
 Eindhoven University of Technology

BACHELOR

Maximizing the expected number of transplants in a Kidney Exchange Program

Nabben, Zoy

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/eea8b671-3a6f-48f2-b1ae-82bcba3a0f80

Maximizing the expected number of transplants in a

Kidney Exchange Program.

Zoy Nabben (student id: 1253646)

Abstract

In this report, we study the kidney exchange program (KEP). This is a program that aids
people who need a new kidney and have found a willing but incompatible donor, to find a
compatible donor.However, in practice, planned transplants are regularly cancelled.
In this report, several objectives used in existing KEPs are studied and their performance is
evaluated with respect to the expected number of successful donations. The objectives which
are studied are: maximizing the number of planned donations and maximizing the number
of planned donation-cycles. These objectives are studied separately, as well as in a hierarchy,
with the assumption that the percentage of success is 56%.
The result is that, with this fixed success rate, maximizing the number of cycles performs very
well with respect to the expected number of successful donations. However, maximizing the
number of planned donations performs relatively poorly.

1

Contents

1 Introduction 3

2 Conceptual model 4

3 Mathematical models and solution approaches 5
3.1 Maximum weight bipartite matching. 6
3.2 Integer programming formulations . 10

3.2.1 Arc formulation . 10
3.2.2 Cycle/chain formulation . 17

4 Implementation of the arc/chain formulation 21

5 Results 23
5.1 Complete graphs . 23
5.2 Realistic graphs representing KEPs . 25
5.3 Discussion of the results . 28

5.3.1 Success rate needed such that maximizing the number of planned dona-
tions improves the solution. 29

5.3.2 Prioritizing cycles with subcycles . 29

6 Conclusion 30

7 Discussion 30

8 Appendix 33
8.1 Bar charts showing the results . 33
8.2 Python code . 40
8.3 AIMMS code . 54

2

1 Introduction

This section will first share a bit of history about live kidney donation, then explain the need
for more donations and describes what a kidney exchange program (KEP) is. Afterwards it will
give a short description of the problem and solution, and the method used to find this solution.

There are many conditions that can result in the need for a new kidney. This can be the
case due to trauma obtained from an accident or due to severe illness. One can obtain a kidney
through either deceased or living kidney donation. Deceased kidney donation is when a kid-
ney is donated by a deceased person, while with living kidney donation, someone who is still
alive agrees to donate one of their kidneys. The advantage of living kidney donation is that
immediately after a compatible living donor has been found, the transplant can be planned,
and there is only a short time span in between. In the case of deceased kidney donations, the
transplant may need to be transported for many hours before it can be transplanted. Hence
for live kidney donations, the organ will be of better quality, and therefore more likely will
reduce the risk of kidney transplant failure. Table 1 shows the number of donations performed
in 2021 and 2022 [1].

2021 2022
Live kidney donation 199 255

Deceased kidney donation 208 216

Table 1: Number of live and deceased transplants performed in 2021 and 2022 in the Nether-
lands.

The first successful case of a long term live kidney donation was at ”The Peter Brent
Brigham Hospital, 1954”, with identical twins. At that time there was no medication to mini-
mize the rejection of a donated organ so the match had to be 100% perfect. The first donation
between genetically non-related patients was done in 1962, using immunosuppression [2]. The
number of living kidney donations has since then increased, as has the survival rate of both
the recipients and the donated organs due to the improvement of medical care. Even though
the quality of medical care has increased, there is still a shortage when it comes to kidney
donors.

When someone is willing to donate a kidney, for example a friend or family member, but
is found to be incompatible with the recipient, then the pair can choose to participate in the
Kidney Exchange Program (KEP). The participants in this program are either non-directed
donors (NDDs) or recipients with an incompatible partner donor. This program will then look
for a set of transplants between recipients and compatible donors using either cycles or chains.
A chain of transplants will start with an NDD donating to a recipient of a pair, the donor of
this pair will then donate to the recipient of an other pair, etc. A cycle is similar to a chain,
but only contains pairs, and the donor of the last pair will donate to the recipient of the first
pair.

For example, consider a KEP containing two pairs, A and B. The donor of A is a friend or
family member who wants to donate their kidney to the recipient of pair A but is found to be
incompatible and that the same holds for pair B. On the other hand, the donor of pair A is
compatible with the recipient of pair B and vice versa. The KEP can then match recipient A

3

with donor B and recipient B with donor A and a 2-way cycle has been found.

It is important to note that even though a transplant has been planned, there is always a
possibility of cancellation, for example, because the donor changed his mind and is no longer
willing to donate, or the recipient has recovered to such an extend that a transplant in no
longer needed. As there is no more equal exchange, other transplants in the cycle or chain will
also no longer be performed.

There are multiple ways to chose the set of transplants that will be planned. In this
report, the following objectives, currently in use by European kidney exchange programs, will
be considered and evaluated to see which selection will lead to good outcomes in terms of
expected number of successful transplants [3]:

• Maximizing the number of planned donations, and

• Maximizing the number of selected cycles.

These objectives are currently in use by KEPs from the Netherlands, Belgium, Spain, etc.
The advantage of these objectives is that they are independent on the exact, and possibly
unknown, probability of failure. We look at these objectives individually, as well as in a hier-
archy, with the objectives having different priorities.

Now, to clarify what is meant by a hierarchy of these objectives, suppose that there are
three possible selections of planned donations. The first two selections contribute 7 planned
donations, with the first selection using a 7-way cycle and the second selection uses one 3-way
and one 4-way cycle. The last selection uses three 2-way cycles and hence would contribute
only 6 planned donations.
When considering the objective of maximizing the number of planned donations individually,
one will find that the first two selections are optimal, as they both contribute 7 planned do-
nations. When considering the objective of maximizing the number of selected cycles as a
second priority, the second selection will be seen as optimal since it contains one cycle more
than the first selection. On the other hand, when considering the objective of maximizing the
number of selected cycles individually, the third selection, contributing 6 planned donations
using three 2-way cycles is optimal. Note that this selection will also be chosen when we look
at the objectives hierarchically when giving first priority to maximizing the number of cycles
in the selection.

While in practice the objectives mentioned are used by KEPs in Europe, the main goal
is not to maximize the number of planned donations or transplant cycles, but to maximize
the expected number of successful donations. This is why I evaluate these objectives on their
performance with respect to a third objective, namely maximizing the expected number of
successful donations, assuming there is a fixed success rate of 56% [4]. I will investigate the
performance of the objectives of maximizing the number of planned donations and maximizing
the number of cycles individually and if, in a hierarchy, improvements can be made when
considering both objectives.

2 Conceptual model

The problem studied in this report is summarized is the following conceptual model.

4

Problem 2.1. Selecting an optimal collection of planned donations from a (very large) set of
possible transplants.

Given: A set of incompatible donor-recipient pairs and a set of NDDs participating in the
KEP, and information about compatibilities between donors and recipients.

Find: A selection of planned donations.

Such that:

1. A donor can only donate to a recipient if they are compatible.

2. Every participant can participate in at most one transplant.

3. A donor from a pair will only donate if their partner recipient in turn receives a kidney.

Maximizing: (one of) the following objective(s):

• The number of planned donations.

• The number of transplant-cycles.

• The expected number of successful donations.

A set of planned donations is considered feasible it it meets the requirements mentioned,
and it is optimal if it maximizes the objective chosen. Hence it is optimal if it contains the
maximum expected number of successful donations, contains the maximum number of planned
donations, and/or contains the maximum number of transplant-cycles possible for the given
data. In Sections 3.2.1 and 3.2.2 there will be an extra requirement, namely an upperbound
for the cycle and chain lengths.

3 Mathematical models and solution approaches

This section will discuss three different methods to to model the kidney exchange problem. In
Section 3.1, a case is considered where there is no restriction on cycle and chain lengths. This
allows us to model the problem as a weighted bipartite matching problem. A matching in a
graph G = (V,E) is a set of edges M ⊆ E which are pairwise disjoint. A perfect matching
M ⊆ E, is a matching such that |M | = 1

2 |V |.

In Section 3.2.1 and 3.2.2 a method will be discussed that does allow a restriction on the
cycle and chain lengths. A weighted directed graph will be used to represent the information
given, and an integer programming (IP) model is used to formulate the problem, represented
by an arc set containing disjoint cycles and chains in the directed graph.
For both models, the arcs or the cycles and chains, depending on the IP model, will be assigned
weights depending the objective to be maximized. Next a selection of arcs or a selection of
cycles and chains will be chosen that maximized the combined weight of the arcs or the
cycles and chains, such that the planned donations represented by the selection meets the
requirements of Problem 2.1.

5

3.1 Maximum weight bipartite matching.

In this section, I will discuss the following mathematical problem, which is a formalized version
of the conceptual model Problem 2.1 with the maximize planned donations objective.

Problem 3.1. Selecting a maximum weight perfect matching in a compatibility graph.
Given:

• A positive integer n, and n pairs (d1, r1), ..., (dn, rn),

• A nonnegative integer k, and k NDDs: dn+1, ..., dn+k,

• A bipartite graph graph G = (V,E) with bipartition V = D ∪R and E = O ∪ C with

D = {d1, ..., dn, dn+1, ..., dn+k},

R = {r1, ..., rn, rn+1, ..., rn+k},

where rn+1, ..., rn+k are dummy recipients corresponding to dn+1, ..., dn+k respectively,

O = {{di, rj} | i, j ∈ {1, ..., n+ k}, i = j or j > n},

and

C = {{di, rj} | i, j ∈ {1, ..., n+ k}, and donor di is compatible with recipient rj}.

Find: A perfect matching M ⊆ E of maximum weight:

w(M) :=
∑
e∈M

w(e)

where the weight function w : E → {0, 1} is defined as:

w(e) =

{
1 e ∈ C,

0 e ∈ O

This model has the disadvantage that it does not include an upper limit for cycle and chain
size and we cannot use this model to find a solution that maximizes the number of cycles. The
advantage of this model formulation is that there exists an efficient algorithm to find a maxi-
mum weight perfect matching in a weighted bipartite graph containing a perfect matching.

Note that the bipartite graph representing the KEP will contain the perfect matching
M∗ := {{di, ri} | i = 1, ..., n + k} of weight w(M∗) = 0 and that for all matchings M in the
bipartite graph G, the subgraph (V,M ∪M∗) consists of a set of disjoint circuits and paths.
An (edge set of a) circuit c in this subgraph represents a chain of transplants if there exists
an i > n such that (di, ri) ∈ c, and it represents a cycle of transplants otherwise. The length
of a cycle of chain corresponding to the circuit c is defined to be nc := |c ∩ C|. The path
components of the subgraph (V,M ∪M∗) are all of length 1 and represent the pairs and NDDs
that have not been selected to participate in any chosen planned donations.

The expected number of successful donations of a cycle/chain c depends on the length nc

of the cycle/chain, as well as the probability that any given transplant is successful. In case
of cycles, when all nc transplants are successful it will contribute nc successful transplants. If

6

even one transplant fails, then every other transplant in the cycles will have to be cancelled
and the cycle will contribute no successful transplants. In case of chains, not all transplants
have to be successful for the chain to contribute successful transplants. If the first transplant
is successful, but the second is not, the chain will contribute one successful transplant. If the
first and the second transplant are successful, but the third is not, the chain will contribute two
successful transplants, et cetra. The following formulas give the expected number of successful
donations of a cycle/chain c of length nc if p the success rate of an individual transplant:

Ep(c) =

{∑nc−1
k=1 kpk(1− p) + ncp

nc ∃i > n : (di, ri) ∈ c

nc · pnc otherwise
(1)

An example of a bipartite graph representing a KEP is depicted in Figure 1.

d1 d2 d3

r1 r2 r3

Figure 1: A bipartite graph G = (V,E) representing a KEP containing 3 pairs.

A matching of maximum weight and matching all the recipients, can then be found using
Algorithm 1 [5] based on the Hungarian method.

This algorithm is an iterative algorithm and in each iteration the cardinality of the pre-
viously found matching M will increase by 1. Let G = (V,E), be a bipartite graph with
bipartition V = D ∪ R, containing a perfect matching, and let M be (the edge set of) a pre-
viously found matching. Then the directed graph DM = (V,AM) is defined such that for all
edges e = {d, r} ∈ M there is an arc a = (d, r) ∈ AM with length lM (a) = w(e), and for all
edges e = {d, r} ∈ E \M , there is an arc a = (r, d) ∈ AM with length lM (a) := −w(e). Next a
shortest path P will be found between unmatched vertices in R and D. This path determines
a new matching M ′ = M△P = (M ∪P)\(M ∩P) which contains one more edge. This process
will be repeated until the newly found matching M ′ is a perfect matching. Note in a bipartite
compatibility graph, there is always a perfect matching, namely M∗.

Figure 2 shows Algorithm 1 applied to the KEP represented by Figure 1 where the objective
is to maximize the number of planned donations. Hence, the edges representing transplants
have been assigned unit weight.

Definition 3.2. A matching M is called extreme if it is of maximum weight among all the
matchings of the same cardinality.

Definition 3.3. Let M be a matching in graph G = (V,E). An M-augmenting path in G is
a path between two vertices not covered by M , such that the edges of the path are alternatingly
in M and in E \M .

Theorem 3.4. The matching M found by Algorithm 1 is a maximum weight perfect matching
[5].

7

Proof. We will prove by induction on the iteration number that in each iteration the matching
M is extreme. Before the first iteration (of the while loop), M is empty, and hence extreme.
Suppose that in some iteration the matching M ̸= ∅ is extreme and not yet perfect. Now let P
and M ′ be the path and matching found in the next iteration. Let N be an extreme matching
such that |N | = |M ′| = |M | + 1 > |M |. Then M ∪ N contains an M -augmenting path, P ′.
Since P was found to be the shortest path between two unmatched vertices, one in D′ and one
in R′, the length of P has to be smaller than or equal to the length of P ′: l(P) ≤ l(P ′). Since
|N△P ′| = |M |, and M is extreme, the weight of N△P ′ is less than or equal to the weight of
matching M : w(N△P ′) ≤ w(M). Hence

w(N) = w(N△P ′)− l(P ′) ≤ w(M)− l(P) = w(M ′)

Hence, every iteration finds an extreme matching M ′.
Since it is mandatory that the bipartite graph G contains a perfect matching, we know in
every iteration, there will either be an R′-D′ path, or the matching will be perfect. Hence,
since Algorithm 1 finds a perfect matching, and every iteration finds an extreme matching, it
finds a maximum weight perfect matching.

Algorithm 1 Using a weighted graph to find a matching of maximum weight [5].
Input: A bipartite graph G = (V,E) with bipartition V = D ∪ R and containing a perfect
matching, and a weight function w : E → R+.
Output: An maximum weight perfect matching M .

1: M := ∅
2: while M is not a perfect matching do
3: Define DM = (V,AM) with length function lM : AM → R such that
4: if e = {d, r} ∈ M then
5: a = (d, r) ∈ AM .
6: lM (a) = w(e).
7: else
8: a = (r, d) ∈ AM .
9: lM (a) = −w(e).

10: end if
11: Define D′ ⊆ D and R′ ⊆ R to be the vertices not in the matching.
12: Let P be the set of edges of the shortest R′ − D′ path in DM found by using the

Bellman-Ford algorithm.
13: Update the matching M to M = M△P .
14: end while
15: Return M .

Graph D1 depicted in Figure 2a is the result of directing the edges of the graph, according
to Algorithm 1. Since we start with an empty matching, all arcs in Figure 2a, have been
directed from the recipient to the donor with length −w(e). Hence, the arcs (r1, d2), (r2, d3),
and (r3, d2) have length −1, and the remaining arcs have length 0.
The vertex set D′ and R′, containing the vertices that have yet to be matched, are the original
vertex sets D and R since no vertex has been matched yet. It can be seen that there are three
options for the shortest R′-D′, namely, (r1, d2), (r2, d3), and (r3, d2). Working in ascending
order by the index of the vertices in R, P is defined to be P := {{r1, d2}}. We find an extreme
matching M := {{r1, d2}} of size 1, and weight 1. Since |M | < 3, the matching is not complete

8

d1 d2 d3

r1 r2 r3

(a) The resulting directed graph
D1 = (V,A1) obtained during the first

iteration of the algorithm on the bipartite
graph G depicted in Figure 1. The matching

is empty.

d1 d2 d3

r1 r2 r3

(b) The resulting directed graph
D2 = (V,A2) obtained during the second

iteration. The edge {d2, r1} has been added
to the matching in the first iteration.

d1 d2 d3

r1 r2 r3

(c) The resulting directed graph
D3 = (V,A3) obtained during the third

iteration of the algorithm. The edge {d3, r2}
has been added in the second iteration to the

matching.

d1 d2 d3

r1 r2 r3

(d) The resulting extreme perfect matching
M := {{d1, r1}, {d2, r3}, {d3, r2}} found

using Algorithm 1 on the Graph G depicted
in Figure 1. The edges {d2, r2} and {d1, r1}
have replaced the edge {d2, r1} in the third

iteration.

Figure 2: Applying Algorithm 1 to the bipartite graph G shown in Figure 1, where the edges
from matching M are depicted by thick green arcs or edges. The dotted arcs and edges have
been assigned length or weight 0, whereas the other arcs edges have been assigned weight 1
and the other arcs have been assigned length ±1, depending on their direction.

and hence a matching of size 2 will be found in the next iteration.

Since the matching already contains edge {d2, r1}, the edge {d2, r1} will be directed from
donor to recipient with length l((d2, r1)) = w({d2, r1}) = 1. Every other edge will be directed
from recipient to donor and have weight −w(e). The resulting graph D2 is shown in Fig-
ure 2b. Since the vertices r1 and d2 have been matched, the vertex sets D′ and R′ become
{d1, d3} and {r2, r3} respectively. Now the set of edges of shortest R′ − D′ path, found us-
ing the Bellman-Ford algorithm, is P := {{r2, d3}}. So the extreme matching M size 2 is
M := {{r1, d2}, {r2, d3}}, of weight 2. Since M is not perfect, another iteration follows.

Again, the edges in the matching M , {d2, r1} and {d3, r2}, are directed from donor to
recipient with length 1, and every other edge are directed from recipient to donor, with the arc
{r3, d2} having length -1, and every other arc having length 0. The obtained directed graph
is depicted in Figure 2c.
Now D′ = {d1} and R′ = {r3}. Using the Bellman-Ford algorithm, a set of edges of a short-
est R′-D′ path is P := {{r3, d2}, {d2, r1}, {r1, d1}}. Note that the edge {d2, r1} is not only
represented in the newly found path P , but it is also already an element of the earlier found
matching M . Hence, the new matching becomes M△P = {{d3, r2}, {r3, d2}, {r1, d1}}. Now

9

the extreme perfect matching M := {{d3, r2}, {r3, d2}, {r1, d1}} of size 3 and weight 2 has been
found. Hence, since the weight of the matching is defined to be the number of planned dona-
tions, we know that for the KEP depicted by Figure 1, the maximum number of transplants
that can be planned is 2, with the edges M \ {{d1, r1}, {d2, r2}, {d3, r3}} = {{d3, r2}, {r3, d2}}
corresponding to the planned donations.

Since every iteration increases the cardinality of the matching M by one and we start
from an empty matching, we find that the algorithm takes 1

2 |V | iterations. The Bellman-Ford
algorithm runs in O(|V | · |A|) time, and since |A| = |E|, we find that Algorithm (1) can be
performed in time O(|V |2 · |E|). This shows that using a maximum weight bipartite matching
model, we can compute a maximum weight perfect matching in polynomial time.
After such a perfect matching, i.e. a maximum set of planned donations has been found, we
can compute the expected number of successful donations from this set by applying formula
(1).

3.2 Integer programming formulations

The next methods use directed graphs to represent KEPs, and an IP model is used to formu-
late Problem 2.1 with the two objectives: maximizing the number of planned donations and
maximizing the number of transplant-cycles. A big advantage over the former method is that
with these formulations, an upperbound can be established for the cycle and chain lengths and
the objectice of maximizing the number of selected transplant cycles can be applied.
The Arc formulation uses variables representing the planned donations, whereas the Cy-
cle/chain formulation uses variables directly representing cycles and chains.

3.2.1 Arc formulation

This section will discuss the arc formulation introduced in [6, 7]. It uses IP to select a set of
arcs from a directed graph representing the KEP. This set of arcs will represent the planned
donations and hence will be seen as the solution.

We will refer to the following mathematical problem, as the arc formulation of Problem 2.1:

Problem 3.5. Selecting an optimal arc set in a directed compatibility graph.
Given:

• A set P = {1, ..., n} of n ∈ N donor-recipient pairs,

• A set N = {n+ 1, ..., n+ k} of k ∈ N ∪ {0} NDDs,

• A directed graph D = (V,A), where V = P ∪N and

A = {(i, j) | i ∈ V, j ∈ P, donor (of pair) i is compatible with the recipient of pair j},

• An upper bound for the circuit and path length, lcy, lch ∈ N, and

• A weight function w : A → R.

10

Find: A subset A∗ ⊆ A with

C∗
1 = {c | c is (an arc set of) a circuit in A∗}, and

C∗
2 = {p | p is (an arc set of) a path in A∗}

Such that:

1. In D(V,A∗) : ∀v ∈ N : d+(v) ≤ 1

2. In D(V,A∗) : ∀v ∈ P : d+(v) ≤ d−(v) ≤ 1

3. ∀c ⊆ C∗
1 : |c| ≤ lcy

4. ∀p ⊆ C∗
2 : |p| ≤ lch

Maximizing the weight function:

w(A∗) =
∑
a∈A∗

w(a)

In this section, the term chain in the graph D will refer to an arc set of a directed path,
starting with a vertex in N and then only containing vertices in P . The term cycle is defined
to be an arc set of a directed circuit, only containing vertices in P . The length of a cycle or
chain c is defined to be the number of arcs the path or circuit contains, nc := |c|.

The definitions of the cycles and chains in this weighted directed graph D, correspond to
their definitions in a weighted bipartite graph G defined in Section 3.1.
Let c = ((i1, i2), (i2, i3), ..., (im, i1)) ∈ C∗

1 . Now split up the vertices i1, ..., im ∈ P into two ver-
tices, di1 , ..., dim ∈ D and ri1 , ..., rim ∈ R, and define the edge setM := {{dik , ril} | (ik, il) ∈ c}.
This results in a circuit, defining a cycle, in the bipartite graph G = (D∪R,M∗∪M) as defined
in Section 3.1.
Now let c = ((i1, i2), (i2, i3), ..., (im−1, im)) ∈ C∗

2 . Once again split the vertices into two ver-
tices, but now define the edge set M := {{dik , ril} | (ik, il) ∈ c} ∪ {di1 , rim} (since i1 ∈ N).
This again results in a circuit, defining a chain, in the bipartite graph G = (D ∪R,M∗ ∪M)
as defined in Section 3.1.
This is shown in Figure 3 with Figure 3a depicting Graph G with a possible maximum weight
perfect matching in green, and the graph D in Figure 3b depicting the arcs corresponding to
the same selection of planned donations in green.

d1 d2 d3 d4 d5

r1 r2 r3 r4 r5

(a) A maximum weight perfect matching M
in green found in graph G = (V,E), meeting
the requirements mentioned in Section 3.1.

1

2 3

5 4

(b) The solution found in the directed graph
D = (V,A) representing the same collection
of planned transplants as the matching shown
in Subfigure 3a.

Figure 3: The relations between the solution of the bipartite graph and directed graph of a
KEP shown containing 4 pairs and 1 NDD.

11

Figure 4 shows an example of a compatibility graph for a KEP containing 5 pairs with a
possible corresponding feasible and possible corresponding optimal solutions. The compatibil-
ity graph D1 = (V,A1) is depicted in Figure 4a. Figure 4b depicts an arc set A′

1 representing
a feasible solution, Figure 4c depicts an arc set A′′

1 representing an optimal solution with re-
spect to maximizing the number of transplant cycles, and Figure 4d depicts an arc set A′′′

1

representing an optimal solution with respect to maximizing the number of planned donations.

1

2

3

5

4

(a) An example of a compatibility graph D1 for a KEP containing 5 pairs, with the nodes representing
the pairs and the arcs representing compatibility.

1

2

3

5

4

(b) A feasible solution, repre-
sented by the arc set A′

1, only
selecting the cycle (2, 3).

1

2

3

5

4

(c) An optimal solution, repre-
sented by the arc set A′′

1 max-
imizing the number of cycles.

1

2

3

5

4

(d) An optimal solution, repre-
sented by the arc set A′′′

1 max-
imizing the number of arcs.

Figure 4: Three possible solutions, represented by the arc sets A′
1, A

′′
1 and A′′′

1 , for the com-
patibility graph D1.

Now we are going to discuss the position index formulation. Every arc will be assigned
multiple variables, depending on their possible placements in cycles and chains. Hence, limits
on the cycle length will be enforced through the use of position-indices, denoting the position
of a transplant in a cycle or chain. Furthermore, to reduce symmetry, the formulation makes
use of sub-graphs [7]. An example is shown by Graph D2 = (V,A) in Figure 5.

In Figure 5, the cycle (1, 2, 3) can be found. If this cycle is rejected, then we want the
cycles (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1) to also be rejected since they contain
the exact same pairs, but in different orders and/or with a different start- and endpoint. By
using sub-graphs and using subgraphs-indices, denoting from which graph the arcs are chosen,
symmetry will be reduced.

12

1

2 3

Figure 5: A directed graphD2 representing a KEP containing three pairs with arcs representing
compatibility.

Let D = (V,A) with V = P ∪R be a directed graph representing a KEP containing n pairs,
P = {1, ..., n}, and k NDDs, N = {n+ 1, ..., n+ k}. Next, define for each vertex l ∈ V , a sub-
graph Dl = (V l, Al) is with V l = {i ∈ V | i ≤ l} = {1, 2, ..., l} and Al = {(i, j) ∈ A | i, j ≤ l}.
These subgraphs, together with the position indexing, allows us to limit the cycle and chain
lengths and reduce symmetries in the problem. From every subgraph Dl with l > n, at most
one chain will be selected with start point l, and in every subgraphs Dl with l ≤ n, at most
one cycle will be selected, containing vertex l as the start- and as endpoint. An example of
the construction of subgraphs is shown in Figure 6.

4 3

12

(a) The directed graph D4
3 = (V 4, A4) repre-

senting a KEP containing 3 pairs and 1 NDD.

3

12

(b) The directed sub-graph D3
3 = (V 3, A3)

with V 3 := V 4 \ {4}.

12

(c) The directed sub-graph D2
3 = (V 2, A2)

with V 2 := V 3 \ {3}.

1

(d) The directed sub-graph D1
3 = (V 1, A1)

with V 1 := V 2 \ {2} = {1}.

Figure 6: The directed graph D3 = D4
3 and its sub-graphs D3

3, D
2
3 and D1

3, representing a KEP
containing 1 NDD and 3 pairs.

Now let, lcy, lch ∈ N be defined as the maximum length for cycles and chains respectively.
Let K(i, j, l) be defined as the set of positions at which the arc (i, j) can be placed in a cycle in
the subgraph Dl with start- and endpoint l ∈ P , and i, j ∈ V l, and (i, j) ∈ Al. Let K′(i, j, l)
be defined as the set of positions at which the arc (i, j) can be placed in a chain in graph Dl

with startpoint l ∈ N , and i, j ∈ V l and (i, j) ∈ Al.

13

K(i, j, l) =

{1} i = l

{2, 3, ..., lcy − 1} i, j < l

{lcy} j = l

K′(i, j, l) =

{
{1} i = l

{2, 3, ..., lch} i < l

Now a binary variable xl
ijk is defined such that xl

ijk = 1 if and only if the arc (i, j) is

selected in graph Dl at position k ∈ K(i, j, l) in a cycle. Similarly, the variable ylijk is defined

such that ylijk = 1 if and only if the arc (i, j) is selected in graph Dl at position k ∈ K′(i, j, l)
in a chain. Note that this limits the cycle and chain length to lcy and lch respectively.

A weight function will be defined based on which objective is to be achieved. Let l ∈ V ,
then, when the objective is to maximize the number of planned donations, the weight function
wl

1 : Al → R+ will be defined as follows:

∀a ∈ Al : wl
1(a) = 1.

Now to discuss how the arcs will be assigned their weight when the objective is to maximize
the number of transplant-cycles. This will be done by letting the weight of an arc depend
on their placement in the cycle or chain. Let l ∈ V as defined, then the weight function
wl

2 : Al → R+ will be defined as follows:

wl
2((i, j)) =

{
1 i = l

0 Otherwise
,

We choose this because if a cycle or chain c in graph Dl is selected, then there will always
exists a vertex j ∈ V l such that (l, j) ∈ c. Hence, maximizing the number arcs starting a
cycles or chains maximizes the number of cycles and chains selected.

We also define a third weight function wl
3 : Al → R+:

wl
3((i, j)) =

{
w j ∈ V l \ {l} and i = l,

1 Otherwise.

Claim 3.1. The weight function wl
3 can be used to maximize both the number of planned do-

nations and the number of donation cycles, with priority to maximizing the number of planned
donations if w = 1 + 1

|V | , and with priority to maximizing the number of donation cycles if

w = 1 + |V |.

Proof. Let C be a cycle/chain set containing c cycles and n planned donations with a1 2-way
cycles, a2 3-way cycles, ..., ak (k + 1)-way cycles with k + 1 ≤ lcy. So

c =

k∑
i=1

ai

and

n =

k∑
i=1

(i+ 1) · ai.

14

Then the set C has the following weight:

w3(C) = a1 · (1 + w) + a2 · (2 + w) + ...+ ak · (k + w)

=

k∑
d=1

ad · (d+ w)

=

k∑
d=1

ad · ((d+ 1) + (w − 1))

=

k∑
d=1

ad · (d+ 1) + (w − 1) ·
k∑

d=1

ad

= n+ (w − 1) · c

Now we have two cycle/chain sets, C1 and C2, with c1 and c2 cycles and n1 and n2 planned
donations respectively. Let C1 contain more planned donations and C2 contain more donation
cycles, hence |V | > c2 > c1 > 0 and |V | ≥ n1 > n2 > 0. Then we find the following for
w = 1 + |V |:

w3(C2) = n2 + (w − 1) · c2
= n2 + |V | · c2
= n2 + (c2 − 1)|V |+ |V |
≥ n2 + (c2 − 1)|V |+ n1

> (c2 − 1)|V |+ n1

≥ c1|V |+ n1

= w3(C1)

Hence we find the the set C2, which contributes more planned donations but fewer donation
cycles, has a higher weight. So if w = 1+ |V |, then maximizing the number planned donations
has priority.
Now we find the following for w = 1 + 1

|V | :

w3(C1) = n1 + (w − 1) · c1

= n1 +
c1
|V |

= (n1 − 1) + 1 +
c1
|V |

> (n1 − 1) +
c2
|V |

+
c1
|V |

> (n1 − 1) +
c2
|V |

≥ n2 +
c2
|V |

= w3(C2)

Hence in this case, we find that set C1, which contains more donation cycles but fewer
planned donations, has a higher weight. So if w = 1 + 1

|V | , then the number of cycles has

15

priority. So if w = 1 + 1
|V | , then maximizing the number cycles has priority.

Let C := C∗
1 ∪ C∗

2 be the set of cycles and chains of an optimal solution of Problem 3.6.
Then expected number of successful donations of cycle/chain c ∈ C of length nc when the
success rate of a single transplant is p can be calculated, following the same reasoning as in
Section 3.1 of fomula (1):

Ep(c) =

{∑nc−1
k=1 kpk(1− p) + ncp

nc ∃i ∈ N, j ∈ P : (i, j) ∈ c

nc · pnc Otherwise.
(2)

Hence we find the following position index edge formulation [7] (3) - (9).
Position index edge formulation:

Maximize:
∑
l∈V

∑
(i,j)∈Al

 ∑
k∈K(i,j,l)

wl
ijx

l
ijk +

∑
k∈K′(i,j,l)

wl
ijy

l
ijk

 (3)

Subject to:
∑
l∈V

∑
j:(j,i)∈Al

 ∑
k∈K(j,i,l)

xl
jik +

∑
k∈K′(j,i,l)

yljik

 ≤ 1 i ∈ V (4)

∑
j:(j,i)∈Al∧
k∈K(j,i,l)

xl
jik =

∑
j:(i,j)∈Al∧
k+1∈K(i,j,l)

xl
i,j,k+1

l ∈ V,

i ∈ V l \ {l},
k ∈ {1, ..., lcy − 1}

(5)

∑
j:(l,j)∈Al

yllj1 ≤ 1 l ∈ N (6)

∑
j:(j,i)∈Al∧
k∈K′(j,i,l)

yljik ≥
∑

j:(i,j)∈Al∧
k+1∈K′(i,j,l)

yli,j,k+1

i ∈ V l,

k ∈ {1, ..., lch − 1}
(7)

ylijk ∈ {0, 1}
l ∈ N,

(i, j) ∈ Al,

k ∈ K′(i, j, l)

(8)

xl
ijk ∈ {0, 1}

l ∈ P,

(i, j) ∈ Al,

k ∈ K(i, j, l)

(9)

Here the objective function (3) maximizes the weighted sum of the selected arcs, where
the first sum corresponds to the arcs selected to participate in a cycle, and the second sum
corresponds to the arcs selected to participate in a chain.
Constraint (4) makes sure that for all i ∈ V , d−(i) ≤ 1. This can be in either a circuit or a
path. Combined with Constraint (5), we make sure that if the vertex i ∈ V is selected in a cy-
cle, then it exactly one outgoing and one incomming arc of vertex i will be selected. Combining
Constraint (4) with (6), we make sure that, for a vertex i ∈ N , at most one outgoing arc will of
vertex i will be selected. Lastly, combining Constraint (4) with (7), we make sure that if vertex
i ∈ P is selected in a chain, then there will be at most one outgoing arc of i that will be selected.

16

Constraint (8) and (9) make sure that the variables xl
ijk and ylijk are binary. Hence the

arc (i, j) is either placed in a cycle, at position k from subgraph l, or it is not. And, the arc
(i, j) is either placed in a chain, at position k from subgraph l, or it is not.

At the end, the number of expected successful donations the arc set A∗ contributes can
be calulated using formula (2). As mentioned before, this model has the advantage that now
a limit can be put on the length of the cycles and chains due to limiting lcy and lch. This
formulaiton has not been used in my research.

3.2.2 Cycle/chain formulation

This section will discuss the cycle/chain formulation, the solution will be defined to be the
subset of cycles and chains from a pre-calculated set containing all possible cycles and chains
up to a maximum length. These cycles and chains will be assigned a weight depending on the
objective. The solution will be the subset of maximum weight with respect to the objective
chosen.

Now we will discuss a mathematical model for the Cycle/chain formulation.

Problem 3.6. Selecting an optimal cycle/chain set in a directed compatibility graph.
Given:

• A set P = {1, ..., n} of n ∈ N donor-recipient pairs,

• A set N = {n+ 1, ..., n+ k} of k ∈ N ∪ {0} NDDs,

• A directed graph D = (V,A), where V = P ∪N and

A = {(i, j) | i ∈ V, j ∈ P, donor (of pair) i is compatible with the recipient of pair j},

• An upper bound for the circuit lengths lcy ∈ N and path lengths, and lch ∈ N

• A weight function f : A → R+

Find: A set C∗ := C∗
1 ∪ C∗

2 with C∗
1 ⊆ C1 C∗

2 ⊆ C2 with

C1 := {c ⊆ A | c is (an arc set of) a circuit in D and |c| ≤ lcy},

and
C2 := {p ⊆ A | p is (an arc set of) a path in D and |p| ≤ lch}.

Such that: In D(V,C∗):

1. ∀c1, c2 ∈ C∗ : c1 ∩ c2 = ∅

2. ∀p ∈ C∗, i ∈ P : (∃j ∈ P : (i, j) ∈ p) =⇒ (∃k ∈ V : (k, i) ∈ p)

Maximizing the weight function:

f(C∗) =
∑
c∈C∗

f(c)

17

Let C be the set of all possible cycles and chains. A weight function will be defined based
on which objective is to be achieved. When the objective is to maximize the number of planned
donations, then the weight function f1 : C → R+ for the cycles and chains, as in Section
3.2.1, will be defined as follows:

∀c ∈ C : f1(c) = nc.

With nc := |c| the number of arcs the cycle or chain c contains. The weight function
f2 : C → R+, used to maximize the number of transplant-cycles and -chains, will be defined
as follows:

∀c ∈ C : f2(c) = 1.

The function used to maximize the expected number of donations when the probability of
success is p will be Ep : C → R (2) as defined in Section 3.2.1.

For this method, all the cycles and chains up to length lcy and lch respectively, have to be
calculated first. The following Cycle/chain formulation will then select a subset C∗ to be
the solution. Next, the following formulation is defined as the Cycle/chain formulation:

Maximize:
∑
c∈C

wc · xc (10)

Subject to:
∑
c∈C

tv,c · xc ≤ 1 ∀v ∈ V (11)

vc ∈ {0, 1} ∀v ∈ V (12)

xc ∈ {0, 1} ∀c ∈ C (13)

The variable xc in the IP is defined as follows:

xc =

{
1 The cycle c is chosen in the solution

0 Otherwise.

The parameter wc is a representation of the given weight of each cycle. This will depend
on the objective to be maximized, hence we can define the parameter wc as follows:

wc =

nc When maximizing f1,

1 When maximizing f2,

nc + w When maximizing both f1 and f2,

Ep(c) When maximizing the number of successful donations.

.

with w = |V | when there is priority on maximizing the number of cycles, and w = 1
|V |

when there is priority on maximizing the number of planned donations by Claim 3.1.

Ep(c) is the number of expected successful donations which depends on the cycle c and the
probability of success of a transplant p calculated using formula (2). The last parameter to
discuss is tv,c with v ∈ V and c ∈ C, which is defined as follows:

tv,c =

{
1 The vertex v is in cycle c,

0 Otherwise.

18

Hence, depending on how wc is defined, (10) maximizes the number of expected successful
donations, the number of planned donations, or the number of cycles. The constraint 11 makes
sure that every pair or NDD can only participate in at most one cycle or one chain.

Of course, before this solution can be found, all the possible cycles and chains up to a cho-
sen length have to been found. How these cycles and chains have been calculated, is discussed
in Section 4. For every directed graph D there is an upper bound for the number of cycles
and valid chains that can be found, which will be discussed next.

Upperbound on the number of cycles and chains when lcy = lch = ∞.
Let |P | denote the number of pairs that participate. Suppose that there is no maximum limit
to the length of cycles and no limit on chains and that the for all i, j ∈ P , donor i is compatible
with recipient j, except if i = j. Since the order does not matter we find that if we want to
know how many possible cycles there are of length l, the answer will be the number of ways
to select a group of l pairs from a collection of |P | pairs:(

|P |
l

)
.

Note that, since it is assumed that only incompatible donor-recipient pairs participate in
the KEP, the graph representing the KEP does not contain any loops. Hence, at a minimum
two arcs have to be traversed to obtain a circuit. Also note that, since the graph contains
|P | vertices with both incoming and outgoing arcs, the maximum length of a circuit is |P |.
Combining everything we can conclude that the upperbound of cycles in a directed graph with
|P | pairs will be:

|P |∑
l=2

(
|P |
l

)
.

Next, we look at an upperbound on the number of chains. Let |N | the number of NDDs
that participate and for all i ∈ N , j ∈ P , NDD i is compatible with the recipient of pair j.
It is evident that, by simply adding an NDD to a group of n pairs, you can create a chain of
length n+ 1 due to the absence of compatibility restrictions. Note that every new group will
contain exactly one NDD, but this time the order does matter (the NDD starts the chain).
Hence a chain can, at maximum, include all |P | pairs and one NDD. Hence, the upperbound
on the chain length is |P |+1. Combining all this, we find that if there are |N | NDDs who have
been found compatible with every participating recipient, then the number of distinct groups
containing exactly one NDD and at least one pair is:

|N | ·
|P |∑
l=1

(
|P |
l

)
.

Hence the upper bound of the total possible number of cycles and chains is:

19

|P |∑
l=2

(
|P |
l

)
+ |N | ·

|P |∑
l=1

(
|P |
l

)
=

|P |∑
l=2

(
|P |
l

)
+ |N | · |P |+ |N | ·

|P |∑
l=2

(
|P |
l

)

= (|N |+ 1)

|P |∑
l=2

(
|P |
l

)
+ |N | · |P |

< |N | · |P |+ (|N |+ 1)

|P |∑
l=2

|P |l

l!
.

In conclusion, when the size of the cycles and chains is not limited, then a upperbound
of order O

(
|N | · |P ||P |) is found. Hence the upperbound is exponential with respect to the

number of participating pairs. Now we how it will improve when an upperbound is established
on the cycle and chain lengths.

Maximum size of the model with lcy, lch < ∞.
Now to calculate the upper bound when the maximum length of a cycle and chain is lcy < ∞
and lch < ∞ respectively. Note that the following still holds for the number of possible cycles
of length l ∈ {2, ..., lcy}, when in a complete graph:(

|P |
l

)
.

Hence we find the following formula to calculate the total number of cycles with length lcy:

lcy∑
l=2

(
|P |
l

)
.

Now for the number of chains. Let L = min{lcy + 1, lch}. Once again use the fact that by
adding an NDD to a group of l < L pairs, a chain of length l + 1 ≤ L is obtained, hence:

|N | ·
L−1∑
l=1

(
|P |
l

)
.

The upper bound of the total possible number of cycles and chains where cycles have
maximum length lcy and chains have maximum length L will be the following:

lcy∑
l=2

(
|P |
l

)
+ |N | ·

L−1∑
l=1

(
|P |
l

)
Hence if lcy + 1 ≤ lch, then an upperbound for the number of cycles and chains is of order

O
(
|N | · |P |lch

)
. If lcy +1 > lch, then an upperbound of order O

(
|N | · |P |lcy

)
is found. Hence,

in both cases, the upperbound has now become polynomial with respect to the number of
participating pairs.

As we have seen, when there is no restriction on the cycle and chain size, lcy and lch, then
the number of variables might increases exponentially when there are more pair in the KEP.
However by putting a restriction on the size, it is found that the number of variables increases
polynomially in the cycle/chain lengths. In this report, we considered pairs and chains up to
size 4, hence the upperbound has order O

(
|N | · |P |4

)
.

20

4 Implementation of the arc/chain formulation

In Section 3.2.1, I defined a cycle c as a selection of arcs. In this section, we use the vertex
sequence to represent a cycle:

Definition 4.1. Let D = (V,A) be a directed graph containing the finite path p = ((i0, i1), (i1, i2),
..., (in−1, in)). Then the sequence of vertices (i1, i2, . . . , in) is defined to be the vertex se-
quence of p.

(Note that path p will be closed if i0 = in.) Now we show Algorithm 2 representing
the code used to find all possible chains up to and including the chains of length lch. In Al-
gorithm 2 and 3, an arc a = (ik, ik+1) ∈ A can extend path p = (i0, ..., in) if and only if k = n.

Algorithm 2 Finding all chains of maximum length lch.
Input: A set of pairs P = {1, ..., n}, a set of NDDs N = {n+ 1, ..., n+ k}, an arc list A and
an upperbound lch ≥ 1.
Output: The collection C of chains of length l ≤ lch.

C := ∅
for l = 1 to l = lch do

if l = 1 then
S0 := ∅
for all i ∈ N do

Find all arcs in (i, j) ∈ A with j ∈ P and add them to C and S0.
end for
Update A := A \ S0.
▷ These arcs can only be placed at the first position of a chain (see Section 3.2.1).

else
S1 := ∅
for every path p ∈ S0 do

for every a ∈ A that can extent p do
if the extended path p′ = p∪a does not traverse a vertex multiple times then

▷ To prevent sub-cycles.
if there no path in S1 containing the same vertices then

▷ To prevent symmetry.
Add the vertex sequence of p′ to C.

end if
Add the vertex sequence of the path p′ to S1.

end if
end for

end for
S0 := S1

end if

if S0 = ∅ then
▷ There are no more paths to be extended, all possible chains have been found.

Break
end if

end for
Return C

21

Let D(V,A) be a directed compatibility graph, with V = P ∪N with P := {1, ..., n} and
N := {n + 1, ..., n + k}. First we define an empty set C, which will contain all found vertex
sequences representing found chains. Next we create a set S0 containing the vertex sequence
of all the paths of length l < lch that do not contain subcycles, and a set S1 to collect all
the vertex sequences of the new paths that do not contain any subcycles and are of length
l + 1 ≤ lch, found by extending the paths in S0. First we look for all arcs a = (i0, i1) ∈ A
with i0 ∈ N . In every iteration l we look for all possible paths p of length l. For every newly
found path, we check if (1) it does not traverse a vertex multiple times and (2) there has not
already been another path p′ ∈ S1 containing the same vertices (in a different order). If (1)
holds, then the vertex sequence of path p will be added to S1. If (2) also holds, then the vertex
sequence of path p′ will also be considered a chain and will be added to C.

Next we look for all possible cycles in D using Algorithm 3.

Algorithm 3 Finding all cycles of maximum length lcy.
Input: A set of pairs P = {1, ..., n}, an arc list A and an upperbound lcy ≥ 2.
Output: The collection C of cycles of length l ≤ lcy.

C := ∅
for i ∈ P do

for l = 1 to lcy do
if l = 1 then

S0 := ∅
Find all arcs (i, j) ∈ A with and add them to S0.
Update A = A \ S0.

else
S1 := ∅
S2 := ∅
for every p ∈ S0 do

for every arc a ∈ A that can extent p do
if path p′ = p ∪ a is closed and there is no p∗ ∈ S2 traversing the same

vertices then
Add the vertex set of p′ to S2 and C.

else if path p′ does not traverse a vertex multiple times then
Add the vertex sequence of p′ to S1.

end if
end for

end for
S0 := S1

end if
end for

Update A such that it no longer contains any incoming arcs of vertex i
end for
Return C

22

In contrast to the method for finding chains, we are now focusing on iteratively finding all
circuits containing vertex i ∈ P , and then alter the arc list A such that it no longer contains
the incoming and outgoing arcs of vertex i to prevent symmetry. (For example, if we find the
vertex sequence (1, 2, 1), we don’t also find the vertex sequence (2, 1, 2) representing the same
circuit in the next iteration.) A found path p will be seen as a circuit if it is closed, it does
not contain a subcycle and no other circuit has already been found traversing the same pairs.

5 Results

In this section, I will share the results that have been found. We will start by discussing
the results found when considering complete graphs, representing KEPs without compatibility
restrictions. Next we discuss the results on realistic graphs representing KEPs with compati-
bility restrictions.
In the complete graphs representing KEPs without compatibility restrictions, maximizing the
number of planned donations and maximizing transplant-cycles performs well with respect
to the expected number of successful donations. However when considering compatibility re-
strictions, the realistic graphs show that only maximizing cycles performs well. Maximizing
the number of planned donations performs poorly with respect to the number of expected
successful donations.

5.1 Complete graphs

In this subsection, the relationship between the number of donation cycles and the the number
of planned donations, the relation between the expected number of successful donations and
the number of donation cycles, and the relation between the number of planned donations and
the expected number of successful transplants on complete graphs is studied. For this purpose
we look at Problem 5.1:

Problem 5.1. Finding a cycle set in a complete graph.
Given:

• A set V = {1, ..., n} of n ∈ N donor-recipient pairs,

• A complete graph D = (V,A), and

• The weight function Ep from section 3.2.1, see formula (2).

Find: A set of cycles in D, C∗, with A∗ = {a ∈ A | ∃c ∈ C∗ : a ∈ c}.

Such that: In G(V,A∗):

∀v ∈ V : d+(v) = d−(v) = 1

We looked at solutions C∗ with |A∗| = 1, ..., 50 planned donations. For each of these
solutions, all combinations of cycles of size 2, 3, and 4 that could produce this number of
planned donations was determined, combined with the resulting expected number of successful
donations. The results are shown in Figure 7.
Figure 7 shows three figures depicting the relation between the number of planned donations,
the number of cycles, and the expected number of successful donations associated with the set
C∗.

23

(a) Showing the relationship between the number
of cycles and the number of planned donations.
There is a dot at point (x, y) if there is a cycle
set C∗ with x planned donations and y donation
cycles.

(b) Showing the relationship between the expected
number of successful donations and the number of
planned donations. There is a dot at point (x, y)
if there is a cycle set C∗ with x planned donations
and y expected successful donations.

(c) Showing the relationship between the expected number of successful donations and the number
of cycles in the solution. There is a dot at point (x, y) if there is a cycle set C∗ with x cycles and y
expected successful donations.

Figure 7: Showing the relationships the number of planned donations, cycles and expected
donations, when we are working in a complete directed graph.

The Figures 7a, 7b and 7c show that the expected number of successful donations increases
when the number of cycles and the number of planned donations associated with the cycle set
C∗ increases.
However Figure 7a and 7b also shows that when the number of planned donations increases,
the spread of the possible resulting expected number of successful donations, as well as the
resulting number of cycles, becomes wider.

This has as result that maximizing the number of planned donations will not always have
the desired result when it comes to maximizing the expected number of successful donations.
For example, consider a KEP with two potential cycle sets: cycle set C1 containing one 2-way
cycle and cycle set C2 containing one 4-way cycle (so both C1 and C2 contain one cycle, but
C1 contributes only two planned donations while cycle set C2 contributes four planned dona-
tions). Then the expected number of successful donations from cycle set C1 would be 0.63,
while the expected number of successful donations cycle set C2 would present is 0.39. So in
this case, maximizing the number of planned donations would give a poor result with respect
to the expected number of successful donations.
Figure 7c shows that there are similar cases when it comes to maximizing the number of cycle.
However this spread is more limited.

24

So we found that, even though there are exceptions, the number of expected successful
donations increases when the number of cycles and planned donations included in the solu-
tions increases. Hence when there are no compatibility restrictions, maximizing the number
of successful donations and maximizing the number of transplant cycles performs well with
respect to maximizing the expected number of successful donations.

5.2 Realistic graphs representing KEPs

First a KEP will be modelled using code by Saidman, Susan L. and Roth, Alvin E. and etc [8].
This code needs the knowledge of how many pairs, NDDs, and countries will be participating
in this KEP. Then it assignes bloodtypes to the donor and recipients and a panel-reactive
antibody (pra). The pra has an influence on the possibility percentage that two people of the
same bloodtype will be found compatible. Next, all possible cycles and chains will be found
and the solver CPLEX 20.1, provided by the modelling language AIMMS, will be consulted
to find a solution based on the following objectives:

• Maximizing the number of planned donations,

• Maximizing the number of cycles,

• First maximizing the number of planned donations and then maximizing the number of
cycles,

• First maximizing the number of cycles and then maximizing the number of planned
donations, and

• Maximizing the number of expected successful donations.

The first and the second objective were chosen to see how much the number of success-
ful donations would improve when the hierarchical objective functions would be used. The
third and fourth objective is to compare which hierarchy would result in the highest number
of successful donations. The last objective, to maximize the expected number of successful
donations, is the true objective. The other objectives are evaluated by comparing them with
this objective.

The Figures 8, 9, and 10 show the number of planned donations, number of cycles and
number of successful donations (rounded upwards) on the x-axis, and the percentage of the
sample size on the y-axis respectively. The first component of 8a, 9a, and 10a shows the
contrast between the objectives for which the maximum solution was found:

purple: Maximizing the number of expected successful donations
blue: Maximizing the number of planned donations
yellow: Maximizing the number of cycles
green: The hierarchy that first maximizes the number of

planned donations and then maximizes the number of cycles
red: The hierarchy that first maximizes the number of

cycles and then maximizes the number of planned donations

Table 2: The color scheme used for the Figures 8, 9, 10, and all the figures in Section 8.1.

We have modelled a KEP containing 10, 20, 30, 40 and 50 pairs all 50 times and created
normalized bar charts to compare the resulting number of planned donations, cycles and the
number of expected donations with respect to the objectives.

25

The black curves in the graphs that show the results individually represent the normal
distribution whose mean and variance was calculated using the results found of 50 simulations.
The other tables are found in Section 8.1. The means, and the 95% intervals, of these objectives
combined with the number of pairs and the number of planned, cycles, and successful donations
achieved by the objectives are shown in Table 4.

(a) The first figure shows the results of all the ob-
jectives in the same bar chart. The second figure
has isolated the objective to maximize the number
of expected successful donations.

(b) Every component shows the results of the ob-
jectives individually, as well as in the hierarchy,
against the normal distribution with the sample
mean and sample variance.

Figure 8: The result of simulating a KEP containing 10 pairs with a sample size of 50 when
maximizing the number of planned donations in the solution.

(a) The first component compares the objectives
whereas the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) Every component shows the results of the ob-
jectives individually, as well as in the hierarchy,
against the normal distribution with the sample
mean and sample variance.

Figure 9: The result of simulating a KEP containing 30 pairs with a sample size of 50 when
maximizing the number of cycles in the solution.

26

(a) The first component compares the objectives
whereas the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) Every component shows the results of the ob-
jectives individually, as well as in the hierarchy,
against the normal distribution with the sample
mean and sample variance.

Figure 10: The result of simulating a KEP containing 50 pairs 50 times when maximizing the
number of expected successful donations in the solution.

Table 3 shows the relation between the the size of a cycle, and the expected number of
successful transplants it would contribute. This table shows that when the probability of a
successful donation is 56%, then the number of successful donations is higher for smaller cycles.

Cycle size Probability of success of the cycle Expected successful donations of the cycle
2 0.562 = 0.3136 2 · 0.3136 = 0.6272
3 0.563 = 0.1756 3 · 0.1756 = 0.5268
4 0.564 = 0.0983 4 · 0.0983 = 0.3934

Table 3: This shows for larger cycles, the expected number of successful donations is smaller,
even though the number of planned donations increases.

Now to discuss Table 4. First, note that the average of the number of cycles is the same for
the hierarchical objective of maximizing the number of cycles, then maximizing the number
of planned donations, and the objectives of maximizing expected successful transplants. This
also holds for their 95% confidence intervals. The performance of the objectives with the cor-
responding KEP sizes is shown in Table 5. This shows that maximizing the number of cycles
gives positive results with respect to maximizing the expected number of successful donations
is correct.
The same however can’t be said for the objective of maximizing the number of planned dona-
tions in the solution. Comparing the hierarchies to only focus on maximizing the number of
cycles, it is visible that the average number of successful donations has decreased. This can be
explained by the fact that, as has already been mentioned, the expected number of successful
donations is higher for a smaller cycles, when the probability of a successful donation is 56%.
So, even though in a complete graph, maximizing the number of planned donations also max-
imizes the expected number of successful donations, the same does not hold for graphs repre-
senting realistic KEPs. Hence, maximizing the number of planned donations does not yields
the best possible number of donations with respect to realistic KEPs. Table 4 shows that
the objective that achieves the best expected number of successful donations has the smallest
average of planned donations compared to the other objectives.

27

50 pairs Planned donations Cycles Successful donations
Maximizing planned donations 31.2 ± 1.65 10.54 ± 0.63 5.48 ± 0.39

Maximizing cycles 26.7 ± 1.54 12.74 ± 0.73 7.87 ± 0.45
Max. planned donations then cycles 31.2 ± 1.65 12.62 ± 0.76 7.26 ± 0.48
Max. cycles then planned donations 31.08 ± 1.67 12.74 ± 0.73 7.39 ± 0.45
Maximizing successful donations 25.9 ± 1.49 12.74 ± 0.73 7.95 ± 0.45

40 pairs
Maximizing planned donations 24.74 ± 1.19 8.32 ± 0.54 4.24 ± 0.75

Maximizing cycles 20.34 ± 1.26 9.64 ± 0.60 5.79 ± 0.90
Max. planned donations then cycles 24.74 ± 1.19 9.52 ± 0.58 5.19 ± 0.89
Max. cycles then planned donations 24.6 ± 1.16 9.64 ± 0.60 5.29 ± 0.94
Maximizing successful donations 19.62 ± 1.24 9.64 ± 0.60 5.85 ± 0.89

30 pairs
Maximizing planned donations 16.28 ± 1.23 5.42 ± 0.45 2.78 ± 0.27

Maximizing cycles 13.16 ± 1.18 6.3 ± 0.56 3.89 ± 0.34
Max. planned donations then cycles 16.28 ± 1.23 6.3 ± 0.56 3.54 ± 0.35
Max. cycles then planned donations 16.28 ± 1.23 6.3 ± 0.56 3.55 ± 0.35
Maximizing successful donations 12.84 ± 1.19 6.3 ± 0.56 3.92 ± 0.34

20 pairs
Maximizing planned donations 10.2 ± 1.00 3.5 ± 0.38 1.84 ± 0.22

Maximizing cycles 8.22 ± 0.93 3.94 ± 0.44 2.44 ± 0.27
Max. planned donations then cycles 10.2 ± 1.00 3.9 ± 0.42 2.18 ± 0.26
Max. cycles then planned donations 10.16 ± 0.98 3.94 ± 0.44 2.22 ± 0.28
Maximizing successful donations 8 ± 0.90 3.94 ± 0.44 2.46 ± 0.27

10 pairs
Maximizing planned donations 3.42 ± 0.78 1.22 ± 0.27 0.66 ± 0.15

Maximizing cycles 2.8 ± 0.64 1.3 ± 0.30 0.78 ± 0.18
Max. planned donations then cycles 3.42 ± 0.78 1.3 ± 0.30 0.73 ± 0.17
Max. cycles then planned donations 3.42 ± 0.78 1.3 ± 0.30 0.73 ± 0.17
Maximizing successful donations 2.68 ± 0.62 1.3 ± 0.30 0.79 ± 0.18

Table 4: Results after simulating the KEP containing x pairs 50 times. It shows the means
found combined with the 95% interval.

nr. participating pairs: 50 40 30 20 10
Maximizing planned donations 69% 72% 71% 75% 84%

Maximizing cycles 99% 99% 99% 99% 99%
Max. planned donations then cycles 91% 89% 90% 89% 92%
Max. cycles then planned donations 93% 90% 91% 90% 92%

Table 5: The performance with the percentage of the maximum possible expected successful
donations the objectives contribute.

5.3 Discussion of the results

In this section we will see how big the percentage of success has to be to make a n-way cycle
preferable over an (n− 1)-way cycle. It also calculates the increase in the expected number of
successful donations when subcycles are taken into account.

28

5.3.1 Success rate needed such that maximizing the number of planned donations
improves the solution.

Let x > 0 denote the percentage of success of a donation. Then a cycle of length n will have
at most the same expected number of successful donations as a cycle of length n+ 1 if:

(n+ 1)xn+1 ≥ nxn

=⇒ 0 ≥ nxn − (n+ 1)xn+1

=⇒ 0 ≥ xn(n− (n+ 1)x)

=⇒ 0 ≥ n− (n+ 1)x

=⇒ x ≥ n

n+ 1
.

Hence we find that a cycle of length n + 1 would result in a higher expected number of
successful donations than a cycle of length n if the success rate of a donation is at least n

n+1%.
Since we consider a success rate of 56%, we find that including 2-way cycles shows better
results with respect to maximizing the number of successful donations, than including 3-way
(or 4-way) cycles.

5.3.2 Prioritizing cycles with subcycles

In the UK they also consider prioritizing 3-way cycles with 2-way subcycles. We are going to
calculate the advantage of being able to switch to a subcyle in case the original cycle fails.
An example is shown using Graph D5 = (V,A) in Figure 11. In this case, should pair 3 not
be able to participate in the donations, then the 2-way subcycle can be utilized and there can
still be two instead of three successful donations.

1

2 3

Figure 11: A directed graph D5 representing the cycle (1, 3, 2) with sub-cycle (1, 2).

Let the probability of a successful donations be p. Let c1 be a cycle of length n and c2 be a
subcycle on c1 of size n− 1 vertices. We now find the following number of expected successful
donations of cycle c1 when we take into account that we can use subcycle c2 in case the cycle
c1 fails:

Ep(c) = n · pn + (n− 1)pn−1(1− p2)

29

with,

n : The number of planned donations the cycle c1 contributes.

pn : The probability that cycle c1 is successful.

(n− 1) : The number of planned donations the cycle c2 contributes.

pn−1 : The probability that cycle c2 is successful.

1− p2 : The probability that at least one arc a1, a2 ∈ c1 \ c2 fails.

Applying this formula to the cycle shown in Figure 11, we find the following for a three-way
cycle with a two-way subcycle when the probability of success is 56%:

Ep(c) = 3 · 0.563 + (3− 1)0.563−1(1− 562)

= 0.9574

So, when also taking into account the sub-cycles of length n− 1 of cycles of length n, the
expected number of successful donations of the cycle of length n increases by (n−1)pn−1(1−p2).

6 Conclusion

In complete graphs, we have looked at all possible ways to cover sets of arcs with cycles and
found that on average the expected number of successful donations increases when the number
of planned donations or the number of donation cycles increases.

Moreover, we have studied the performance of two objectives with respect to the maximum
expected number of successful donations in graphs representing realistic KEP instances. Max-
imizing the number of planned donations only results in 69% - 84% of the maximum expected
number of successful donations. The objective maximizing the number of cycles however, re-
sults in 99% of the maximum expected number of successful donations. When considering
these two objectives in a hierarchy, we find that, instead of an improvement with respect to
the expected number of successful donations, it only results in 89% - 92% of the maximum
expected number of successful donations when we have priority on maximizing the number of
planned donations, and 90% - 93% when we have priority on maximizing the number of cycles.

7 Discussion

For future work, it can be interesting to look at the hierarchy with prioritizing maximizing the
number of cycles and then minimizing the number of planned donations instead of maximiz-
ing the number of planned donations, when the assumption that the probability of a planned
donation will be performed is below 66%. I believe this new hierarchy will perform very well
with respect to the expected number of successful donations.
Note that there are other sources in which another success rate of a planned donation has
been chosen since the exact success rate is not known. From Section 5.3.1, we know that if
the success rate is greater, bigger cycles will contribute more successful donations. Hence, for
higher success rates, the objective of maximizing the number of planned donations will yield
better results.
It would also be interesting to consider selecting cycles which have a sub-cycle, as has been

30

discussed in Section 5.3.2. It would be interesting how this would effect the found results, and
what impact it has when maximizing or minimizing the number of planned donations in the
solutions found.

31

References

[1] “Organen: cijfers afgelopen maanden — Nederlandse Transplantatie Stichting.”
[Online]. Available: https://www.transplantatiestichting.nl/publicaties-en-naslag/cijfers-
over-donatie-en-transplantatie/organen-cijfers-afgelopen-maanden

[2] M. Hatzinger, M. Stastny, P. Grützmacher, and M. Sohn, “Die Geschichte der Nierentrans-
plantation [or The history of kidney transplantation],” Der Urologe. Ausg. A, vol. 55, no. 10,
pp. 1353–1359, 10 2016. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/27518791/

[3] P. Biró, J. van de Klundert, D. Manlove, W. Pettersson, T. Andersson, L. Burnapp,
P. Chromy, P. Delgado, P. Dworczak, B. Haase, A. Hemke, R. Johnson, X. Klimentova,
D. Kuypers, A. Nanni Costa, B. Smeulders, F. Spieksma, M. O. Valent́ın, and A. Viana,
“Modelling and optimisation in European Kidney Exchange Programmes,” European Jour-
nal of Operational Research, vol. 291, no. 2, pp. 447–456, 6 2021.

[4] J. P. Dickerson, A. D. Procaccia, and T. Sandholm, “Failure-Aware Kidney Exchange,”
MANAGEMENT SCIENCE, vol. 65, no. 4, pp. 1768–1791, 2019. [Online]. Available:
http://pubsonline.informs.org/journal/mnsc/http://orcid.org/0000-0003-2231-680X

[5] A. Schrijver, “17.2 - The Hungarian method,” in Combinatoral Optimization - Polyhedra
and Efficiency, 1st ed. Springer-Verlag Berlin Heidelberg, 2003, ch. 17.2., pp. 286–288.

[6] M. Constantino, X. Klimentova, A. Viana, and A. Rais, “New insights on integer-
programming models for the kidney exchange problem,” European Journal of Operational
Research, vol. 231, no. 1, pp. 57–68, 11 2013.

[7] J. P. Dickerson, D. F. Manlove, J. Trimble, B. Plaut, T. Sandholm, J. P.
Dickerson, B. Plaut, T. Sandholm, . D. F. Manlove, and J. Trimble, “Position-
Indexed Formulations for Kidney Exchange,” pp. 25–42, 7 2016. [Online]. Available:
http://doi.acm.org/10.1145/2940716.2940759

[8] S. L. Saidman, A. E. Roth, T. Sönmez, M. U. Ünver, and F. L. Delmonico, “Increasing the
Opportunity of Live Kidney Donation by Matching for Two- and Three-Way Exchanges,”
Transplantation, vol. 81, no. 5, pp. 773–782, 3 2006.

32

8 Appendix

8.1 Bar charts showing the results

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 12: The result of simulating a KEP containing 10 pairs with a sample size of 50 when
maximizing the number of planned donations in the solution.

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 13: The result of simulating a KEP containing 20 pairs with a sample size of 50 when
maximizing the number of planned donations in the solution.

33

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 14: The result of simulating a KEP containing 30 pairs with a sample size of 50 when
maximizing the number of planned donations in the solution.

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 15: The result of simulating a KEP containing 40 pairs with a sample size of 50 when
maximizing the number of planned donations in the solution.

34

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 16: The result of simulating a KEP containing 50 pairs with a sample size of 50 when
maximizing the number of planned donations in the solution.

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 17: The result of simulating a KEP containing 10 pairs with a sample size of 50 when
maximizing the number of cycles in the solution.

35

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 18: The result of simulating a KEP containing 20 pairs with a sample size of 50 when
maximizing the number of cycles in the solution.

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 19: The result of simulating a KEP containing 30 pairs with a sample size of 50 when
maximizing the number of cycles in the solution.

36

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 20: The result of simulating a KEP containing 40 pairs with a sample size of 50 when
maximizing the number of cycles in the solution.

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 21: The result of simulating a KEP containing 50 pairs with a sample size of 50 when
maximizing the number of cycles in the solution.

37

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 22: The result of simulating a KEP containing 10 pairs with a sample size of 50 when
maximizing the number of expected successful donations in the solution.

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 23: The result of simulating a KEP containing 20 pairs with a sample size of 50 when
maximizing the number of expected successful donations in the solution.

38

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 24: The result of simulating a KEP containing 30 pairs with a sample size of 50 when
maximizing the number of expected successful donations in the solution.

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 25: The result of simulating a KEP containing 40 pairs with a sample size of 50 when
maximizing the number of expected successful donations in the solution.

39

(a) The first component compares the objectives
where as the second component has isolated the
objective to maximize the number of expected suc-
cessful donations.

(b) very component shows an objective individ-
ually, with the color scheme of Table 2, against
the normal distribution with the sample mean and
sample variance.

Figure 26: The result of simulating a KEP containing 50 pairs with a sample size of 50 when
maximizing the number of expected successful donations in the solution.

8.2 Python code

import time
import pandas as pd
import csv
from numpy import random

from sc ipy . s t a t s import binom

def CreatCyclesAndChains (doc , max length chain , max length cyc l e) :
To Simulate a KEP with a document that conta in s a l l in fo rmat ion about the
number o f NDDs, Pairs , Arcs , and p a r t i c i p a t i n g c oun t r i e s obta ined by running
the code from source [8]

with open (doc) as f : # mod i f i e s the uploaded data such that the program
can use i t , Nr Pairs , Nr NDD and Nr Arcs w i l l hold
the number o f pa i r s , NDDs and arc s in i n t e g e r form
re sp e c t i v e l y ,

Nr Pairs = f . r e ad l i n e () [:]
Nr Pairs = in t (Nr Pairs [1 1 : l en (Nr Pairs)])

Nr NDD = f . r e ad l i n e () [:]
Nr NDD = in t (Nr NDD [9 : l en (Nr NDD)])

Nr Arcs = f . r e ad l i n e () [:]
Nr Arcs = in t (Nr Arcs [1 0 : l en (Nr Arcs)])

Arcs = f . r e a d l i n e s () [1+ Nr Pairs+Nr NDD:1+Nr Pairs+Nr NDD+ Nr Arcs]

40

In f o = []
with open (doc) as f :

f o r l i n e in f :
arc = l i n e . s p l i t ()
In f o . append (arc)

de l (In f o [0 : 4 + Nr Pairs + Nr NDD])

f o r i n f o in range (l en (In f o)) :
I n f o [i n f o] = In fo [i n f o] [0] . s p l i t (” , ”) [0 : 2]

f o r i n f o in range (l en (In f o)) :
x coor = In fo [i n f o] [0] . s p l i t (” (”)
y coor = In fo [i n f o] [1] . s p l i t (”) ”)
In f o [i n f o] [0] = x coor [1]
In f o [i n f o] [1] = y coor [0]

f o r a r c s in range (Nr Arcs) :
f o r i n f o in range (2) :

In f o [a r c s] [i n f o] = in t (In f o [a r c s] [i n f o])

##
Will put every pa i r whose donor i s incompat ib le with every p a r t i c i p a t i n g
r e c i p i e n t in the l i s t ” endings ”

endings = []
f o r end 1 in range (l en (In f o)−1):

i f I n f o [end 1 + 1] [0] − In f o [end 1] [0] > 1 :
f o r end 2 in range (In f o [end 1 + 1] [0] − In f o [end 1] [0] − 1) :

endings . append (In f o [end 1] [0] + 1 + end 2)

##
The l i s t ” a l l i n ” w i l l end up conta in ing a l l found va l i d cha ins and cy c l e s
Here a l l the va l i d cha ins w i l l be c a l c u l a t ed
a l l i n = []

i f max length chain > 0 :
c h a i n s c y c l e s = []
s t a r t s = []
f o r s tep in range (max length chain + 1) :
w i l l go over a l l chains , s e e i f the re i s a next s tep

i f s tep == 0 :
c h a i n s c y c l e s = []
f o r NDD in range (Nr NDD) :

c h a i n s c y c l e s . append ([Nr Pairs + NDD])
s t a r t s . append (Nr Pairs + NDD)

e l s e :
update = cha i n s c y c l e s . copy ()

41

w i l l not e f f e c t the o r i g i n a l data
c h a i n s c y c l e s = []

w i l l become one step l a r g e r
check = []

check i f a chain r ep r e s en t i ng the same group o f pa i r s has
al ready been found , f . e . 1−2−3 vs 1−3−2

f o r pa i r cha i n in range (l en (update)) :

f o r pa i r in range (l en (In f o)) :
i f update [p a i r cha i n] [−1] == In fo [pa i r] [0] and
In f o [pa i r] [1] not in update [p a i r cha i n] :

new l i n k found

chain = update [pa i r cha i n] . copy ()
chain . append (In f o [pa i r] [1])

i f l en (update [p a i r cha i n]) == 1 or In f o [pa i r] [−1]
in endings :

a l l i n . append (chain)

e l s e :
i f l en (check) == 0 :

check . append (so r t ed (chain))
a l l i n . append (chain)

e l i f s o r t ed (chain) not in check :
check . append (so r t ed (chain))
a l l i n . append (chain)

i f In f o [pa i r] [1] not in endings :
c h a i n s c y c l e s . append (chain)

i f s t ep == 1 :
NDDs can only be placed at the s t a r t o f a chain , hence they
can now be taken out
f o r i n f o in range (l en (In f o)) :

i f I n f o [− 1] [0] >= Nr Pairs :
de l (In f o [−1])

e l s e :
break

##
Here a l l the va l i d cha ins w i l l be found

i f max length cyc l e − 1 > 0 :
c h a i n s c y c l e s = []
i n f o = 0
whi le i n f o in range (l en (In f o)) :

42

i f I n f o [i n f o] [−1] not in endings :
i n f o += 1

e l s e :
de l (In f o [i n f o])

f o r pa i r in range (Nr Pairs − 1) :
the l a s t one w i l l never go to i t s e l f , and every other ones are
l e s s then so w i l l a l r eady have been de l e t ed
i f pa i r not in endings :

i f pa i r > 0 :
i n f o = 0
whi le i n f o in range (l en (In f o)) :

i f I n f o [i n f o] [0] >= pa i r and In fo [i n f o] [1] >= pa i r :
i n f o += 1

e l s e :
de l (In f o [i n f o])

i f l en (In f o) == 0 :
a l l p o s s i b l e l i n k s have a l r eady been used
break

e l s e :
f o r s tep in range (max length cyc l e) :

amount o f steps , p lus going back to o r i g i n a l
i f s t ep == 0 :

w i l l conta in a l l cha ins which might become cy c l e s
check = 0
f o r i n f o in range (l en (In f o)) :

i f I n f o [i n f o] [−1] == pa i r :
check = 1
break

i f check == 0 :
break

update = []
i n f o = 0
whi le i n f o in range (l en (In f o)) :

i f I n f o [i n f o] [0] == pa i r :
update . append (In f o [i n f o] . copy ())
de l (In f o [i n f o])

e l i f I n f o [i n f o] [0] > pa i r :
break

i f l en (update) == 0 :
break

e l s e :

43

c h a i n s c y c l e s = update . copy ()
update = []
check = []

f o r cyc in range (l en (c h a i n s c y c l e s)) :
f o r i n f o in range (l en (In f o)) :

i f c h a i n s c y c l e s [cyc] [−1] == In fo [i n f o] [0]
and c h a i n s c y c l e s [cyc] [0] == In fo [i n f o] [1] :

c y c l e = ch a i n s c y c l e s [cyc] . copy ()

i f l en (cy c l e) == 2 :
a l l i n . append (cy c l e)

e l i f s o r t ed (cy c l e) not in check :
a l l i n . append (cy c l e)
check . append (so r t ed (cy c l e))

e l i f c h a i n s c y c l e s [cyc] [−1] == In fo [i n f o] [0]
and In f o [i n f o] [−1] not in c h a i n s c y c l e s [cyc] :

check f o r in loops
cy c l e = ch a i n s c y c l e s [cyc] . copy ()
cy c l e . append (In f o [i n f o] [1])
update . append (cy c l e)

##
Calcu l a t ing the expected number o f s u c c e s s f u l donat ions o f the cha ins and cyc l e s ,
l i n k i n g the cha ins and cy c l e s with the pa i r s and NDDs they conta in and
putt ing everyth ing in a tab l e in a ex c e l f i l e .

p a i r s = [[’ cyc l e s ’]]
f o r pa i r in range (Nr Pairs + Nr NDD) :

pa i r s [0] . append (pa i r)

p a i r s [0] . append (” Expected people helped ”)

Links the pa i r s to the c y c l e s and cha ins they are in
f o r cyc in range (l en (a l l i n)) :

data = []
data . append (a l l i n [cyc])
f o r pa i r in range (Nr Pairs + Nr NDD) :

i f p a i r s [0] [pa i r + 1] in a l l i n [cyc] :
data . append (1)

e l s e :
data . append (0)

I f we are in a chain , then you c a l c u l a t e the expected people helped as
f o l l ow s :

chain

44

i f a l l i n [cyc] [0] >= Nr Pairs :
exp = 0
f o r s tep in range (l en (data [0]) − 1) :

exp += (step + 1) ∗ 0 .56∗∗ (s tep + 1)
data . append (exp)

e l s e :
data . append (l en (a l l i n [cyc]) ∗ 0 .56∗∗ l en (a l l i n [cyc]))

p a i r s . append (data)

df = pd . DataFrame (pa i r s)
re turn (df)

doc = ’ Graph 40 0 4equa l 0 . txt ’
df = CreatCyclesAndChains (doc , 0 , 4)
df . t o e x c e l (’ Graph 40 0 4equa l 0 44 . x lsx ’ , index = False)

##
##
The d e f i n i t i o n s to c r e a t e the graphs to show the r e s u l t s
We use two graphs with 2 and 4 components r e s p e c t i v e l y .
The f i r s t component o f the f i r s t graph conta in s a l l the in fo rmat ion
and a second component dep i c t i ng the in fo rmat ion f o r the expected s u c c e s s f u l
donat ions .
The components o f the second graph i s o l a t e each ob j e c t i v e :
maximizing the planned donations , the cyc l e s , and the two po s s i b l e
h i e r a r c h i e s .
” subp lo t s ” r e f e r s to the number components in the graph ,
”number” r e f e r s to the number o f p a i r s in the s imulat ion , and
” ob j e c t i v e ” i s 1 (f o r planned donat ions) , 2 (f o r c y c l e s) or
3 (f o r the expected number o f s u c c e s s f u l donat ions) .

To c r ea t e the f i g u r e conta in ing the bar chart r ep r e s en t i ng a l l ob j e c t i v e s ,
with the bar chart i s o l a t i n g the ob j e c t i v e o f the expected number o f
s u c c e s s f u l donat ions

de f Graph (subplots , number , o b j e c t i v e) :
i f subp lo t s == 2 :

f i g , ax = p l t . subp lo t s (2)
e l i f subp lo t s == 4 :

f i g , ax = p l t . subp lo t s (2 , 2)
e l s e :

p r i n t (” Inva l i d number o f subplots , g ive 2 or 4”)

i f o b j e c t i v e == 1 :

i f number == 10 :
i f subp lo t s == 2 :

45

ax [0] . s e t t i t l e (’ Group s i z e : 10 , Number o f planned donations ’)

a 1 = [14 , 0 , 7 , 5 , 7 , 4 , 3 , 6 , 2 , 2 , 0]
a 2 = [14 , 0 , 13 , 2 , 9 , 4 , 5 , 2 , 1 , 0 , 0]
a 3 = [14 , 0 , 7 , 5 , 7 , 4 , 3 , 6 , 2 , 2 , 0]
a 4 = [14 , 0 , 7 , 5 , 7 , 4 , 3 , 6 , 2 , 2 , 0]
a 5 = [14 , 0 , 15 , 0 , 12 , 1 , 6 , 1 , 1 , 0 , 0]

mn = 0

e l i f number == 20 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 20 , Number o f planned donations ’)

a 1 = [0 , 1 , 1 , 3 , 6 , 3 , 2 , 2 , 10 , 2 ,
6 , 5 , 4 , 1 , 2 , 1 , 1]

a 2 = [1 , 0 , 7 , 3 , 10 , 0 , 8 , 2 , 6 , 2 ,
7 , 2 , 0 , 1 , 0 , 1 , 0]

a 3 = [0 , 1 , 1 , 3 , 6 , 3 , 2 , 2 , 10 , 2 ,
6 , 5 , 4 , 1 , 2 , 1 , 1]

a 4 = [0 , 1 , 1 , 3 , 6 , 3 , 2 , 2 , 10 , 2 ,
6 , 5 , 4 , 2 , 2 , 0 , 1]

a 5 = [1 , 0 , 9 , 1 , 10 , 0 , 11 , 1 , 5 , 1 ,
8 , 1 , 1 , 0 , 1 , 0 , 0]

mn = 2

e l i f number == 30 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 30 , Number o f planned donations ’)

a 1 = [0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 5 , 4 ,
7 , 2 , 6 , 3 , 6 , 3 , 1 , 4 , 0 , 2 ,
0 , 2 , 0 , 0 , 1]

a 2 = [1 , 0 , 1 , 1 , 2 , 3 , 10 , 1 , 6 , 3 ,
3 , 5 , 4 , 2 , 1 , 3 , 1 , 2 , 0 , 0 ,
1 , 0 , 0 , 0 , 0]

a 3 = [0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 5 , 4 ,
7 , 2 , 6 , 3 , 6 , 3 , 1 , 4 , 0 , 2 ,
0 , 2 , 0 , 0 , 1]

a 4 = [0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 5 , 4 ,
7 , 2 , 6 , 3 , 6 , 3 , 1 , 4 , 0 , 2 ,
0 , 2 , 0 , 0 , 1]

a 5 = [1 , 0 , 2 , 0 , 5 , 0 , 12 , 0 , 6 , 2 ,
7 , 3 , 4 , 0 , 1 , 3 , 1 , 2 , 0 , 0 ,
1 , 0 , 0 , 0 , 0]

mn = 4

46

e l i f number == 40 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 40 , Number o f planned donations ’)

a 1 = [0 , 0 , 0 , 0 , 0 , 1 , 2 , 3 , 2 , 4 ,
5 , 4 , 2 , 8 , 4 , 3 , 2 , 2 , 3 , 0 ,
3 , 1 , 0 , 1]

a 2 = [1 , 0 , 2 , 5 , 5 , 1 , 4 , 4 , 8 , 2 ,
3 , 2 , 3 , 2 , 4 , 1 , 2 , 0 , 0 , 0 ,
0 , 0 , 1 , 0]

a 3 = [0 , 0 , 0 , 0 , 0 , 1 , 2 , 3 , 2 , 4 ,
5 , 4 , 2 , 8 , 4 , 3 , 2 , 2 , 3 , 0 ,
3 , 1 , 0 , 1]

a 4 = [0 , 0 , 0 , 0 , 1 , 0 , 2 , 3 , 3 , 3 ,
6 , 3 , 2 , 8 , 4 , 3 , 2 , 2 , 3 , 2 ,
2 , 0 , 1 , 0]

a 5 = [1 , 0 , 8 , 1 , 4 , 1 , 8 , 3 , 6 , 1 ,
4 , 3 , 3 , 2 , 2 , 1 , 1 , 0 , 0 , 0 ,
0 , 1 , 0 , 0]

mn = 12

e l i f number == 50 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 50 , Number o f planned donations ’)

a 1 = [0 , 0 , 0 , 1 ,
1 , 1 , 0 , 2 , 1 , 3 , 2 , 0 , 5 , 3 ,
4 , 5 , 2 , 7 , 0 , 3 , 1 , 0 , 2 , 2 ,
1 , 2 , 0 , 0 , 1 , 1]

a 2 = [1 , 0 , 2 , 3 ,
0 , 2 , 6 , 4 , 0 , 2 , 4 , 3 , 5 , 3 ,
4 , 1 , 2 , 3 , 2 , 0 , 1 , 0 , 1 , 0 ,
0 , 0 , 1 , 0 , 0 , 0]

a 3 = [0 , 0 , 0 , 1 ,
1 , 1 , 0 , 2 , 1 , 3 , 2 , 0 , 5 , 3 ,
4 , 5 , 2 , 7 , 0 , 3 , 1 , 0 , 2 , 2 ,
1 , 2 , 0 , 0 , 1 , 1]

a 4 = [0 , 0 , 0 , 1 ,
1 , 1 , 2 , 1 , 0 , 3 , 2 , 1 , 4 , 4 ,
3 , 5 , 2 , 7 , 0 , 3 , 1 , 0 , 2 , 3 ,
0 , 2 , 0 , 0 , 1 , 1]

a 5 = [1 , 0 , 3 , 2 ,
3 , 0 , 7 , 2 , 4 , 1 , 4 , 5 , 2 , 5 ,
2 , 3 , 1 , 2 , 0 , 0 , 1 , 1 , 0 , 0 ,
0 , 0 , 1 , 0 , 0 , 0]

mn = 16

47

e l s e :
p r i n t (”An i n v a l i d number has been put in f o r the number o f planned
donations , choose between 10 , 20 , 30 , 40 , and 50”)

e l i f o b j e c t i v e == 2 :
i f number == 10 :

i f subp lo t s == 2 :
ax [0] . s e t t i t l e (’ Group s i z e : 10 , Number o f cyc l e s ’)

a 1 = [14 , 16 , 15 , 0 , 0]
a 2 = [14 , 15 , 14 , 6 , 1]
a 3 = [14 , 15 , 14 , 6 , 1]
a 4 = [14 , 15 , 14 , 6 , 1]
a 5 = [14 , 15 , 14 , 6 , 1]

mn = 0

e l i f number == 20 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 20 , Number o f cyc l e s ’)

a 1 = [2 , 11 , 14 , 11 , 8 , 3 , 1 , 0]
a 2 = [1 , 10 , 10 , 12 , 7 , 8 , 1 , 1]
a 3 = [1 , 10 , 10 , 12 , 8 , 8 , 0 , 1]
a 4 = [1 , 10 , 10 , 12 , 7 , 8 , 1 , 1]
a 5 = [1 , 10 , 10 , 12 , 7 , 8 , 1 , 1]

mn = 2

e l i f number == 30 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 30 , Number o f cyc l e s ’)

a 1 = [1 , 4 , 9 , 14 , 12 , 4 , 4 , 1 , 1 , 0]
a 2 = [1 , 2 , 5 , 12 , 8 , 10 , 4 , 4 , 3 , 1]
a 3 = [1 , 2 , 5 , 12 , 8 , 10 , 4 , 4 , 3 , 1]
a 4 = [1 , 2 , 5 , 12 , 8 , 10 , 4 , 4 , 3 , 1]
a 5 = [1 , 2 , 5 , 12 , 8 , 10 , 4 , 4 , 3 , 1]

mn = 4

e l i f number == 40 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 40 , Number o f cyc l e s ’)

a 1 = [2 , 6 , 13 , 7 , 8 , 8 ,
3 , 2 , 0 , 1 , 0 , 0]

a 2 = [0 , 1 , 9 , 5 , 12 , 7 ,
6 , 5 , 3 , 1 , 0 , 1]

48

a 3 = [0 , 3 , 7 , 5 , 12 , 8 ,
6 , 4 , 4 , 0 , 1 , 0]

a 4 = [0 , 1 , 9 , 5 , 12 , 7 ,
6 , 5 , 3 , 1 , 0 , 1]

a 5 = [0 , 1 , 9 , 5 , 12 , 7 ,
6 , 5 , 3 , 1 , 0 , 1]

mn = 5

e l i f number == 50 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 50 , Number o f cyc l e s ’)

a 1 = [2 , 4 , 4 , 6 , 7 ,
10 , 7 , 4 , 5 , 1 ,
0 , 0 , 0 , 0 , 0 , 0]

a 2 = [0 , 0 , 1 , 5 , 4 , 8 ,
5 , 9 , 7 , 5 , 3 , 0 ,
2 , 0 , 0 , 1]

a 3 = [0 , 0 , 4 , 2 , 4 , 8 ,
6 , 8 , 8 , 4 , 3 , 0 ,
2 , 0 , 0 , 1]

a 4 = [0 , 0 , 1 , 5 , 3 , 9 ,
5 , 9 , 7 , 5 , 3 , 0 ,
2 , 0 , 0 , 1]

a 5 = [0 , 0 , 1 , 5 , 3 , 9 ,
5 , 9 , 7 , 5 , 3 , 0 ,
2 , 0 , 0 , 1]

mn = 6

e l s e :
p r i n t (”An i n v a l i d number has been put in f o r the number o f planned
donations , choose between 10 , 20 , 30 , 40 , and 50”)

e l i f o b j e c t i v e == 3 :
i f number == 10 :

i f subp lo t s == 2 :
ax [0] . s e t t i t l e (’ Group s i z e : 10 , Expected number o f s u c c e s s f u l
donations ’)

a 1 = [14 , 21 , 15 , 0]
a 2 = [14 , 16 , 19 , 1]
a 3 = [14 , 19 , 16 , 1]
a 4 = [14 , 19 , 16 , 1]
a 5 = [14 , 16 , 19 , 1]

mn = 0

49

e l i f number == 20 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 20 , Expected number o f s u c c e s s f u l
donations ’)

a 1 = [6 , 24 , 16 , 4 , 0 , 0]
a 2 = [1 , 20 , 13 , 14 , 2 , 0]
a 3 = [4 , 18 , 19 , 8 , 1 , 0]
a 4 = [4 , 18 , 18 , 8 , 2 , 0]
a 5 = [1 , 20 , 13 , 14 , 1 , 1]

mn = 1

e l i f number == 30 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 30 , Expected number o f s u c c e s s f u l
donations ’)

a 1 = [11 , 20 , 13 , 5 , 1 , 0]
a 2 = [3 , 6 , 19 , 11 , 7 , 4]
a 3 = [4 , 16 , 14 , 9 , 5 , 2]
a 4 = [4 , 16 , 14 , 9 , 5 , 2]
a 5 = [3 , 5 , 20 , 10 , 8 , 4]

mn = 2

e l i f number == 40 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 40 , Expected number o f s u c c e s s f u l
donations ’)

a 1 = [1 , 5 , 17 , 14 , 8 , 4 , 1 , 0 , 0]
a 2 = [0 , 0 , 1 , 11 , 16 , 12 , 6 , 3 , 1]
a 3 = [0 , 2 , 9 , 11 , 14 , 7 , 6 , 1 , 0]
a 4 = [0 , 1 , 8 , 12 , 13 , 9 , 5 , 1 , 1]
a 5 = [0 , 0 , 1 , 10 , 16 , 13 , 5 , 4 , 1]

mn = 2

e l i f number == 50 :
i f subp lo t s == 2 :

ax [0] . s e t t i t l e (’ Group s i z e : 50 , Expected number o f s u c c e s s f u l
donations ’)

a 1 = [2 , 7 , 8 , 17 , 9 , 5 , 2 , 0 , 0 , 0 ,
0 , 0]

a 2 = [0 , 0 , 0 , 6 , 12 , 10 , 11 , 8 , 0 , 2 ,
0 , 1]

a 3 = [0 , 0 , 4 , 7 , 12 , 10 , 12 , 2 , 2 , 0 ,

50

1 , 0]
a 4 = [0 , 0 , 1 , 9 , 12 , 10 , 12 , 3 , 2 , 0 ,

1 , 0]
a 5 = [0 , 0 , 0 , 6 , 12 , 5 , 16 , 7 , 1 , 2 ,

0 , 1]

mn = 3

e l s e :
p r i n t (”An i n v a l i d number has been put in f o r the number o f planned
donations , choose between 10 , 20 , 30 , 40 , and 50”)

e l s e :
p r i n t (”An i n v a l i d number has been put in f o r the ob j e c t i v e ”)

x = np . arange (mn, l en (a 1) + mn, 1 , dtype = in t) # the l a b e l l o c a t i o n s

a 1d = []
a 2d = []
a 3d = []
a 4d = []
a 5d = []

f o r i in range (l en (a 1)) :
a 1d . append (a 1 [i] / sum(a 1))
a 2d . append (a 2 [i] / sum(a 2))
a 3d . append (a 3 [i] / sum(a 3))
a 4d . append (a 4 [i] / sum(a 4))
a 5d . append (a 5 [i] / sum(a 5))

a 1t = []
a 2 t = []
a 3 t = []
a 4 t = []

a2 1t = []
a2 2t = []
a2 3t = []
a2 4t = []

f o r i in range (l en (a 1)) :
a 1 t . append (a 1 [i] ∗ (i + mn))
a 2t . append (a 2 [i] ∗ (i + mn))
a 3t . append (a 3 [i] ∗ (i + mn))
a 4t . append (a 4 [i] ∗ (i + mn))

a2 1t . append (a 1 [i] ∗ ((i + mn)∗∗2))
a2 2t . append (a 2 [i] ∗ ((i + mn)∗∗2))
a2 3t . append (a 3 [i] ∗ ((i + mn)∗∗2))

51

a2 4t . append (a 4 [i] ∗ ((i + mn)∗∗2))

i f subp lo t s == 2 :
width = 0.15 # the width o f the bars

ax [1] . s e t t i t l e (’ Maximizing expected expected number o f s u c c e s s f u l
donations ’)
ax [0] . bar (x − width ∗ 2 , a 1d , width , l a b e l =’Max planned donations ’)
ax [0] . bar (x − width , a 2d , width , l a b e l =’Max cyc l e s ’)
ax [0] . bar (x , a 3d , width , l a b e l =’ P r i o r i t i z e planned donations ’)
ax [0] . bar (x + width , a 4d , width , l a b e l =’Max expected s u c c e s s f u l
donations ’)
ax [0] . bar (x + width ∗ 2 , a 5d , width , l a b e l =’a 5d ’)

a exp = []
a t = []
a t2 = []

f o r i in range (l en (a 1)) :
a exp . append (a 5 [i] / sum(a 5))
a t . append (a 5 [i] ∗ (i + mn))
a t2 . append (a 5 [i] ∗ ((i + mn)∗∗2))

ax [1] . bar (x , a exp , c o l o r = ’ purple ’)

mu = sum(a t)/50

sigma = sq r t (sum(a t2)/50 − (sum(a t)/50)∗∗2)

f i tNormDist = s t a t s . norm(mu, sigma)

ys = f itNormDist . pdf (x)

ax [1] . p l o t (x , ys , c o l o r = ’ black ’)

e l i f subp lo t s == 4 :
ax [0 , 0] . s e t t i t l e (’Max planned donations ’)
ax [1 , 0] . s e t t i t l e (’ Maximizing cyc l e s ’)
ax [0 , 1] . s e t t i t l e (’ P r i o r i t i z i n g planned donat ions over cyc l e s ’)
ax [1 , 1] . s e t t i t l e (’ P r i o r i t i z i n g c y c l e s over planned donations ’)

ax [0 , 0] . bar (x , a 1d , c o l o r = ’ blue ’)
ax [1 , 0] . bar (x , a 2d , c o l o r = ’ orange ’)
ax [0 , 1] . bar (x , a 3d , c o l o r = ’ green ’)
ax [1 , 1] . bar (x , a 4d , c o l o r = ’ red ’)

mu1 = sum(a 1t)/50
mu2 = sum(a 2t)/50

52

mu3 = sum(a 3t)/50
mu4 = sum(a 4t)/50

sigma1 = sq r t (sum(a2 1t)/50 − (sum(a 1t)/50)∗∗2)
sigma2 = sq r t (sum(a2 2t)/50 − (sum(a 2t)/50)∗∗2)
sigma3 = sq r t (sum(a2 3t)/50 − (sum(a 3t)/50)∗∗2)
sigma4 = sq r t (sum(a2 4t)/50 − (sum(a 4t)/50)∗∗2)

f i tNormDist1 = s t a t s . norm(mu1 , sigma1)
f i tNormDist2 = s t a t s . norm(mu2 , sigma2)
f i tNormDist3 = s t a t s . norm(mu3 , sigma3)
f i tNormDist4 = s t a t s . norm(mu4 , sigma4)

ys1 = fitNormDist1 . pdf (x)
ys2 = fitNormDist2 . pdf (x)
ys3 = fitNormDist3 . pdf (x)
ys4 = fitNormDist4 . pdf (x)

ax [0 , 0] . p l o t (x , ys1 , c o l o r = ’ black ’)
ax [1 , 0] . p l o t (x , ys2 , c o l o r = ’ black ’)
ax [0 , 1] . p l o t (x , ys3 , c o l o r = ’ black ’)
ax [1 , 1] . p l o t (x , ys4 , c o l o r = ’ black ’)

f i g . t i g h t l a y ou t ()
p l t . show ()

f o r a in range (3) :
b = a + 1
f o r c in range (5) :

d = 10 ∗ (c + 1)
f o r e in range (2) :

f = 2 ∗ (e + 1)
p l t . f i g u r e ()
Graph (f , d , b)

##
Creat ing the p l o t s f o r the complete graphs showing a l l p o s s i b l e ways
to d iv id e x planned donat ions in donation c y c l e s and the corre spond ing
r e s u l t i n g expected s u c c e s s f u l donat ions
##

planne = []
c y c l e s = []
donat i = []
f o r x in range (5 1) :

f o r a in range (2 6) :
f o r b in range (1 7) :

f o r c in range (1 3) :
i f 2∗a + 3∗b + 4∗ c == x :

53

planne . append (i n t (x))
c y c l e s . append (a + b + c)
donat i . append (a ∗0.6272 + b∗0.526848 + c ∗0 .39338)

planne = np . array (planne)
c y c l e s = np . array (c y c l e s)
donat i = np . array (donat i)

p l t . p l o t (planne , cyc l e s , ’ o ’)
p l t . x l ab e l (’Number o f planned donations ’)
p l t . y l ab e l (’Number o f donation cyc l e s ’)

m, b = np . p o l y f i t (planne , cyc l e s , 1)
p l t . p l o t (planne , m∗planne+b)

p l t . f i g u r e ()
p l t . p l o t (planne , donati , ’ o ’)
p l t . x l ab e l (’Number o f planned donations ’)
p l t . y l ab e l (’Number o f expected s u c c e s s f u l donations ’)

m, b = np . p o l y f i t (planne , donati , 1)
p l t . p l o t (planne , m∗planne+b)

p l t . f i g u r e ()
p l t . p l o t (cyc l e s , donati , ’ o ’)
p l t . x l ab e l (’Number o f donation cyc l e s ’)
p l t . y l ab e l (’Number o f expected s u c c e s s f u l donations ’)

m, b = np . p o l y f i t (cyc l e s , donati , 1)
p l t . p l o t (cyc l e s , m∗ c y c l e s+b)

8.3 AIMMS code

Model Main KEP 09 {
Sec t i on Model Sect ion {

Dec l a ra t i onSec t i on For AXLL {
Str ingParameter spRead ;
Str ingParameter spPeople ;
Str ingParameter spCycles ;
Str ingParameter spExp ;
Str ingParameter spPlacement ;
Str ingParameter spWorkbook ;
Str ingParameter spSheet ;

}
Var iab le Donation {

IndexDomain : (c , p) ;
Range : b inary ;

}

54

Var iab le Used {
IndexDomain : c ;
Range : f r e e ;

}
Var iab le nr Cyc l e s {

Range : f r e e ;
De f i n i t i o n : sum [c , Used (c)] ;

}
Var iab le nr Helped {

Range : f r e e ;
De f i n i t i o n : sum [(c , p) , Donation (c , p)] ;

}
Var iab le TotalExpected {

Range : f r e e ;
De f i n i t i o n : sum [c , Used (c) ∗ ExpectedHelped (c)] ;

}
Parameter Helped {

IndexDomain : p ;
Range : i n t e g e r ;
De f i n i t i o n : sum [c , Donation (c , p)] ;

}
Parameter Connection {

IndexDomain : (c , p) ;
}
Parameter ExpectedHelped {

IndexDomain : c ;
}
Constra int Demand {

IndexDomain : (c , p) ;
De f i n i t i o n : Donation (c , p) <= Connection (c , p) ;

}
Constra int Sypply {

IndexDomain : p ;
De f i n i t i o n : sum [c , Donation (c , p)] <= 1 ;

}
Constra int Cycle {

IndexDomain : (c , p) ;
De f i n i t i o n : Connection (c , p) ∗ (Donation (c , p) − Used (c))
= 0 ;

}
MathematicalProgram nr Helped prog {

Object ive : nr Helped ;
D i r e c t i on : maximize ;
Const ra in t s : A l lCons t ra in t s ;
Var i ab l e s : A l lVa r i ab l e s ;
Type : MIP;

}
MathematicalProgram nr Cyc l e s p rog {

Object ive : n r Cyc l e s ;

55

Dir e c t i on : maximize ;
Const ra in t s : A l lCons t ra in t s ;
Var i ab l e s : A l lVa r i ab l e s ;
Type : MIP;

}
MathematicalProgram TotExp prog {

Object ive : TotalExpected ;
D i r e c t i on : maximize ;
Const ra in t s : A l lCons t ra in t s ;
Var i ab l e s : A l lVa r i ab l e s ;
Type : MIP;

}
Set Chosen Cycles {

SubsetOf : Cycles ;
Index : c1 ;
De f i n i t i o n : {

{c | Used (c) = 1}
}

}
Set Cycles {

Index : c ;
}
Set Pa i r s {

Index : p ;
}

}
Sec t i on Mult iObjSect ion {

Procedure SolveMultiObj12 {
Body : {

KEPGMP:=gmp : : In s tance : : Generate (nr Helped prog) ;
Comment : has to end with an ” ;”

re tcode := GMP: : Column : : SetAsMult iObject ive (
GMP : KEPGMP,
column : nr Helped ,
p r i o r i t y : 1 ,
weight : 1 ,
ab s t o l : 0 ,
r e l t o l : 0) ;

i f not r e t code then r a i s e e r r o r
”Unable to s e t TotalCost as an ob j e c t i v e ” ;
end i f ;

r e t code := GMP: : Column : : SetAsMult iObject ive (
GMP : KEPGMP,
column : nr Cyc les ,
p r i o r i t y : 2 ,
weight : 1 ,
ab s t o l : 0 ,

56

r e l t o l : 0) ;
i f not r e t code then r a i s e e r r o r
”Unable to s e t Tota lCa lo r i e s as an ob j e c t i v e ” ;
end i f ;

GMP: : Ins tance : : So lve (KEPGMP) ;

d i sp l ay ”After SolveMultiObj ” , nr Helped ,
nr Cyc les , Donation ;

}
}
Procedure SolveMultiObj21 {

Body : {
KEPGMP:=gmp : : In s tance : : Generate (nr Helped prog) ;
Comment : has to end with an ” ;”

re tcode := GMP: : Column : : SetAsMult iObject ive (
GMP : KEPGMP,
column : nr Helped ,
p r i o r i t y : 2 ,
weight : 1 ,
ab s t o l : 0 ,
r e l t o l : 0) ;

i f not r e t code then r a i s e e r r o r
”Unable to s e t nr Helped as an ob j e c t i v e ” ;
end i f ;

r e t code := GMP: : Column : : SetAsMult iObject ive (
GMP : KEPGMP,
column : nr Cyc les ,
p r i o r i t y : 1 ,
weight : 1 ,
ab s t o l : 0 ,
r e l t o l : 0) ;

i f not r e t code then r a i s e e r r o r
”Unable to s e t nr Cyc l e s as an ob j e c t i v e ” ;
end i f ;

GMP: : Ins tance : : So lve (KEPGMP) ;

d i sp l ay ”After SolveMultiObj ” , nr Helped ,
nr Cyc les , Donation ;

}
}
Parameter r e t code ;
ElementParameter KEPGMP {

Range : AllGeneratedMathematicalPrograms ;
}

}

57

Procedure Read From Excel {
Body : {

Spreadsheet : : S e tV i s i b i l i t y (
”Graph 92 8 2equa l 0 4 . x l sx ” , ’ Off ’) ;

Spreadsheet : : SetAct iveSheet (
”Graph 92 8 2equa l 0 4 . x l sx ” , ” Sheet1 ”) ;
Spreadsheet : : Ret r i eveSe t (

Workbook : ”Graph 10 8 2equa l 0 4 . x l sx ” ,
Set : Cycles ,
Range : ”A3 : A7806” ,
Sheet : ” Sheet1 ”) ;

Spreadsheet : : Ret r i eveSe t (
Workbook : ”Graph 92 8 2equa l 0 4 . x l sx ” ,
Set : Pairs ,
Range : ”B2 : AY2” ,
Sheet : ” Sheet1 ”) ;

Spreadsheet : : Retr ieveTable (
Workbook : ”Graph 92 8 2equa l 0 4 . x l sx ” ,
Parameter : Connection ,
DataRange : ”B3 : AY7806” ,
RowsRange : ”A3 : A7806” ,
ColumnsRange : ”B2 : AY2” ,
Sheet : ” Sheet1 ”) ;

Spreadsheet : : Retr ieveParameter (
Workbook : ”Graph 92 8 2equa l 0 4 . x l sx ” ,
Parameter : ExpectedHelped ,
Range : ”AZ3 : AZ7806” ,
Sheet : ” Sheet1 ”) ;

Spreadsheet : : CloseWorkBook (
”Graph 92 8 2equa l 0 4 . x l sx ” , 0) ;

}
Comment : {

” Spreadsheet : : S e tV i s i b i l i t y (\” Graph 92 8 2equa l 0 . x l sx \” , \ ’ Off \ ’) ;
Spreadsheet : : SetAct iveSheet (\” Graph 92 8 2equa l 0 . x l sx \” , \” Sheet1 \”) ;
Spreadsheet : : Ret r i eveSe t (

Workbook : \”Graph 92 8 2equa l 0 . x l sx \” ,
Set : Cycles ,
Range : \”A3 : A210\” ,
Sheet : \” Sheet1 \”) ;

Spreadsheet : : Ret r i eveSe t (
Workbook : \”Graph 92 8 2equa l 0 . x l sx \” ,
Set : Pairs ,
Range : \”B2 : AY2\” ,
Sheet : \” Sheet1 \”) ;

58

Spreadsheet : : Retr ieveTable (
Workbook : \”Graph 92 8 2equa l 0 . x l sx \” ,
Parameter : Connection ,
DataRange : \”B3 : AY210\” ,
RowsRange : \”A3 : A210\” ,
ColumnsRange : \”B2 : AY2\” ,
Sheet : \” Sheet1 \”) ;

Spreadsheet : : CloseWorkBook (\” Graph 92 8 2equa l 0 . x l sx \” , 0) ;

Spreadsheet : : S e tV i s i b i l i t y (\” Graph 92 8 2equa l 0 4 . x l sx \” , \ ’ Off \ ’) ;
Spreadsheet : : SetAct iveSheet (\” Graph 92 8 2equa l 0 4 . x l sx \” , \” Sheet1 \”) ;
Spreadsheet : : Ret r i eveSe t (

Workbook : \”Graph 92 8 2equa l 0 4 . x l sx \” ,
Set : Cycles ,
Range : \”A3 : A7806\” ,
Sheet : \” Sheet1 \”) ;

Spreadsheet : : Ret r i eveSe t (
Workbook : \”Graph 92 8 2equa l 0 4 . x l sx \” ,
Set : Pairs ,
Range : \”B2 : AY2\” ,
Sheet : \” Sheet1 \”) ;

Spreadsheet : : Retr ieveTable (
Workbook : \”Graph 92 8 2equa l 0 4 . x l sx \” ,
Parameter : Connection ,
DataRange : \”B3 : AY7806\” ,
RowsRange : \”A3 : A7806\” ,
ColumnsRange : \”B2 : AY2\” ,
Sheet : \” Sheet1 \”) ;

Spreadsheet : : Retr ieveParameter (
Workbook : \”Graph 92 8 2equa l 0 4 . x l sx \” ,
Parameter : ExpectedHelped ,
Range : \”AZ3 : AZ7806\” ,
Sheet : \” Sheet1 \”) ;

Spreadsheet : : CloseWorkBook (\” Graph 92 8 2equa l 0 4 . x l sx \” , 0) ; ”
}

}
Procedure Read From Excel Expection {

Body : {
Spreadsheet : : S e tV i s i b i l i t y (” Graph 92 8 2equa l 0 4 . x l sx ” , ’ Off ’) ;

Spreadsheet : : SetAct iveSheet (” Graph 92 8 2equa l 0 4 . x l sx ” , ” Sheet1 ”) ;
Spreadsheet : : Retr ieveParameter (

Workbook : ”Graph 92 8 2equa l 0 4 . x l sx ” ,
Parameter : ExpectedHelped ,

59

Range : ”AZ3 : AZ7806” ,
Sheet : ” Sheet1 ”) ;

Spreadsheet : : CloseWorkBook (” Graph 92 8 2equa l 0 4 . x l sx ” , 0) ;
}

}
Procedure Read l ib ra ry {

Body : {
i f not a x l l : : WorkBookIsOpen (WorkbookFilename : spRead) then

a x l l : : OpenWorkBook(WorkbookFilename : spRead) ;
end i f ;

a x l l : : S e l e c tShee t (SheetName : ”Sheet1 ”) ;
a x l l : : ReadSet (

SetRe fe rence : Cycles ,
SetRange : ”A3 : A19800” ,
ExtendSuperSets : 1 ,
MergeWithExistingElements : 0 ,
SkipEmptyCells : 0) ;

a x l l : : ReadSet (
SetRe fe rence : Pairs ,
SetRange : ”B2 : Ay2” ,
ExtendSuperSets : 1 ,
MergeWithExistingElements : 0 ,
SkipEmptyCells : 0) ;

a x l l : : ReadTable (
I d e n t i f i e rR e f e r e n c e : Connection ,
RowHeaderRange : ”A3 : A19800” ,
ColumnHeaderRange : ”B2 : Ay2” ,
DataRange : ”B3 : Ay19800 ” ,
ModeForUnknownElements : 0 ,
MergeWithExistingData : 0) ;

a x l l : : ReadList (
I d e n t i f i e rR e f e r e n c e : ExpectedHelped ,
RowHeaderRange : ”A3 : A19800 ” ,
DataRange : ”Az3 : Az19800 ” ,
ModeForUnknownElements : 0 ,
MergeWithExistingData : 0) ;

a x l l : : CloseWorkBook (WorkbookFilename : spRead) ;
}

}
Procedure Wr i t e l i b r a ry {

Body : {
spWorkbook := ”Output . x l sx ” ;

60

i f not a x l l : : WorkBookIsOpen (WorkbookFilename :
spWorkbook) then

a x l l : : OpenWorkBook(WorkbookFilename :
spWorkbook) ;

end i f ;

spSheet := ”Sheet1 ” ;

a x l l : : S e l e c tShee t (SheetName : spSheet) ;
a x l l : : WriteSingleValue (

Sca l a rRe f e r ence : TotalExpected ,
Ce l l : spExp) ;

a x l l : : CloseWorkBook (WorkbookFilename : spWorkbook) ;

a x l l : : WriteSingleValue (
Sca l a rRe f e r ence : nr Helped ,
Ce l l : spPeople) ;

a x l l : : WriteSingleValue (
Sca l a rRe f e r ence : n r Cyc l e s ,
Ce l l : spCycles) ; ”

}
}
Procedure Helped proc {

Body : {
s o l v e nr Helped prog ;

i f (nr Helped prog . ProgramStatus <> ’ Optimal ’)
then

empty Donation , nr Helped , nr Cyc les ,
TotalExpected ;

end i f ;

d i sp l ay ”After So lve nr Helped prog ” , Donation ,
nr Helped , nr Cyc les , TotalExpected ;

}
}
Procedure Cyc l e s proc {

Body : {
s o l v e nr Cyc l e s p rog ;

i f (n r Cyc l e s p rog . ProgramStatus <> ’ Optimal ’)
then

empty Donation , nr Helped , nr Cyc les ,
TotalExpected ;

end i f ;

d i sp l ay ”After So lve n r Cyc l e s p roc ” , Donation ,
nr Helped , nr Cyc les , TotalExpected ;

}

61

}
Procedure TotalExp proc {

Body : {
s o l v e TotExp prog ;

i f (TotExp prog . ProgramStatus <> ’ Optimal ’) then
empty Donation , nr Helped , nr Cyc les ,
TotalExpected ;

end i f ;

d i sp l ay ”After So lve TotExp proc ” , Donation , nr Helped ,
nr Cyc les , TotalExpected ;

}
}
Procedure Ma i n I n i t i a l i z a t i o n {
}
Procedure Po s tMa in I n i t i a l i z a t i o n {
}
Procedure MainExecution ;
Procedure PreMainTermination {

Body : {
re turn DataManagementExit () ;

}
}
Procedure MainTermination {

Body : {
re turn 1 ;

}
}

}

62

