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Abstract

Displays based on organic light-emitting diode (OLED) technology are becoming more prevalent due to their
numerous advantages, such as power efficiency. As of yet there are some aspects to OLEDs that reduce its ver-
satility. Loss processes of the light-emitting quasiparticles dubbed excitons reduce the power efficiency of OLED
devices and enhance the degradation of the materials within the emissive layer. These loss processes within
phosphorescent OLEDs (Ph-OLED) consist of the mutual annihilation of triplet excitons and the quenching of a
triplet exciton by a polaron. Both these loss processes generally occur as a Förster-type energy transfer interac-
tion, which is dependent on the spatial distance between particles. This gives rise to correlations in the relative
positions between the surviving triplets and polarons. Generally only in kinetic monte carlo (KMC) simulations
these are properly taking into account, but these can be computationally expensive. Other techniques tend
to ignore these spatial correlations. Here we present a method based on the master equation as solved within
KMC simulations. Our method is based on the calculation of statistical averages applied to the master equation
of an Ph-OLED system, from which a Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy arises. This hierarchy
is infinitely long and we will discuss several closures in order to make this finitely long, such that the system
of equations can be solved. We compare our results with KMC simulations and prove that our method is an
accurate and computationally cheap tool to be used alongside KMC simulations for the modelling of exciton
dynamics within Ph-OLEDs. We prove that during transient photoluminescent experiments TTA and TPQ
cause a deviation from the exponential radiative decay and quantify this contribution. Furthermore we find
during steady-state operation at high current densites that the exciton density grows as a power law where the
exponent is lower than one and quantify the generation rate at which the roll-off starts. Lastly we find that
the diffusion of exciton and polarons mediates the TTA and TPQ processes and further increases the losses in
which that lattice structure plays a vital role and causes percolation effects. In total this work provides valuable
insights into the loss of power efficiency and luminance at high current densities as observed in Ph-OLEDs.
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1. Introduction

Organic materials are prevalent throughout (opto-)electronic devices nowadays. Organic materials are taking
some of the market away from the traditional inorganic semicoductors, such as silicon and gallium arsenide.
Currently organic materials are commercially applied as field-effect transistors [1], solar cells [2] and light-
emitting diodes [3]. The organic light-emmiting diode (OLED) technology is especially popular among organic
opto-electronics, currently being implemented in the display of a large fraction of flagship smartphones. The
Samsung Galaxy S21, Apple iPhone 12 and Google Pixel 5 are among the most prominent current examples.
This is caused by the numerous advantages organic semiconductors have over their inorganic counterparts. The
term organic imples that the materials are generally composed of carbon and hydrogen atoms, but can also
consist of other organic atoms and can even contain heavy metals such as iridium. Carbon-based molecules
are generally quite cheap, thus these electronics are generally more cost-effective than the traditional inorganic
materials. Organic materials tend to be insulators, thus should not be appropriate for electronic devices. In
2000 the Chemical Prize went to Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa for their work
on polymers with conductive properties [4]. Their work and that of many others starting around 1915 [5] on
conductive organic materials opened the gateways for organic electronics with equal performance to inorganic
electronics. In this work we will focus on the popular OLED technology.

In this chapter we will first discuss the general operation princples of OLEDs (section 1.1). Then we will move
on to introducing the dynamics of excitons in OLED structures (section 1.2). Furthemore a small summary of
current modelling techniques is presented in section 1.3. Lastly we will outline the reason for this work and
what will be discussed in the following chapters in section 1.4.

1.1 Organic light-emitting diodes

Organic materials with (electro)luminescent properties have been studied, since the start of the twentieth century
[6]. The work presented in Ref. [7] is widely regarded as the first modern OLED. Their device was an amorphous
organic thin film based on Alq3 and achieved an external quantum efficiency (EQE) of 1%. After this work
the technological developments followed very quickly and brought us to the current state of OLED research.
This development has brought us displays which have the advantage that the contrast ratio is high [8], have
low-power consumption, low cost, can be flexible, thin and support large viewing angles [9], especially when
compared to convential display techniques such as LCD. The main disadvantage that remains is the lifetime of
OLEDs which is relatively short to other display types due to degradation of the material [10]. This is related
to the other main disadvantage of OLEDs, the roll-off of internal quantum efficiency (IQE) at higher current
densities. The underlying principles of this roll-off will be the central topic of this thesis.

As noted above OLEDs operate on the principle of converting electricity in light. On a quantum mechanical
level this consists of an electron and hole combining into a quasiparticle dubbed exciton which in the ideal world
decays radiatively. In order to efficiently accommodate this reaction a complex structure has to be created. One
simple example of such an OLED structure is shown in figure 1.1. The y-axis denotes the energy of the energy
levels, while the x-axis denotes the depth within the OLED structure, which indicates the different consecutive
layers. Note that the high-lying energy levels here denote the lowest unoccupied molecular orbitals (LUMO)
energy level, while the low-lying energy levels illustrate the highest occupied molecular orbitals (HOMO) energy
level of each individual layer. During active operation a voltage is applied over the cathode to anode. Electrons
are injected from the cathode into the electron injection layer (EIL) where they are transported through the
hole blocking layer (HBL) into the emissive layer (EML). The holes traverse the reverse direction being injected
from the anode into the hole injection layer (HIL) transported through the electron blocking layer (EBL) into
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Figure 1.1: Schematic energy diagram of an OLED structure. Electrons (blue) are injected from the cathode
into the EIL through the HBL into the EML. They are confined there by the EBL. Holes (red) are injected
from the anode into the HIL and transported through the EBL into the EML where they are confined by the
HBL. Within the EML the electrons and holes will form excitons (green). The excitons will (generally) decay
radiatively.

the EML. In the emissive layer the electrons and holes will form excitons. Generally the EML mostly is made up
of a host material with conductive properties and is doped with a guest material with luminescent properties.
Usually the HOMO and LUMO of the guest material lay higher and lower respectively than the HOMO and
LUMO of the host material as indicated in figure 1.1. The emissive guest thus acts as a trap for the electrons and
holes increasing the efficiency of the recombination process. The recombination efficiency is further increased
by the confinement of the electrons and holes within the EML by the EBL and HBL respectively. After the
formation of the exciton on the guest material, the guest will facilitate the radiative decay.

The properties of these excitons are crucial to the OLED. Since both the electron (e) and hole (h) are spin-1/2
particles, the resulting exciton can be either of singlet- (S) or triplet-type (T ) [11]. Under normal conditions
only the singlet can decay radiatively due to spin conservation. The exciton formation reaction for randomly
spin-polarised electrons and hole is given by [12]

(e↑ + e↓) (h↑ + h↓)→ S + 3T. (1.1)

Thus only 25% of the excitons are formed as a singlet and can decay on fluorescent materials. This can be
increased to 50% or decreased to 0% for anti-parallel or parallel aligned spin polarisation of the electron and
hole respectively [12]. In this work we will only look at currents without spin polarisation. In that case the
distribution of singlet to triplet is 1 : 3, as is indicated in figure 1.2. The original OLEDs only consisted of
fluorescent materials, in which case the theoretical maximum percentage of the electrons converted into photons,
referred to as the internal quantum efficiency (IQE), cannot exceed 25%1, which makes the first generation OLED
consume a high amount of electronic energy per photon. Consecutive iterations of OLEDs have alleviated this
problem and brought the theoretical obtainable IQE to 100%.

The second generation OLEDs increased their IQE by creating a pathway through which the triplets can decay
radiatively [15]. Normally this is spin forbidden, however by the introduction of heavy metals [15, 16] into the
molecules, this becomes possible. The heavy metals introduce spin-orbit coupling (SOC) to the molecule. This
ensures that the triplet states will not be purely of triplet-nature, but will partially be of singlet-character. This
facilitates the spin-flip needed for triplets to decay radiatively. This process is referred to as phosphorescence.
Furthermore the SOC facilitates the singlets spin-flipping into the triplet state, which is referred to as intersystem

1It has been noted that theoretically a fifth of the triplets can be converted into singlets through TTA [13] (TTA will be discussed
later). This would theoretically raise IQEmax to 40%.

2 Master equation modelling of excitonic loss processes in phosphorescent OLEDs
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Figure 1.2: Schematic energy level diagram of the lowest singlet and triplet excitonic states with relevant
transitions between the excitonic states of the three earliest generations of OLEDs. In all cases the excitons are
generated by electrons and holes recombining. Initially for all cases 25% of the excitons will be singlets, while
75% will be triplets. In the first generation only the singlets are able to decay rediatively, while the triplets
will not decay radiatively, thus causing the maximum obtainable IQE to be 25%. In the second generation
OLEDs singlets are able to convert into triplets through ISC (mediated by SOC). SOC furthermore allows the
triplets to decay radiatively, thus the maximum IQE becomes 100%. In the third generation OLEDs triplets
are thermally excited and converted into singlets (rISC). The excitons will decay radiatively as singlets. This
brings the maximum IQE of the third generation to 100%. Note that in the third generation the difference
between singlet and triplet energies (∆EST ) has to be small in order to allow for rISC. Inspired by Ref. [14].

crossing (ISC). ISC is generally orders of magnitude faster than the radiative decay of a singlet in these materials
[17, 18]. This process is sped up by the large difference in energies of the singlet and triplet state (∆EST ,
generally in the order of 2kBT at room temperature [19]). Effectively all excitons formed by the electrons and
holes will be triplets before decaying radiatively. This increases the maximum obtainable IQE to 100%. The
second generation is referred to as phosphorescent OLEDs (Ph-OLEDs) and will be the main focus of this work.

Further generations are under development, due to heavy metals being rare and thus expensive. Of large
academic and commercial interest is thus currently the third generation of OLEDs. Here the spin-orbit coupling
should still be present in order to facilitate ISC, but can be much weaker. The main property of this generation
is the small difference between singlet and triplet energies ∆EST . All in all this allows the triplets to be
thermally converted into singlets, referred to as reverse intersystem crossing (rISC), instead of radiatively
decaying through phosphorescence. Singlets will decay radiatively through fluorescence. A fraction will decay
instantly after formation, due to being formed as singlets and not undergoing ISC. The triplets however will
first have to be upconverted to singlet before decaying radiatively through fluorescence. The third generation
is henceforth referred to as thermally activated delayed fluorescent (TADF) OLEDs [20]. The TADF process
increases the maximum IQE to 100%.

The TADF OLEDs do not seem to be the last OLED generation. TADF OLEDs still have an issue with
the long lifetime of the triplets which causes degradation of the material. Further research is therefore being
conducted into newer generations of OLEDs in order to alleviate this long lifetime of the triplets. For the fourth
generation of OLEDs new techniques developed are based on hyperfluorescence [21] and the direct singlet
harvesting mechanism [22]. These techniques will not be discussed here, since these are beyond the scope of this
work. Very recently work on possibly the fifth generation OLEDs was introduced in Ref. [23]. They have found
molecules with a negative singlet-triplet energy gap, such that ISC (not rISC) becomes thermally activated.
This could significantly reduce triplet lifetimes.

Master equation modelling of excitonic loss processes in phosphorescent OLEDs 3
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Figure 1.3: Schematic overview of TTA and TPQ loss processes. During TTA one of the triplets recombines.
The energy released excites another triplet, either staying a triplet or becoming singlet. The electron in the
excited state will trickle down to the LUMO non-radiatively, thus losing the energy of the first triplet non-
radiatively. During TPQ again a triplet recombines. This time the energy excites the polaron on molecule 2,
in this example the polaron is of positive nature. The polaron then decays non-radiatively to its non-excited
state, thus the energy of the triplet is again lost non-radiatively. Inspired by Ref. [26].

1.2 Exciton dynamics

As noted we will focus here on the second generation in which to good approximation all excitons are triplets.
Even though the strong SOC allows triplets to decay radiatively, the triplet lifetime is in the order of micro-
seconds [24, 25]. This lifetime is high enough for other processes to occur instead. In Ref. [24] the two most
significant loss processes were reported. These two processes are schematically presented in figure 1.3.

It has been reported that the most prominent of these two loss processes is triplet-triplet annihilation (TTA)
[16, 27] which is plotted on the left in figure 1.3. Generally what happens is that one of the excitons recombines,
releasing its energy. This energy is transferred to the other triplet, exciting it electronically and/or vibrationally.
Depending on the initial spins of the triplets, during the excitement the second triplet turns into a singlet [26].
Theoretically it is also possible to create an excitonic quintet state on a single molecule, but that generally is
higher in energy, thus that pathway is energetically unfavourable [26]. This excited singlet or triplet will tend to
non-radiatively decay back into the lowest energy triplet state, following Kasha’s rule [28]. In total the system
has thus lost the energy of one triplet non-radiatively. In reaction form this is denoted as [26]

T1 + T1 →

{
S∗n + S0

T ∗n + S0

→

{
S1 + S0 + heat

T1 + S0 + heat
, (1.2)

where S0 denotes the groundstate and T ∗n denotes an excited triplet. Due to the fact that two excitons are
needed for TTA, its contribution to the decay is proportional to n2

T , where nT denotes the triplet density in the
system.

Depending on the system the triplet-polaron quenching (TPQ) can become the dominant loss process of triplets
[27, 29, 30]. TPQ is generally dominant at low current densities, when the amount of triplets is low, since the
contribution of TPQ to the loss of excitons scales as nT . One example of TPQ is depicted in figure 1.3 on the
right. Again the triplet decays to the S0 state, but now transfers its energy to the polaron, in this case a hole,
and excites electronically and/or vibrationally. The polaron will then tend to decay non-radiatively to its lower
energy level. The energy of the triplet is again lost non-radiatively. The total reaction can be written as [14]

P± + T1 → P±∗ + S0 → P± + S0 + heat. (1.3)

4 Master equation modelling of excitonic loss processes in phosphorescent OLEDs
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The transfer of the excitonic energy in TTA and TPQ has to be mediated by transfer interactions. The
interactions generally taken into account are the Förster-type [31, 32] and Dexter-type [32] energy transfer [19].
The basis of Förster-type interactions are dipole-dipole interactions between molecules. The rate of Förster-type
processes are given by [31]

kProcess
F örster (r) = kr

(
RProcessF

r

)6

, (1.4)

where kr is some characteristic timescale, which can be chosen if we appropriately scale RProcessF and which
we will set to the inverse radiative lifetime of a triplet on a phosphorescent molecule, r denotes the distance of
the energy transfer and RProcessF denotes the characteristic length scale of a specific dipole-dipole-type energy
transfer reaction. These processes range from TTA and TPQ to the simple hopping of an exciton over different
molecules. Dexter-type energy transfer happens through exchange interactions, which are mediated by the
overlap of wavefunctions between the initial and final state. The rate of a Dexter-type process is is equal to [32]

kProcess
Dexter (r) = kProcessD,0 e−2r/λProcess , (1.5)

where kProcess
D,0 is some characteristic timescale related to the relevant Dexter-type interaction and λProcess

denotes the localisation length of the specific process and related wavefunctions. The processes again range
from TTA and TPQ to the simple hopping of excitons or polarons. Dexter [32] furthermore derived that
dipole-quadropole and higher order multipole expansion interactions are also present, but these are generally
not considered in the OLED literature, since their effects generally seem to be insignificant.

Comparing these two type of energy transfers we can conclude that at long-range Förster-type processes will
always be dominant, due their r−6 nature instead of inverse exponential behaviour. It has be shown that both
for the hopping of excitons [25] and TTA [33] at distances larger than (approximately) the nearest-neighbour
distance Förster-type interactions are dominant. Since excitons generally live on guest sites, which only occupy
a small fraction of the total amount of molecules, the average distance between sites is quite large for both
TTA and the hopping of excitons, such that these can be approximated purely by Förster-type interactions.
For TPQ the main mechanism for energy transfer is as of yet unclear, since polarons will be hopping at a fast
rate, possibly allowing for Dexter-type energy transfer to become dominant.

When TTA and TPQ processes occur after a number of hopping steps, it is often referred to as diffusion-
mediated multi-step TTA or TPQ. If there are no hopping steps in between to mediate, the loss processes are
referred to as single-step TTA and TPQ. Diffusion mediation generally enhances the loss due to TTA and TPQ.

1.3 Modelling of excitonic dynamics

As has been noted in many works [14, 34, 35] the modelling of OLEDs spans multiple length and time scales. On
the macroscale the physics of the complete OLED device is modelled. Here the dynamics of charges hopping,
dynamics of excitons and light outcoupling play an important role. These three processes are however affected
by the underlying morphology on the mesoscale, which gives rises to effects such as percolation. Going down
even further to the microscale we find that density functional theory (DFT) becomes the norm for the quantum
mechanical determination of energy transfer rates.

In this thesis we will focus on modelling exciton dynamics somewhere in between the meso- and device scale.
Multiple techniques already exist and will be discussed below. We will add our novel method to this collection.

Master equation modelling of excitonic loss processes in phosphorescent OLEDs 5
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Spatially uncorrelated Spatially (anti)correlated

Figure 1.4: Illustration of correlation effects on the positioning of excitons throughout an EML. The black dots
indicate excitons and the red circle indicates the Förster radius around it. On the left excitons are randomly
distributed, which corresponds to the initial condition of exciton distribution for a TRPL experiment. On the
right the positions of excitons are spatially anticorrelated, as is caused by TTA without hopping of excitons.
The correlated positions were modelled using equation (2.24). Inspired by Ref. [37].

1.3.1 Mean-field modelling

As early as the discovery of TTA in Ph-OLEDs mean-field modelling (also referred to as rate equations) has
been applied in order to bring to light its loss processes [16]. Such a phenomenological model of TTA is generally
given by [16]

nT (t)

dt
= Gnmax − krnT (t)− kTTA

2
n2
T (t) , (1.6)

where G denotes the generation rate, nmax the density of guest sites, kr denotes the radiative decay rate of
the triplet excitons and kTTA is the TTA rate coefficient. The solution to this equation is given in equation
(2.19). It has been noted however that this neglects spatial correlation effects caused by the TTA process [36].
This effect is illustrated in figure 1.4. Equation (1.6) will always presume that we are in the situation of the
left namely that excitons are completely uncorrelated. As can be concluded the excitons (black) will have more
overlap of their Förster-spheres (red) in the uncorrelated case than in the (anti-)correlated situation, thus the
TTA effect is more prominent for spatially uncorrelated excitons. Generally TTA operates on excitons which
are close to each other, thus the only excitons left after some time will generally be far away from each other,
such that the situation on the right is more physically accurate. We can conclude that this method does not
give a physically correct solution if excitons do not diffuse, even though it is widely used throughout literature.

1.3.2 Kinetic monte carlo

Another widely used modelling technique of OLEDs is the kinetic monte carlo (KMC) algorithm [29, 36, 38, 39].
The state-of-the-art software Bumblebee [40] will be used to compare our results to. The KMC algorithm allows
for modelling any OLED device including spatial correlations. The main drawback of this general algorithm is
the fact that simulations can become time-consuming in order to get sufficient statistical accuracy. An extensive
introduction to the KMC algorithm applied to OLED modelling can be found in Ref. [34].

6 Master equation modelling of excitonic loss processes in phosphorescent OLEDs
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1.3.3 Master equation modelling

The last widely used modelling technique is master equation modelling. Formally in this modelling technique
probabilities are assigned to any state the system can be in and transition rates are defined between states of the
system. This leads continuous-time Markov chains, which need to be solved. In general this is computionally
expensive and thus not probabilities of the entire system are evaluated, but the probabilities of states of the
individual sites on the lattice[41–43]. This takes into account more spatial correlations than the mean-field
modelling, since it can account for percolation effects, but does not take into account all correlations present in
the OLED. It terms of accuracy it is thus better than mean-field modelling, but not as accurate as KMC.

Recently a paper was published [44] on charge transport which took this mean-field master equation approach,
but added n-particle correlation functions. These higher order correlations become important when particles
interact with each other between different sites. In their example these correlations could arise from simple
Coulombic interactions between electrons. It was noted however that Coulombic interactions are not needed in
order to give rise to these correlations between occupancies [44]. When these n-particle correlation functions
are added a Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations will arise[45–48], which
exactly solves the master equation when the correlation order is taken to be the size of the system. This is
computationally unfeasible however and these hierarchy need to be closed at relatively small correlation order,
such that only a computationally feasible number of equations have to be solved.

1.3.4 Smoluchovski equations

The last relevant technique consists of Smoluchovski equations. As noted above generally spatial correlations
are neglected in mean-field modelling, however Smoluchovski equations can describe this spatial decorrelation
between particles including Brownian motion [49–51]. These equations are generally given by [50–52]

∂g2 (r, t)

∂t
=
D

r2

∂

∂r

(
r2e−U(r) ∂

∂r

(
eU(r)g2 (r, t)

))
− SR (r) g2 (r, t) , (1.7)

where g2 (r, t) is the two particle correlation function, D denotes the diffusion coefficient, U (r) symbolises
the interaction potential between particles and SR (r) denotes the reaction rate at a relative distance between
particles r. Based on the two-particle distribution the TTA rate can be adapted. One of the main advantages
of this equations, is its simplicity and elegance, allowing for more transparency.

1.4 Outline thesis

As noted all current modelling techniques have their drawbacks. The mean-field modelling techniques generally
ignore spatial or occupational correlations and thus yield inaccurate results. KMC does solve the complete
master equation of the system, but it can be time-consuming to get sufficient accuracy and it may be difficult
to draw conclusion from the overabundance of data. As such there is need for an accurate and fast technique
for the modelling of exciton dynamics including spatial correlations, applicable to amorphous structures.

In this thesis we will attempt to create such a modelling technique. Since master equations are capable of
modelling an entire OLED system we will start there. Solving the master equation directly is computionally
infeasible, we will follow the previous literature and calculate the moments of occupancies [44]. This will net us
with a BBGKY hierarchy of equations. We will bring this hierarchy of equations from a discrete lattice into a
continuum definition as is suitable for the generally amorphous [7, 26] OLED structures and allows for simpler
analytical formulas, getting close to a Smoluchovski equation. Then we will close the BBGKY infinitely long
hierarchy of equations by applying closures influenced by Refs. [44, 53] and one of our own.

In chapter 2 we will introduce the master equation of the exciton within a system. Here we will perform the
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steps outlined above. We will also attempt to model a system including polarons and compare our diffusion
modelling to Fick’s second diffusion law. In chapter 3 we will present the results of the model we have created.
We will furthermore discuss these results and compare them to the results from KMC simulations. Finally
in chapter 4 we will summarise and conclude the chapters previous to it and provide an outline for further
research.

8 Master equation modelling of excitonic loss processes in phosphorescent OLEDs



2. Theory

In this chapter the mathematical and computational methods will be discussed pertaining to the modelling of
triplets in an emission layer of a Ph-OLED. Part of this chapter can also be found in Ref. [37]. First in section
2.1 we will present our model simulating exciton dynamics, where we will step from a master equation approach
to a BBGKY-hierarchy of equations. This hierarchy of equations will need to be closed before we can solve
it. This closure will be discussed in section 2.2. For certain closures this system cannot be solved analytically.
In section 2.3 we will discuss the numerical solving method used for solving the integro-differential equations.
Furthermore in section 2.4 we will add polarons to this system and add the TPQ loss process. Lastly in section
2.5 we will discuss the relation of our integral hopping formulation to the Smoluchovski equation, which is more
common in continuum formulations. Throughout this chapter we will make use of Mathematica [54] in order to
solve complex integrals and differential equations analytically.

2.1 General model

We consider a system with an arbitrary amount of points distributed throughout space. These points represent
the molecules and will be referred to as sites from now on. These sites are capable of being occupied by one
or zero excitons (ni ∈ {0, 1} with ni being the amount of excitons at site i). All excitons can be assumed to
be triplets due to the rate of intersystem crossing generally being significantly faster than the other relevant
time scales in phosphorescent emitting OLED layers [17]. We define the set of all sites I. The system has
2N configurations where N (= |I|) is the amount of sites. Each configuration has occupations (n1, . . . , nN ).
Since we generally do not know what configuration the system is in, we assign a probability to every valid
configuration P (n1, . . . , nN ). The modelling of this system then turns into a continuous time-Markov chain,
here referred to as master equation.

The rates of the master equation depend on the physics of the system. Here I will assume the same physical
processes within a 2nd generation OLED emitting layer as Ref. [37], namely:

• Decay of excitons. It will be assumed that the only contribution to direct decay is from spontaneous
radiative decay, but it is a simple exercise to add non-radiative decay to these simulations. Generally it
will be assumed that the radiative decay rate kr(=

1
τ ) is equal to 1 µs−1, which is inline with observed

decay rates for a couple of phosphorescent emitters [17, 24, 25]. Generally this will be the characteristic
timescale and all other timescales will be made dimensionless to kr where possible.

• Hopping of excitons with rate Dij , where i, j ∈ I. According to theoretical computations in a host-guest
system at low guest percentage Förster-type is dominant [25], thus we will assume that the hopping rate
can be written as

Di,j = kr

(
RF,Diff

∆rij

)6

, (2.1)

where RF,Diff denotes the Förster radius of the hopping process in relation to kr and ∆rij denotes
|rj − ri|. Note that Dij = Dji, since it is assumed that energy disorder can be neglected, yielding
symmetric diffusion rates. For guest emitters of the same type then it has been found that RF,Diff ≈ 1.5
nm [25], whereas RF,Diff can be up to 4 nm for molecules of a different type [55].

• Generation of excitons. An empty site will be able to generate an exciton with rate G. The generation
rate is assumed to be completely uniform throughout space. This mathematical form of generation of
excitons captures excitation by light or recombination of electrons and holes as long as there is no spatial

9
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dependency on the generation rate. This generally holds within the bulk of the material or directly at the
interface between layers.

• Triplet-triplet annihilation. As introduced in chapter 1 two triplets near each other can undergo a reaction
where one triplet is lost non-radiatively as shown in equation (1.2). At larger distances the Förster-type
energy transfer dominates the TTA process [33]. Since in host-guest systems the average distance between
guest sites are on average larger than the distance at which Förster-type becomes dominant [33], it is fair
to assume that TTA only occurs as a Förster-type process. Thus we can write

Wi,j = kr

(
RF,TTA

∆rij

)6

, (2.2)

where RF,TTA denotes the Förster radius of the TTA process where the rate of losing either one of the
excitons equals 2kr, in agreement with the original definition in equation (1.4) as presented in Ref. [31].
Note that the Förster radius to lose either one of the excitons with a rate of kr has an extra factor 21/6.
Generally RF,TTA will be assumed to be in the order of 3 nm in correspondence with other comparisons
of simulations with experiments [56].

Due to the physical processes outlined above the probabilities of each configuration evolve through time. We
can then put this in a classical master equation, assuming coherent quantum effects can be neglected, given by
[37]

dP (n1, . . . , nN , t)

dt
=
∑
i∈I

∑
j∈I\i

[−Wi,jninjP (n1, . . . , nN , t) +Wi,jni (1− nj)P (. . . , nj + 1, . . . , t)

−Di,jni (1− nj)P (n1, . . . , nN , t) +Di,jnj (1− ni)P (. . . , ni + 1, . . . , nj − 1, . . . , t)]

+
∑
i∈I

[−krniP (n1, . . . , nN , t) + kr (1− ni)P (. . . , ni + 1, . . . , t) (2.3)

−G (1− ni)P (n1, . . . , nN , t) +GniP (. . . , ni − 1, . . . , t)] .

The first line outlines the transition rates due to TTA, the second line represents the hopping rate of triplet
excitons, the third line denotes the radiative decay of triplet excitons and the last line indicates the generation

of triplets. This equation can be translated into the very simple equation dp(t)
dt = A p (t), where p(t) denotes

the vector of probabilities of all possible configuration and the matrix A denotes the transition rates between
the states. This equation has the restriction that at any time t the sum of all probabilities should equal 1
(1Tp(t) = 1), thus d

dt

(
1Tp(t)

)
= 0 = 1TAp(t). This is equivalent to saying that the sum of all elements in

all columns of matrix A should sum to 0. We can conclude from equation (2.3) that this holds. This has
the simple solution p (t) = exp (A [t− t0])p (t0)[57], where p (t0) denotes the initial probabilities. It is not
feasible computationally to use this very simple solution in order to model actual OLED systems. The amount

of non-zero elements in matrix A grows as 2N
(
N [N+1]

2 + 1
)

. This means that an ordinary computer will not

be able to carry out this computation for N ' 35 due to memory constraints, while in order to model actual
OLED systems one generally needs N to be in the order of 103 or higher.

In order to be able to model large systems we will be calculating the statistical averages of excitonic occupation
of sites, the evolution of which is described by the master equation (2.3). Then the application of symmetries
will allow us to model infinitely large systems. First we choose a subset of sites Icorr ⊂ I of Ncorr (= |Icorr|)
sites. Then we determine the discrete Ncorr-particle correlation function as

(2.4)
∏

i ∈Icorr

ni (t) =

∏
j∈I

∑
nj∈{0,1}

( ∏
i∈Icorr

ni

)
P (n1, . . . , nN , t) ,
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where A(t) denotes the average value of the general observable A at time t. Note that we assume that all
elements in Icorr are unique, however all these derivations also hold for subsets with duplicate elements, since
from equation (2.4) it follows that n2

iA = niA. Now calculating the time derivative of equation (2.4) and
plugging this into equation (2.3) yields

d

dt

∏
i∈Icorr

ni (t) =

∏
j∈I

∑
nj∈{0,1}

( ∏
i∈Icorr

ni

)
∂

∂t
P (n1, . . . , nN , t)

=−
∏

i∈Icorr

ni

|Icorr| [G+ kr] +
∑

j∈Icorr

∑
k∈Icorr\j

Wj,k

− ∑
j∈I\Icorr

∑
k∈Icorr

Wj,knj
∏

i∈Icorr

ni

+G
∑

j∈Icorr

∏
i∈Icorr\j

ni +
∑

j∈Icorr

∑
k∈I\Icorr

Dj,k

nk ∏
i∈Icorr\j

ni −
∏

i∈Icorr

ni

 , (2.5)

where |Icorr| denotes the amount of particles in Icorr (Ncorr). One important fact to note in equation (2.5) is
that the time dependence of the Ncorr-particle correlation function is dependent on the Ncorr + 1-correlation
function. This means that we have found an hierarchy of N differential equations, much like the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBKGY) [45–48] hierarchy of equations. It is generally not feasible to perform
the ODE calculations of the hierarchy of N equations, especially in the limit of N →∞. Thus closures will be
needed in order to be able to solve this problem. The closures will be discussed further in section 2.2.

Equation (2.5) gives the time evolution of the correlation between Ncorr discrete sites. This would leave us

in total with
∑Ncutoff
NCorr=1

(
N

Ncorr

)
correlation functions, where Ncutoff denotes the degree of correlation at which

a cutoff is applied. In the case of N → ∞ this quickly becomes insurmountable even when Ncutoff is small.
One approach as outlined in [37] is to assume a periodic lattice, such as a simple cubic lattice and apply
symmetries such as translational symmetry and C4 rotational symmetry (cubic lattice point symmetry groups).
This assumes that the system has a periodic lattice which is generally not true for emitting OLED layers, which
are amorphous in nature [19, 26].

Here we employ another method of solving theses system of equation by going to a continuum formulation of
the Ncorr-particle correlation function

(2.6)
˜̃gNcorr (r1, . . . , rNcorr , t) =

Ncorr∏
j=1

1

δVj

∫
δVj

dr̃3
j


∑

Icorr⊂I, |Icorr|=Ncorr

 ∏
i∈Icorr

ni (t)
∏

i∈Icorr

Ncorr∑
j=1

δ (r̃j − ri)

 ,

where δVj denotes a small volume around rj . What we are doing in this equation is defining Ncorr volumes δVj
situated around the positions (r1, . . . , rNcorr ). Then we determine whether there are sites within those volumes
and determine the Ncorr-exciton correlation function between sites in the different volumes δVj and average
those over the volumes. Next step is to reduce the complexity by applying symmetries. Due to neglecting
energy disorder and assuming that the system is infinitely large, we can conclude that all interesting physics
is only relative to other particles. We can thus average over the position of the first particle, since that degree
of freedom will provide no information. We can thus calculate the spatially averaged Ncorr-particle correlation
function as

Master equation modelling of excitonic loss processes in phosphorescent OLEDs 11
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(2.7)
g̃Ncorr (r2, . . . , rNcorr , t) =

(
1

V

∫
V

dr̃3
1

)Ncorr∏
j=2

1

δVj

∫
δVj

d (r̃j − r̃1)
3


∑

Icorr⊂I, |Icorr|=Ncorr

 ∏
i∈Icorr

ni (t)
∏

i∈Icorr

Ncorr∑
j=1

δ (r̃j − r̃1 − ri)

 ,

where V is the volume of the system, which will generally be very large. We can then furthermore set δVj very
small, allowing us to operate at excellent fidelity. Note that the degrees of freedom for Ncorr > 2 are equal to
3Ncorr − 6, when assuming spherical symmetry.

Now calculating the time derivative of the spatially averaged Ncorr-particle correlation function and employing
equation (2.5) yields

(2.8)

∂

∂t
g̃Ncorr (r2, . . . , rNcorr , t)

= −g̃Ncorr (r2, . . . , rNcorr , t)

Ncorr [G+ kr] +

Ncorr∑
i=1

Ncorr∑
j=i+1

2W (ri, rj)


−
∫
V

dµ3 (r2, . . . , rNcorr+1)

Ncorr∑
k=1

W (rNcorr+1, rk) g̃Ncorr+1 (r2, . . . , rNcorr+1, t)

+ nmax

Ncorr∑
k=1

Gg̃Ncorr−1 (r2, . . . , rk−1, rk+1, . . . , rNcorr , t)

+ nmax

∫
V

dµ3 (r2, . . . , rNcorr+1)

Ncorr∑
k=1

D (rNcorr+1, rk) [g̃Ncorr (r2, . . . , rk−1, rk+1, . . . , rNcorr+1, t)

− g̃Ncorr (r2, . . . , rNcorr , t)] ,

where the product of Dirac delta functions has been replaced by dµ(r) denoting the distribution function of sites
as function of space. We have defined nmax as the average density of sites, which is related to the maximum
exciton density.

In order to proper model the system, we will be systematically plugging in higher values for Ncorr. Starting
with Ncorr = 1, which is actually the exciton density of the system g̃1 (t) = nT (t), we retrieve from equation
(2.8)

dnT (t)

dt
=
dg̃1 (t)

dt

=−
∫
V

dµ3 (r2)W (r2) g̃2 (r2, t)− [kr +G]nT (t) +Gnmax (2.9)

=− n2
T (t)

∫
V

µ
(
dr3

2

)
W (r2) g2 (r2, t)− [kr +G]nT (t) +Gnmax,

where gNcorr (r2, . . . , rNcorr ) is defined as the normalised Ncorr-particle correlation function
g̃Ncorr (r2,...,rNcorr ,t)

nNcorrT (t)
.

The normalised Ncorr-particle correlation function provides more transparent insight into the physics and will
be used for the rest of this work. The next step is to calculate the time-dependence of g2(r2, t) yielding
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dg2 (r2, t)

dt
=− nT (t)

∫
dµ3 (r2, r3) g3 (r2, r3, t) [W (r3) +W (r3 − r2)]

+ 2nT (t) g2 (r2, t)

∫
dµ3 (r3) g2 (r3, t)W (r3)

− 2g2 (r2, t)

(
W (r2) +

Gnmax
nT (t)

)
+ 2

Gnmax
nT (t)

(2.10)

+ nmax

∫
dµ3 (r2, r3) {D (r3) [g2 (r3 − r2, t)− g2 (r2, t)] +D (r3 − r2) [g2 (r3, t)− g2 (r2, t)]} .

In this entire thesis we will not go further than the two-particle correlation function (also called pair correlation
function). This is analysed to third order in Ref. [37].

Comparing equation (2.9) to the mean-field (rate) equation (1.6) it can be shown that

(2.11)kTTA (t) = 2

∫
V

dµ3 (r2)W (r2) g2 (r2, t) .

The next step is to define the distribution of sites dµ3 (r). The 2-site distribution function µ (r) is equal to the
radial distribution function. For amorphous systems the radial distribution function is complex, but generally

resembles rdf (r) ≈ 1 + φ(r)
r for infinitely large systems at large distances [58]. The materials within OLED

emissive layers seem to adhere to this relation as shown in Ref. [59]. In order to generate simple expressions
we will be assuming that φ (r) = 0. Furthermore we will be assuming that the distribution of the third site
can be separated into three terms only consisting of the relative positions between two sites. This yields for the
distribution of sites

µ (r) =

{
1 if |r| ≥ R0

0 else
, (2.12)

dµ3 (r2) = µ (r2) dr3
2, (2.13)

dµ3 (r2, r3) = µ (r3)µ (r3 − r2) dr3
3. (2.14)

In section 3 we will compare this method to KMC simulations on a cubic lattice. A cubic lattice has a different
radial distribution function and higher order site distribution function than we use as given in the equations
above. In order to get comparable result, we set R0, such that the TTA rates without any correlations are
equal nmax

∫
V
µ
(
dr3

2

)
W (r2) =

∑
iW0,i. Assuming that the summation happens over a simple cubic lattice

with Förster-type TTA, this yields

(2.15)
4π

3R3
0

≈ 8.402

a3
,

where we used nmax = 1
a3 , with a the cubic lattice spacing. This yields R0 = 0.7929a. Generally a is set to 1

nm in KMC simulations as it is close to experimental values of actual OLED molecules [59].

Furthermore in order to be able to model the hierarchy of equations as given by equations (2.9) and (2.10), we
need boundary conditions. It is assumed that both at at t = 0 over all space and at large distances between
pairs of sites for all time t the excitons are completely uncorrelated. This yields the boundary conditions

Master equation modelling of excitonic loss processes in phosphorescent OLEDs 13
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nT (0) = n0, (2.16)

g2 (r, 0) = 1, (2.17)

lim
r→∞

g2 (r, t) = 1. (2.18)

Here we have furthermore defined the initial triplet density as n0.

2.2 Closures

The last problem keeping us from solving the equations (2.9) and (2.10) is the fact that g3 (r2, r3, t) is unknown.
We do not want to continue the hierarchy of equations above Ncorr = 2 in this work. Therefore we need to
make an assumption for g3 (r2, r3, t) with only known variables in order to close the system of equations. The
assumption should be based on physical principles [60] valid within the system. In this section we will present
and discuss several closures of the hierarchy of equations.

2.2.1 Negligible covariance closure

One of the simplest ways of cutting off the hierarchy found in literature is to assume that higher order co-
variances (of order Ncutoff and higher) are negligible as proposed in Ref. [44]. In practice this means set-

ting
∏
i∈INcutoff

δni =
∏
i∈INcutoff

(ni − ni) = 0. This closure, the negligible covariance closure (NCC), ap-

proximates reality when decorrelation effects are stronger than (anti)correlation effects for Ncutoff or higher
particle correlation functions. In this problem that is specifically the case when RF,Diff � RF,TTA or when

G � kr

(
RF,TTA
R0

)6

. For Ncutoff = 2 we find g2 (r2, t) = 1. Using the boundary condition (2.18), we also find

g2 (r2, t) = 1 if D (r2)→∞ from equation (2.10). Then we only need to solve equation (2.9) with the analytical
solution

(2.19)
nT (t) =

1

kTTA

(√
(G+ kr)2 + 2GkTTAnmax tanh

(
tanh−1

(
G+ kr + kTTAn0√

(G+ kr)2 + 2GkTTAnmax

)

+
1

2
t
√

(G+ kr)2 + 2GkTTAnmax

)
−G− kr

)
,

where kTTA =
8krπR

6
F,TTA

3R3
0

. Note that in this case (2.9) was equal to (1.6). We will call this the first order

NCC closure, which is the same as the mean-field modelling. In the case of G = 0 we retrieve the well-known
equation[16]

(2.20)nT (t) =
krn0

ekrt
(
kr + kTTA

2 n0

)
− kTTA

2 n0

.

Lastly in the case of t→∞ we find

(2.21)nT,eq =

√
(G+ kr)2 + 2GkTTAnmax − kr −G

kTTA
.

14 Master equation modelling of excitonic loss processes in phosphorescent OLEDs



Clint van Hoesel 1012071 CHAPTER 2. THEORY

Applying the NCC closure at Ncutoff = 3 yields g3 (r1, r2, r3) = g2 (r1, r2)+g2 (r1, r3)+g2 (r2, r3)−2, but it is
only possible to solve the system numerically with this closure. We will call this the second order NCC closure.
Notice that for this closure it is possible that g3 (r1, r2, r3) < 0 when the sum g2 (r1, r2)+g2 (r1, r3)+g2 (r2, r3) <
2, which is unphysical. In chapter 3 we do see that this situation is observed (figure 3.2).

2.2.2 Kirkwood superposition closure

Another well-known closure is the Kirkwood superposition approximation closure (KSC) [53]. It is given by

(2.22)g3 (r1, r2, r3) = g2 (r1, r2) g2 (r1, r3) g2 (r2, r3) .

This form is quite elegant and easy to work with. It states that the three particle correlation function is a simple
multiplication of the three independent two particle correlation functions. This is expected to do well, since the
only term consists of all correlations between two particles and there are no direct interactions between three
particles in this physical system.

It has been noted within the theory of fluids that this closure is not complete and the right side of equation (2.22)

has to be multiplied by a factor S3 (r1, r2, r3, nT ) = e
−W3(r1,r2,r3,nT )

kBT , where W3 (r1, r2, r3, nT ) is the indirect
mean force [61]. It has been derived for low densities that this correction term is given by S3 (r1, r2, r3, nT ) =
1 + nT

∫
dr4h (r4 − r1)h (r4 − r2)h (r4 − r3) + O

(
n2
T

)
[61, 62], where h (r) = g2 (r) − 1. From this we can

conclude in the limit of zero exciton density that the SPC is the ground truth. Furthermore it has been proven
that when entropy is maximised the Kirkwood superposition closure is the ground truth [63]. In general OLEDs
operate at low exciton densities, such that the Kirkwood superposition approximation is close to reality. We
can only solve the system of equations numerically with this closure.

2.2.3 Pair approximation

It can be noted that both equations (2.9) and (2.10) have terms of different order in nT . OLEDs generally
operate at low exciton densites, such that the terms of higher order in the triplet density can be ignored. This
allows us to ignore the higher order correlation terms by taking the limit of nT → 0 and thus the hierarchy
of equations is closed. We will call this limit cutoff when applied at Ncorr = 2 the pair approximation closure
(PA), since the third particle in the system is not taken into account.

Taking the limit of low exciton density (nT → 0) within equation (2.9) leads to the trivial equation

(2.23)nT (t) =

(
n0 −

Gnmax
kr +G

)
e−(kr+G)t +

Gnmax
kr +G

,

which only holds if nT (t) is orders of magnitude smaller than 4π
∫∞
R0
r2W (r) g2 (r, t)

(
≤ 4πR6

F,TTA

3R3
0

)
at any time

t (note Gnmax
kr+G ≤ nT (t) ≤ n0 if n0 ≥ Gnmax

kr+G , otherwise the order is reversed). This is identical to assuming TTA
does not occur in the system.

This limit can also be applied to the derivative of the two particle correlation function in equation (2.10). In
order to then generate exact formulas we will split the simulation into two different situations.

Transient photoluminescence

In transient photoluminescence (TRPL) experiments the system starts with exciton triplets scattered throughout
the system and which will start decaying. In this case there is no further generation of triplets, thus G = 0. In
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the limit of low exciton density then in equation (2.10) we can ignore the three particle correlation function.
Assuming that excitons are perfectly confined to their sites Di,j = 0 then the solution to equation (2.10) is

(2.24)g2 (r, t) = g2 (r, 0) e−2tW (r),

as has been found before in literature [49]. Note that here W (r) is still completely general and can be a
mix of both Förster- and Dexter-type TTA. We can conclude that a correlation hole is created with radius

Rcorr,Forster ∝ RF,TTA (krt)
1/6

or Rcorr,Dexter ∝ λDex ln (kDext) respectively. In TRPL experiment it is as-
sumed that excitons start out spatially uncorrelated as assumed before in equation (2.17). It can then be derived
for Förster-type TTA that

(2.25)

∫
V

µ
(
dr3

2

)
W (r2) g2 (r2, t) =

√
2

krt

πR3
F,TTA

3

(
√
π − Γ

(
1

2
,

2R6
F,TTAkrt

R6
0

))

=
kTTA (t)

2
,

where Γ (x, t) denotes the upper incomplete Gamma function. For t � R6
0

2R6
F,TTAkr

we can approximate with a

high degree of accuracy R0 = 0. The fraction
R6

0

2R6
F,TTA

is generally in the order of 10−4. Now plugging this into

equation (2.9) yields

(2.26)nT (t) =
n0e
−krt

1 +
√

2
3 π

2n0R3
F,TTA erf

(√
krt
) ,

where erf (x) is the error function. This equation has already been found in literature before in Ref. [39], where
we have found that b = 1√

2
, which is very close to their fitted parameter b = 0.71. Other literature generally has

a different factor than
√

2, such as 1 [64], which could be related to an alternative definition of the Förster-radius
as noted earlier.

Above we have analysed the OLED system in the case of three spatial dimensions. There exist OLED structures
where the majority of the excitons live on the interface between layers. In these cases it might be interesting
to evaluate hierarchy of equations for two spatial dimensions or even fractal spatial dimensions. In that case

we can simply replace 4π
∫∞
R0
drr2 by the d-dimensional integral 2πd/2

Γ(d/2)

∫∞
R0
drrd−1. Replacing this integral in

equation (2.9) yields the solution

(2.27)nT (t) =
n0e
−krt

1 + 2d/6

6Γ(d/2)n0πd/2RdF,TTAΓ (1− d/6) γ (d/6, krt)
,

where γ (x, t) denotes the lower incomplete Gamma function. This allows us to evaluate systems with one or
two spatial dimensions as well. Note that the unit of both nT (t) and n0 has now become length−d.

Steady state

The other case in which we can get analytical solutions is the steady state. During steady state operation the
generation of excitons due to either charges or photons counteract the radiative decay of the exctions and TTA.
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In steady state we will use the fact that in any equation ∂
∂t = 0 holds. In that case we can derive for the two

particle correlation function from equation (2.10)

(2.28)g2 (r,G) =
1

1 +
W (r)nT,eq(G)

Gnmax

.

Again W (r) is completely general and can be either Förster- or Dexter-type TTA. We again find a correl-

ation hole with size Rcorr,Förster = RF,TTA

(
krnT,eq
Gnmax

)1/6

or Rcorr,Dexter = λ ln
(
kDexnT,eq
Gnmax

)
. Now assuming

that Förster-type TTA is the dominant process, we find that effective TTA rate has become kTTA (G) =
4π2

3 R3
F,TTA

√
krGnmax
nT,eq(G) . With these results we can rewrite equation (2.9) in the steady state as

(2.29)Gnmax = (kr +G)nT,eq (G) +
2π2

3
R3
F,TTAn

3/2
T,eq (G)

√
krGnmax.

This yields a cubic equation, which can be solved analytically, but that solution will not be presented here.
Instead a simplified piecewise function can be derived

(2.30)nT,eq (G) ≈


Gnmax/kr if G ≤ kr min

(
1,
(

2
3π

2R3
F,TTAnmax

)−1
)

nmax if G ≥ kr max
(

1,
(

2
3π

2R3
F,TTAnmax

)2)(
G
kr
nmax

)1/3 (
2π2

3 R3
F,TTA

)−2/3

otherwise

.

Assuming that Gnmax ≈ J
el , we have derived at which current density TTA will become dominant and the

electron to photon conversion will see diminishing returns. Here J is the current density and l is the width of
the device. Note that here we have taken the limit of R0 → 0, which holds if R6

corr � R6
0. This condition is

violated at high generation rates G. We can also conclude that at low generation values kTTA remains constant
as was also found in Ref [65]. In d spatial dimensions this becomes

(2.31)Gnmax = (kr +G)nT,eq (G) +
k
d/6
r (Gnmax)

1−d/6
π1+d/2

Γ (d/2) sin
(
dπ6
) RdF,TTAn

1+d/6
T,eq (G) .

This equation is valid for 0 < d < 6. Note that in the intermediate regime the steady-state exciton density in

other spatial dimensionalities is given by nT,eq (G) = (Gnmax/kr)
d

6+d

(
Γ(d/2) sin(dπ6 )
π1+d/2RdF,TTA

) 6
6+d

∝ G
d

6+d .

2.3 Finite element method

In the sections above we have discussed all necessary ingredients in order to be able to solve equations (2.9)
and (2.10). Aside from the analytical results found in the sections above, no analytical solutions were found.
This leaves solving this system of equations numerically. The main problem here is discretising g2 (r, t) in the
spatial direction.

We will be employing a finite element method, based on the Galerkin method [66]. First of all we employ separ-

ation of variables. This allows us to rewrite the two particle correlation function as g2 (r, t) =
∑Nbf
i=1 αi (t)ui (r),
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where Nbf denotes the number of basis functions. This method works best if the basis functions resemble the
exact solution.

In order to now actually numerically solve this system we calculate the time derivative of the inner product
between the mth basis function and g2 (r, t) yielding

(2.32)

(
um,

∂g2

∂t

)
=

Nbf∑
i=1

(um, ui)
dαi (t)

dt
,

where ∂g2(r,t)
∂t is still given by equation (2.10). The inner product will be defined as (f, g) =

∫∞
0
drf (r) g (r).

This problem can be simplified by choosing orthonormal basis functions (ui, uj) = δij . We will choose simple
basis functions given by

(2.33)ui (r) =

{
1√

rbf,i+1−rbf,i
if rbf,i ≤ r < rbf,i+1

0 else
,

where rbf,i denotes the ith boundary radius. These boundary radii will be set to

rbf,i = e
ln(R0)+

ln(Rmax−ln(R0))
Nbf

(i−1)
. Here I have introduced a new parameter Rmax, which denotes the maximum

distance at which g2 will be evaluated. This then changes the boundary condition (2.18) to g2 (Rmax, t) = 1
for any time t. Rmax will be set to a radius, such that the difference between the new boundary condition and
boundary condition (2.18) is negligible.

This allows us to rewrite equation (2.32) using equation (2.10) as

(2.34)
d

dt
αa (t) = T bcda αbαcαd + Ubca αbαc + V ba αb +Wa,

where the Einstein summation convention was used. Here the tensors consist of the integrals in
(
um,

∂g2

∂t

)
. All

elements of the tensors in equation (2.34) contain integrals. These integrals will be calculated numerically using
either simple Gaussian quadratures [67] or when the integrand is complex the enhanced VEGAS algorithm [68,
69]. For the SPC closure we will need all tensors shown above, thus the computational time and memory needed

grow as O
(
N4
bf

)
. For the pair approximation we only need V ba and lower, which grows as O

(
N2
bf

)
. The pair

approximation will computationally be much cheaper than SPC for high amounts of basis functions.

2.4 Inclusion of triplet-polaron quenching

The model as described in section 2.1 only inlcudes the triplet-triplet annihilation loss process. The significant
loss process of excitons at low current densities, triplet-polaron quenching (TPQ), was ignored. In this section
we will add TPQ to the model.

We keep the arbitrarily spatially distributed sites, but now these sites can also be occupied by a polaron such
that ni ∈ {0, T, P}. We then add the following physical processes to this system

• Hopping of polarons. Polarons can generally hop over both guests and hosts. In that case hopping can be
assumed to be mostly caused by the overlap of wavefunctions which can be written as

(2.35)DPP
i,j = khope

−2 rλ ,
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where khop denotes the rate of hopping at no distance and λ is the localized length. Generally λ is at least
0.1 nm[25].

• Triplet-polaron quenching. A polaron and triplet near each other can react. This reaction generally
occurs as described in equation (1.3). It is still under discussion whether Dexter-or Förster-type transfer
is dominant for the TPQ process. This likely depends on the hopping rate of polarons. In the case of
trap-limited hopping likely Förster-type TPQ is dominant, since the average reaction distance will be
higher, such that it is fair to write

(2.36)WTPQ
i,j = kr

(
RF,TPQ

∆rij

)6

,

where generally RF,TPQ ∼ 3–4 nm [70].

Notice that polarons are not lost nor generated and thus the polaron density will stay constant nP (t) = nP .
Thus the generation as described in section 2.1 will not accurately describe generation due to polarons. Notice
that we have also ignored any interaction between polarons such as Coulombic interactions, such that g2,PP = 1,
where g2,PP is the polaron-polaron two particle correlation function.

These new adaptations allow us to go through the motions of setting up the master equation, applying the
method of moments and calculating the normalised correlation functions. The new master equation is presented
in the Appendix in equation (A.1). Doing this allows us to rewrite equation (2.9) with TPQ as

(2.37)
dnT (t)

dt
= G (nmax − nT (t)− nP )−KRDnT (t)

−
∫
dµ3 (r2)

(
WTTA (r2)n2

T (t) g2,TT (r2, t) + nT (t)nPW
TPQ (r2) g2,TP (r2, t)

)
,

where g2,TP (r2, t) denotes the triplet-polaron two-particle correlation function. From this equation we can
conclude that kTPQ =

∫
dµ3 (r2)WTPQ (r2) g2,TP (r2, t). Note that nT (t) +nP ≤ nmax has to hold at any time

t. The time evolution of the triplet-triplet two-particle correlation function then becomes

dg2,TT (r2, t)

dt
= −

∫
dµ3 (r2, r3)

{
nT (t) g3,TTT (r2, r3, t)

[
WTTA (r3) +WTTA (r3 − r2)

]
+ nP (t) g3,TTP (r2, r3, t)

[
WTPQ (r3) +WTPQ (r3 − r2)

]}
+ 2 (t) g2,TT (r2, t)

∫
dµ3 (r2, r3)

{
nT g2,TT (r3, t)W

TTA (r3) + nP g2,TP (r3, t)W
TPQ (r3)

}
− 2g2,TT (r2, t)W

TTA (r2) +
2G

nT (t)
(nmax [1− g2,TT (r2, t)] + nP [g2,TT (r2, t)− g2,TP (r2, t)])

+ 2

∫
dµ3 (r2, r3)DTT (r3) [nmax {g2,TT (r3 − r2, t)− g2,TT (r2, t)}

+ nP {g3,TTP (r2, r3, t)− g3,PTT (r2, r3, t)}] .
(2.38)

From equation (2.37) we conclude that also the triplet-polaron two-particle correlation function as a function
of time needs to be calculated. The time evolution is described as
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dg2,TP (r2, t)

dt
= −

∫
dµ3 (r2, r3)

{
nT (t) g3,TPT (r2, r3, t)W

TTA (r3) +nP (t) g3,TPP (r2, r3, t)W
TPQ (r3− r2)

}
+ g2,TP (r2, t)

∫
dµ3 (r2, r3)

{
nT (t) g2,TT (r3, t)W

TTA (r3) + nP g2,TP (r3, t)W
TPQ (r3)

}
− g2,TP (r2, t)W

TPQ (r2) +
2G

nT (t)
(nmax [1− g2,TP (r2, t)] + nP [g2,TP (r2, t)− g2,PP (r2, t)])

+

∫
dµ3 (r2, r3)

(
DTT (r3) [nmax {g2,TP (r3 − r2, t)− g2,TP (r2, t)}

+ nP {g3,TPP (r2, r3, t)− g3,PPT (r2, r3, t)}]
+DPP (r3) [nmax {g2,TP (r3 − r2, t)− g2,TP (r2, t)}

+ nT (t) {g3,PTT (r2, r3, t)− g3,TTP (r2, r3, t)}]
)
.

(2.39)

Notice that we have now three-particle correlation functions of different type. Due to the fact that polaron dens-
ities are generally quite low in OLED systems [41], we can employ the Kirkwood superposition approximation
closure g3,XY Z (r1, r2, r3) = g2,XY (r1, r2) g2,XZ (r1, r3) g2,Y Z (r2, r3), where X,Y, Z ∈ {T, P}.

In certain limits we can again derive analytical solutions. These limits will be discussed below.

Strong exciton diffusion

In the case of strong exciton diffusion (DTT (r) → ∞) using boundary condition (2.18) it can be derived from
equations (2.38) and (2.39) that g2,TT (r, t) = 1 = g2,TP (r, t). In that case the solution is a simple adaptation
of equation (2.19) yielding

(2.40)
kTTAnT (t) + ksingle,loss

kmulti,loss
= tanh

(
tanh−1

(
ksingle,loss + kTTAn0

kmulti,loss

)
+

1

2
kmulti,losst

)
,

where we have simplified the equations using ksingle,loss = G+ kr + kTPQnP and defined

kmulti,loss =
√

(ksingle,loss)2 + 2GkTTAnmax with the TPQ rate per polaron density kTPQ =
4πkrR

6
F,TPQ

3R3
0

. Note

that in the limit of no polarons in the system (nP → 0) we retrieve equation (2.19) as should be the case.

Fast polaron hopping

In the case of strong polaronic diffusion (DPP (r)→∞) g2,TP (t) = 1. Here we will now again split the solution
for either TRPL or steady-state experiments.

During TRPL experiments we again find in the low exciton density limit that g2,TT is given by equation (2.24).
Then the solution of equation (2.37) becomes

(2.41)nT (t) = n0e
−krt(1+kTPQnP )

(
1 +

√
2n0π

2R3
F,TTA

3
√

1 + kTPQnP
erf

(√
krt (1 + kTPQnP )

))−1

.

In steady state g2,TT can be derived from equation (2.38) to be equal to equation (2.28), but we need to replace
nmax by nmax − nP . The solution to be solved in steady state then becomes

(2.42)G (nmax − nP ) = (kr +G+ kTPQnP )nT,eq +
2π2

3
R3
F,TTAn

3/2
T,eq

√
krGnmax.
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No diffusion

The last scenario in which we can obtain exact results is when none of the particles is allowed to diffuse and
both the exciton and polaron density is low. This scenario gives a good approximation when kr is higher than
the hopping rate of any particle.

In the case we are simulating TRPL experiments, we find again that g2,TT is given by equation (2.39). From
equation (2.39) we can derive that

(2.43)g2,TP (r, t) = g2,TP (r, 0) e−tW
TPQ(r).

Plugging this into equation (2.37) gives the solution

nT (t) = n0e
−t(kr+nP kTPQ,nd/

√
krt)(

1 +

√
2

3
n0π

2R3
F,TTAe

k2
TPQ,ndn

2
P /(4k2

r)
[
erf
(
kTPQ,ndnP /kr +

√
krt
)
− erf (kTPQ,ndnP /kr)

])−1

, (2.44)

where kTPQ,nd = 2
3krπ

3/2R3
F,TPQ. From this we can conclude that the TTA process becomes irrelevant relatively

to the TPQ process when kTPQ,ndnP � 1. In words TPQ completely dominates when there are multiple
polarons per volume of a sphere with radius RF,TPQ.

Now for the steady state first equation (2.39) needs to be solved, yielding

(2.45)g2,TP,eq (r) =
1

1 +
nT,eqWTPQ(r)
G(nmax−nP )

.

Next this solution is employed in order to solve equation (2.38) yielding

(2.46)g2,TT,eq (r) =
1

G(nmax−nP )
G(nmax−nP g2,TP,eq(r))

+
nT,eqWTTA(r)

G(nmax−nP g2,TP,eq(r))

.

Finally plugging the two particle correlation functions into equation (2.37) yields the equation to be solved

(2.47)
G (nmax − nP ) = nT,eq (G+ kr) +

2

3
π2nPR

3
F,TPQ

√
GkrnT,eq (nmax − nP )

+
2

3
π2

√
Gkrn3

T,eq

nmax − nP
R3
F,TTA

(
nmax − nP

R3
F,TTA

R3
F,TTA +R3

F,TPQ

)
.

2.5 Relation to Smoluchovski equation

In the section above we have used integrals in order to represent the hopping or diffusion of particles in con-
tinuum. In general in continuum modelling diffusion is presented as derivatives with regards to spatial coordin-
ates. One example of this was already presented in the Smoluchovski equation (1.7). In this section we will
compare these 2 representations of diffusion.
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If we assume that particles can do nothing but hop from site to site and ignore the previously assumed uniform
distribution of triplets throughout space then from equation (2.5) we can derive for the exciton occupation per
site i

(2.48)
dni (t)

dt
=
∑
j∈I

Dij (nj (t)− ni (t))

or as a continuum representation

(2.49)
∂n (r1, t)

∂t
= nmax

∫
V

dr3
2D (r2 − r1) (n (r2, t)− n (r1, t))

= nmax

∫
V

d∆3D (∆) (n (r1 +∆, t)− n (r1, t)) .

Applying the vectorized Taylor expansion, we obtain a Kramers-Moyal expansion in higher dimensionality [71]
given by

(2.50)

∂n (r1, t)

∂t
= nmax

∫
V

d∆3D (∆)

∞∑
|i|=1

∆i

j!
(∂in) (r1, t)

=

∞∑
|i|=1

Mi (∂in) (r1, t) ,

where Mi = nmax
∫
V
d∆3D (∆) ∆

i

j! . Notice that when only |i| = 2 gives a non-zero contribution, we find the

first term of the Smoluchovski equation (1.7), which on its own is also known as Fick’s second law of diffusion

(2.51)∂n (r1, t)

∂t
=Mαβ ∂

∂xα∂xβ
(n (r1, t))

= D∇2n (r1, t) .

The derivatives we have been considering only have radial components. For respectively Förster- and Dexter-
type diffusion the radial components are

Mri,F = 2π

∫ π

0

dθ sin (θ) cosi (θ)

∫ ∞
R0

drnmax
r2+ikrR

6
F,diff

i! r6

=
2
(

1 + (−1)
i
)
krnmaxπR

6
F,Diff

(3− i)R3−i
0 (i+ 1) !

, (2.52)

Mri,D = 2π

∫ π

0

dθ sin (θ) cosi (θ)

∫ ∞
R0

drnmaxr
2+i khop

i!
e2

R0−r
λ

=

(
1 + (−1)

i
)
khopnmaxπλ

3+iΓ
(
3 + i, 2R0

λ

)
22+ie−2

R0
λ (i+ 1) !

. (2.53)
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While the moment of displacement of diffusion drops quickly with higher order i for Dexter-type hopping, for
Förster-type hopping the moment of displacement becomes infinitely large for i ≥ 3. Fickian diffusion is thus
unlikely to properly model Förster-type hopping. From these equations we can however conclude that the
spherical diffusion constant is equal to

DF =Mrr,F =
2πkrnmaxR

6
F,Diff

3R0
, (2.54)

DD =Mrr,D =
khop

6
nmaxλ

(
3λ4 + 6λ3R0 + 6λ2R2

0 + 4λR3
0 + 2R4

0

)
. (2.55)

Note here that if we write the diffusion constant for Förster diffusion as DF = ckr
R6
F,Diff

a4 , we find c = 2πa
3R0
≈ 2.62

as noted in Ref. [39], which is slightly below what was found in Refs. [31, 39]. This is not unexpected, since we
are looking at a different lattice than the simple cubic lattice as used in those works. Throughout the rest of
this chapter we have assumed uniform exciton density throughout space. The above derivation then does not
make sense, since diffusion will have no effect on the exciton density directly. We can do this derivation for the
two particle correlation function g2 (r, t). As long as r−2R0

RF,Diff
� 1 or r−2R0

λ � 1 then the diffusion constants is

simply the summation of the diffusion constants for the two particles related to the diffusion constants above.
At lower distances the three site distribution affects the diffusion and causes advection away from the origin,
due to less sites being available near the origin.

In order to derive this effect, we are going to assume the simplest form of nearest neighbour hopping D (r) =

kNN,hopδ (r −R0). Using this definition in combination with Mi = nmax
∫
V
d∆3D (∆) ∆

i

j! , where we use

equation (2.14) in order to determine the integration volume, yields

(2.56)Mri,NN
g2

=
2π

i!
R2+i

0 nsurfacekNN,hop

∫ θmax(r)

0

dθ sin (θ) cosi (θ)

=
2πR2+i

0 nsurfacekNN,hop
(i+ 1) !

(
1− cos1+i (θmax (r))

)
,

where θmax (r) = Re

(
π − tan−1

(√[
2R0

r

]2 − 1

))
. Note that also for Förster- and Dexter-type hopping ad-

vection will play a role at small distances, but then the strength of advection has to be determined numerically.

Generally we will use as an approximation
4πR4

0nsurfacekNN,hop
3 to be either 2DD or 2DF . Note that hereMri,NN

g2

is now a function of distance r. In order to properly relate this to the Smoluchovski equation, we would need
the generalised Smoluchovski equation, which will not be discussed here, but is discussed in more detail in Ref.
[72].

Now that we know how our theory relates to the Smoluchovski equations and Fick’s law of diffusion all there is
left to do is to solve the Smoluchovski equation as shown in equation (1.7). We will be following Ref. [73] and
looking at the TPQ process. We will be assuming that there is no potential between the triplet and polaron,
thus we can set U (r) = 0. Furthermore as noted in Ref. [29] it is possible that merely Förster-type TPQ
contributes significantly to the roll-off within Ph-OLEDs. In that case SR (r) is given by equation (2.36). In
that case we can rewrite equation (1.7) as [73]

∂g2,TP (r, t)

∂t
=
DT +DP

r2

∂2

∂2r
(rg2,TP (r, t))− kr

(
RF,TPQ

r

)6

g2,TP (r, t) . (2.57)

Here again the boundary conditions as noted in equations (2.17) and (2.18) apply. These boundary conditions
are not sufficient for solving this system. One needs an inner boundary at r = R0. In Ref. [73] the no-diffusion

boundary limr↓R0

∂g2,TP (r,t)
∂r = 0 was proposed and the corresponding solution
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(2.58)lim
t→∞

g2,TP (r, t) =
23/4

Γ (1/4)
z1/4 (r)

[
K1/4 (z (r)) +

K3/4 (z (R0))

I−3/4 (z (R0))
I1/4 (z (r))

]

was found in equilibrium. Here Iα (x) andKα (x) denote the modified Bessel functions and z (r) =
R3
F,TPQ

2r2

√
kr

DT+DP
.

We will compare our methods to this solution. Note that other inner boundary conditions have also previously
been discussed in literature, such as in Refs. [74, 75].
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3. Results and discussion

In this chapter we will discuss the results obtained using the theory as outlined in chapter 2. Part of this
chapter can also be found in Ref. [37]. First we will discuss the results of the model in TRPL and steady state
experiments without polarons nor diffusion in section 3.1. Then we will add the hopping of triplets in section
3.2. Thirdly we will look at the results including polarons and their hopping in section 3.3. Lastly we will
compare the hopping diffusion to the Smoluchovski formalism. The results without polarons will be compared
to KMC simulations. The KMC results were obtained by Mahyar Taherpour using Bumblebee [40].

3.1 Negligible triplet diffusion

In this section we will discuss the simplest situation in which there are neither polarons in the system nor are
the triplets allowed to diffuse. This is also discussed in Ref. [37]. We will discuss both TRPL experiments and
steady state operation of OLEDs.

3.1.1 Transient photoluminescent experiments

In TRPL experiments where the hopping of triplets is irrelevant, it has been verified before that the guest
percentage of molecules is irrelevant [39] (assuming that guest molecules are not clumped together) and thus
will not be taken into account. For example a system with 10% guest sites with 20% of sites initially containing
an exciton will have the same response as a system with 100% guest sites at 2% initial occupation in this
situation. We will focus on the comparison between different closures introduced in section 2.2 and the amount

of initial excitons per Förster sphere (
4πn0R

3
F,TTA

3 ) instead.

In figure 3.1 the exciton density as a function of time during a TRPL experiment is simulated for a phosphor-
escent OLED layer with RF,TTA = 3 nm. Assuming that 100% of the emissive layer consists of phosphorescent
material then here 2% of the sites initially contain an exciton, which are initially randomly spread throughout
the material. For this situation we thus set n0 = 0.02 nm−3, such that the material initially contains 2.26
excitons per Förster sphere, where we have assumed nmax = 1 nm−3. The time axis has been made dimension-
less with regard to the radiative excitonic lifetime 1/kr. Here the KMC result can be assumed to be ground
truth and is compared to the SPC closure (section 2.2.2), PA approximation (section 2.2.3) and the NCC first
(mean-field) and second order (section 2.2.1).

From all results depicted in figure 3.1 it can be concluded that at low times the decay of excitons is non-
exponential and faster than the exponential decay at large times. This indicates a significant contribution from
TTA. At large times all curves except KMC decay with the same speed, indicating that the decay is purely due
to radiative decay. The KMC results seem to curve upward slightly, although this is likely caused by insufficient
statistics due to the low amount of particles in the system and we will disregard this. Both NCC first and

second order fail quite dramatically with regards to the KMC results and start to deviate at t ≈ 10−3

kr
and

t ≈ 10−2

kr
respectively. This indicates that the NCC closure is quite incorrect and we can only cutoff the system

of equations at high order using this closure. This is not surprising, since the NCC closure assumes that the
(higher order) covariance of excitonic occupation between sites in the system is negligible, which does not hold
in this situation as we will conclude from figure 3.2. As can be noted both results using the SPC and PA
closure are almost indistinguishable from the KMC result without the extra inset. We can thus note that both
the PA and SPC are valid approximations in this scenario. In the case of limited computational resources and

25



CHAPTER 3. RESULTS AND DISCUSSION Clint van Hoesel 1012071

0 1 2

10-5

10-4

10-3

10-2

10-3 10-2 10-1 100

Ex
ci

to
n 

de
ns

ity
 n

T 
(n

m
-3

)

Time t (1/kr) Time t (1/kr)

 KMC
 PA eq. (2.26)
 SPC
 NCC 1st order eq. (2.20)
 NCC 2nd order

2x10-3 4x10-3 6x10-3

0.016

0.017

0.018

1.2 1.4

0.002

Figure 3.1: Density of triplets as a function of time nT (t) as simulated for during a TRPL experiment. The
initial exciton density is set to n0 = 0.02 nm−3, diffusion of triplets is ignored and RF,TTA = 3 nm. (a) Plot of
transient densities where various different cutoffs applied to equations (2.9) and (2.10) as discussed in section
2.2 are denoted by the colored lines. These are compared to KMC simulations (thick solid black line). (b) Same
plot using a logarithmic time axis. Insets indicate magnified areas.

time we recommend the PA result, while if extra accuracy is needed the SPC is recommended alongside KMC
simulations. In the extra insets it can be seen that the the PA closure start underneath the KMC results and
ends above the KMC results. For the SPC closure this is reversed, but the difference with the KMC results is
smaller for SPC.

In figure 3.2 the pair correlation function g2 (r, t) as a function of time for various distances of the closures
described in section 2.2 are depicted and compared to the pair correlation found using KMC. These pair
correlations are obtained during the simulations shown in figure 3.1 and do depend on the initial exciton
density n0. In the limit of n0 → 0 the SPC and PA results will become the same. First noticable result is the
fact that NCC first order (mean-field) and second order are completely different than the KMC results. This due
to the fact that the closure does not resemble the physical reality. This is partially caused by the fact that the
closure is unphysical, since g2 (r, t) dive below 2/3. The fact that the pair correlation function is overestimated
by NCC results in overestimating the contribution of TTA, thus resulting in the reported exciton densities being
too low as can be seen in figure 3.1. The PA results shows an acceptable agreement with the KMC results, but
the pair correlation found using the PA drops early at larger distances in comparison to the KMC results. This
explains the fact that the TTA effect is underestimated. The SPC closure has a near perfect agreement with
the KMC results. This near perfect agreement raises questions as to why the results in figure 3.1 differ. This
can only be explained by either the fact that different lattices were analysed or statistical fluctuations. It can
be noted from the KMC, SPC and PA results that a correlation hole is created around every surviving exciton

with radius Rcorr ∝ RF,TTA (krt)
1/6

as noted in section 2.2.3.

In figure 3.3 the internal quantum efficiency as a function of the initial amount of excitons during a TRPL
experiment is depicted as calculated using the PA and first order NCC (mean-field). The IQE is determined as∫∞

0
dtkr

nT (t)
n0

. Figure (a) shows the result for non-diffusing excitons as calculated in equation (2.26) using the PA
closure, while figure (b) shows the case of strongly diffusing excitons as calculated in equation (2.20) as presented
by the first order NCC closure. In both cases when there is one exciton per sphere with related characteristic
radius the IQE has dropped to roughly 50%. For strongly diffusing excitons however this characteristic radius is
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nm) during a TRPL simulation in the absence of the diffusion of triplets (RF,Diff = 0)
for RF,TTA = 3 nm and initial exciton density n0 = 0.02 nm−3. The results for the SPC closure (a), PA closure
(eq. (2.24)) (b), first and second order NCC (c) are compared to KMC results (black dashed lines).
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.
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Figure 3.4: Density of triplet excitons nT (G) as a function of the generation rate G during steady-state operation
for RF,TTA = 3 nm in the absence of diffusion RF,Diff = 0 nm. The different lines denote different closures
applied to equation (2.10). The no-TTA limit is given by nT (G) = Gnmax

kr+G . Inset emphasises the difference
between SPC, PA and KMC results.

generally much smaller than than for non-diffusing excitons. For non-diffusing excitons the characteristic radius
equals the Förster radius RF,TTA, while for strongly diffusing excitons this becomes RF,TTA

RF,TTA
R0

. Due to the

fact that generally R3
F,TTA � R3

0 we can conclude that strong diffusion greatly reduces the internal quantum
efficiency at equal initial exciton density n0.

3.1.2 Steady state operation

In steady state operation when diffusion is irrelevant, guest percentage of molecules does become relevant, but
only changes the maximum amount of available sites nmax, by a factor cguest. This does not drastically change
the results and thus this variable will again be ignored.

During steady state operation a generation rate G is forced upon the system, where excitons are continuously
generated and lost due to either TTA or radiative decay. We neglect electrons and holes in this section, thus this
is most relevant for systems where the generation rate is caused by photon excitation, but can also represent
recombination of electrons and holes in the bulk assuming a complete spatially uniform distribution of electrons
and holes.

The exciton density nT (G) as a function of the generation rate is depicted in figure 3.4 for RF,TTA = 3 nm.
Again as before we note that the SPC and PA closures show excellent agreement with the KMC results, while
the NCC result fails at quite low generation rates. The NCC results are correct for strongly diffusing excitons,
which naturally causes the amount of excitons in the system to be lower. The three other results are equal to the
no-TTA limit at low generation rates, due to there not being enough excitons in the system to react with. The

28 Master equation modelling of excitonic loss processes in phosphorescent OLEDs



Clint van Hoesel 1012071 CHAPTER 3. RESULTS AND DISCUSSION

1

0.0

0.2

0.4

0.6

0.8

1.0

1 10

103

101

10-1

10-2

N
or

m
al

is
ed

 tw
o-

pa
rti

cl
e 

co
rre

la
tio

n 
fu

nc
tio

n 
g 2

(r)

Radial distance r (nm)

 SPC
 KMC

G = 10-4 kr

(a) 103

101

10-1

10-2

G = 0 kr

(b)

Radial distance r (nm)

 PA (eq. 2.28)
 KMC

Figure 3.5: Exciton triplet pair correlation function g2 (G, r) as a function of distance between a pair of exciton
r for different generation rates G during steady state operation in the absence of diffusion (RF,Diff = 0) for
RF,TTA = 3 nm. Here we compare the results obtained from KMC with the SPC closure (a) and PA closure
(b).

no-TTA limit is given by taking the limit RF,TTA → 0 in equation (2.29), yielding nT (G) = Gnmax
kr+G . The border

for the regime change as derived in equation (2.30) has become G = 0.005 kr, which agrees with the results
shown in figure 3.4. In this intermediary regime TTA has become the dominant loss process. This causes the
exciton density to grows as nT (G) ∝ G1/3. At large generation rates we can see that the curve flattens around
that region. Equation (2.30) predicts that this will happen at G = 3.2 · 104 kr, which falls outside domain of
the plot, but seems to nicely corresponds with the plotted data that shows flattening. In general actual OLEDs
will not reach this regime and we have thus limited the x-axis. Furthermore in this regime other effects will
start playing a role such as TPQ. The boundary between the intermediate and high generation regime should
thus be taken with a grain of salt for actual OLED systems.

The inset in figure 3.4 emphasises the difference between KMC, PA and SPC results. We can conclude that the
KMC results lie outside the range given by the PA and SPC results. It is closer to the PA result, even though
the PA results should be less accurate. The KMC results are systematically higher than all other results, even
than the no-TTA limit, which no results should be able to cross except due to statistical fluctuations. The
deviation of the KMC results could be systematic errors related to the initial conditions. Here we possibly
started with a initial exciton density unequal to the equilibrium value and did not simulate long enough.

In figure 3.5 the pair correlation function g2 (G, r) is plotted as a function of distance between a pair of excitons
for several values of the genenration rate and is compared between KMC and the SPC and PA closures.
First thing to note is that all results seem to approximately adhere to the result of equation (2.28). At low
distances, which most significantly contribute to TTA, all closures seem to yield equal results. This means
that the corresponding exciton densities will be close to each other, which can be concluded from figure 3.4.
Secondly SPC and KMC show an excellent agreement between each other, while the PA and KMC show a
discrepancy between their tails. In order to derive the PA results we have ignored any three-particle correlations,
which form the basis of this discrepancy. However still all results show a correlation hole being created with

Rcorr ∝ RF,TTA

(
krnT (G)
Gnmax

)
. It is interesting to note that while KMC and SPC show excellent agreement in

figure 3.5 they do not in figure 3.4. This point tos either the lattice being very important in the steady state or
there is a small systematic error in the KMC calculations, possibly due to initial conditions.
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Figure 3.6: Density of triplets nT for various spatial dimensionalities during a TRPL experiment (a) and in
steady state (b) in the absence of diffusion for RF,TTA = 3 nm using the PA closure. Note in this figure we have
assumed R0 = 0, which is incorrect at high exciton densities. For the TRPL experiment (a) the initial density

is set such that
2
d
6
−1n0π

1+ d
2 RdF,TTA

3Γ( d2 ) sin( dπ6 )
is constant and for d = 3 the initial exciton density equals n0 = 0.02 nm−3.

In the steady state case (b) nmax = 1 nm−d. Note that in this figure R0 = 0 was assumed, which generally
yields incorrect results at high exciton densities.

In the paragraphs above only the three dimensional case was analysed. However depending on the system the
excitons might mainly be generated either on the surface with the electron or hole transport layer (ETL or
HTL). Assuming the triplets do not hop, TTA happens approximately on a 2D plane. In that case we can
use the PA results in any general dimensionality from equations (2.27) and (2.31) for the transient and steady
state case respectively. The one, two and three spatial dimensional situations are plotted in figure 3.6. The
fraction of initial sites occupied by excitons which is set constant is somewhat closely related to the IQE. More
initial excitons are needed in order to lose the same fraction of excitons at lower dimensionalities. For the lower
dimensionalities it can be seen that the exciton density decays as t−d/6, while for the higher dimensionality this
is less visible, due to the lower amount of excitons. In the steady state case at low generation rates the results
are equal to the no TTA limit. Higher dimensionalities cause the intermediary regime to occur faster. However

at lower dimensionalities the effect of TTA is more severe when it occurs, since nT (G) ∝ G
d

6+d .

3.2 Inclusion of triplet diffusion

In this section we will include the hopping of excitons throughout the material. There will be no polarons in the
system, such that all space is available for exciton hopping as long as no other exciton are present. In literature
it has been shown very frequently that diffusion mediates range-limited reactions. This has been shown for
chemical reactions [76, 77], as well as for (Förster-like) donor-acceptor transfer [49, 78] as well as specifically
for TTA [36, 39]. This summation of articles is far from complete or exhaustive. Now it is our turn to add
results to this list of resources. We will first discuss TRPL experiments. Here we will come across the notion of
percolation. Secondly we will also discuss steady state operation.

3.2.1 Transient photoluminscence experiments

In figure 3.7 we analyse the effect of diffusion and the percentage guest molecules, which are assumed to be the
only sites excitons can jump towards, on the exciton density during a TRPL experiment. In figure 3.7 (a) we
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Figure 3.7: Exciton density nT (t) as a function of time with initial exciton density n0 = 0.02 nm−3 and
RF,TTA = 3 nm for different diffusion strengths (RF,Diff ∈ {0, 1.5, 3} nm) at cguest = 100% (a) and different
percentages of guest molecules embedded within the host material (cguest ∈ {2, 10, 40, 100}%) at RF,Diff = 3
nm (b). KMC results are compared to the SPC closure, PA closure and the infinitely strong diffusion limit
denoted by the first order NCC closure.

can see the effect of diffusion. First of all as before both the PA and SPC results seem to be within statistical
error and systematic error due the different lattice structure of the KMC results at cguest = 100%. Especially
at large RF,Diff the SPC, PA seem to become the same. This is due to the fact that the exciton densities are
much smaller and thus the approximation used for the PA results, becomes more accurate. Thus from the fact
that when RF,Diff is set to larger values the exciton density decays faster and to lower value, means that the
hopping rate increases the impact of TTA. The extra TTA that results from hopping steps before quenching will
be called diffusion-mediated TTA. In the limit of RF,Diff → ∞ the mean field (NCC first order) results, here
depicted in green, will be obtained for all simulation. Practically this will be realised when R6

F,Diff � R6
F,TTA.

We also note that at large RF,Diff KMC will have both more statistical uncertainty due to the lower amount
of excitons. The amount of events is increased with stronger diffusion, in turn increasing the computation time
needed for KMC simulations, while it does not affect the computation time of our method.

In figure 3.7 (b) the results are shown for a naive implementation of lower cguest than 100% for RF,Diff = 3
nm = RF,TTA. This naive implementation means that merely nmax is corrected by a factor cguest. The site
distribution function remains unchanged. In general at lower cguest at any distance larger than some minimum
radius of a molecule σ the site distribution function µ (r) will flatten to 1, but here we have already assumed
that µ (r) = 1 for r > R0 and thus will not be adapted. Here R0 = σ. As can be noted this works well
until cguest = 40%, which is still above the site percolation threshold of nearest-neighbour interactions within a
simple cubic lattice (pc ≈ 0.307 [79]). However as we can see at cguest = 10% and 2% this naive implementation
completely fails and seems to become worse with lower cguest. As we went from calculating the proper system
using (2.6) to the spatially averaged equation (2.7) local information of discrete sites was lost. In the KMC
simulations there are actual discrete sites to which the excitons can jump retaining the local site distribution
information. Due to the spatial averaging we are allowing excitons to jump to any site, but only a maximum
amount of cguest can exist on any site.

For any system where the hopping rate is proportional to
krR

α
hop

rαij
the time it takes to jump directly over a distance

rij simply equals
rαij

krRαhop
, while hopping over nearest neighbours the rate becomes

rija
α−1

krRαhop
, where a denotes the

nearest-neighbour distance. Since rij has to be larger than a, we find that for α > 1 nearest neighbour hopping
is preferred over direct hopping. This also holds for Förster-type transfer where α = 6. Since our system always
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Figure 3.8: Exciton density nT (t) as a function of time with initial exciton density n0 = 0.02 nm−3 and
RF,TTA = 3 nm and RF,Diff = 3 nm with the effective lattice percolation model applied for different percentages
of guest molecules (cguest ∈ {2, 10, 40, 100}%) within the host material. KMC results are compared to the SPC
closure. The results are shown in linear timescale (a) and logarithmic timescale (b).

allows nearest-neighbour hopping, while KMC does not, we need to find a way to correct the average diffusion
time from i to j in our method (ti→j = 1∑

k 1/ti→j,route k
). We propose an empirical method of dealing with this

problem. Here we assume that the lattice is scaled for diffusion only. We propose the scaling

(3.1)D (r) =

{
kr

R6
F,Diff

r6 r ≥ R0c
−1/3
guest

0 else
,

where the hopping rate itself has stayed equal, but the distribution of sites allowed to diffuse to only starts at

R0c
1/3
guest. Plugging this into equation (2.54), yields that the diffusion coefficient DF is proportional to c

4/3
guest,

which was also concluded in Ref. [39]. This might explain why this method will work well. We will call this the
effective lattice approach. This will not be completely correct, since percolation is very much dependent on the
underlying lattice used in KMC. This will be most closely related to a lattice with the site distribution function
as noted in chapter 2. For the rest of this thesis we will apply the effective lattice method when cguest < 100%.
A very limited study of percolation for Förster-type diffusion can be found in the Appendix chapter B.

In figure 3.8 we now see the exciton density during a TRPL experiment, but for the SPC and PA results
the effective lattice method outlined above was used. As can be noted these results are much closer for low
cguest, thus it seems that scaling a certain minimum distance by c

−1/3
guest is correct in order to take into account

percolation. Furthermore we can conclude that these results underestimate diffusion, since all results obtained

using PA or SPC lie above the KMC results. Most likely the minimum cut-off distance of R0c
−1/3
guest is too high

or the lattice causes percolation effects. A possibility is to set this distance such that the size of one site stays

equal to the inverse of nmax. This would yield a minimum distance of a
(

3
4πcguest

)1/3

, where a denotes the

simple cubic lattice distance. This will not be explored here, since this methods are quite empirical.

In figure 3.9 we find the pair correlation functions g2 (r, t) related to the exciton densities depicted in figure 3.7
(a) and 3.8. First thing to note when comparing to figure 3.2 is that the pair correlation function does not go to
0 for t→∞ for all distances r. This happens for the simple reason that the hopping of excitons allows, as given
by outer boundary condition equation (2.18), decorrelation to creep in from infinitely far away. This is most
noticable when diffusion is strongest as in figure 3.9 (b). This effect decreases when the strength of diffusion is
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KMC (black) results are compared to the SPC (red) and PA (blue) closures aswell as the strong diffusion limit
first order NCC closure (green).

decreased, which happens when either RF,diff or cguest is decreased. So the steady state value (t→∞) is larger
for larger diffusion strengths and distances r, however as of yet we have not found an analytical solution for this.
As can be seen for cguest = 100% the SPC and KMC results show excellent agreement, which becomes merely
acceptable at cguest = 10%. This is due to there not being any percolation effects at 100%, which do become
significant at 10%. Our results seem to underestimate the pair correlation function, due to the underestimation
of the diffusion strength, which corresponds to the exciton densities found in figure 3.10. Also note that at
RF,Diff = 3 nm, cguest = 100% the decorrelation due to TTA is almost fully washed out, but not completely.
For the RF,Diff = 1.5 nm, cguest = 10% the results at low distance resemble the no diffusion results in figure
3.2.

3.2.2 Steady state operation

In this subsection we will turn our heads to the steady state and analyse how the hopping of excitons influences
the system. We will look at the dependence of the exciton density nT and the pair correlation function g2 on
the Förster diffusion length RF,Diff and the guest percentage cguest.

In figure 3.10 we depict the exciton density steady state for various values of RF,Diff ∈ {0, 1.5, 3} nm and
cguest ∈ {10% (b), 100% (a)}. First of all again we note that both SPC and PA results are very close to the
KMC results for all cases and thus can be used in order to do these simulations. At low generation rates all results
are the same and equal to the no-TTA limit. At larger generation rates we notice for all results an intermediate
regime. This intermediate regime does depend on the strength of diffusion. Higher values of RF,Diff cause
the intermediate regime to occur earlier. In the intermediate regime the TTA contribution is dominant. The
contribution of TTA is larger for large RF,Diff , since the TTA is not merely single-step, but diffusion mediated
multi-step TTA becomes prevalent. The hopping steps cause TTA to become more dominant. The intermediate

regime boundary generation rate will always be in between
3krR

3
0

4πnmaxR6
F,TTA

< G < kr
(

2
3π

2R3
F,TTAnmax

)−1
which

are the strong-diffusion and no-diffusion boundaries respectively. The exciton density in the intermediate
regime is proportional to G1/2 and G1/3 for the the strong-diffusion and no-diffusion case respectively. The
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Figure 3.11: Pair correlation function g2 (G, r) as a function of the distance for G = 0.1 kr, RF,TTA = 3 nm
for several values of RF,Diff ∈ {1.5, 3} nm in the case of cguest = 100% (a) and cguest = 10% (b). SPC results
(red) are compared to KMC results (black).

RF,Diff = 1.5 nm case in both plots seems to be proportional to G1/2 at the lower generation rates in the
intermediate regime and transform into G1/3 at the higher intermediate generation rates. This is most likely
caused by the fact that when the intermediate regime starts the excitons are still too far away from each other
for single-step TTA, such that only multi-step TTA is dominant. In this case RF,Diff is low enough such that
single-step TTA will become dominant at higher generation rates. It is interesting to note that RF,Diff = 3
nm seems to practically already be the strong-diffusion limit in the case of cguest = 100%, which is lower than
observed in the transient case. The results for cguest = 10% seem to be approximately equal to the 100%
results, except that nT seems to be 10 times smaller and diffusion is slower. We do note that our results yield
more excitons, due to the fact that our model does not perfectly account for percolation effects in the diffusion
process. We underestimate diffusion as noted before and thus multi-step TTA is underestimated, causing the
exciton density to be overestimated.

In figure 3.11 the pair correlation function is plotted in the case of G = 0.1kr for SPC and KMC results in figure
3.10. First thing to notice is that the SPC and KMC results show excellent agreement at cguest = 100% for all
RF,Diff , while at cguest = 10% SPC seems to slightly overestimate g2 (G, r) relative to KMC. This however is
in disagreement with the exciton density. Lower g2 (G, r) means a lower contribution of TTA, thus should mean
higher exciton densities in steady state. We however find the opposite in figure 3.10. This is quite remarkable,
meaning that either there is a small calculation error in the KMC results, or the pair correlation function and
the exciton density do not need to be correlated. Furthermore note the variability in the KMC results at large
distances r. Since our method directly calculates averages, it thus has no statistical variability. This gives our
method an advantage when calculating properties which need high amounts of statistics in order to converge
during KMC simulations such as the pair correlation function g2 (G, r). Furthermore we again note that higher
RF,Diff and cguest cause the steady state pair correlation to rise. This is due to the fact that decorrelation is
allowed to diffuse inwards. This becomes stronger when these parameters are increased. The anti-correlation
due to TTA is washed away. The correlation hole due to TTA is thus made smaller due to diffusion. Comparing
figures 3.11 (a) and (b) it can be noted that at large distances in figure (b) the larger RF,diff causes g2 (G, r)
to dip down, while this does not happen in (a). The dipping down happens due to the anticorrelation being
transported more efficiently towards the boundary condition (equation (2.18)), such that at low distances the
pair correlations becomes higher and causing a bigger contribution from TTA, which in turn lowers the pair
correlation at larger distances. In the case of cguest = 100% the RF,Diff of 1.5 nm is too strong in order to
see this effect. Furthermore particles can jump distances somewhat smaller than RF,TTA, such that the change
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from decorrelation, due to the boundary condition to the anti-correlation from TTA, can occur more rapidly.
The results for PA are not shown here, since SPC and PA results are almost completely identical. The difference
between PA and SPC in the tail of the correlation hole is washed out due to diffusion.

3.3 Inclusion of polarons

In this section we will evaluate the effect of polarons on the exciton density in TRPL experiments and steady
state conditions. We will use the same parameters as shown in the sections above RF,TTA = 3 nm, n0 = 0.02
nm−3 and R0 ≈ 0.79 nm. We will assume that the excitons are confined to their initial position, thus RF,Diff = 0
nm. Due to the fact that polarons generally hop over both guest and host sites. We will be assuming that the
guest do not act as traps for the polarons. On top of these parameters we will be assuming RF,TPQ = 3.5 nm,
which is in line with values found in literature [70]. The polaronic density will be assumed to be nP = 10−3

nm−3, which is inline with the polaronic density found in other simulations in literature [35, 80]. We will
investigate the importance of the nearest neighbour hopping rate khop related to the localization length λ = 0.6
nm.

In figure 3.12 (a) the exciton density as a function of time for various values of khop is presented. First thing to
note as always is that in limiting scenarios the no and strong diffusion limits found using the pair approximation
are in agreement. There is a small difference in the no diffusion limit again due to the indirect single-step
interaction not being taken into account properly for the PA results, while these are taken into account for the
SPC results. Comparing the no diffusion result to figure 3.1, we note that the exciton density is slightly lower
here. This is caused by TPQ, which concluding from figure 3.12 (b) is responsible to approximately 15% of
the loss in the limit of khop → 0. At larger values of khop we can conclude that the exponential decay rate at
long simulation times (t → ∞) becomes larger. This is caused by the fact that the decay rate at t → ∞ has
changed from kr in the case without any polarons to kr + kTPQ,effectivenP . The steady state kTPQ,t→∞ (khop)

is dependent on the strength of the hopping, but is between 0 ≤ kTPQ,t→∞ (khop) ≤
4πR6

F,TPQ

3R3
0

, where the

boundaries are related to the limit of khop → 0 and khop → ∞ respectively. The TPQ rate coefficient kTPQ
increases with khop, due to TPQ moving from single-step TPQ to diffusion mediated multi-step TPQ. It seems
that in this case khop & 7000µs−1 is the boundary transient hopping rate to the strong diffusion regime. We
can also conclude this from figure 3.12 (b). From this figure we can furthermore conclude that the no diffusion
regime seems to be below khop . 1µs−1. We note that there are 2 regimes. The very weak and strong diffusion
limits in which that TPQ rate is independent of the hopping rate (khop) and related diffusion coefficient, while
in the intermediate regime the TPQ rate does depend on the hopping rate. This was also discussed in Refs.
[73, 81].

In figure 3.13 (a) the exciton density in steady state nT (G) is plotted as a function of the generation rate
for various values of khop. As is standard procedure by now, the limiting diffusion scenarios of the SPC
simulations correspond to those derived by applying the pair approximation. Comparing this figure to figure
3.4 we conclude that at small generation rates the difference is small for non-diffusing polarons, while this
deviation becomes larger for stronger diffusion. This is caused by the contribution of TPQ becoming stronger
when polarons are allowed to diffuse and can thus quench more excitons. The TPQ rate coefficient is in between
2π2

3 krR
3
F,TPQ < kTPQ (khop) <

4πkrR
6
F,TPQ

3R3
0

. It is interesting to note that the intermediate regime is exactly the

same as the non-diffusing case shown in figure 3.4 for all values of khop. This is caused by the fact that in this
intermediary regime the TTA loss process is dominant. The intermediate regime is equal to the non-diffusing
triplets scenario without polarons. This is confirmed by figure 3.13 (b), where khop = 70µs−1. When result of
khop = 70µs−1 starts the intermediate regime at roughly G = 10−2µs−1 the TTA contribution quickly starts to
take over the portion of excitons lost as shown in figure 3.13 (b).
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Figure 3.12: Exciton density as a function of time (a) and portion of excitons lost to different loss processes
(b) during a TRPL experiment under the conditions of RF,TTA = 3 nm, n0 = 0.02 nm−3, RF,TPQ = 3.5 nm,
polaronic localization length λ = 0.6 nm and polaron density nP = 0.001 nm−3 for different values of the
nearest-neighbour hopping rate khop. The two limits of no-diffusion and strong diffusion are plotted in blue (a),
but for diffusion in between the results are in red where SPC was used. In figure (b) the orange area indicates
the IQE at different values of khop.
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Figure 3.13: In (a) the steady state exciton density is plotted as a function of the generation rate under the
conditions of RF,TTA = 3 nm, RF,TPQ = 3.5 nm, polaronic localization length λ = 0.6 nm and polaron density
nP = 0.001 nm−3 for different values of the nearest-neighbour hopping rate khop. In (b) the portions of excitons
lost to different loss processes as a function of the generation rate G under the same conditions as (a) plus
khop = 70µs−1.
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3.4 Comparison to Smoluchovski equation

Up until this point we have only compared our technique to mean-field modelling and KMC simulations. In
this section we will compare our method with the Smoluchovski equations.

We will follow Ref. [73] and look at a system with TPQ, but without TTA. In that case the time evolution of the
triplet-polaron correlation function can be approximated using equation (2.57) as predicted using Smoluchovski
theory. Our theory predicts diffusion differently as given in equation (2.39). We use these to simulate a TRPL
experiment until steady state t → ∞. The steady state result is shown in figure 3.14. Here we used the
parameters R0 = 1 nm, RF,TPQ = 3 nm and λ = 0.6 nm. We can conclude that at intermediate distance the
results are quite alike for the diffusion coefficients related to the paremeters in our own theory as predicted by
equation (2.55). At both the lower and higher distances this does not seem to be the case. At low distances the
boundary condition seems to be the main cause of deviation. We have assumed for the Smoluchovski formalism

limr↓R0

∂g2,TP (r,t)
∂r = 0. Our own theory does not need a boundary condition at the inner boundary aside from

the site distribution functions. It however seems that our theory predicts that limr↓R0

∂g2,TP (r,t)
∂r = C

r2 , where
C is some constant, indicating that only the diffusion term in the Smoluchovski equation (2.57) needs to be 0
at the boundary, since particles will not be able to diffuse here. We were however not able to find a relation
for the parameter C as a function of khop. At large distances we once more see a deviation. Our theory seems
to have less contribution due to diffusion than the Smoluchovski theory. This could be due to the fact that
the Smoluchovski theory allows particle to move infinitesimally small distances, which we do not allow. We
thus note that our theory can be approximated by Smoluchovski theory, but will yield different results. This
might indicate that the Smoluchovski theory needs a different inner boundary condition. The results might be
somewhere in between both results for actual materials, since the site distribution function we assumed might
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Figure 3.14: Triplet-polaron correlation function as a function of relative distance r in steady state after a TRPL
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and R0 = 1 nm. We compare the Smoluchovski equations (blue) with our own modelling presented in chapter
2 (red).
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not equal to reality.
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4. Conclusion and outlook

In this thesis in chapter 2 we have developed a model that takes into account the spatial decorrelation due to
bimolecular loss processes, here specifically triplet-triplet annihilation and triplet-polaron quenching, which is
often ignored in literature. Our methods were inspired by recent work on charge transport presented in Ref.
[44]. We started from the classical master equation where all relevant physical processes were included and by
determining statistical averages and correlations we ended up with a BBGKY hierarchy of equations. We then
translated this into a continuum model, where the distribution of sites throughout the material remained general
as long as it was uniform throughout the material. We discussed several closures in order to close the BBGKY
hierarchy of equations and allowing us to solve coupled differential equations. We specifically introduced the
Kirkwood superposition closure (SPC), stemming from Ref. [53], the negligible correlation closure (NCC), based
on Ref. [44] and our own pair approximation closure (PA) based on taking the limit of low exciton density.
This last closure allowed us to create new analytical expressions of the exciton density for perfectly confined
excitons. Lastly we shortly compared our method involving our integral representation of hopping in continuum
to the more generally used Smoluchovski formalism based on derivatives [50] and derived a relation between
the diffusion constant and the Förster radii related to diffusion.

In chapter 3 the actual results of our model were presented. By comparing our results of the exciton density in
a system with merely single-step TTA with KMC results, we were able to judge the accuracy of the different
closures. We concluded that the SPC closure gave the most accurate results, while being computationally the
most expensive. Our developed pair approximation method gave results which were on par in terms of accuracy
with the KMC and SPC results, while being computationally much cheaper and even allowing for analytical
results in limiting scenarios. The NCC closure [44] proved to be less successful in the case that triplets are
confined, only becoming correct in the limit of strongly diffusing triplets. We furthermore were able to derive
the start of the roll-off curve due to TTA with and without diffusion of triplets for TRPL experiments and during
steady state operation. We quantified the deviation from the exponential radiative decay due to TTA. During
the steady state operation we found that in the roll-off the exciton density should grow with the generation
rate as G1/3 or G1/2 for non-diffusing and strongly diffusing excitons respectively, where the generation rate
should be linked to the current density through either the SRH model or Langevin recombination model or more
advanced modelling techniques. Our method furthermore gives computationally cheaply insight into the two-
(and three-particle) correlation functions and we have derived the size of the correlation hole created around
every exciton due to TTA and TPQ. We furthermore derived that this correlation hole becomes smaller with
increased generation rate and increased diffusion strength as would be expected. We did run into percolation
issues when looking at diffusion in host-guest systems. We used an empirical method based on the scaling of
the diffusion coefficient in order to account for these percolation issues. Lastly we concluded that the hopping
rate of polarons has a detrimental effect on the amount of excitons in the system. We quantified this effect of
the mediation of diffusion within TPQ on the exciton density.

4.1 Outlook

As noted in chapter 3 we have introduced an effective lattice method in order to take into account percolation
effects. This effective lattice method was an empirical method based on what we saw during KMC simulations.
This method however seems to underestimate the diffusion. It has been noted before that the diffusion coefficient
should go as c

4/3
guest [39], however this might not hold at guest percentages near 100% nor at short time scales.

This could be caused by the difference between a discrete (simple cubic) lattice and the continuum description,
nevertheless it would be interesting to further explore this. This would mean an indepth study of percolation
theory on site percolation on discrete lattices with long-range interactions. It would be interesting to investigate
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the actual lattices within OLED structures and the effect a specific lattice has on the diffusion strength.

In this work we have completely ignored the energy disorder of triplets. This assumption is generally incorrect
and can have a large influence on the diffusion rates[82, 83]. We did try to assume a density of states with
a Gaussian disorder, while assuming that the excitons occupied density of states behaves as a Fermi-Dirac
distribution. This however yields inaccurate results. Since energy disorder is quite important for the diffusion
of excitons, one could try to find a way to incorporate energy disorder into this model. This might again mean
that percolation effects have to be taken into account. It might be interesting to look at the theory used within
the correction energy concept from Ref. [84].

Throughout this thesis we have only focused on modelling second generation OLEDs. In these OLED stacks
intersystem crossing is sufficiently fast such that we can assume all excitons are triplets [17, 18]. This does not
hold however for TADF-OLED systems, where excitons repeatedly convert from triplet to singlet and vice versa.
The notions of spatial correlations however can also be important for these kinds of systems. This is amplified,
since not only is the continuous conversion important, but also singlet-singlet and singlet-triplet annihilation
can become significant or even dominant [85]. It would be interesting to bring the principle of master equation
modelling with the focus on spatial correlation to TADF OLEDs.

Lastly in this work we have assumed that excitons are generated uniformly throughout the material with some
generation rate G. This is a proper assumption when the generation of excitons occurs by excitation from
photons. In commercial products this only tends to happen by recombination of electrons and holes. Two
of the most succesful, but simple model for calculating the recombination rate of electrons and holes are the
Langevin and Shockley-Read-Hall recombination models [86, 87]. It might be interesting to apply the technique
outlined in chapter 2 to a system with electrons and holes including coulomb interactions in order to improve
upon these models. Furthermore electrons and holes generally are not uniformly spread out over the system.
It would be interesting to apply the technique outlined in chapter 2, but without the averaging over space as
done in equation (2.7). This will require extra computer resources, but allows for taking into consideration
percolation effects. Such a study was already performed in Ref. [44], but recombination, excitons, PA and/or
the SPC closure could be added to these calculations.
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A. Additional NCC & PA formulas

In chapter 2 multiple closures were discussed from which analytical formulas were derived. Not all formulas
derived were important enough to present in the main text. These extra formulas will be presented here.

In section 2.4 we neglected to present the entire Master equation and will be presented here. For the system
modelled there, the Master equation has become

dP (n1, . . . , nN , t)

dt
=
∑
i,j 6=i

[−WTTA
ij ni,Tnj,TP (n1, . . . , nN , t) +WTTA

ij ni,T (1− nj,T )P (n1, . . . , nj,T + 1, . . . , nN , t)

−WTPQ
ij ni,Pnj,TP (n1, . . . , nN , t) +WTPQ

ij ni,P (1− nj,T )P (n1, . . . , nj,T + 1, . . . , nN , t)

+DTT
ij nj,T (1− ni,T )(1− ni,P )(1− nj,P )P (n1, . . . , ni,T + 1, . . . , nj,T − 1, . . . , nN , t)

−DTT
ij ni,T (1− nj,T )(1− nj,P )(1− ni,P )P (n1, . . . , nN , t)

+DPP
ij nj,P (1− ni,P )(1− ni,T )(1− nj,T )P (n1, . . . , ni,P + 1, . . . , nj,P − 1, . . . , nN , t)

−DPP
ij ni,P (1− ni,T )(1− nj,P )(1− nj,T )P (n1, . . . , nN , t)] (A.1)

+
∑
i

[−krni,TP (n1, . . . , nN , t) + kr(1− ni,T )P (n1, . . . , ni,T + 1, . . . , nN , t)

+Gni,T (1− ni,P )P (n1, . . . , ni,T − 1, . . . , nN , t)−G(1− ni,T )(1− ni,P )P (n1, . . . , nN , t)],

where in lines 2, 5 and 6 TPQ and diffusion of polarons were added respectively. Lines 3, 4 and 8 were altered
to account for the fact that excitons cannot be present on a site with a polaron.

As noted the first order NCC closure denotes the solution for strongly diffusing excitons. The general solution of
the first order NCC equation was presnted in equation (2.19). This equation consists of the TTA rate coefficient
kTTA. In the text this parameter was merely derived for Förster-type TTA in 3 spatial dimensions. For general
spatial dimensions d < 6 one obtains for Förster-type TTA

(A.2)kTTA = 2
2πd/2krR

6
F,TTA

(6− d) Γ (d/2)R6−d
0

.

For Dexter-type TTA for any general spatial dimensions d for strongly diffusing excitons this turns into

(A.3)kTTA = 2
21−2dπd/2kTTADex λ

d
TTAΓ

(
d, 12R0

λTTA

)
3dΓ (d/2)

.

During the derivations of the analytical formulas for the PA closures we have always assumed R0 = 0, since
that assumption generally does not cause a significant deviation from the actual results as noted in Ref. [49].
It has however been noted that in certain scenarios this parameter can contribute significantly [88, 89]. We can
rewrite equation (2.26) in three spatial dimensions for R0 > 0 as

48
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(A.4)
nT (t) = 3n0e

−krt

{
π2
√

2n0R
3
F,TTA

[
4T

(
2R3

F,TTA

√
krt

R3
0

,
R3

0√
2R3

F,TTA

)

+ erf
(√

krt
)

erf

(√
2R3

F,TTA

√
krt

R3
0

)
− 2

π
arctan

(
R3

0√
2R3

F,TTA

)]
+ 3

}
−1,

where T (a, x) denotes Owen’s T function. Here we conclude that we can set R0 = 0 without mayor errors when
both R3

0 � R3
F,TTA and R3

0 � R3
F,TTA

√
krt. We can also do this to the steady state originally given in equation

(2.29) yielding

(A.5)Gnmax =
2

3
πR3

F,TTAnT
√
GkrnmaxnT

[
π − 2 arctan

(
R3

0

R3
F,TTA

√
Gnmax
krnT

)]
+ (G+ kr)nT .

From the two equations above we can conclude that for the formulas presented in the main text are accurate

when R3
0 � R3

F,TTA

√
krnT (G)
Gnmax

.

We can also derive the steady state equation using the PA closure (equation (2.29)) with Dexter-type TTA.
The solution is then for any general dimensionality d

(A.6)Gnmax =
2(−1)dπd/2GλdnmaxΓ(d)nTLid

(
−k

TTA
Dex nT
Gnmax

)
Γ
(
d
2

) + (G+ kr)nT ,

where Lid (x) denotes the polylogarithm function.

Now moving on to the TPQ problem. For a system without TTA nor any diffusion with R0 > 0 during a TRPL
experiment for any general dimensionality d

nT (t) = n0 exp

{
πd/2nP

[
Rd0

(
1−e

−
R6
F,TPQkrt

R6
0

)
−RdF,TPQ (krt)

d/6
γ

(
1− d

6
,
R6
F,TPQkrt

R6
0

)]
/Γ

(
d

2
+1

)
−krt

}
.

(A.7)

We can furthermore rewrite equation (2.47), which denotes the steady state for non-diffusing particles, for any
general dimensionality d as

(A.8)

π
d
2 +1GnT

(
nmaxR

d
F,TTA

(
R6
F,TTA −R6

F,TPQ

)
+ nPR

6
F,TTA

(
RdF,TPQ −RdF,TTA

))
3 sin

(
πd
6

)
Γ
(
d
2

) (
R6
F,TTA −R6

F,TPQ

)(
G(nmax−nP )

krnT

) d
6

+
π
d
2 +1krnPnTR

d
F,TPQ

(
G(nmax−nP )

krnT

)1− d6

3 sin
(
πd
6

)
Γ
(
d
2

) = G(nmax − nP − nT )− krnT

The last two equations will be related to the system with both TTA and TPQ for strongly diffusing polarons,
but perfectly confined excitons for any spatial dimensionality d. The TRPL experiment is given by
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(A.9)
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Now a system where polarons diffuse strongly, while excitons are perfectly confined and both TTA and TPQ
play a role has the characteristic equation in steady state for any dimensionality d

(A.10)
π
d
2 +1krn

2
TR

d
F,TTA

(
Gτ(nmax−nP )

nT

)1− d6

3 sin
(
πd
6
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) +
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6
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0

(6− d)Γ
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2

) = G(nmax − nP − nT )− krnT .
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B. Small percolation study

In chapter 3 it was noted that our original näıve implementation of diffusion did not adequately account for
percolation effects. Where our näıve implementation only accounted for the diffusion coefficient to adhere to

D ∝ cguest, in literature it is noted that D ∝ c
4/d
guest for Förster-type hopping, where d denotes the spatial

dimensionality. We then proposed an effective lattice method which concluding from (2.54) yields D ∝ c
4/d
guest.

In section 3.2 it was then noted that our proposed method underestimates diffusion and it seemed that for
cguest & 40% the original naive implementation yielded better results when compared to KMC. For this reason
we will conduct a small percolation type study to see whether square lattices have an effect. We will focus on
the 2D square lattice, since this remains computationally feasible, while still allowing for percolation effects.
The main theory has been presented in section 2.5.

In figure B.1 we compare the results of the modelling using equations (2.51) and (2.48) for RF,Diff = 1 nm
and kr = 1µs−1 with initial condition nT (r, 0) = n0δ (r), where n0 = 1 nm−2. The result of equation (2.48) is
shown for hopping on a 2D square lattice. The solution of equation (2.51) is here given by

(B.1)nT (r, t) = n0 (4πDt)
−d/2

e−
r2

4Dt ,

where for Förster-type diffusion on a 2D simple square lattice D = 1.507krc
2
guest

R6
F,Diff

a4 , where a denotes the
square lattice length.

From figure B.1 we can conclude that at long time-scales the methods are alike. This is surprising, since higher
order moments of displacement explode as noted in equation (2.52). We would have expected the particles to
diffuse faster than the Fick’s second law indicates. Nevertheless since the diffusion coefficients are alike at large
times the results are equal, since the underlying lattice is not felt. At short times the results are different due to
the underlying lattice. Note that the Förster-hopping theory here yields a linear increase in time, as would be
expected from equation (2.48), due to the discrete lattice. The results from Fick’s second law show a different
dependency, due to being related to Brownian motion in continuum.

Due to the results being equal at long times, we can calculate the dependency of the diffusion coefficient on
percentage of guest molecules in the system. From the Fickian theory it has been noted that the diffusion

coefficient is equal to D =
〈r2〉(t)

2dt [90]. We will use this relation for determining the dependency of D on cguest
within the theory of equation (2.48).

The diffusion coefficent as calculated above as a function of guest percentage is shown in figure B.2. It is clear
that the diffusion coefficient D is lowered with lower cguest. The simulated data is very noisy, thus conclusions
will be to some extent refutable. It is however clear that the lowest values found quite perfectly are related to
D ∝ c2guest. This also seems to hold on average for lower values of cguest. It does seem like that on average when
cguest is near 100% that D ∝ cγguest with 1 ≤ γ ≤ 2. This also corresponds to what was found above. Thus
percolation effects might cause the effective lattice approach to fall short in terms of diffusion strength. We do
need to account for the fact that we might not have simulated this system for large enough times, especially at
low cguest. This might cause deviations from the actual result.

51



APPENDIX B. SMALL PERCOLATION STUDY Clint van Hoesel 1012071

10-4 10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100

5
4

3
2

 Hopping diffusion
 Fickian diffusion

Ex
ci

to
n 

de
ns

ity
 n

T(
r, 

t)

Time t (1/kr)

r = 0 nm

1

Figure B.1: Exciton density nT (r, t) as a response to initial condition nT (r, 0) = n0δ (r), where n0 = 1 nm−2

on a 2D simple square lattice for the equations (2.51) (blue) and (2.48) (red). Here the hopping is assumed

to be of Förster-type, given by equation (1.4). The diffusion constant D is then given by 1.507krc
2
guest

R6
F,Diff

a4 .
Here RF,Diff = 1 nm and kr = 1µs−1 for simplicity.
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Figure B.2: Diffusion coefficient D as a function of guest percentage cguest. This is calculated from the theory
presented in equation (2.48) with initial condition nT (r, 0) = n0δ (r), where n0 = 1 nm−2 on a 2D simple
square lattice. The hopping is assumed to be of Förster-type, given by equation (1.4). The parameters are set

as RF,Diff = 1 nm and kr = 1µs−1 for simplicity. The diffusion constant is then calculated as D =
〈r2〉(t)

2dt . The
simulated data is presented as well as the smoothed data using the Savitzky-Golay filter.
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