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Abstract

Drowsy driving is one of the major contributors to traffic accidents and fatalities.
Multiple studies have been performed and tried to determine factors that can allow for
the early detection of drowsiness and, ultimately, the prevention of accidents. The aim
of this study is to look into which physiological measures, such as Heart Rate,
Respiration Rate and Heart Rate Variability (RMSSD) can potentially be used in
combination with the currently used approaches to Driver Drowsiness Detection
systems, which mainly involve measures obtained from the vehicle itself, to further
enhance the detection algorithms. For the purpose of this research, an already existing
dataset is used, consisting of physiological, vehicular and subjective measures of 19 male
participants in a driving simulator. In order to assess if the introduction of physiological
measures to the vehicular based models can have additional value, step-wise mixed
models are created and the explained variance of the vehicular signal only model is used
as a comparison metric. The main findings suggest that both Respiration Rate and
Heart Rate can be viable predictors for driver drowsiness, while Heart Rate Variability
(RMSSD) does not seem to have a significant effect, which is in line with previous
findings. Lastly, some suggestions for future research in the development of Driver
Drowsiness Detection systems are proposed and discussed.
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Reflection of Driver Drowsiness in Physiological and Vehicular Signals

Introduction

Drowsiness is defined as the state lying between wakefulness and sleep and is
related the the inclination to sleep (Slater, 2008). Operating a vehicle while being
sleepy or drowsy is commonly referred to as drowsy driving. There are a multitude of
factors that can lead to drowsiness, such as sleep deprivation or disorders, medication
and drug effects, and lifestyle factors (Lagarde & Batejat, 1994; Sunwoo et al., 2017).
Drowsiness affects the driver’s ability to concentrate on the road (Ngxande, Tapamo, &
Burke, 2017), decreases their response time and affects their ability to process
information and make good decisions (Sunwoo et al., 2017). Drowsy and fatigued
driving is believed to be one of the main contributors to traffic accidents around the
world and was estimated to be a contributing factor to 15-20% of crashes in the
Netherlands (SWOV, 2019). This implies the usefulness of a system that can detect
early signs of drowsiness during driving and alert the driver in time, in order to
stimulate their alertness or awareness of their mental state.

In the literature, various solutions are reported to determine the drowsiness of
drivers. The proposed solutions, so far, involve five different kinds of information on
which the measurements are based. The types of information used in the proposed
solutions are listed below and further discussed in the subsequent sections:

• behavior-based,

• physiology-based,

• vehicular-based,

• subjective measures and

• hybrid-based measure approaches (Bajaj, Kumar, & Kaushal, 2021).

In the following subsections, a summary of the related work for each approach is
presented.

Behavior-based Approaches

A driver does not directly transit from being alert to drowsy and there are
behavioral signs that accompany the transition. Nordbakke and Sagberg (2007)
reported that such signs are observable and can be captured by cameras. The behaviors
include changes in eye blinking patterns, yawning frequency, changes in posture and
facial expressions, and they become more evident with increasing drowsiness. There are
three main categories of behavior-based techniques depending on which bodily areas are
being observed, namely: mouth, head and eyes (Albadawi, Takruri, & Awad, 2022).

In their review Hussein, Salman, Miry, and Subhi (2021) report the most used
features for each of the three, aforementioned, area-based categories. While considering
the eyes of the driver, the blinking frequency, closure duration, PERcentage of eyelid
CLOSure (PERCLOS) and Eye Aspect Ration (EAR) are commonly. The features
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associated with the observation of the mouth and head are yawning frequency and
posture, respectively.

Behavior based approaches are reported to have high accuracy rate and are
non-intrusive. However, such applications face some limitations: the results are
dependent on the quality of the images or videos used, and are affected by external
factors (e.g., lighting conditions). Lastly, Gonçalves and Bengler (2015) indicated in
their work that one should not exclusively depend on behavioral data to determine the
driver’s state, because people that perceive themselves as drowsy, might also perform
these behaviors, and people that do not show these behaviors, can still be drowsy.

Physiology-based Approaches

Physiology-based signals, also referred to as biological-based in the literature, have
been reported to be able to detect drowsiness in an early stage (Bajaj et al., 2021;
Chen, Zhang, & Lou, 2019). A multitude of different physiological signals have been
used in the literature to define the level of drowsiness for drivers such as
electroencephalogram (EEG), electro-oculogram (EoG), electromyogram (EMG),
electrocardiogram (ECG) and respiratory signals. One of the added benefits of
involving physiological signals in a model, comes from the idea that they are impartial,
however, they require special equipment and can be of intrusive nature (i.e., requires
electrodes to be placed on the driver).

To the author’s knowledge, the most commonly used features explored in the
literature involve EEG-based and ECG-based features (i.e., Heart Rate (HR) and Heart
Rate Variability (HRV)), while Respiratory signals seem to be studied in a lesser degree
when Drowsy Driving Detection (DDD) is concerned. Heart Rate and Respiration Rate
indicate the number of heartbeats and full breaths per minute, respectively. Heart Rate
Variability, on the other hand, is a measure of variation between consecutive heartbeats
in the time domain (Shaffer & Ginsberg, 2017).

Many researchers have explored the relationship between EEG signals, driving
and drowsiness, by means of the different frequencies of brain waves being present in
different states and have indicated that EEG can predict drowsiness with very high
accuracy (Artaud et al., 1994; Finelli, Baumann, Borbély, & Achermann, 2000). As far
as EMG is considered, research performed in a driving simulation, suggests that muscles
also show signs of fatigue; the muscle movements of the drivers change by means of
frequency and amplitude (Balasubramanian & Adalarasu, 2007; Katsis, Ntouvas, Bafas,
& Fotiadis, 2004). In later research, muscular fatigue was correlated with drowsiness
detection Satti, Kim, Yi, Cho, and Cho (2021), indicating that muscle activity of lower
frequency and amplitude were associated with increased drowsiness levels.

Multiple authors report that specific patterns are observable in physiological
markers when a driver transits to a drowsy state. More specifically, there is an increase
in the Heart Rate of a person and a decrease in their Respiration Rate (Kiashari,
Nahvi, Homayounfard, & Bakhoda, 2018; Warwick, Symons, Chen, & Xiong, 2015).
The patterns were both observed for females and males, although the duration and
magnitude of the decreases and increases were more noticeable in males compared to
females (Warwick et al., 2015). In more recent research conducted by (Jo, Kim, & Kim,
2019), where they also investigated how Heart Rate changes while drowsy driving, they
found that during normal driving Heart Rate does increase, compared to the average
daytime Heart Rate, but decreases when drowsy driving.

Heart Rate Variability (HRV), according to the literature, should be a good
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indicator of drowsiness (Khushaba, Kodagoda, Lal, & Dissanayake, 2011). However, in
their work (Warwick et al., 2015) report that this was not consistent in their series of
experiments, which is in line with the findings of van den Berg, Neely, Wiklund, and
Landström (2005), namely that HRV does not show a significant change between awake
and asleep states and, thus, does not seem like a viable indicator of drowsiness.

Vehicular-based Approaches

State-of-the-art approaches, used in the automotive industry, rely on vehicular
based solutions (Doudou, Bouabdallah, & Berge-Cherfaoui, 2020). Vehicular-based
approaches aim to detect changes in driving patterns. Commonly used measures are the
Steering Wheel Angle or Movement (SWA/M, respectively) and Lane Departure.
SWA/M can be tracked by means of a sensor placed on the steering wheel and Lane
Departure metrics are measured with an external camera, based on which the position
of the car with respect to the street lanes is calculated.

The most common feature derived from the Lane Departure metrics is the
Standard Deviation of the Lateral Position (SDLP) (Bajaj et al., 2021) and has been
found to increase for higher drowsiness (Ingre, Åkerstedt, Peters, Anund, & Kecklund,
2006). Research involving SWA/M has indicated that the drowsiness level of the driver
can be determined by the amount of the small movements (i.e., movements aiming to
correct the position of the car, rather than change a lane) based on the observation that
the occurrence of micro-corrections becomes reduced while drowsy driving, compared to
normal driving (Feng, Zhang, & Cheng, 2009). Additional measures are also utilized by
many scholars, examples of such measures are speed, acceleration and pressure on the
acceleration pedal (Doudou et al., 2020).

In their review, Sahayadhas, Sundaraj, and Murugappan (2012) report that
vehicular-based solutions lead to poor predictors for DDD and, depending on the driving
patterns of the driver, might detect the drowsiness too late to prevent an accident.
Furthermore, in their work Gwak, Hirao, and Shino (2020) and Li, Li, Li, Cheng, and
Shi (2017) indicate that vehicular-based approaches suffer from high false positive rate.

Even though vehicular-based approaches raise some additional challenges, such as
the dependence on factors external to the driver (i.e., road infrastructure, weather and
illumination conditions), the signals utilized by this kind of approaches can be retrieved
from most modern vehicles without the need of additional sensors and can be processed
in real time, which is not the case for most of the other approaches. Additionally,
although vehicular-based solutions aim to detect changes in driving behavior, they
cannot differentiate between drowsiness and other factors (e.g., alcohol or drug
consumption) (Bajaj et al., 2021).

Subjective-based Approaches

Subjective based solutions mainly rely on questionnaires that the drivers fill in on
their own and are meant to reflect the drowsiness as perceived by the driver themselves.
Based on the literature accessed, there is currently no standardized questionnaire being
used (Bajaj et al., 2021). However, the Karolinska Sleepiness Scale (KSS) is frequently
used (Kaida et al., 2006; Philip et al., 2005), during which the driver/participant
indicates their perceived level of sleepiness in a 9-point scale, with 1 indicating that the
participant is "extremely alert", 5 being neutral; "neither alert nor sleepy" and 9
indicating "Very sleepy, great effort to keep alert, fighting sleep". Another available
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questionnaire is the Stanford Sleepiness Scale (SSS), which is a 7-point scale which the
driver/participant fill in themselves as well (Hoddes, Zarcone, Smythe, Phillips, &
Dement, 1973). Due to both the KSS and SSS questionnaires being filled in at regular
intervals, it cannot address sudden changes in sleepiness. Moreover, the fact that the
driver has to fill it in; can stimulate the attention of the driver, which does interfere
with the measured variable. Note that interfering with the sleepiness of the drivers in a
real world scenario is not a problem, as Driver Drowsiness Detection systems aim to do
so. However, in experiments where you want to assess the sleepiness of the participants
or study the relation between sleepiness and other measurements to get the ground
truth, this can be problematic. As a solution to the experimental problem of subjective
reporting and the stimulation due to the repetitive nature of these measurements,
different approaches can be found in the literature. For instance, scholars have
suggested the use of objective criteria/behaviors and trained observers to take over the
procedure of rating drowsiness in experimental setups (Wierwille & Ellsworth, 1994).

Hybrid-based Approaches

Hybrid driver drowsiness detection systems combine at least two of behavior-,
physiology- and vehicular-based measures aiming to create more reliable and accurate
DDD systems. Various attempts have been made which combine different signals from
different categories. Based on the overview of Albadawi et al. (2022) the highest
accuracy was achieved by the combination of behavior- and vehicular-based measures,
followed by a physiological and vehicular approach utilizing signals such as Heart Rate,
stress level, Respiration Rate and SW Acceleration. However, as mentioned previously,
comparing approaches based on their reported accuracy might not be meaningful, as a
different dataset is used for each test and different simulation setups are used. This
being said, in a practical situation, there is no proof that one system will outperform
another. Even by assuming that both can predict drowsiness to the same degree, there
are still considerations that need to be taken into account and a preference over one of
the two might be indicated. For instance, as mentioned previously, some vehicular
measures make use of cameras to measure the SDLP and are dependent on road
infrastructure (i.e., appropriate lane markings) and illumination conditions. The use of
cameras on the exterior of cars can, additionally, raise concerns with regards to privacy
and, given that there is no option to opt out of it, may be problematic for some. On the
contrary, physiological measures (besides some approaches utilizing cameras) can be
more impartial to such factors and end up being more accurate during driving sessions
where lighting conditions change, or when driving in roads without sufficient road
surface markings. This may indicate that the utilization of physiological based measures
would be preferred.

Research Question

In the literature, there is are several references discussing various hybrid
approaches focusing on the combination of vehicular and physiological measures.
However. even in the approaches combining all types of measures (i.e., including all
three categories; behavior-, physiology- and vehicular-based), mainly Heart Rate (HR)
is considered from the physiology-based features, and respiratory features are not given
much attention, although both are reported to be able to detect drowsiness. The
absence of such an approach may indicate a potential gap in the literature or might be
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a result of publication bias. As a result, this research aims to investigate to what extent
physiological measures, including Respiration Rate, can be used in combination with
the vehicular-based features to describe the driver’s drowsiness level. This leads to the
following research question:

RQ: "To what extent can respiratory signals/patterns reflect the drowsiness level of
drivers, and to what extent can physiological signals, by means of Heart Rate, Heart
Rate Variability and Respiration Rate help to improve drowsiness predictions based on
only vehicular measures?"

Based on the accessed literature, it is expected that taking into consideration
physiological information will increase the performance of the models only considering
vehicular-based measures. Current approaches only consider driving behavior changes
and are susceptible to external factors (i.e., road and light conditions). Adding a
physiological measurement could lead to a more "universal" solution.

Furthermore, the following hypotheses will be tested:

H1: "Respiration Rate can be used to predict the drowsiness level of the driver."
H2a: "Combining the Respiration Rate (RR) and vehicular-based signals will represent
the drowsiness level of the driver more accurately, compared to only vehicular-signals."
H2b: "Combining the Heart Rate (HR) and vehicular-based signals will represent the
drowsiness level of the driver more accurately, compared to only vehicular-signals."
H2c: "Combining the Heart Rate Variability (HRV) and vehicular-based signals will not
represent the drowsiness level of the driver more accurately, compared to only
vehicular-signals."
H2d: "Combining the Heart Rate (HR) and Respiration Rate (RR) will represent the
drowsiness level of the driver more accurately, compared to only vehicular-signals.”
H2e: "Combining the Heart Rate (HR), Heart Rate Variability (HRV) and Respiration
Rate (RR) will represent the drowsiness level of the driver more accurately, compared to
only vehicular-signals."

Method

To answer the research question, this research makes use of an already existing
dataset. The data was collected for Philips in 2011 and 2012 by TNO (Netherlands
Organisation for Applied Scientific Research) and was provided to the author by Philips
Research. An introduction to the dataset and the procedure used for gathering it is
presented in the following section, followed by the pre-processing steps applied to the
data and the statistical tests to be performed to answer the RQ and test the hypotheses.

Design

The experiment utilized a within-subject design. The goal of the initial
experiment was to determine the feasibility of detecting drowsiness in subjects while
driving, by analyzing trends of vital signs (for a full list of the vital signs recorded, see
Table 1 under column "Physiology").
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Participants

For the experiment, 27 participants were recruited. All participants were males,
between 25 and 45 years of age and had a minimum of two years of driving experience
with over 10,000 km/year. The experiment took place in a driving simulator and, thus,
participants had to be tolerant to simulation sickness. Tolerance to simulation sickness
was assessed during the initial stages of the experiment, while participants that
reported. The exclusion criteria included the use of sleep medication and sleep-related
disorders, the consumption of either more than 6 cups of coffee per day or 21 alcoholic
beverages per week, to overcome possible withdrawal effects. Out of the total 27
participants, complete data is available for 19 participants. The remaining 8
participants did either not complete all sessions or their data was not correctly recorded
and, thus, their data is not considered.

Apparatus & Measurements

In Table 1 an overview of the measurements recorded is provided. All the
physiological measures were recorded using BioSemi equipment (developed by Biosemi,
Inc., more information available at www.biosemi.com). The vehicular measures were
obtained from the driving simulator and subjective measures were recorded via
questionnaires that the participant filled in every five minutes during the experiment.
Behavior (video) measures were recorded using a camera located on the dashboard and
were manually labeled for yawns.

Physiology Vehicle Behavior Subjective

EEG Speed Yawns Karolinska Sleepiness Scale
(KSS)

ECG Acceleration Visual Analogue Scale (VAS)
for Relaxation

EMG Lateral Position
EoG Steering Wheel position
GSR Lane ID

Respiration Pedal Position (brake/gas)
Time stamps of questionnaires

Table 1
Complete list of the measurements/variables recorded during the experiment by TNO for
Philips in 2011 and 2012.

Experimental Protocol

Before the experiment, participants were presented with a list of products
containing caffeine and were instructed to refrain from their consumption on the day of
the experiment to avoid interpretation problems it could cause on the physiological
measurements. Additionally, they were further instructed to not consume any alcoholic
product 24 hours prior to the experiment. On the day of the experiment the participant
was welcomed and informed about the purpose of the experiment, and they were
provided with the consent form. If the participant read and agreed with the text, they
were are asked to sign the form in order to participate in the experiment. The
experiment consisted of three sessions, for a total duration of 8.5 hours. Every
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participant, followed all three sessions on the same day. Let the participant indicate
that they were not alert (e.g., due to not having a good night sleep), they were
scheduled to participate on a different day.

The first session took place in the morning from 10 to 11 a.m. and served both as
a baseline measurement and the test for simulation sickness tolerance. During this
session, traffic conditions were indicated to be not monotonous to support the user to
remain alert during these measurements and they were provided with instructions to
maintain specific "target speeds", which changed throughout the duration of this
session. This was done to keep the participants more engaged and alert. The second
and third session lasted from 4 to 7:30 p.m. and 8 p.m. to 12 (midnight), respectively,
and during these sessions, they did not have any further tasks as in the first session
(i.e., they did not have to maintain a specific speed). However, the road simulated had
low traffic conditions, in order to make the participants drowsy. After the second
session, participants were provided with dinner, which was controlled for not containing
substances that can affect the alertness level of the participants.
The KSS values (drowsiness scores) were filled in by the participant every 5 minutes
and had a 30-second period to respond, otherwise a KSS value of 10 would be
automatically registered, indicating that the participant was asleep. The score of 10 is
outside the range of the Karolinska Sleepiness Scale and, thus, was assigned to be used
as a flag value.

Pre-processing of Data & Feature Extraction

All the signals acquired from the BioSemi equipment were exported in a single
".bdf" file for each session. Due to the presence of multiple signals not utilized in the
present study, new files were generated capturing only the signals of interest (i.e., ECG
and Respiration signals). To visualize the raw signals, the EDF Browser software was
utilized (van Beelen, n.d.), and the signals were further processed using the custom
PhysioData Toolbox, developed by Sjak-Shie (2022), in MatLab.

Window Selection. The interest of the research lies in the relation of the
dependent variable (KSS) and the predicting variables. However, since the KSS scores
were measured only in distinct moments, a modification of the data was required to
assess associations between the vehicular and physiological data, which were
continuously monitored, and the KSS. This was done by using reference windows to
reflect characteristics of the signals prior to the registered KSS value. It was decided to
select a 3-minute period to avoid uncertainty about potential stimulation the
participant received due to the way the KSS questionnaires were presented and also the
lack of information of when the questionnaire was filled out (i.e., the window of
reference ending the moment the KSS questionnaire was presented, not filled out). The
length of these windows would suffice to have enough data to be able to calculate a HR,
RR and HRV representative of the period prior to the KSS, while not including
potential effects due to the presentation of the previous KSS questionnaires.

Furthermore, as the participants were engaged in the baseline session in a different
way than in the other sessions (i.e., by not only driving and filling out the KSS
questionnaires, but also to maintaining specific speeds), it was decided to not include
the data of the first session in the analyses.

Physiological Features. To answer the research questions and hypotheses, the
extraction of specific features from the physiological signals was required. With regards
to the ECG signal, the Heart Rate (HR) and Heart Rate Variability (HRV), by means
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of Root mean square of successive RR interval differences (RMSSD), were calculated
and from the respiratory signal, the Respiration Rate (per minute) was extracted. The
calculations were performed using the PhysioData software. The low-pass and high-pass
filters were manually adjusted to depict the patterns present in the raw signals of both
ECG and Respiration. The final values for the ECG signal were 0.5Hz for the High-pass
and 40Hz for the Low-pass, while the values used for the Respiration were 0.05Hz for
the High-pass and 40Hz for the Low-pass filter.

Vehicular Features. As far as the vehicular data are considered, four features
were calculated. The first feature is the Average Absolute deviation of Lane Position
(AALP), which indicates the average distance of the vehicle from the center of the lane,
independent of direction. Secondly, the Standard Deviation of Lane Position (SDLP)
was calculated as a measure of disperse from the mean. The same features were
calculated for the Steering Wheel Angle (SWA) and are namely: the Absolute Average
SWA (AASWA) and the Standard Deviation of the SWA (SDSWA). The calculation of
the vehicular measures were performed using a custom made script in MatLab.

Statistical Tests & Analysis

In order to answer the research question and address the hypotheses multiple
models need to be created. An alpha level of .05 was used for all statistical tests and
the statistical software used was SPSS (v.29.0). The models were created by means of a
multilevel analysis, such that more accurate inferences can be drawn for both the group
and individual level, allowing for clustering in the individual level. The initial models
included combinations of only vehicular measures (i.e., AALP, SDLP, AASWA and
SDSWA), utilizing a step-wise addition approach, in order to predict the KSS values.
This means that as a starting point, the empty model was considered. In every iteration
a vehicular variable was added to the model, and their added predictive power was
assessed. To check for the presence of multicollinearity among the independent
variables, the Variance Inflation Factors (VIF) were inspected. The approach proposed
by Daoud (2018) was used as a metric of contribution to multicollinearity. According to
Daoud (2018), VIF values greater than 5 indicate high correlation between the
independent variables, while VIF values of 1 indicate there is no correlation. Values
falling between the two are considered moderately correlated. In case of high
correlations between the variables, the variable with the highest VIF value was removed
from the model and the VIF values of the new model was computed again until there
was no high correlation between the variables.

Once the vehicular models were in place, additional models involving the
physiological measures (HR, HRV and RR) were created and processed by the same
means and procedures. Initially the model involving Respiration Rate was considered
and the explained variance of the model was used to address the first part of the
research question.

To answer the second part of the research question, the best model that includes
also vehicular- and physiological-based measures will be considered and compared to
the best performing vehicular-only-based model. To test if one the models is better
performing, the explained variance of each model was used. To address each hypothesis
the following models were considered:
H1: The model only considering Respiration Rate as a predictor for KSS.
H2a: The model involving Respiration Rate and vehicular-based signals, compared to
the best performing vehicular-based model.
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H2b: The model involving Heart Rate and vehicular-based signals, compared to the
best performing vehicular-based model.
H2c: The model involving Heart Rate Variability (RMSSD) and vehicular-based
signals, compared to the best performing vehicular-based model.
H2d: The model involving Respiration Rate, Heart Rate and vehicular-based signals,
compared to the best performing vehicular-based model.
H2e: The model involving Respiration Rate, Heart Rate and Heart Rate Variability
(RMSSD) and vehicular-based signals, compared to the best performing vehicular-based
model.

Lastly, since the aim of the experiment was to induce drowsiness to the
participants, an additional mixed-model was generated to assess if that was the case for
the participants. This model used drowsiness, as depicted in the KSS scores, and time
(by means of the 5-minute interval enumeration) as the only predictor.

Results

In the experiment 19 male participants, aged 25 to 45 years old and with a
minimum of two years of driving experience, participated in a 8.5-hour simulator
driving task. The research question that this paper aims to answer is the extent to
which Respiration Rate can reflect the drowsiness level of a driver, indicated by the
KSS scores, and to what extent Heart Rate, Heart Rate Variability and Respiration
Rate, can help to improve drowsiness predictions based on solely vehicular measures.
To answer the research question, mixed models were created and the results are
presented in this section.

To investigate how Respiration Rate (RR) can reflect KSS (H1), a mixed model
with RR as the only predictor was constructed. This model yielded a significant effect
for RR (β = -.21, SE= .018, t(1584) = -11.6, p-value < .001). It showed that RR could
explain 10.3% of the variance in KSS (pseudo-R2 = 0.103).

To explore the second part of the research question, the vehicular models were
explored. These are the models utilizing the Average Absolute deviation of Lane
Position (AALP), the Standard Deviation of Lane Position (SDLP), the Absolute
Average of the Steering Wheel Angle (AASWA) and the Standard Deviation of the
Steeting Wheel Angle (AASWA). As a first step, the empty model was examined and
the vehicular measurements were added in a step-wise manner. The model including all
vehicular variables was able to explain the most variance in the KSS score. A
collinearity test was then conducted to check for the presence of multicollinearity among
the variables. For that purpose, the Variance Inlation Factors (VIF) were calculated.
The results of the test showed that the AALP had a VIF of 11.45, indicating a high
correlation between the variables, as suggested by Daoud (2018), and, thus, was
excluded to avoid multicollinearity effects (e.g., unstable estimates). Testing for
multicollinearity after the removal of the aforementioned variable indicated that there is
no high correlation among the remaining variables (i.e., all VIFs were below 1.87). As a
result, the final vehicular model included the SDLP, the SDSWA and the AASWA.

The best overall performing vehicular model was found to be the model involving
all three variables with 7.1% of the variance of KSS being explained by the model. The
specifics of the model are shown in Table 2. Note that even though the Standard
Deviation of SWA (SDSWA) did not seem to have a significant effect, the exclusion of it
slightly decreased the model performance by means of explained variance (7.1% against
6.7%).
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Table 2
Estimates of Fixed Effects for KSS. The best fitting vehicular model assessed.

To address the remaining hypotheses, five different models were created and
compared to the best overall performing vehicular-based model, by means of the
variance the model could explain (pseudo-R2). The results are presented below:

In Table 3 the coefficients for the Respiration Rate (RR) and vehicular-based
model are presented. The specific model indicated an explained variance of 17.4%
(pseudo-R2 = 0.174).

Table 3
Estimates of Fixed Effects for KSS. The model including Respiration Rate and vehicular
features.

In Table 4 the coefficients for the Heart Rate (HR) and the vehicular measures are
shown, the overall model could explain 8.9% of the variance in KSS (pseudo-R2 = 0.89).

Table 5 addresses H2c and namely looks into if the introduction of RMSSD in the
vehicular-only model. This model had a pseudo-R2 of .071 and RMSSD did not have
significant effect on the KSS score, β = .001, t(1435.35) = 1.221, p = .222, indicating it
was not a significant predictor for drowsiness (KSS).

To address hypotheses H2d and H2e, two additional models were created. The
model utilizing Heart Rate and Respiration Rate, on top of the vehicular data, was able
to explain 18.9% of the variance in KSS. All of the predictor variables showed a
significant effect on the KSS score (p < .05), (for a more detailed overview see Table 6).
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Table 4
Estimates of Fixed Effects for KSS. The model including Heart Rate and vehicular
features.

Table 5
Estimates of Fixed Effects for KSS. The model including Heart Rate Variability
(RMSSD) and vehicular features. RMSSD was not found to have a significant effect.

Lastly, to test H2b the HRV feature RMSSD was added to the model and led to a
pseudo-R2 of .071, where RMSSD did not have a significant effect on the model.

The overall best performing model, by means of explained variance, was the model
involving Heart Rate, Respiration Rate, SDLP, the SDSWA and AASWA with 18.9%
variance being explained. To show how the predictions of the model and the actual
drowsiness (KSS) values are related, two figures are presented. Figures 1 & 2 are
provided and show how KSS values and predicted drowsiness are related and how they
differ throughout the duration of the experiment for two participants. Figure 1 aims to
depict an example of where the model performs poorly, while Figure 2 serves as an
example of a participant where the model predicts drowsiness more closely to the
actually KSS scores of the participant.

To assess whether drowsiness was, indeed, induced in the experiment an
additional mixed-model was generated. The output of the analysis indicated that time
had a significant effect on the KSS score (p < .001) and that effect showed a positive
contribution.
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Table 6
Estimates of Fixed Effects for KSS. The model including Heart Rate, Respiration Rate
and vehicular features.

Figure 1 . Two Figures (a) and (b) to illustrate how the model performs for participant
11. Figure 1(a), left, shows the predicted values and the actual KSS plotted against
each other. Figure 1(b), shows the KSS values (denoted as a circle) and the predicted
values (shown as squares) plotted against time. The vertical dashed line indicates the
last measurement before the break. This serves as an example of how bad the model’s
performance can be, as the predictions mostly lie between the range 5 to 6, although
the KSS values have a wider range.
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Figure 2 . Two Figures (a), and (b) to illustrate how the model performs for participant
25. Figure 2(a), left, shows the predicted values and the actual KSS plotted against
each other. Figure 2(b), shows the KSS values (circles) and the predicted drowsiness
values (squares) plotted against time. The vertical dashed line indicates the last
measurement before the break. The models seems to perform better for this participant,
since the predicted values increase towards the end of and a small dip is observed
around the break time.

Discussion

The main research question that this study aims to answer is the extent to which
respiratory signal/patterns can reflect the drowsiness level of drivers. Based on the
data, the feature Respiration Rate can reflect 10.3% of the variation of KSS and has a
significant contribution to the vehicle-based prediction of driver drowsiness. This
indicates that a decrease in Respiration Rate was associated with an increased
self-reported drowsiness, meaning that a slow breathing pattern might be a sign of high
drowsiness. This is in line with previous findings (Kiashari et al., 2018; Warwick et al.,
2015).

To address the second part of the research question, the hypotheses will first be
considered. All of the hypotheses concern the comparison between the explained
variance by the physiological indicators above and beyond the variance explained by the
extracted vehicle-based. Therefore, we established the best performing vehicular model
(from the available vehicular features) as a baseline to which the models with
physiological parameters are compared. Namely, this model involved the SDLP,
AASWA and SDSWA and could explain 7.1% of the variance in KSS and will be
referred to as the base model in this report. It is worth noting that the effects of SDLP
and AASWA on the KSS score are in line with previous findings in the literature.
SDLP has been indicated to increase for higher drowsiness scores and be a consistent
predictor of drowsiness(Ingre et al., 2006) , while the decrease of Steering Wheel
Movements (measured in AASWA) has also been reported to be associated with an
increase in drowsiness (Feng et al., 2009). For the estimates of the effects see Table 2.

Hypothesis 1 stated that a hybrid-approach utilizing the Respiration Rate and
vehicular-based features, will lead to a better performing model compared to the base
model. As mentioned in the previous section, adding respiration rate to the base model
could account for 17.4% of the variance, indicating that H1a was confirmed in the
dataset. To address H2a, the model to be considered utilizes Heart Rate on top of the
basic model. This model was able to explain 8.9% of the variance in KSS, indicating
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that H2a was also confirmed. However, the effect of HR on KSS score was found to be
negative, meaning that the increase in HR was associated with lower drowsiness. This is
not in line with the suggestion of Warwick et al. (2015), which indicate that Heart Rate
increases while transiting to a drowsy state. However, it does seem to be in line with
the findings of Jo et al. (2019). In their work they indicate that on average there is an
increase of HR when a person drives compared to the daytime average, but that HR
decreases from normal driving to drowsy driving.

Based on past research performed by van den Berg et al. (2005) and Warwick et
al. (2015), where they indicate that HRV features do not show a significant change
between awake and sleep states and, thus, should not be used as an indicator of
sleepiness, it was hypothesized that adding RMSSD as a predictor to the base model
will not lead to more explained variance. Adding the RMSSD as a predictor did not
lead to the increase in the variance explained by the model and, thus, H2c was also
validated. The validation of hypothesis 2c, seems to be in line with previous findings.

H2d and H2e, were both proved from the dataset. Namely, the models
additionally utilizing Heart Rate and Respiration Rate, for H2d, and Heart Rate,
Respiration Rate and RMSSD, for H2e, were both confirmed, with 18.9% and 17.8%
variance explained by the models, respectively. Hence, the current findings suggest that
involving Heart and Respiration Rate does, indeed, improve the base vehicular model
and can explain 18.9% of the variance. To the author’s knowledge, there is no hybrid
application that combines only these measures. This is: there is no approach that only
combined HR, RR and vehicular measures, without the inclusion of other physiological
or behavioral measures. It is unclear to the author why this is the case, but based on
the literature accessed, it seems that Respiration Rate is often not directly measured
but its associated features are computed from different signals (e.g., ECG signal).
However, models that do include them had an accuracy of 63% (Ingre et al., 2006).

It is important to note that even though 18.9% of the variance being explained by
the model, and the predictors showing a significant effect, the importance of the results
vary per application and domain. From an academic perspective, this indicates that
future research may be required to look into whether such an effect, of Heart Rate and
Respiration Rate in combination with some vehicular-based features having a significant
effect on perceived drowsiness (KSS), is also present in different datasets and that this
kind of data may be further utilized in more advanced models (i.e., Machine Learning
or Deep Learning, to allow for more complicated interactions between the variables).
However, for industry research, where the creation of a product is the primary goal, a
model that could predict only 18.9% of the times correctly seems to be unreliable.
According to their review of the existing literature on Drowsiness Detection techniques
Hussein et al. (2021) physiology-based models have been studied, but their results by
means of performance are not explicitly reported. This appears to also be the case for
hybrid-approaches. A consequence of the absence of such information is that it cannot
be indicate how well the models proposed in this research perform compared to the
already studied models.

Although specific vehicular measures (i.e., SDLP) have been indicated to be
consistent in predicting drowsiness (Liu, Hosking, & Lenné, 2009), the base model of
this research was only able to explain a small amount of variance (7.1%). While 18.9%
may be a low amount of variance for an overall model, it is still more variance than the
base model could explain. Based on the idea that HR and RR were able to increase the
predictive power of the vehicular system, the author believes that further investigation
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on such systems (i.e., based on HR, RR and vehicular signals) can still be fruitful and
provide relevant to drowsy driving insights. Potential explanations of the low variances
explained by both the base and best performing model of this research might may
originate in the data analyzed. However, as mentioned in previous sections, there are a
lot of uncertainties about the experiment and how the data was collected, and, thus, the
author can only speculate about things that could have gone sideways (e.g., potential
sensor malfunctions). Another potential explanation may be the way participants used
the KSS scoring system. The usage of subjective measures can already cause
discrepancies between participants, as it represents the perceived level of drowsiness.
This being said, it is possible that participants indicated a high score early in the
experiment, but there was no way to retract that score and, such, the only logical way
to indicate they were more drowsy would be to further increase the reported score. This
could, potentially, explain why (most) predictors had an effect in line with previous
findings by means of the direction of their contribution in the prediction (i.e., positive
or negative), but the overall model could not explain the variance in a high degree.

Limitations & Future Work

The analysis performed in the present research makes use of an already existing
dataset that was gathered over a decade ago. However, this does not deem the dataset
irrelevant. During this time a lot of new technologies, with regards to physiological
measurement devices, have been available both for research and public use. Wireless
and non-intrusive devices can now be used to gather physiological data from drivers
(e.g., cameras), making some of the initial drawbacks and concerns for measuring
devices disappear or have less effect on the measured variables (Solaz et al., 2016). This
gives a lot of opportunities for the specific field to explore different approaches and
develop different systems, but does not change the fact that these new technologies
measure or try to approximate the same measurements that were directly recorded in
the dataset used for the purpose of this research.

Nonetheless, the results of this research should be handled with caution, since
there are multiple factors that could have affected the measurements and could not be
accounted for, due to the absence of specific information. Initially, the way that
participants were prompted to fill out the KSS questionnaire is unknown. This is of
great importance, since the questionnaire was repetitively presented to the participants
with 5-minute intervals. Let the questionnaire be accompanied by a sound-indicator or
a flashing light, this could have caused the participant to be more alert while assessing
their drowsiness level, as compared to the minutes before the presentation. The
physiological measurements, however, still reflect drowsiness before the presentation of
the questionnaire. As a result, the participants could have reported their momentary
feeling of drowsiness, which was decreased due to the presentation method (i.e., either
flashing light or sound), creating a discrepancy between the dependent and independent
variables. Secondly, it is also unknown whether blue-light filters were placed on the
simulator to account for the reduced presence of blue light in more realistic driving
scenarios during night. The absence of such filters might also have led to a reduced level
of drowsiness, affecting the reported KSS values. This could, in turn, have an effect on
the overall model performance, assuming that high values of KSS were less present in
the data, as compared to a real-life driving scenario. It is suggested that for future
research involving Drowsiness Detection Systems, such factors are accounted for by
utilizing a different drowsiness assessment tool, such as the use of objective
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criteria/behaviors and trained observers, as proposed by Wierwille and Ellsworth
(1994), which would not intrude and, thus, not interact the flow of the participants.

The experiment during which the data was gathered involved three sessions with a
total duration of 8.5 hours in a single day. This does not seem as a reasonable driving
time in a single day for most individuals, but rather as a way to ensure the participants
would feel drowsy by the end of the experimental day, which was found to also be the
case. Additionally, in the experimental protocol it is mentioned that the participants
were instructed to not eat any foods that could increase the production of melatonin or
cortisol, hormones known to be associated with the regulation of sleep-wake cycles, or
consume coffee. This might be useful to detect patterns and relations between
physiological- and vehicular-based features, while transiting to a more drowsy state.
However, for future research, it might be of interest to allow the participants to perform
their daily activities without constraints, to generate data more representative of
everyday driving scenarios and, potentially, increase the ecological validity of models for
the detection of drowsiness in drivers.

In the current paper the decision based on which the best model is indicated is the
use of the explained variance of each mixed-model generated (pseudo-R2). While the
direct comparison can be informative when comparing models that aim to predict the
same outcome, it does not allow for the direct comparison in different contexts, nor
about whether the improvement between two models is statistically significant. It is
suggested that for future research a statistical test, such as the Likelihood Ratio Test
(LRT), is used to check if the fit of one model is statistically better.

Bella (2013) in their work address another limitation of driving simulators and the
research utilizing them, namely: drivers to not perceive any risk. This being said,
behaviors observed in a simulator may not correspond to real world settings (i.e.,
driving an actual car). While this may not pose a problem while trying to identify
associations between drowsiness and physiological variables, it may affect vehicular
measures. As discussed in Liu et al. (2009), simulation experiment tend to represent
monotonous streets (i.e., absence of strong turns) with low traffic conditions. It might
be of interest for future research to introduce more complicated driving scenarios, or
include further variables that may affect the driving behavior and the need for
adjustments (i.e., side wind push), to be able to have more realistic simulations and,
thus, potentially increase the ecological validity of the simulation findings. This need
not be directly implemented for studies that aim to understand how drowsiness is
reflected in different signals, but it should be considered for the development and test of
systems that will be used in the real world.

Lastly, for the creation of drowsiness detection systems there are two steps that
need to be made. Making a model that can predict drowsiness is the first step of the
process. The aim of this study was to contribute to the knowledge of how well
physiological measures (from HR, HRV and RR) and vehicular measures (SDLP, AALP,
AASWA and SDSWA) can predict drowsiness by means of the KSS scores. The second
step involves the prevention of an accident, by potentially providing an alert to the
driver. In the current literature, there seems to be no study investigating when a driver
should be considered "not capable of driving" and, thus, what the optimal moment to
interfere is. It may be useful for future research to define a distinct point or range in the
Karolinska Sleepiness Scale (or any other scale used to assess drowsiness), where a
driver is considered not safe to drive. This will, ultimately, allow the computation of
accuracy measures that have the same classification threshold (i.e., when the driver



DRIVER DROWSINESS FROM PHYSIOLOGICAL AND VEHICULAR SIGNALS 19

should be warned), even when different datasets or techniques are used, and the
comparison based on accuracy of a model may be more sensible. For instance, in their
work Worle, Metz, and Prill (2023) define a person too drowsy to drive when they
report a KSS score of 8 twice in a row, but this is not consistent in the literature.

Based on the limitations faced in this study, an experimental set-up and
methodology for future research can be found in the Appendix. This aims to serve as
the methodology the author would have preferred in case they had the opportunity to
collect the data on their own.

Conclusion

The aim of this study was to investigate to what extent physiological measures,
such as Heart Rate, Respiration Rate and Heart Rate Variability (RMSSD) can
potentially be used in combination with the currently used approaches to Driver
Drowsiness Detection systems, which mainly involve measures obtained from the vehicle
itself. In the literature, it is reported that vehicular-based systems may not detect
changes in the driving behavior fast enough to prevent an accident and that the
detection of some behaviors might be dependent on external factors to the drivers (i.e.,
appropriate road marking and lighting conditions). Physiological measures, on the other
hand, are reported to be able to detect changes in early stages of the transition from an
awake to a sleepy state, where more time to react is available and, thus, avoiding an
accident might be more likely. Even though many researchers seem to acknowledge this,
there are no systems, to the authors’ knowledge, that utilize a hybrid approach
including Heart Rate, Respiration Rate and Heart Rate Variability features in
combination with vehicular-only based models to predict the drowsiness of drivers.
However, combinations of the aforementioned predictors have been assessed in the
literature (e.g., Heart Rate and Breathing Rate model by Warwick et al. (2015)). Based
on the absence of such an approach, models combining these measurements are created
and assessed. In conclusion, both Respiration Rate and Heart Rate can be viable
predictors for driver drowsiness, while Heart Rate Variability (RMSSD) does not. Based
on the results of the research, there is proof that a hybrid-approach, involving both
Heart Rate and Respiration Rate on top of vehicular measures, might be able to
improve the drowsiness prediction over the currently vehicular-only approaches.
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Appendix
Suggested Method

In the following section, a framework for future research is suggested. It mainly serves
as an alternative experiment that the author proposes in the scenario that they had the
option to perform the data collection on their own. As such, when a change is proposed,
it is accompanied with an explanation of why this choice may be benefitial compared to
the initial experiment performed.

Design

It is suggested that the follow up experiment utilizes a within-subject design. The
goal of the experiment remains the same and is, namely: to look into the feasibility of
detecting drowsiness in subjects while driving, by analyzing trends of vital signs and
vehicular signal patterns. To be able to address this goal, the experiment is again
designed in such a way so that the participants get more drowsy throughout the
duration of it.

Participants

Based on the review of Hussein et al. (2021), most experiments that involve
physiological signals have about 15 participants, while there are also experiments that
involved only 3 participants, but in multiple sessions. This being said, recruiting about
20 participants (10 males and 10 females) should give sufficient data, even in the case
that some participants decide they do not want to continue with the experiment.

In the experiment performed by TNO for Philips, multiple inclusion criteria were
in place. Initially, all participants were males. This choice was not justified, yet it seems
reasonable to include both females and males in the experiment, as both genders are
potential users of Drowsiness Detection Systems and it has been suggested in the
literature that the magnitude of changes in some physiological signals vary for different
genders (Warwick et al., 2015). Another criterion based upon participants were
recruited was the minimum of two years of driving experience with over 10,000 km/year.
To the author, there is no obvious reason for which such inclusion criteria should be in
place and, thus, the possession of a driver’s license would suffice, based on the idea that
all drivers should be able to use such systems independent of their experience.

As far as the exclusion criteria are considered, drivers that make use of sleep
medication or have sleep-related disorders were decided not to be included, and so did
people than on average consume more than 6 cups of coffee or 21 alcoholic beverages
per week. Since the aim of the research focuses on the relation between the
physiological measures and drowsiness, it seems logical to try minimize extraneous
factors that may have an effect on the variables involved in order to find the ground
truth (i.e., the basis of how and whether drowsiness can be reflected in the physiological
measures). As a result, the same exclusion criteria apply for the proposed experiment.

Apparatus & Measurements

The physiological measures will be recorded by means of wireless devices, such as
BioHarness 3.0 which consists of a chest strap that can record, store and transmit vital
data, such as ECG, Heart Rate, Respiration Rate and body orientation (BioHarness 3 ,
n.d.). In the experiment performed by TNO for Philips, the BioSemi equipment was
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used, which consisted of multiple sensors placed over the body of the participant. Since
the initial experiment was not performed for the purpose of this research, many of the
signals recorded by the BioSemi equipment were not relevant for us and, thus, it would
be preferred to only record the signals of interest, which can be obtained from the single
chest strap BioHarness 3.0. The vehicular measures will be obtained from the driving
simulator, as it was done in the experiment performed by TNO. As discussed in the
Limitations & Future Work section of the report, having the participants fill out a
questionnaire every five minutes may have interfered with the dependent variable and it
was proposed to use objective criteria/behaviors and trained observers to take over this
procedure. This being said, the drowsiness measurement in the proposed experiment
will not be the KSS scores, but videos of the driver will be recorded and the scores will
assigned by trained observers for each 5-minute segment of the drive (for more
information see Wierwille and Ellsworth (1994)).

Experimental Protocol

Before the the experiment, participants will be presented with a list of products
containing caffeine and are instructed to refrain from their consumption on the day of
the experiment to avoid interpretation problems it could cause on the physiological
measurements. Additionally, they will be further instructed to not consume any
alcoholic product 24 hours prior to the experiment. On the day of the experiment the
participant is welcomed and informed about the purpose of the experiment and they are
provided with a consent form. If the participant reads and agrees with the text, they
are asked to sign the form, in order to participate in the experiment.

According to an analysis performed by Pack et al. (1995), crashes attributed to
drivers being sleepy mainly took place during two times of the day: the nigh time
period (midnight to 7 a.m.) and during the mid-afternoon time (3 p.m.). Furthermore,
in their review paper Liu et al. (2009) provide a summary of the methods used in
research aiming to predict driver drowsiness from vehicular measures, including the
drowsiness manipulations and the driving task. For the experiments not involving a
sleep deprivation manipulation, it is observed that the total driving time is between 80
and 210 minutes, split into up to 6 sessions to test for various times of the day.

Based on the aforementioned information, it is proposed that the experiment
consists of two sessions of 1.5 hours that take place on the same day. The first session
will take place from 2 to 3:30 p.m., while the second session will take place from 11 to
12:30 p.m. to include the times that were reported by Pack et al. (1995). The traffic
conditions in the simulation will be set to low and the street will represent a
monotonous route (absence of strong turns), in order to induce drowsiness. Lastly, the
lighting conditions should represent the conditions found in a real world setting. This
includes both the room in which the simulator is place in, but also the simulated
environment. To ensure no further blue-light is emitted from the screen, a blue-light
filter or the monitor settings of the simulator will be applied.

Pre-processing of Data & Feature Extraction

Window Selection. The interest of the research lies in the relation of the
dependent variable (drowsiness as assessed by the trained observer) and the predicting
variables. Since the drowsiness scores will refer to distinct moments, a modification of
the data is required to assess the associations between the vehicular and physiological,
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which will be continuously monitored, and the drowsiness score. Since there is no
stimulation provided to the participant, a window representing the full 5-minute
segment can be used.

Physiological Features. To answer the research question and the hypotheses,
the extraction of specific features from the physiological signals will be required. Due to
the use of BioHarness 3.0 equipment, the physiological features of HR and RR can be
directly computed for each window, while the RMSSD will be calculated using MatLab
(or software of choice).

Vehicular Features. As far as the vehicular data are considered, four features
will be calculated. The first feature is the Average Absolute deviation of Lane Position
(AALP), which indicates the average distance of the vehicle from the center of the lane,
independent of direction. Secondly, the Standard Deviation of Lane Position (SDLP)
will calculated as a measure of disperse from the mean. The same features will be
calculated for the Steering Wheel Angle (SWA) and are namely: the Absolute Average
SWA (AASWA) and the Standard Deviation of the SWA (SDSWA). The calculation of
the vehicular measures will be performed using a custom made script in MatLab, which
was also used to analyze the same data in the main report.

Statistical Tests & Analysis

The same statistical tests and analysis will be performed as discussed in the main
Methods section, with the addition of an extra test: the Likelihood Ratio Test (LRT).
The LRT will be used to determine whether a more complex model (i.e., including
multiple predictors) provides a statistically better fit on the data than a simpler model.


