), which we have included in Appendix D.

Additionally, including curve categories resulted in decreased performance due to the reduced

amount of available data, and did not offer significant added value. As a result, we will focus

on the results of scenario (1) with the curve category excluded in the subsequent section.

Hyperparameter optimization was feasible for CART, which was implemented using the scikit-

learn library (DecisionTreeClassifier), but not for C4.5, which was implemented with the Chef-

boost library. For CART, we set the class weight to ’balanced’ to address the imbalanced data

during training by adjusting weights inversely proportional to the class frequencies. The opti-

mized hyperparameters were the max depth, representing the maximum depth of the tree and

max leaf nodes, indicating the maximum number of leaf nodes. These two hyperparameters

where selected as they represent the maximum width (length of each decision rule) and length

(the number of decision rules) of the resulting decision table. Other hyperparameters were left

at the default setting. The results of the hyperparameter tuning are presented in Figure 18.

Figure 18: CART hyperparameter optimization

Through this hyperparameter optimization we found that the optimal performance (F1-score of

0.823) is achieved by setting the max depth parameter to 5 and the max leaf nodes parameter

to 20. Surprisingly, further increasing the tree depth beyond 1 had only marginal impact on

improving the F1-score, while increasing the complexity of the rules at each depth level. Even

with minimal complexity, the alternative tree configuration performed similarly, scoring only

0.03 lower than the optimum the F1-score. Still, the results of the optimal tree generalized

well to the test set, with an F1-score of 0.80. In contrast, C4.5’s hyperparameters could not be

optimized, resulting in a training F1-score of 0.876 that did not generalize to the test F1-score

(0.762), which indicates overfitting on the training data. The resulting classification matrix on

the test set, feature importances and resulting decision table are included in Appendix E.
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6.1.5 Evaluation

While the extracted decision rules demonstrate reasonable performance, their practical appli-

cability is currently limited. Domain experts confirmed that the model’s additional complexity

is not beneficial and is likely capturing noise in the data rather than capturing the reality of

decision-making (overfitting). Instead, a simpler decision tree with minimal complexity, which

utilizes the overall condition grade (threshold = 6.81) to split the data, aligns better with the

domain experts’ expectations as they consider the overall grade to be the primary driver of

maintenance decisions. However, the concern regarding the reliability of both models persists.

For example, the currently determined cutoff grade determined on historical data may not be

reliable in the future due to the observed improvements in the network’s grade composition over

time.

Moreover, the reliability of the underlying condition grades is questionable due to the underlying

expert judgment and potential (unconscious) changes in the grading policy over time. During

the discussion of the results, the domain experts were surprised to discover that an important

contextual factor such as section category was not considered to be important by the models.

This realization led them to speculate that the contextual factors (section category, radius

category and component material) might be implicitly incorporated during the grading rather

than being independently taken into consideration during maintenance decision-making. For

example, a section categorized as A may receive a grade of 6, while an identical condition in

a category C section may receive a grade of 7. Consequently, this new insight deviated from

our initially formalized and validated DRD, and further highlights the inherent unreliability of

subjective grades.

Furthermore, an important aspect that is not included in the current analysis is the cost consid-

eration. Although we identified that maintenance decisions are driven by budgetary constraints,

it is infeasible to estimate maintenance costs due to the limitations of the available data. While

maintenance decisions are recorded at the section-level, the reality is that maintenance deci-

sions are made at the element-level. For example, only a subset of sleepers is typically replaced,

not the entire section. Accurate cost estimations rely on detailed information about the extent

of replacement required, which is currently unattainable as condition grades are provided per

section and measurements are taken for every 10 sleepers. Consequently, our condition data is

incomplete, and cost considerations cannot be incorporated. In practice, decision-makers rely

on more detailed observations beyond what is captured in the data, allowing them to make more

informed decisions.

6.2 Artifact Evaluation

After demonstrating the framework, we evaluated it with the domain experts and data analysts.

6.2.1 Data Analysts

The results of the data analysts are presented in Table 18
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Table 18: Evaluation 3: Data analyst responses

ID Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

Q1 DA1, DA2 DA3

Q2 DA1, DA2 DA3

Q3 DA2, DA3 DA1, DA3

Q4 DA1 DA2, DA3

Q5 DA1 DA2, DA3

Q6 DA1, DA2,

DA3

Q7 DA1, DA2 DA2, DA3

Q8 DA1, DA2,

DA3

All three domain experts confirmed that they found the framework understandable. However,

when it came to the specific DMN levels, data analysts held differing opinions on its under-

standability, which was contrary to their unanimous agreement in the ex-ante evaluation. This

difference in opinion can be attributed to the fact that the first focus group discussed a simple

mortgage scenario as an example, while the real-world implementation involved more complexity

with a larger number of variables, including some that were less intuitive.

As a result, it became apparent during the evaluation that additional clarification was neces-

sary, especially for those who were unfamiliar with the specific data. For example, in case of the

DRD, concerns were raised about ”unclarity about what a data point specifically means” and

the need ”to have more clarification to understand what is meant” (DA2). On the other hand,

DA3 reported a positive experience, stating a ”good and clear understanding of the diagram.”

Similarly, the decision tables were considered difficult to understand without any additional

explanations. One data analyst remarked, ”Just looking at the result, I couldn’t get it. But

with the explanation of what it means, how it works, I can understand it 100%” (DA3). DA1

agreed with this viewpoint, saying it is ”clear with explanation, but not understandable with-

out.” These observations match other concerns stating that they ”don’t know the actual values

itself and what they mean” (DA3) and they do not have ”the deeper knowledge of what the

data/numbers mean” (DA2). It is thus essential to provide comprehensive explanations that

clarify the workings of DMN and the specific variables. Without such guidance, data analysts

may face difficulties in understanding both DMN levels. However, given sufficient explana-

tion, all three domain experts agreed on the framework’s efficacy in capturing relevant domain

knowledge through a DRD and extracting interpretable decision logic from the data.

In terms of the framework’s completeness, all data analysts showed improvement in their per-

ceptions compared to the first focus group. DA1’s rating changed from strongly disagree to

neutral, DA2’s from agree to strongly agree, and DA3’s from neutral to strongly agree. How-

ever, while DA1 indicated that the framework ”touches upon all relevant aspects”, concerns

were still raised about its ability to handle missing data.” Although revealing data limitations

is valuable, and specific limitations are uncovered, practical recommendations on how to col-

lect better data are absent” (DA1). On the other hand, DA2 disagreed with this perspective,
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indicating that ”changing the data collection process falls outside the framework’s scope” and

argued that ”all relevant phases were well represented”. Similarly, they did not reach a con-

sensus regarding its ability to suggest improvements for the overall decision-making process by

learning from data. Initially, DA2 and DA3 agreed on this, but DA1 emphasized that, despite

generating insights and revealing data limitations, there were no practical suggestions provided

to enhance the decision-making process. Taking into account this perspective, DA2 began to

doubt the framework’s capability to address data problems and switched to neutral.

Finally, all data analysts agreed on the framework’s generality, indicating that it is a ”good

and clear approach, applicable to other areas” (DA1). However, DA2 noted ”there are bound

to be edge cases where it is not applicable”. For example, ”it will work only for operational

decision-making, not necessarily tactical or strategic decision-making” (DA2). This observation

indeed aligns with DMN, which is most suitable for operational decision-making. Additionally,

DA3 added that ”most likely it can be applied to other domains, but we cannot be 100% sure

as some domains might pose difficulties, but in general yes”.

6.2.2 Domain experts

The results of the domain experts are presented in Table 19.

Table 19: Evaluation 3: Domain expert responses

ID Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

Q1 DE1, DE2,

DE3

Q2 DE1 DE2, DE3

Q3 DE1, DE3 DE2

Q4 DE1, DE2,

DE3

Q5 DE1, DE3 DE2

Q6 DE2, DE3 DE1

Q7 DE1, DE2 DE3

Q8 DE2, DE3 DE1

The domain experts also confirmed that they found the framework understandable, although

”it requires a bit of explanation, which was provided” (DE2). They particularly appreciated the

DRD for ”its ability to visually represent the relevant decision aspects in a clear and organized

manner” (DE3). ”The DRD served as a helpful tool that facilitated discussions and provided

insights into the decision-making process” (DE3). The domain experts found such visualizations

to be ”more effective than relying solely on stories or bullet points” (DE3). By formalizing

and validating knowledge through this visual representation, the domain experts also ”felt more

confident in the data analyst’s understanding of the underlying decision-making process” (DE1),

leading to increased trust in the project.
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However, some concerns were raised by DE1 and DE3 regarding the understandability of the

decision logic level. They felt that significant explanations were needed to comprehend how

to interpret the decision table. They noted that ”as the decision table became more complex

with additional rows and columns, its interpretability diminished” (DE2). The decision table

of the optimal model was considered too elaborate and a simpler version would have been

preferred. This perceived lack of understandability also affected the domain experts’ opinion

on the framework’s ability to generate interpretable decision logic. During the presentation of

the results, the domain experts found the model’s feature importances more informative than

the decision table itself, and the full feature importances could not be derived from the decision

table alone. They would ”prefer visualizations rather than the numbers in the decision table”

(DE3). ”The step-by-step explanation towards and of the decision table makes it somewhat

understandable, but in itself it is not” (DE3).

Furthermore, all domain experts agreed on the completeness of the framework. DE3 specifically

highlighted the value of formalizing and validating the DRD, ”ensuring that all crucial compo-

nents were considered in the analysis” and thereby ensuring the completeness of the analysis

itself. The domain experts also recognized that the framework effectively formalized relevant

decision-making knowledge through the DRD. However, they emphasized that ”the quality of

this formalization depended on the data analyst’s capability to accurately and understandably

model it” (DE2). For instance, the three high-level boxes in Figure 10 were appreciated, but

this was a modeling decision by the data analyst. The usefulness of the DRD therefore ”depends

on the abilities of the data analyst to model and present such diagram in an understandable

way” (DE2).

Regarding the framework’s efficacy in suggesting improvements for decision-making through

learning from data, the domain experts noted that ”the insights generated from historical data

provided a factual basis for discussions and potential future improvements” (DE3). ”This

contributed to substantiating and clarifying discussions around data-driven decision-making”

(DE3). However, the domain experts also noted that the framework ”didn’t offer concrete sug-

gestions that could be directly implemented” (DE2). Finally, all domain experts agreed on

the framework’s generality, with DE3 expressing trust in its success in other domains: ”This

model is really going to work”. However, DE1 cautioned that the applicability and efficacy of

the framework is heavily reliant on the availability of historical data and expertise of domain

experts and data analysts.

6.2.3 Comparison

When comparing the opinions of the domain experts and data analysts regarding the framework,

several similarities and differences can be observed.

Both roles agreed that the framework was generally understandable. However, data analysts

had differing opinions on the understandability of the specific DMN levels. While domain

experts could intuitively understand the content and relationships in the decision requirements

level, data analysts struggled and required additional explanations. This could be due to the

domain experts’ familiarity with the displayed information, which was not shared by the data

analysts. Regarding the decision table at the decision logic level, both roles faced challenges
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in understanding it. However, with additional explanations, data analysts found the decision

table more interpretable, while the difficulties for domain experts remained.

In terms of the framework’s ability to suggest improvements for decision-making through learn-

ing from data, both data analysts and domain experts had doubts about its capability to address

data problems and provide practical suggestions. However, domain experts appreciated the in-

sights generated from historical data, which helped substantiate and clarify discussions around

data-driven decision-making. Although the framework didn’t offer concrete suggestions that

could be directly implemented, it provided a factual basis for potential future improvements.

Both data analysts and domain experts agreed on the framework’s generality and its applicability

to other areas. They recognized its potential to be adapted to different domains and decision-

making contexts.
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7. Discussion

In this chapter, we will discuss the extent to which our DS study has met the solution objectives

defined for our framework in Phase 2: Solution Objectives.

• SO1: The artifact provides an understandable, complete and generic process framework

for data-driven decision-making.

The feedback from domain experts and data analysts confirms that our framework has achieved

a high level of understandability and generality. Users were able to quickly grasp the underlying

concepts, principles, and components of the framework, indicating its potential for an efficient

and effective application. Additionally, its potentially wide applicability remains unquestioned.

However, there is some disagreement among data analysts regarding the completeness of the

framework. While some data analysts acknowledge its completeness, others express concerns

about the lack of concrete suggestions for improving the decision-making process, especially in

scenarios with data limitations. Therefore, the framework largely meets SO1, but there are

doubts about its completeness.

• SO2: The artifact describes how to formalize, aggregate and validate domain knowledge

relevant for decision-making.

Both domain experts and data analysts validate the framework’s capability to formalize, aggre-

gate, and validate domain knowledge, thus meeting SO2. The DRD proved to be a valuable tool

in visually representing relevant decision aspects and facilitating discussions. Domain experts

particularly appreciated the clear and organized representation provided by the DRD, lever-

aging their domain knowledge to intuitively grasp the diagram’s content. However, some data

analysts found it more challenging to understand the relationships depicted in the diagram,

highlighting the need for additional explanations for those less familiar with the domain.

• SO3: The artifact generates decision logic that is interpretable, maintainable, and learn-

able.

Contrary to our initial expectations and in contrast to previous studies (e.g., Lima et al., 2009;

Mues et al., 2005), the framework does not fully meet SO3. Data analysts generally agreed

that the decision logic generated by the framework is interpretable in the ex-ante evaluation.

However, there is a division of opinions regarding its understandability in to the ex-post eval-

uation. The real-world demonstration introduced increased complexity, with larger decision

tables and less intuitive variables. These findings align with the observations made by Hasić &

Vanthienen (2019), who also noted the difficulties posed by complex decision tables. Domain

experts found the decision tables even less understandable, which could be attributed to their

relative unfamiliarity with this specific type of representation. It appears that they have a pref-

erence for visual representations, such as graphs, as opposed to tables filled with numerical data.

Consequently, it became evident that the feasibility of a purely DMN-based approach depends

on the complexity of the decision logic and the cognitive capabilities of individuals in dealing

with such complexity (Bork et al., 2023). Despite these challenges, it is worth noting that the
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interpretability of decision tables remained sufficient to invalidate the extracted decision rules,

demonstrating that the framework partially meets SO3.

• SO4: The artifact creates a shared understanding between domain experts and data ana-

lysts.

The framework partially accomplishes SO4. The formalization and validation of domain knowl-

edge through the DRD contributes to a shared understanding between domain experts and

data analysts regarding underlying decision-making process. As a result, the domain experts

feel more confident in the data analyst’s understanding of the decision-making context and are

ensured that all crucial components are considered in the analysis, leading to increased trust

in the project. These findings align with the theoretical statements made by Chiheb et al.

(2019a) and Chiheb et al. (2019b). Additionally, a shared understanding of the data is estab-

lished through the presentation and discussion of insights during the data understanding phase.

However, the limited interpretability of the decision tables limits the shared understanding in

the final phase of the framework.

• SO5: The artifact improves the overall decision-making process by learning from data.

Domain experts confirm that the framework improves the overall decision-making process by

learning from data. Executing the framework provides them with new insights from histor-

ical data and the extracted decision logic allows them to reflect on and refine their domain

knowledge. However, the data analysts’ initial agreement regarding the framework’s potential

to enhance decision-making through data learning shifted during the real-world demonstration.

Although the framework generated new insights, revealed data limitations and contributed to

the discussion around data-driven decision-making, it failed to provide practical suggestions for

improving the decision-making process, leading to divided opinions among the data analysts.

Hence, we can conclude that the framework partially fulfills SO5.

• SO6: The artifact incorporates domain knowledge at the decision requirements level and

machine learning at the decision logic level.

The framework successfully incorporates domain knowledge at the decision requirements level

and integrates ML at the decision logic level, meeting SO6. The formalization and validation of

domain knowledge through the DRD enables the integration of domain knowledge into the ML

project. However, in our demonstration, the ML-based decision tables were not representative

for the actual decision logic, primarily due to data limitations.

• SO7: The artifact reveals data limitations relevant for data-driven decision-making.

Both domain experts and data analysts confirm the framework’s ability to reveal data limitations

relevant to data-driven decision-making. The process of decision requirements formalization,

data understanding and decision logic extraction reveals the constraints and challenges posed

by the currently available data. These insights stimulate critical reflection on data maturity

and highlight the need for data improvements to transition towards data-driven decision-making.

Therefore, the framework successfully meets SO7.
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8. Conclusion and future work

In this concluding chapter, we will review our research objective, acknowledge the limitations

of our study, and propose directions for future research.

8.1 Conclusion

This study aimed to address the challenges associated with the lack of methods for eliciting and

validating domain knowledge in ML projects and the limited interpretability of black box models,

which hinder the reliable incorporation of domain knowledge into data-driven decision-making.

The research objective was to develop a novel framework that integrates domain knowledge and

generates interpretable ML models to enhance the decision-making process.

To address these challenges, we investigated the application of DMN as a notation for modeling

and incorporating domain knowledge and interpretability in ML models. By integrating DMN

with the CRISP-DM reference model, a decision-focused framework was developed that em-

phasizes the involvement of domain knowledge throughout the ML model development process.

This framework specifically targets scenarios where the decision logic is initially unknown and

leverages the capabilities of ML to extract this logic from historical data.

The developed framework successfully addresses the first aspect of the problem statement by

formalizing and validating domain knowledge using the DRD at the decision requirements level

of DMN. The DRD serves as a visual and intuitive tool that facilitates discussions and generates

insights into the decision-making process, fostering a shared understanding between domain

experts and data analysts. Additionally, the DRD acts as a foundation for subsequent activities,

such as data collection and feature engineering, thereby connecting the decision requirements

to the decision logic level.

The second aspect of the problem statement is addressed by using decision tables at the decision

logic level of DMN. However, the real-world demonstration revealed that in complex scenarios,

the interpretability of decision tables may become a concern. Therefore, the feasibility of a

purely DMN-based approach depends on the complexity of the decision logic and the cognitive

capabilities of individuals dealing with such complexity.

Furthermore, while the framework demonstrated strengths in providing an understandable and

generic process framework, our study also revealed a weakness in terms of actionable recommen-

dations to improve the decision-making process. Despite the framework’s ability to formalize

and incorporate domain knowledge, its effectiveness in guiding decision-making is limited when

the necessary decision logic cannot be derived from the provided data.

In conclusion, this study is the first to integrate domain knowledge through the decision require-

ments level and employ ML to extract the decision logic level within a process framework for

guiding data-driven decision-making projects (see Table 11). By providing a structured frame-

work, this research contributes to the standardization of incorporating domain knowledge in
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data-driven decision-making. However, this study does not come without its limitations, which

we will discuss in the next section.

8.2 Limitations

First, the generalizability of our results is limited, as we conducted a DS study using small

focus groups and focused solely on a single real-world setting. Therefore, the extent to which

our findings can be applied to other contexts or organizations may be restricted. However, it

is important to note that DMN and CRISP-DM, which form the foundation of DMN-D3M,

are generic frameworks and notations. This suggests that DMN-D3M has the potential to be

domain-independent, as was also confirmed during our focus groups.

Second, it is important to acknowledge the potential for bias in the evaluations conducted in

our study. Participants may have been inclined to provide socially preferable (more positive)

answers, which could impact the reliability of our findings. Furthermore, the participation

of only six experts in the focus groups is relatively low, which may have implications for the

diversity and representativeness of the insights. Additionally, the relative lack of experience of

the moderator might have influenced the results to some extent as well.

Third, a limitation of this study is that the data analysts participating in the focus groups had a

more limited role, primarily monitoring the project through presentations, while domain experts

were actively involved and possessed experience in the specific context. This arrangement may

have led to limited familiarity of the data analysts with the details of the project compared

to the domain experts, potentially impacting their ability to evaluate the framework and the

results during the ex-post evaluation.

Fourth, a limitation of this study is the strong dependence on the data analyst(s) involved in

the project, as they have a significant impact on the quality of the implementation. The ability

of the analyst to create an understandable DRD diagram was emphasized by domain experts.

However, due to the lack of a clearly defined approach for this task, the outcomes may vary

across different analysts. In our implementation, we enhanced the readability of the DRD by

incorporating boxes around the three high-level input categories. This visual aid helped simplify

the graph and facilitated comprehension for domain experts. Additionally, it was observed that

the explanations provided during the evaluation phase had a significant influence on the domain

experts’ understanding of the insights generated from the analysis. This raises questions about

whether the framework provides sufficient guidance to assist data analysts in achieving the

desired results.

Lastly, it should be noted that the scope of this study specifically focused on ML in a decision-

making context, which resulted in a narrow definition of domain knowledge. The domain knowl-

edge considered in this study was limited to the specific decision-making knowledge. Conse-

quently, the findings may not fully capture the broader range of ML applications or domains

where different types of domain knowledge may be relevant.
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8.3 Future work

We identified several research directions for future studies, both theoretically and practically at

RHDHV.

8.3.1 Practical Research Directions at RHDHV

For the specific rail maintenance context at RHDHV, there is a need to explore more accurate

and reliable element-level data collection methods. One potential approach is to leverage au-

tomated measurement techniques integrated within a measurement train, which could enable

more precise and faster data collection. However, it is important to note that this would re-

sult in significantly larger volumes of data, necessitating a different skill set within RHDHV

to effectively handle and analyze such data. Additionally, implementing this approach would

require a comprehensive reorganization of the inspection and decision-making process, which

can be a costly undertaking considering the expenses associated with the measurement train

and resources required for data analysis. Nonetheless, the integration of such data collection

methods leads to more objective data and has the potential to be complemented by an algorithm

that determines the optimal budget allocation, thereby enhancing the overall efficiency of the

rail maintenance operations. By adopting such data collection methods, the decision-making

process can transition towards a more data-driven process that is less dependent of domain

experts.

8.3.2 Theoretical Research Directions

First, it would be valuable to investigate the generalizability of our framework beyond the

specific context of RHDHV. Understanding its applicability, strengths, weaknesses, and limi-

tations in different real-world settings can provide valuable insights and allow for its further

development.

Second, the framework can be further investigated by exploring alternatives to the decision

table, particularly in scenarios that involve more complex decision-making. One such alterna-

tive is the utilization of black box models integrated with eXplainable Artificial Intelligence

(XAI) techniques, which can provide interpretability and transparency to complex models. In

our study, domain experts clearly expressed a preference for visualizations, such as feature im-

portances, over the decision logic itself, which can be challenging to interpret. This suggests

that XAI explanations may offer greater value than the decision logic alone. However, striking

the right balance between the complexity required for accurate decision logic and the need for

transparency and understandability is crucial and context-dependent.

Third, an important aspect that has not been fully addressed in our study is the potential conflict

between domain knowledge and insights generated from data. Future studies should investigate

how to effectively navigate situations where domain knowledge and data-driven insights appear

to be incompatible, as well as how to manage conflicting domain knowledge from multiple

experts.
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A. DMN-D3M generic tasks

Table 20: DMN-D3M tasks and their output
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B. Information Systems Design Theory (ISDT)

Table 21: Framework ISDT

No. Component Description

1 Purpose and
Scope

The framework is designed to provide guidance for machine
learning efforts within the context of data-driven decision-
making, focusing on the extraction of decision logic that is
implicitly captured in historical data.

2 Constructs The framework includes the hierarchical process framework
itself, comprising three levels of abstraction: phases, generic
tasks, and process instances. Additionally, the key roles
involved are defined as data analysts and domain experts.

3 Principle of form
and function

The framework is designed to prioritize the involvement of
domain knowledge throughout the ML process. It integrates
Decision Model and Notation (DMN) and the Cross Industry
Standard Process for Data Mining (CRISP-DM) as comple-
mentary frameworks.

4 Artifact
mutability

The framework provides an end-to-end approach that can
be customized to suit specific project needs by modifying
or selecting particular phases. For example, an anticipated
adaptation is the use of black-box models in scenarios where
the decision logic exceeds the capabilities of decision tables.

5 Testable
propositions

1. The use of DMN’s Decision Requirements Diagram
(DRD) as a formalization technique improves communica-
tion and understanding among stakeholders in the Decision
Requirements Formalization phase. 2. The collaboration
between data analysts and domain experts in the Data Un-
derstanding phase improves the understanding of the data
and enhances the quality of insights generated. 3. The use
of ML-based decision tables in the Decision Logic Extrac-
tion phase results in decision logic that is interpretable and
maintainable.

6 Justifactory
knowledge

The framework draws upon existing frameworks such as
DMN and CRISP-DM as its theoretical foundations. These
frameworks provide the rationale for the design decisions
and offer established approaches in ML and decision model-
ing.

7 Principles of
implementation

The framework includes a high-level description of phases
and corresponding generic activities for its implementation,
while allowing for flexibility at the process instance level.

8 Expository
instantiation

The framework is illustrated in a real-world context.
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C. Individual component grades

Figure 19: Rail Grades by Year

Figure 20: Sleeper Grades by Year
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Figure 21: Ballast Grades by Year

Figure 22: Dimensions Grades by Year
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D. Results other scenarios

D.1 Scenario 2

To predict whether maintenance should be performed the next year or not, we followed the same

procedure as depicted in scenario 1. The results of the CART hyperparameter optimization are

shown in Figure 23.

Figure 23: CART hyperparameter optimization (Scenario 2)

CART obtains a maximum train F1-score of only 0.459 and a corresponding test set F1-score

of 0.487. For C4.5, we observed heavy overfitting with a train score of 0.656 and a test score

of only 0.193. These results indicate that neither model performs well enough to be considered

useful in practical scenarios.

D.2 Scenario 3

In scenario 3, we used micro-averaging for the F1-score in this multi-class scenario, which entails

simply aggregating all predictions, rather than evaluating each class separately. Unfortunately,

both CART and C4.5 models exhibit poor performance, making them unsuitable for real-world

applications. With a maximum train F1-score of 0.266 and corresponding test set F1-score of

0.304, the results of CART are underwhelming (Figure 24). C4.5 again performs better on the

training set (0.416), but does not generalize to the test set (0.275).
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Figure 24: CART hyperparameter optimization (Scenario 3)
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E. Extended results

Figure 25: Confusion matrix

Figure 26: Feature importance
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