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Abstract

An overview of the properties of a Sym(n)-orbit of an ideal is provided using the
properties of a group action. The egg-colouring problem is explained and used for
some combinatorial problems. Properties of minimal prime ideals are explored and
the connection between a prime ideal and a domain is explained. The connection
between a real polynomial ring and a complex polynomial ring through an irre-
ducible polynomial is explored. Using this connection, the notion of minimal prime
ideals that contain an ideal that is generated by functions with multiple distinct ir-
reducible polynomials in a real polynomial ring is introduced. Some properties of a
quasi-polynomial and some properties of the degree of a polynomial are provided.
The number of Sym(n)-orbits of the minimal prime ideals that contain an ideal that is
generated by functions f (xi) that factor into purely linear polynomials in K[x1, ..., xn]
and consequently also those that contain an ideal that is generated by functions f (xi)
in C[x1, ..., xn], is found. Then the number of Sym(n)-orbits of the minimal prime
ideals that contain an ideal that is generated by functions f (xi) that factor into ir-
reducible quadratic polynomials in R[x1, ..., xn], followed by those that contain an
ideal that is generated by an arbitrary function f (xi) in R[x1, ..., xn], is found. The
latter expression is then proven to be quasi-polynomial and the maximum degree of
this expression is found.
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Chapter 1

Introduction

In a branch of abstract algebra, namely ring theory, there exists the concept of rings.
Significant research has yet been done within this branch with a focus on rings.
However, the effort made regarding ideals has items which can be added. Within
this branch of abstract algebra, an ideal of a ring is a special kind of subset of the
ring [5].

Let K[x1, ..., xn] be a polynomial ring over the real or complex numbers and let I
be an ideal in K[x1, ..., xn]. A minimal prime ideal containing I, which is not prime
itself, is a prime ideal p ⊇ I such that there is no prime ideal q such that I ⊆ q ⊊ p. In
this project, we will try to count the number of Sym(n)-orbits of the minimal prime
ideals containing I.

To achieve this, firstly in Chapter 2, we will introduce the Sym(n)-orbits of ideals,
which will illustrate the existence of ideals which are the same under permutations
of the indices in the variables x1, ..., xn. Secondly, the concept of a minimal prime
ideal will be explained in Chapter 3. Then in Chapter 4 we will be given an ideal
I ⊂ R[x1, ..., xn] that is generated by f (xi) = p1 · ... · pd that factors into d quadratic
irreducible polynomials. We will then show how to construct minimal prime ide-
als p ⊂ R[x1, ..., xn] that contain I that correspond to the minimal prime ideals
p′ ⊂ C[x2, ..., xn], using the ring homomorphism R[x1, ..., xn]/( f (x1), ..., f (xn)) ∼=
C[x2, ..., xn]/( f (x2), ..., f (xn)). We will then explain how any irreducible polynomial
in R[x1, ..., xn] can be factored as a product of two linear terms in R[x1, ..., xn]/( f (xi)).
The last thing that will be explained in Chapter 4 is the change of a degree in a sum
using the findings of Leonhard Euler (1707-1783) and Colin Maclaurin (1698 - 1746),
which will be used in Chapter 6. Finally in Chapter 5 and 6, we will use the findings
of the previous Chapters and some new findings to find the number of Sym(n)-orbits
of the minimal prime ideals that contain an ideal which consists of f (xi) which con-
sist of irreducible factors in C[x1, ..., xn] and R[x1, ..., xn] respectively.

An easy and elementary example of what will be explored in this project is find-
ing the zeroes of a function. If we take a couple of the same functions, but with
different variables (ie. f (x1), f (x2), ..., f (xn)), we know that all these functions have
the same set of roots. If we have n-tuples of solutions, we will see the collection of
these n-tuples forms a grid. This example will be explained in Chapter 3.

Now especially in Chapter 2, Chapter 3 and Chapter 4, but also in the other two
Chapters, we will use terms which have been introduced in the course Algebra and
Discrete Mathematics. For a full overview of these subjects we refer you to the lec-
ture notes of this course by Chloe Martindale [5]. We also introduce the concept of a
quasi-polynomial for a small component of Chapter 6, which for the interested read-
ers will be explained somewhat throughout by Petr Lisoněk [4] or a more compact
explanation can be found on the Wikipedia page [7].
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Chapter 2

Sym(n)-orbits

2.1 Group actions

Here we will give some insight of what group actions are about, which we will later
use to define the Sym(n)-orbit of an ideal.

Definition 2.1.1. Let G be a group with identity element e and X be a set. A group action
α from G on X is a function α : G × X → X such that for a π, σ ∈ G and a f ∈ X we have:

1. α(e, f ) = f .

2. α(π · σ, f ) = α(π, α(σ, f )).

Note: we define gx := α(g, x) from now on.

Lemma 2.1.2. We let G = Sym(n) with identity element (1) and X = k[x1, ..., xn]. Let
π ∈ G and f ∈ X. We define: π f = π f (x1, x2, ..., xn) = f (xπ(1), xπ(2), ..., xπ(n)). We
have that the induced map α : G × X → X is a group action.

Proof. We have that

(1) f = (1) f (x1, x2, ..., xn) = f (x1, x2, ..., xn) = f .

So we have that α satisfies the first requirement of a group action and we also have
that:

π(σ f ) = π(σ f (x1, x2, ..., xn))

= π f (xσ(1), xσ(2), ..., xσ(n))

= f (xπ(σ(1)), xπ(σ(2)), ..., xπ(σ(n))).

Now by the definition of a permutation [1] we have that

xπ(σ(i)) = x(π◦σ)(i).

So we get that:

f (xπ(σ(1)), xπ(σ(2)), ..., xπ(σ(n))) = f (x(π◦σ)(1), x(π◦σ)(2), ..., x(π◦σ)(n)) = (π ◦ σ) f .

Which proves that α satisfies second property of a group action. So we have that
α : G × X → X is a group action.

2.2 The Sym(n)-orbit

In this section we will give the definition of the Sym(n)-orbit of an ideal, which will
be an important element in the proofs of the theorems in Chapter 5 and Chapter 6.
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It will show how two ideals can be the same under permutation, thus showing the
similarities to each other.

Definition 2.2.1. Let X = k[x1, ..., xn] be a ring and let I be an ideal in X. Let G = Sym(n)
act on X as above. Then the Sym(n)-orbit of an ideal I is {π(I)|π ∈ Sym(n)}.

Definition 2.2.2. The Sym(n)-orbit of an element f ∈ X = k[x1, x2, ..., xn] is:
Orb( f )={π( f )|π ∈ Sym(n)}.

Remark 2.2.3. When we have that g ∈ Orb( f ) ⇐⇒ ∃π ∈ Sym(n) : π( f ) = g, we
also have that f ∈ Orb(g) ⇐⇒ ∃π ∈ Sym(n) : π(g) = f . Now since we take our first
statement to be true, in particular we have that g = π( f ) ⇐⇒ f = π−1(g).

Lemma 2.2.4. Let X = k[x1, ..., xn] be a ring. If I ⊆ X is an ideal and π ∈ Sym(n), then
π(I) is an ideal.

Proof. We know that I is an ideal, so if we have that f ∈ I and g ∈ X, then f g ∈ I.
We also have that for f , g ∈ I, f + g ∈ I. So we now have to prove that π(I) is an
ideal, thus we have to prove that:

1. ∀ f , g ∈ π(I) : f + g ∈ π(I).

2. ∀ f ∈ π(I), g ∈ X : f g ∈ π(I).

To prove the first statement we let f = π(h) and g = π(k) for some h, k ∈ I. Since I
is an ideal, we have that h + k ∈ I. So we also have that π(h + k) ∈ π(I). Since we
have that:

π(h + k) = (h + k)(xπ(1), ..., xπ(n))

= h(xπ(1), ..., xπ(n)) + k(xπ(1), ..., xπ(n))

= π(h) + π(k) = f + g.

We have that f + g ∈ π(I).
To prove the second statement we first note that

π( f ) · π(g) = f (xπ(1), ..., xπ(n)) · g(xπ(1), ..., xπ(n)) = f g(xπ(1), ..., xπ(n)) = π( f g).

We also use the property that

π(σ( f )) = (π ◦ σ)( f ).

So now if we have an f ∈ π(I), there is an h ∈ I, such that f = π(h). We also have
that there is a g ∈ X and a k ∈ X, such that g = π(k). Since we have that hk ∈ I by
the properties of an ideal, we have that π(hk) ∈ π(I). We also have that π(hk) =
π(h)π(k) = f g. So f g ∈ π(I). Since k was taken arbitrarily, g is an arbitrary element
of X. We also had taken f arbitrarily. So we have that ∀ f ∈ π(I), g ∈ X : f g ∈ π(I).
Thus we have that if I ⊆ X is an ideal and π ∈ Sym(n), then π(I) is an ideal.

We can now talk about the Sym(n)-orbit of an ideal I.

Notation 2.2.5. If we have that two ideals I and J are in the same Sym(n)-orbit we some-
times denote this as I ∼ J.
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2.3 The egg colouring problem

Suppose one would like to colour 5 eggs and they have 3 colours of paint to their
disposal. In how many different ways can these eggs be coloured, given that the
difference between, for example, two yellow painted eggs cannot be seen.

Lemma 2.3.1. Let there be k different colours and n eggs, with k, n ∈ N.

Then f (k, n) =
(

n + k − 1
k − 1

)
is the formula for the number of different ways these eggs can

be coloured when we have the following requirements:

• Eggs of the same colour are indistinguishable.

• All eggs are to be coloured with the available colours.

• Not every available colour has to be used.

Proof. Using the explanation from the book "Discrete Wiskunde" [3], we prove this
lemma.
We take the colours to be baskets in which we can put the eggs and between these
baskets we put walls. So we get that there are k− 1 walls between our k colours. One
of the ways to colour the eggs would be given by placing the n eggs in the k baskets.
As an example we take 5 eggs and 3 colours, one way to colour the eggs would be:

egg, egg, wall, egg, egg, wall, egg.

Here we see that there are 2 eggs in the basket of colour 1, 2 eggs in the basket of
colour 2 and 1 egg in the basket of colour 3. We also see that we have created a series
of 5+2=7 objects, 5 eggs and 2 walls. The number of such series is the number of
ways to choose 5 positions for the eggs from the 7 positions total, or the number of
ways to choose 2 positions for the walls from the 7 positions total.
So now considering our example, if we were to have k colours and n eggs, we would
create a series of n + k − 1 objects, n eggs and k − 1 walls. Now the number of such
series that we can create is the number of ways we can choose the position for the
k − 1 walls in the series of n + k − 1 total positions. So we get the formula

f (k, n) =
(

n + k − 1
k − 1

)
for the number of ways to colour n eggs with k colours.

We will see the egg colouring problem in various forms in later chapters.





7

Chapter 3

Minimal prime ideals

We will now give the definition of a minimal prime ideal and prove some properties
of I together with R/I for some ring R and some ideal I ⊂ R. On top of that, we will
give two examples of the minimal prime ideals that contain a given ideal I.

Lemma 3.0.1. Let R be a ring and let I be an ideal in R, then we have that I is prime if and
only if R/I is a domain.

Proof. Suppose that I is prime. Let x, y ∈ R/I. Then there are elements a, b ∈ R such
that x = a(modI) and y = b(modI). Now suppose that xy = 0, but x ̸= 0, so we
have a /∈ I. We get:

0 = xy = (a(modI))(b(modI)) = ab(modI) ⇒ ab(modI) = 0.

So now we have that ab ∈ I and since I is prime, we have b ∈ I. But then we have
y = b(modI) = 0 in R/I. So we have that R/I is a domain.

Now suppose R/I is a domain. Let a, b ∈ R so that ab ∈ I and suppose a /∈ I.
Let x = a(modI) and y = b(modI). Then we get xy = ab(modI) = 0. Since we had
x ̸= 0 in R/I and we have R/I is a domain, we get that y = 0 in R/I. But then we
have that b ∈ I and thus we have that I is prime.

Definition 3.0.2. Let R be a ring and let I be an ideal in R. A prime ideal p ⊂ R containing
I is minimal when we have the property that for any prime ideal J ⊂ R containing I, if we
have I ⊆ J ⊆ p, then J = p.

Example 3.0.3. Suppose we have the function f (x) ∈ R[x], where f (x) = x2 + 5x + 6.
We know this function can be factored and that we get f (x) = (x + 3)(x + 2). If we want
to know for which values of x we get f (x) = 0, we get that x = −2 and x = −3. So now if
we have an ideal I = ( f (x))), we have that the zero set, {−2,−3} of this ideal corresponds
to the union of the points x + 2 and x + 3. So we get that the minimal prime ideals that
contain I are (x + 2) and (x + 3).

Example 3.0.4. Suppose we have the function f (x) ∈ R[x], where f (x) = x2 − 1. We
know this function can be factored and that we get f (x) = (x − 1)(x + 1). So f (x) = 0
for x = 1 and x = −1. So if we have an ideal I = (x2

1 − 1, x2
2 − 1) ⊂ R[x1, x2], we have

that the zero set of this ideal, {(1, 1), (−1, 1), (1,−1), (−1,−1)}, corresponds to unions of
the points x1 − 1, x1 + 1, x2 − 1 and x2 + 1. So we get that the minimal prime ideals that
contain I are p1 = (x1 − 1, x2 − 1), p2 = (x1 + 1, x2 − 1), p3 = (x1 − 1, x2 + 1) and
p4 = (x1 + 1, x2 + 1). We also see that π(p2) = p3 for π = (1, 2), so we have that p2
and p3 are in the same Sym(n)-orbit, which gives us that there are 3 Sym(n)-orbits of the
minimal prime ideals containing I.

We will show how one can calculate the number of Sym(n)-orbits in any ideal
I ⊂ K[x1, ..., xn] for K ∈ {C, R} in the later Chapters 5 and 6.
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We will now explain an important property of R/I, where R is a ring and I is a
maximal ideal. This is an important property that will be used to find the minimal
prime ideals of ideals generated by an irreducible polynomial in R[x].

Lemma 3.0.5. Let R be a ring and let I be an ideal in R, then we have that I is maximal if
and only if R/I is a field.

Proof. I is maximal means that if we have that if I ⊂ J ⇒ J = (1) = R.
” ⇒ ” Let I be a maximal ideal.

Let a(modI) ∈ R/I be a non-zero element, so we have a /∈ I, since 0 ∈ I, a ̸= 0.
Now let J = {ra + g|r ∈ R, g ∈ I}. We have:

1. 0 = 0a + 0 ∈ J.

2. Let r1a + g1, r2a + g2 ∈ J.
Then we have that (r1a + g1)− (r2a + g2) = (r1 − r2)a + (g1 − g2) ∈ J.

3. Let x ∈ R and ra + g ∈ J.
Then x(ra + g) = (xr)a + xg ∈ J and (ra + g)x = (rx)a + gx ∈ J.

So we have that J follows the properties of an ideal of R. We also have that if g ∈ I,
then g = 0a + g ∈ J. So we have that I ⊆ J and since a = 1a + 0 ∈ J, a /∈ I, we
have I ⊂ J and I ̸= J. Since I is maximal, we have J = R. Now since we have that
1 ∈ R = J, we have that there are an b ∈ R, f ∈ I such that:

1 = ba + f ⇒ 1(modI) = ba(modI) = (b(modI)) · (a(modI)).

So we have that every non-zero element a(modI) ∈ R/I has an inverse, so R/I is a
field.

” ⇐ ” Let R/I be a field.
So we have 0(modI), 1(modI) ∈ R/I. Therefore I ̸= R. Now for I to be a maximal
ideal we have to have that for an ideal J of R for which I ⊂ J ⇒ J = R.

Let J be an ideal of R with I ⊂ J. Let a ∈ J, a /∈ I. Since a /∈ I, a(modI) ̸= 0(modI).
Now since R/I is a field and a(modI) is non-zero, a(modI) has an inverse. So there
is a b ∈ R such that (a(modI))(b(modI)) = ab(modI) = 1(modI). So there is a f ∈ I
such that ab + f = 1 in R/I.
We now have that ba ∈ J since a ∈ J. We also have ba + f ∈ J, since I ⊂ J. So we
have 1 ∈ J. So then we have J = R. So we have that I is a maximal ideal.
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Chapter 4

Ring homomorphisms and the
degree of polynomials

4.1 A ring homomorphism

In this section we will show the ring homomorphism from R[x1, ..., xn]/(p1, ..., pn)
to C[x2, ..., xn]/(p2, ..., pn), where pi is an irreducible polynomial in R[xi]. This will
then be used to show how to construct minimal prime ideals p ⊂ R[x1, ..., xn] that
contains I that correspond with the minimal prime ideals p′ ⊂ C[x2, ..., xn]. We will
then explain how any irreducible polynomial in R[x1, ..., xn] can be factored as a
product of two linear terms in R[x1, ..., xn]/(pi).

Lemma 4.1.1. Let p = ax2 + bx + c be an irreducible polynomial in R[x] with a ̸= 0 then
we have that

R[x]/(p) ∼= C.

Proof. We have that any element in R[x]/(p) has a representative of the form dx + e
for d, e ∈ R. We have that p = ax2 + bx + c is irreducible, so we have that the ideal
is maximal, since now the quotient is a field, which is in particular a domain.

We have to show that R[x]/(p) ∼= C. We let ϕ be the ring homomorphism from
R[x] to C given by f (x) → f (−b+

√
b2−4ac

2a ), where −b+
√

b2−4ac
2a ∈ C. This means that

we will evaluate a polynomial in R[x] at −b+
√

b2−4ac
2a .

We will take z = α+ βi = −b+
√

b2−4ac
2a with β ̸= 0 as a complex zero of the polynomial

p = ax2 + bx + c.
We now show that this is a ring homomorphism. Let p, q ∈ R[x], then we have:

ϕ(p + q) = (p + q)(z)
= p(z) + q(z) = ϕ(p) + ϕ(q)

ϕ(pq) = (pq)(z)
= p(z)q(z) = ϕ(p)ϕ(q).

So ϕ is a ring homomorphism.
We now show that it is surjective. First we note that b2 − 4ac < 0, since we have

that p is irreducible in R[x]. So we have that there has to be a complex solution for
the equation p = 0. We know that C can be identified with the vector space R2 by

treating each complex number z = a + bi as a vector
(

a
b

)
∈ R2. We have that the

image of ϕ contains uϕ(x) + v for all real numbers u and v. Since ϕ(x) is not real, the
image contains a 2 dimensional subspace which is then necessarily equal to C. Thus
the map is surjective.
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We now show that the kernel is ⟨ax2 + bx + c⟩:
Since we have that z is a complex zero of ax2 + bx + c, it is clear that ax2 + bx + c is
in ker(ϕ) and so we have that ⟨ax2 + bx + c⟩ ⊆ ker(ϕ). To show that also ⟨ax2 + bx +
c⟩ ⊇ ker(ϕ) we do the following:
Suppose there is a p ∈ ker(ϕ). By dividing p by ax2 + bx + c using polynomial long
division we get that p = (ax2 + bx + c)q + r for polynomials r of a degree less than
2. Now we have that 0 = ϕ(p) = p(z) = r(z). But since the only polynomial in
R[x] with degree less than two with r(z) = 0 is the zero polynomial, we get that
r = 0. This gives us that p = (ax2 + bx + c)q, so p ∈ ⟨ax2 + bx + c⟩. So we have that
⟨ax2 + bx + c⟩ = ker(ϕ).

So we have that R[x]/(ax2 + bx + c) ∼= C.

Corollary 4.1.2. R[x1, ..., xn]/(p1, ..., pn) for n ∈ N and for an arbitrary irreducible
polynomial pi = a(xi)

2 + bxi + c ∈ R[x1, ..., xn] with a degree of 2 is isomorphic to
C[x2, ..., xn]/(p2, ..., pn).

Proof.

R[x1, ..., xn]/(p1, ..., pn) ∼= (R[x1, ..., xn]/(p1))/(p2, ..., pn) ∼= C[x2, ..., xn]/(p2, ..., pn).

Where the first congruency follows from simple modular rules and the second is a
direct application of Lemma 4.1.1.

What follows from this is that prime ideals in R[x1, ..., xn] that contain I ⊂
R[x1, ..., xn] which contain an irreducible polynomial of degree 2 in the variable x1,
correspond exactly with the prime ideals in C[x2, ..., xn] that contain this same I.

Analogously it also follows that prime ideals in R[x1, ..., xn] that contain I ⊂
R[x1, ..., xn] which contain an irreducible polynomial of degree 2 in the variable xi,
correspond exactly with the prime ideals in C[x1, ..., xi−1, xi+1, ..., xn] that contain I ⊂
R[x1, ..., xn], which we will use in Chapter 6.

Lemma 4.1.3. Suppose f1(x) = x2 + a1x + b1, f2(x) = x2 + a2x + b2, ..., fd(x) = x2 +
adx+ bd are pairwise distinct irreducible polynomials in R[x1, ..., xn]. Now suppose we have
the ideal I = (( f1(x1))

e1( f2(x1))
e2 ...( fd(x1))

ed , ..., ( f1(xn))e1( f2(xn))e2 ...( fd(xn))ed). Fix
i ∈ [n]. A minimal prime ideal p that contains I and x2

i + a1xi + b1, should contain at
least one of xj − xi, xj + xi + a, xj − e1,2xi − e2,2, xj − e3,2xi − e4,2, xj − e1,3xi − e2,3,
xj − e3,3xi − e4,3,..., xj − e1,dxi − e2,d and xj − e3,dxi − e4,d for all j ̸= i in {1, ..., n}, where
for k ∈ {2, ..., d} we have

e1,k =

√
a2

k − 4bk

a2
1 − 4b1

;

e2,k =
−ak +

√
a2

k−4bk

a2
1−4b1

a1

2
;

e3,k = −

√
a2

k − 4bk

a2
1 − 4b1

= −e1,k;

e4,k =
−ak −

√
a2

k−4bk

a2
1−4b1

a1

2
= e2,k − e1,ka1.

Proof. Without loss of generality we can prove this for the case where d = 2. The
general case can be done completely analogously.



4.1. A ring homomorphism 11

Suppose that d = 2, we then have that f1(x) = x2 + a1x + b1 and f2(x) = x2 +
a2x + b2 are distinct irreducible polynomials. We then also have the ideal I =
(( f1(x1))

e1( f2(x1))
e2 , ..., ( f1(xn))e1( f2(xn))e2). So in this case a minimal prime ideal p

that contains I and x2
i + a1xi + b1, should contain at least one of xj − xi, xj + xi + a1,

xj − e1,2xi − e2,2 and xj − e3,2xi − e4,2 for all j ̸= i in {1, ..., n}, where

e1,2 =

√
a2

2 − 4b2

a2
1 − 4b1

;

e2,2 =
−a2 +

√
a2

2−4b2

a2
1−4b1

a1

2
;

e3,2 = −

√
a2

2 − 4b2

a2
1 − 4b1

= −e1,2;

e4,2 =
−a2 −

√
a2

2−4b2

a2
1−4b1

a1

2
= e2,2 − e1,2a1.

To prove this case we proceed as follows.
We have that by assumption f1(xi) ∈ p, we then have, for p to contain I, that

either f1(xj) or f2(xj) is contained by p for all j ∈ [n] \ {i}. In the case that f1(xj) is
contained in p, we have that f1(xj)− f1(xi) = x2

j − x2
i + a1(xj − xi) = (xj − xi)(xj +

xi + a1) and we can conclude that a minimal prime ideal p contains at least one of
xj − xi and xj + xi + a1.

Now the case that we have that f2(xj) is contained in p. Since we know that
f2(xj) factorises in C, we know that it factorises in R[xi]/( f1(xi)) by Lemma 4.1.1.
We now have that all classes in R[xi]/( f1(xi)) have elements of the form sxi + t. So
if f2(xj) factorises over C as (xj − z1)(xj − z2), then z1 corresponds with a form of
e1,2xi + e2,2 and z2 with e3,2xi + e4,2. So we find that (xj − e1,2xi − e2,2)(xj − e3,2xi −
e4,2) = f2(xj)(mod f1(xi)). So we get (xj − e1,2xi − e2,2)(xj − e3,2xi − e4,2)− f2(xj) =
h f1(xi). We have that the degree on the left hand side of this equation is 2, thus the
degree of h is 0.
So we have that f2(xj)(mod f1(xi)) = (xj − e1,2xi − e2,2)(xj − e3,2xi − e4,2) for some
e1,2, e2,2, e3,2, e4,2 ∈ R. e1,2 and e3,2 are non-zero, since f2(xj) = 0 has no real solutions.
So we get that for an h ∈ R we have:

x2
j + a2xj + b2 − h · (x2

i + a1xi + b1) = (xj − e1,2xi − e2,2)(xj − e3,2xi − e4,2)

x2
j + a2xj + b2 − hx2

i − ha1xi − hb1 = x2
j − e3,2xixj − e4,2xj − e1,2xixj + e1,2e3,2x2

i

+ e1,2e4,2xi − e2,2xj + e2,2e3,2xi + e2,2e4,2

x2
j + a2xj − hx2

i − ha1xi − hb1 + b2 = x2
j + (−e4,2 − e2,2)xj + e1,2e3,2x2

i + (e1,2e4,2

+ e2,2e3,2)xi + e2,2e4,2 + (−e3,2 − e1,2)xixj

a2xj − hx2
i − ha1xi − hb1 + b2 = (−e4,2 − e2,2)xj + e1,2e3,2x2

i + (e1,2e4,2

+ e2,2e3,2)xi + e2,2e4,2 + (−e3,2 − e1,2)xixj.
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From this we get the following equations

− e3,2 − e1,2 = 0 ⇒ e3,2 = −e1,2;
a2 = −e4,2 − e2,2;

− h = e1,2e3,2 ⇒ −h = −e2
1,2 ⇒ h = e2

1,2 ⇒ e1,2 =
√

h;

− ha1 = e1,2e4,2 + e2,2e3,2 ⇒ −ha1 =
√

h(e4,2 − e2,2) ⇒
√

ha1 = e2,2 − e4,2;
− hb1 + b2 = e2,2e4,2;

a2 +
√

ha1 = −e4,2 − e2,2 + e2,2 − e4,2 ⇒ a2 +
√

ha1 = −2e4,2 ⇒ e4,2 = − a2 +
√

ha1

2
;

a2 = −e4,2 − e2,2 ⇒ a2 = −e2,2 +
a2 +

√
ha1

2
⇒ e2,2 =

−a2 +
√

ha1

2
;

− hb1 + b2 = − a2 +
√

ha1

2
· −a2 +

√
ha1

2
= −ha2

1 − a2
2

4
;

− hb1 +
ha2

1
4

=
a2

2
4
− b2 ⇒ h(−b1 +

a2
1

4
) =

a2
2

4
− b2 ⇒ h =

a2
2−4b2

4
a2

1−4b1
4

=
a2

2 − 4b2

a2
1 − 4b1

.

So we get that:

e1,2 =

√
a2

2 − 4b2

a2
1 − 4b1

;

e2,2 =
−a2 +

√
a2

2−4b2

a2
1−4b1

a1

2
;

e3,2 = −

√
a2

2 − 4b2

a2
1 − 4b1

= −e1,2;

e4,2 =
−a2 −

√
a2

2−4b2

a2
1−4b1

a1

2
= e2,2 − e1,2a1.

Now let p′ be the ideal (x2
i + a1xi + b1, hj|j ∈ [n] \ {i}) for hj ∈ {xj − xi, xj +

xi + a1, xj − e1,2xi − e2,2, xj − e3,2xi − e4,2}, since we have that all f j are either equal to
xj − xi, xj + xi + a1, xj − e1,2xi − e2,2 or xj − e3,2xi − e4,2, we have that R[x1, ..., xn]/p′ ∼=
R[xi]/(x2

i + axi + b) ∼= C, where x2
i + axi + b is irreducible. Since the latter is a

domain, we know that p′ is indeed prime.
So we have that a minimal prime ideal p that contains I and x2

i + a1xi + b1, should
contain at least one of xj − xi, xj + xi + a1, xj − e1,2xi − e2,2 and xj − e3,2xi − e4,2 for
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all j ∈ [n] \ {i}, where

e1,2 =

√
a2

2 − 4b2

a2
1 − 4b1

;

e2,2 =
−a2 +

√
a2

2−4b2

a2
1−4b1

a1

2
;

e3,2 = −

√
a2

2 − 4b2

a2
1 − 4b1

= −e1,2;

e4,2 =
−a2 −

√
a2

2−4b2

a2
1−4b1

a1

2
= e2,2 − e1,2a1.

4.2 The degree of a sum of polynomials

If we have a sum from 1 to n of polynomials of degree d, we can show that the sum
is a polynomial in n, with a degree of d + 1.

Lemma 4.2.1. Let f (x) = xd be a polynomial of degree d and consider

g(n) =
n

∑
k=0

f (k)

for n ≥ 0. Then we have that g(n) is a polynomial in n of degree d + 1.

Proof. By the Euler-Maclaurin formula [2], we get the following

n

∑
k=0

f (k) =
∫ (n+1)

0
f (x)dx − (n + 1)d

2
+

∞

∑
j=1

B2j

(2j)!
( f (2j−1)(n + 1)− f (2j−1)(0)).

Here we have that Bj are Bernoulli numbers and f (j)(x) is the jth derivative of f (x).
Now since f (x) is a polynomial, the terms

∞

∑
j=1

B2j

(2j)!
( f (2j−1)(n + 1)− f (2j−1)(0))

are all zero when 2j − 1 > d. Now since
∫ n+1

0 f (x)dx is of degree d + 1 and all
the other terms in the above formula have lower degrees, we get that ∑n

k=0 xd is a
polynomial in n and has a degree of d + 1.

Corollary 4.2.2. Suppose f (x) is an arbitrary polynomial of degree d, now consider

g(n) =
n

∑
k=0

f (k)

for n ≥ 0. Then we have that g(n) is a polynomial in n of degree d + 1.

Proof. If we have a polynomial f (x) of degree d, it can be written as

f (x) = cdxd + cd−1xd−1 + ... + c1d + c0.
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We have here that cd, ..., c0 are constants and cd is nonzero. We now have that

n

∑
k=0

f (k) = (
n

∑
k=0

cdxd) + (
n

∑
k=0

cd−1xd−1) + ... + (
n

∑
k=0

c0).

Now we can see easily, using 4.2.1, that the degree of the first sum is d+ 1, the degree
of the second sum is d, etc. Thus we have that g(n) = ∑n

k=0 f (k) is a polynomial in n
of degree d + 1.
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Chapter 5

Counting in C[x1, ..., xn]

Here we will find the number of Sym(n)-orbits of the minimal prime ideals that
contain an ideal I ⊂ K[x1, ..., xn], where K is a field, which is generated by functions
that can be decomposed into linear polynomial factors. Then we will see that when
K is equal to C this covers all ideals that are generated by the Sym(n)-orbit of a single
univariate polynomial in C[x1, ..., xn].
Let f (x) ∈ K[x]. Suppose f (x) is decomposed as (x − a1)

e1(x − a2)e2 ...(x − ad)
ed ,

where a1 ̸= a2 ̸= ... ̸= ad ∈ K and e1, ..., ed ∈ N.
We now have an ideal I = ( f (x1), f (x2), ..., f (xn)) ⊂ K[x1, ..., xn].

Proposition 5.0.1. The number of minimal prime ideals p in K[x1, ..., xn] that contain I is
dn.

Proof. We have I = ( f (x1), f (x2), ..., f (xn)) and we also have that f (x) = (x −
a1)

e1(x − a2)e2 ...(x − ad)
ed . An ideal is prime when it has the property that for any

ab ∈ I, either a or b is in I. Since linear polynomials are prime, we have that a p
that is generated by linear polynomials is prime. So for a minimal prime ideal p to
contain I, we have to have that one of the factors xi − aj for all i ∈ [n], j ∈ [d] should
be contained in p. Since all the linear polynomials xi − aj are divisors of f (xi), the
minimal prime ideal that consists of the polynomials xi − aj, where every i ∈ [n] is
only used once, contains I.
So now for p to contain I we should choose one of the d factors of every f (xi), so we
have n choices of d options, so in total there are dn minimal prime ideals that contain
I.

Theorem 5.0.2. The number of Sym(n)-orbits of the minimal prime ideals containing

I = ( f (x1), f (x2), ..., f (xn))

is equal to (
n + d − 1

d − 1

)
.

Proof. To find the number of Sym(n)-orbits we have to select a j for every i in xi − aj.
This gives us that we have to divide all n over the d different j, as stated above. We
have that the Sym(n)-orbits make sure that there is no difference between xi, so order
does not matter. This means the ideal (x1 − 2, x2 − 3) is in the same Sym(n)-orbit as
the ideal (x1 − 3, x2 − 2) since one xi has been given a 3 and one has been given a 2
in both ideals. So now we have an egg-colouring problem as given in 2.3.1, where

we have n eggs and d colours. This gives us that there are f (d, n) =

(
n + d − 1

d − 1

)
Sym(n)-orbits of the minimal prime ideals that contain I.
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Corollary 5.0.3. If we take our polynomial ring K[x1, ..., xn] to be C[x1, ..., xn], we see that
any polynomial f (x) ∈ C[x] can be decomposed as (x − a1)

e1(x − a2)e2 ...(x − ad)
ed and

thus any ideal
I = ( f (x1), f (x2), ..., f (xn)) ⊂ C[x1, x2, ..., xn]

has dn minimal prime ideals containing I and has
(

n + d − 1
d − 1

)
Sym(n)-orbits of the mini-

mal prime ideals p containing I.
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Chapter 6

Counting in R[x1, ..., xn]

Here we first make a base case, namely the ideals are generated by polynomials f (xi)
which can be factored into a single irreducible polynomial in R[xi] to the power of e,
which we will see in section 6.1. We then use this base case to find a general expres-
sion by induction for the ideals which are generated by functions f (xi) which can
be factored into an arbitrary number of irreducible polynomials in R[xi] in section
6.2. This expression can then be upgraded, in section 6.3, to the general expression
for the number of Sym(n)-orbits of the minimal prime ideals that contain an ideal in
R[x1, ..., xn] that is generated by f (xi) which can be factored into an arbitrary num-
ber of irreducible linear and quadratic polynomials in R[x1, ..., xn], we then prove
that this expression is quasi-polynomial and we give the maximum degree of this
expression.

6.1 A single quadratic irreducible polynomial

Let f (x) ∈ R[x]. Suppose f (x) is decomposed as (x2 + ax + b)e, where we have that
x2 + ax + b is irreducible and where a, b ∈ R and e ∈ N. We now consider the ideal
In,1 = ( f (x1), f (x2), ..., f (xn)) ⊂ R[x1, ..., xn] (here we have that the 1 in In,1 stands
for the fact that f (x) decomposes into a single irreducible polynomial, which will
become clearer in section 6.2).

Lemma 6.1.1. Suppose p is a minimal prime ideal containing In,1. Fix i ∈ [n] := {1, 2, ..., n}.
Then:

(a) For every j ∈ [n] \ {i}, there is an f j ∈ {xj − xi, xj + xi + a} such that p = (x2
i +

axi + b, f j|j ∈ [n] \ {i}).

(b) If there is a j such that f j = xj − xi, then p = (x2
j + axj + b, gk|k ∈ [n] \ {j}), where

gk ∈ {xk − xj, xk + xj + a} such that for all k ̸= i, j:

fk = xk − xi ⇐⇒ gk = xk − xj.

(c) If there is a j such that f j = xj + xi + a, then p = (x2
j + axj + b, gk|k ∈ [n] \ {j}),

where gk ∈ {xk − xj, xk + xj + a} such that for all k ̸= i, j:
fk = xk − xi ⇐⇒ gk = xk + xj + a.

Proof. (a) If the ideal p contains In,1 = ((x2
1 + ax1 + b)e, ..., (x2

n + axn + b)e) and
x2

i + axi + b, then p contains at least one of xj − xi and xj + xi + a for all j ̸=
i, because (xj − xi)(xj + xi + a) = x2

j + xixj + axj − xixj − x2
i − axi = (x2

j +

axj + b) − (x2
i + axi + b), which is a linear combination of x2

i + axi + b and
x2

j + axj + b, which shows x2
j + axj + b(modx2

i + axi + b).
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Let p′ be the ideal (x2
i + axi + b, f j|j ∈ [n] \ {i}), for f j ∈ {xj − xi, xj + xi + a}.

Since we have that all f j are either equal to xj − xi or to xj + xi + a, we have that
R[x1, ..., xn]/p′ ∼= R[xi]/(x2

i + axi + b) ∼= C, where x2
i + axi + b is irreducible.

Since the latter is a domain, we know that p′ is indeed prime.

So in general we get that a minimal prime ideal p that contains In,1 is p =
(x2

i + axi + b, f j|j ∈ [n] \ {i}), where f j ∈ {xj − xi, xj + xi + a}.

(b) If we have a p = (x2
i + axi + b, f j|j ∈ [n] \ {i}) in which we have a j such that

f j = xj − xi, then we can do a couple operations inside of this ideal.
We then have that for every k ∈ [n] \ {i, j} such that fk = xk − xi, we can
rewrite fk so that we get

fk = xk − xi − (xj − xi) = xk − xj = gk.

We also have that for every k ∈ [n] \ {i, j} such that fk = xk + xi + 1, we can
rewrite fk so that we get

fk = xk + xi + 1 + (xj − xi) = xk + xj + 1 = gk.

We also have that we can rewrite f j = xj − xi − 2(xj − xi) = xi − xj = gi. We
also have that since f j = xj − xi, we can rewrite x2

i + axi + b so that we get

x2
i + axi + b + (xi + xj + a)(xj − xi) = x2

j + axj + b.

So in total we have that if we have a p = (x2
i + axi + b, f j|j ∈ [n] \ {i}) in

which we have a j such that f j = xj − xi, we can rewrite this p, such that we
get p = (x2

j + axj + b, gk|k ∈ [n] \ {j}), where gk ∈ {xk − xj, xk + xj + a} and
we also have seen that ∀k ̸= i, j: fk = xk − xi ⇐⇒ gk = xk − xj and we also
have fk = xk + xi + a ⇐⇒ gk = xk + xj + a.

(c) If we have a p = (x2
i + axi + b, f j|j ∈ [n] \ {i}) in which we have a j such that

f j = xj + xi + a, then we can do a couple operations inside of this ideal.
We then have that for every k ∈ [n] \ {i, j} such that fk = xk − xi, we can
rewrite fk so that we get

fk = xk − xi + (xj + xi + a) = xk + xj + a = gk.

We also have that for every k ∈ [n] \ {i, j} such that fk = xk + xi + a, we can
rewrite fk so that we get

fk = xk + xi + a − (xj + xi + a) = xk − xj = gk.

We also have that we can rewrite f j = xj + xi + a = xi + xj + a = gi. We also
have that since f j = xj + xi + a, we can rewrite x2

i + axi + b so that we get

x2
i + axi + b + (xj − xi)(xj + xi + a) = x2

j + axj + b.

So in total we have that if we have a p = (x2
i + axi + b, f j|j ∈ [n] \ {i}) in

which we have a j such that f j = xj + xi + a, we can rewrite this p, such that
we get p = (x2

j + axj + b, gk|k ∈ [n] \ {j}), where gk ∈ {xk − xj, xk + xj + a}
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and we also have seen that ∀k ̸= i, j: fk = xk − xi ⇐⇒ gk = xk + xj + a and
fk = xk + xi + a ⇐⇒ gk = xk − xj.

Example 6.1.2. Suppose we have that I3,1 = ( f (x1), f (x2), f (x3)) ⊂ R[x1, x2, x3], where
we assume that each x2

i + axi + b is irreducible in R[x1, x2, x3]. We now have for any p that
contains I3,1:

• We have for each j ∈ [n] \ {i}, there is an f j ∈ {xj − xi, xj + xi + a} such that
p = (x2

i + axi + b, f j|j ∈ [n] \ {i}).

• If there is a j: f j = xj − xi, then p = (x2
j + axj + b, gk|k ∈ [n] \ {j}), where gk ∈

{xk − xj, xk + xj + a} such that for all k ̸= i, j: fk = xk − xi ⇐⇒ gk = xk − xj.

• If there is a j: f j = xj + xi + a, then p = (x2
j + axj + b, gk|k ∈ [n] \ {j}), where gk ∈

{xk − xj, xk + xj + a} such that for all k ̸= i, j: fk = xk − xi ⇐⇒ gk = xk + xj + a.

So now if we write down all p which contain an x2
i + axi + b we get the following:

p1 = (x2
1 + ax1 + b, x2 − x1, x3 − x1);

p2 = (x2
1 + ax1 + b, x2 − x1, x3 + x1 + a);

p3 = (x2
1 + ax1 + b, x2 + x1 + a, x3 − x1);

p4 = (x2
1 + ax1 + b, x2 + x1 + a, x3 + x1 + a);

p5 = (x2
2 + ax2 + b, x1 − x2, x3 − x2);

p6 = (x2
2 + ax2 + b, x1 − x2, x3 + x2 + a);

p7 = (x2
2 + ax2 + b, x1 + x2 + a, x3 − x2);

p8 = (x2
2 + ax2 + b, x1 + x2 + a, x3 + x2 + a);

p9 = (x2
3 + ax3 + b, x1 − x3, x2 − x3);

p10 = (x2
3 + ax3 + b, x1 + x3 + a, x2 − x3);

p11 = (x2
3 + ax3 + b, x1 − x3, x2 + x3 + a);

p12 = (x2
3 + ax3 + b, x1 + x3 + a, x2 + x3 + a).

And here we see that we can say that a few of these are the same ideal under permutation
and are thus in the same Sym(n)-orbit. This means there is a permutation of the indices in
the variables x1, x2 and x3 such that pi ∼ pj for two of the ideals pi, pj given above. For
the permutations (1, 2) and (1, 3) we respectively see that p1 is in the same Sym(n)-orbit
as p5 and p9, p2 is in the same Sym(n)-orbit as p6 and p10, p3 is in the same Sym(n)-orbit
as p7 and p11 and p4 is in the same Sym(n)-orbit as p8 and p12. And due to the second
and third property above combined with permutations we can also say that p2 is in the same
Sym(n)-orbit as p3 and p4.
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Now to show why p2 is in the same Sym(n)-orbit as p4, we have to use the third property
given above. We will show it below using the properties of an ideal.

(x2
1 + ax1 + b, x2 − x1, x3 + x1 + a)

= (x2
1 + ax1 + b + (x3 − x1)(x3 + x1 + a), x2 − x1 + x3 + x1 + a, x1 + x3 + a)

= (x2
1 + ax1 + b + x2

3 − x2
1 + ax3 − ax1, x2 + x3 + a, x1 + x3 + a)

= (x2
3 + ax3 + b, x2 + x3 + a, x1 + x3 + a)

= (x2
3 + ax3 + b, x1 + x3 + a, x2 + x3 + a)

= (x2
1 + ax1 + b, x2 + x1 + a, x3 + x1 + a).

Here we used in the first equality that x3 − x1 ∈ R[x1, x2, x3] and x3 + x1 + a ∈ p, thus
(x3 − x1)(x3 + x1 + a) ∈ p and in the last equality we used that p4 is the same as p12 under
permutation. It can be shown similarly that p3 is in the same Sym(n)-orbit as p4. Thus we
have that p1 ∼ p5 ∼ p9 and p2 ∼ p3 ∼ p4 ∼ p6 ∼ p7 ∼ p8 ∼ p10 ∼ p11 ∼ p12. So we
have that there are 2 Sym(n)-orbits of the minimal prime ideals p that contain I3,1.

As seen in the example above, we get that the total number of minimal prime
ideals p that contain the ideal I3,1 ⊂ R[x1, ..., x3] is bigger than the number of Sym(n)-
orbits of the minimal prime ideals that contain I3,1. We will show below that this is
the case for any In,1. We will do this after we have made a representation that makes
counting the number of Sym(n)-orbits of the minimal prime ideals p that contain In,1
easier.

Definition 6.1.3. If p is the ideal (x2
i + axi + b, f j|j ∈ [n] \ {i}), where f j ∈ {xj − xi, xj +

xi + a}, we say it is of type (i, k, n − k − 1). We have here that k = #j ̸= i : f j = xj − xi
and where n − k − 1 = #j ̸= i : f j = xj + xi + a.

Lemma 6.1.4. Suppose p, q are minimal prime ideals containing In,1. Now suppose p is of
type (i, k, n − k − 1). Then p, q are in the same Sym(n)-orbit if there is a j such that q is of
type (j, k, n − k − 1); moreover, in this the case q is of type (i, k, n − k − 1) or (i, n − k −
2, k + 1).

Proof. We want to know that if p is of type (i, k, n − k − 1) and q is of type (j, l, n −
l − 1) whether they are in the same Sym(n)-orbit. This will be the case if and only if
either l = k or l = n − k − 2.

Now since p is of type (i, k, n − k − 1), there are i1, ..., ik, i′1, ..., i′n−k−1 ̸= i which
are pairwise distinct, such that p = (x2

i + axi + b, xi1 − xi, ..., xik − xi, xi′1
+ xi + a, ...,

xi′n−k−1
+ xi + a).

Now if q is is of type (j, k, n− k− 1), then likewise there are j1, ..., jk, j′1, ..., j′n−k−1 ̸=
j which are pairwise distinct, such that q = (x2

j + axj + b, xj1 − xj, ..., xjk − xj, xj′1
+ xj +

a, ..., xj′n−k−1
+ xj + a).

Now take the permutation σ of 1, ..., n that sends i to j, i f to j f for f ∈ {1, ..., k}
, and i′m to j′m for m ∈ {1, ..., n − k − 1}. Then σ(p) = q, so we have that p of type
(i, k, n − k − 1) and q of type (j, k, n − k − 1) are in the same Sym(n)-orbit.

From here it can clearly be seen that if p is of type (i, k, n − k − 1) and q is of type
(i, k, n − k − 1), that they are in the same Sym(n)-orbit.

Now if q is of type (j, n − k − 2, k + 1), then there are j1, ..., jn−k−2, j′1, ..., j′k+1 such
that q = (x2

j + axj + b, xj1 − xj, ..., xjn−k−2 − xj, xj′1
+ xj + a, ..., xj′k+1

+ xj + a).
Now from the third statement of Lemma 6.1.1 we find that q = (x2

j′1
+ axj′1

+

b, xj1 + xj′1
+ a, ..., xjn−k−2 + xj′1

+ a, xj′2
− xj′1

, ..., xj′k+1
− xj′1

, xj + xj′1
+ a). This can be
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reordered to q = (x2
j′1
+ axj′1

+ b, xj′2
− xj′1

, ..., xj′k+1
− xj′1

, xj1 + xj′1
+ a, ..., xjn−k−2 + xj′1

+

a, xj + xj′1
+ a) and we find that we now have that q is of type (j′1, k, n − k − 1). As

seen above, we now know that p and q are in the same Sym(n)-orbit.
From here it can clearly be seen that if p is of type (i, k, n − k − 1) and q is of type

(i, n − k − 2, k + 1), that they are in the same Sym(n)-orbit.

Now if p is of type (i, k, n− k− 1) and q is of type (j, l, n− l − 1), then without loss
of generality, namely by using a permutation of the indices in the variables x1, ..., xn,
we have that p is of type (1, k, n − k − 1), where p = (x2

1 + ax1 + b, x2 − x1, ..., xk+1 −
x1, xk+2 + x1 + a, ..., xn + x1 + a) and q is of type (j, l, n − l − 1).
If p and q were to be in the same Sym(n)-orbit, we would have a permutation σ,
where p = σ(q). If this were the case we would have that p is of type (1, k, n − k − 1)
and σ(q) is of type (1, l, n − l − 1) or (1, n − l − 2, l + 1), depending on whether
xσ−1(1) − xj is in q or xσ−1(1) + xj + a is in q.
Without loss of generality in the case that q is of type (1, l, n − l − 1), we have that
p = (x2

1 + ax1 + b, x2 − x1, ..., xk+1 − x1, xk+2 + x1 + a, ..., xn + x1 + a) and that σ(q) =
(x2

1 + ax1 + b, xj1 − x1, ..., xjl − x1, xj′1
+ x1 + a, ..., xj′n−l−2

+ x1 + a), where all ji and j′i
are pairwise distinct and not equal to 1. The case that q is of type (1, n − l − 2, l + 1)
is treated similarly.

Suppose there is a position i, such that there is xi − x1 in p and xi + x1 + a in
σ(q). Then since we have that σ(q) = p, we get that xi + x1 + a ∈ p. So we also get
that xi + x1 + a − (xi − x1) = 2x1 + a ∈ p ⇒ 1

2 (2x1 + a) = x1 +
a
2 ∈ p. Then now

since x2
1 + ax1 + b ∈ p, we have that (− a

2 )
2 + a · − a

2 + b = − a2

4 + b ∈ p. We have
that − a2

4 + b ̸= 0, since x2
1 + ax1 + b has no real zeroes. So we have that p contains a

non-zero constant, so we have that p = R. This is a contradiction with the fact that
p is a minimal prime ideal. So we have that l should be equal to k in this case, in the
case that q is of type (1, n − l − 2, l + 1), we find that n − l − 2 is equal to k and hence
l is equal to n − k − 2.

So we have that if p, q are minimal prime ideals containing In,1 and p is of type
(i, k, n − k − 1). Then p, q are in the same Sym(n)-orbit when we have that there
is a j such that q is of type (j, k, n − k − 1), moreover, in this the case q is of type
(i, k, n − k − 1) or (i, n − k − 2, k + 1).

Lemma 6.1.5. The number of Sym(n)-orbits of the minimal prime ideals p containing In,1
is equal to:

n
2
+ 1 for even n;

n − 1
2

+ 1 for odd n.

Proof. First we look at the fact that p and q are in the same Sym(n)-orbit if we have
that p is of type (i, k, n − k − 1) and q is of type (j, k, n − k − 1) for some i, j, k. This
that leaves us with n Sym(n)-orbits, as the values that k can take ranges from 0 to
n − 1.

Now we look at the fact that p and q are in the same Sym(n)-orbit if p is of type
(i, k, n − k − 1) and q is of type (i, n − k − 2, k + 1) for some i, j, k. So now we look at
the values that k can take. We have that k can go from 0 to n − 1.

Now for an even n, if we have a p with type (i, k, n − k − 1) with a given value
of k between n

2 − 1 and n − 2, it lies in the same Sym(n)-orbit as an ideal of type
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(i, l, n − l − 1) where l = n − k − 2 lies between 0 and n
2 − 1. If we have a p of type

(i, n − 1, 0), then any ideal in its Sym(n)-orbit will also be of type (i, n − 1, 0). These
Sym(n)-orbits are distinct by Lemma 6.1.4 So in total we get that there are n

2 + 1
distinct Sym(n)-orbits for even n.

Now for an odd n, if we have a p with type (i, k, n − k − 1) with a given value of
k between n−1

2 and n − 2, it lies in the same Sym(n)-orbit as an ideal of type (i, l, n −
l − 1) where l = n − k − 2 lies between 0 and n−1

2 − 1. If we have a p of type
(i, n − 1, 0), then any ideal in its Sym(n)-orbit will also be of type (i, n − 1, 0). These
Sym(n)-orbits are distinct by Lemma 6.1.4. So in total we get that there are n−1

2 + 1
Sym(n)-orbits for odd n.

So for any n ∈ N, we have that there are

n
2
+ 1 for even n;

n − 1
2

+ 1 for odd n.

Sym(n)-orbits of the minimal prime ideals p containing In,1 = ((x2
1 + ax1 + b)e, ..., (x2

n
+ axn + b)e).

6.2 Multiple quadratic irreducible polynomials

Let f (x) ∈ R[x]. Suppose f (x) is decomposed as (x2 + a1x + b1)
y1(x2 + a2x +

b2)y2 ...(x2 + adx + bd)
yd , where we have that all x2 + a1x + b1,...,x2 + adx + bd are

distinct and irreducible and where all ai, bi ∈ R and the exponents yi ∈ N for all
i ∈ {1, ..., d}. We now consider the ideal In,d = ( f (x1), f (x2), ..., f (xn)) ⊂ R[x1, ..., xn]
(here we have that the d in In,d stands for the fact that f (x) decomposes into powers
of d distinct irreducible polynomials).

Lemma 6.2.1. Suppose p is a minimal prime ideal containing In,d. Fix i ∈ [n] := {1, 2, ..., n}.
If p contains x2

i + a1xi + b1; then

(a) For every j ∈ [n] \ {i}, there is an f j ∈ {xj − xi, xj + xi + a1, xj − e1,2xi − e2,2, xj −
e3,2xi − e4,2, xj − e1,3xi − e2,3, xj − e3,3xi − e4,3, ..., xj − e1d xi − e2,d, xj − e3,dxi − e4,d},

where e1,m =

√
a2

m−4bm
a2

1−4b1
, e2,m =

−am+

√
a2
m−4bm
a2
1−4b1

a1

2 , e3,m = −e1,m, e4,m = e2,m − e1,ma1

such that p = (x2
i + a1xi + b1, f j|j ∈ [n] \ {i}).

(b) If there is a j such that f j = xj − xi, then p = (x2
j + a1xj + b1, gk|k ∈ [n] \ {j}),

where gk ∈ {xk − xj, xk + xj + a1, xk − e1,mxj − e2,m, xk − e3,mxj − e4,m} for all
m ∈ {2, ..., d} such that f j = xj − xi ⇐⇒ gi = xi − xj and for all k ̸= i, j, for
all m ∈ {2, ..., d}: fk = xk − xi ⇐⇒ gk = xk − xj, fk = xk + xi + a1 ⇐⇒
gk = xk + xj + a1, fk = xk − e1,mxi − e2,m ⇐⇒ gk = xk − e1,mxj − e2,m and
fk = xk − e3,mxi − e4,m ⇐⇒ gk = xk − e3,mxj − e4,m.

(c) If there is a j such that f j = xj + xi + a1, then p = (x2
j + a1xj + b1, gk|k ∈ [n] \ {j}),

where gk ∈ {xk − xj, xk + xj + a1, xk − e1,mxj − e2,m, xk − e3,mxj − e4,m} for all
m ∈ {2, ..., d} such that f j = xj + xi + a1 ⇐⇒ gi = xi + xj + a1 and for
all k ̸= i, j, for all m ∈ {2, ..., d}: fk = xk − xi ⇐⇒ gk = xk + xj + a1,
fk = xk + xi + a1 ⇐⇒ gk = xk − xj, fk = xk − e1,mxi − e2,m ⇐⇒ gk =
xk − e3,mxj − e4,m, fk = xk − e3,mxi − e4,m ⇐⇒ gk = xk − e1,mxj − e2,m.
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Proof. (a) If the ideal p contains In = ( f (x1), f (x2), ..., f (xn)), we have that for
any p that contains x2

i + a1xi + b1 and In, it contains at least one of xj − xi,
xj + xi + a1, xj − e1,mxi − e2,m and xj − e3,mxi − e4,m for all m ∈ {2, ..., d} and for
all j ̸= i, because by 4.1.3, we have that if p contains x2

j + a1xj + b1, we have
that it contains one of xj − xi and xj + xi + a1 and if p contains x2

j + amxj + bm,
for an m ∈ {2, ..., d}, we have that it contains one of xj − e1,mxi − e2,m and
xj − e3,mxi − e4,m.

As in 4.1.3 we also see that p is prime.

So in general we get that a minimal prime ideal p that contains In,d is p =
(x2

i + a1xi + b1, f j|j ∈ [n] \ {i}), where f j ∈ {xj − xi, xj + xi + a1, xj − e1,mxi −
e2,m, xj − e3,mxi − e4,m} for m ∈ {2, ..., d}.

(b) If we have a p = (x2
i + a1xi + b1, f j|j ∈ [n] \ {i}) in which we have a j such that

f j = xj − xi, then we can do a couple operations inside of this ideal.
We then have that for every k ∈ [n] \ {i, j} such that fk = xk − xi, we can
rewrite fk so that we get

fk = xk − xi − (xj − xi) = xk − xj = gk.

We also have that for every k ∈ [n] \ {i, j} such that fk = xk + xi + a1, we can
rewrite fk so that we get

fk = xk + xi + a1 + (xj − xi) = xk + xj + a1 = gk.

We also have that for every k ∈ [n] \ {i, j} such that fk = xk − e1,mxi − e2,m, we
can rewrite fk so that we get

fk = xk − e1,mxi − e2,m − e1,m(xj − xi) = xk − e1,mxj − e2,m = gk.

We also have that for every k ∈ [n] \ {i, j} such that fk = xk − e3,mxi − e4,m, we
can rewrite fk so that we get

fk = xk − e3,mxi − e4,m − e3,m(xj − xi) = xk − e3,mxj − e4,m = gk.

We also have that we can rewrite f j = xj − xi − 2(xj − xi) = xi − xj = gi. We
also have that since f j = xj − xi, we can rewrite x2

i + a1xi + b1 so that we get

x2
i + a1xi + b1 + (xi + xj + a1)(xj − xi) = x2

j + a1xj + b1.

So in total we have that if we have a p = (x2
i + a1xi + b1, f j|j ∈ [n] \ {i}) in

which we have a j such that f j = xj − xi, we can rewrite this p, such that
we get p = (x2

j + a1xj + b1, gk|k ∈ [n] \ {j}), where gk ∈ {xk − xj, xk + xj +

a1, xk − e1,mxj − e2,m, xk − e3,mxj − e4,m} for all m ∈ {2, ..., d}. We also have seen
that f j = xj − xi ⇐⇒ gi = xi − xj and ∀k ̸= i, j, for all m ∈ {2, ..., d}:
fk = xk − xi ⇐⇒ gk = xk − xj, fk = xk + xi + a1 ⇐⇒ gk = xk + xj + a1,
fk = xk − e1,mxi − e2,m ⇐⇒ gk = xk − e1,mxj − e2,m and fk = xk − e3,mxi −
e4,m ⇐⇒ gk = xk − e3,mxj − e4,m.

(c) If we have a p = (x2
i + a1xi + b1, f j|j ∈ [n] \ {i}) in which we have a j such that

f j = xj + xi + a1, then we can do a couple operations inside of this ideal.
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We then have that for every k ∈ [n] \ {i, j} such that fk = xk − xi, we can
rewrite fk so that we get

fk = xk − xi + (xj + xi + a1) = xk + xj + a1 = gk.

We also have that for every k ∈ [n] \ {i, j} such that fk = xk + xi + a1, we can
rewrite fk so that we get

fk = xk + xi + a1 − (xj + xi + a1) = xk − xj = gk.

We also have that for every k ∈ [n] \ {i, j} such that fk = xk − e1,mxi − e2,m, we
can rewrite fk so that we get

fk = xk − e1,mxi − e2,m − e3,m(xj + xi + a1)

= xk − e1,mxi + e1,mxi − e3,mxj − e2,m − e3,ma1

= xk − e3,mxj − e2,m + e1,ma1

= xk − e3,mxj − (e2,m − e1,ma1)

= xk − e3,mxj − e4,m = gk.

We also have that for every k ∈ [n] \ {i, j} such that fk = xk − e3,mxi − e4,m, we
can rewrite fk so that we get

fk = xk − e3,mxi − e4,m − e1,m(xj + xi + a1)

= xk − e3,mxi + e3,mxi − e1,mxj − e4,m − e1,ma1

= xk − e1,mxj − (e4,m + e1,ma1)

= xk − e1,mxj − e2,m = gk.

We also have that we can rewrite f j = xj + xi + a1 = xi + xj + a1 = gi. We also
have that since f j = xj + xi + a1, we can rewrite x2

i + a1xi + b1 so that we get

x2
i + a1xi + b1 + (xj − xi)(xj + xi + a1) = x2

j + a1xj + b1.

So in total we have that if we have a p = (x2
i + a1xi + b1, f j|j ∈ [n] \ {i}) in

which we have a j such that f j = xj + xi + a1, we can rewrite this p, such
that we get p = (x2

j + a1xj + b1, gk|k ∈ [n] \ {j}, where gk ∈ {xk − xj, xk +

xj + a1, xk − e1,mxj − e2,m, xk − e3,mxj − e4,m} for all m ∈ {2, ..., d}. We also have
seen that f j = xj + xi + a1 ⇐⇒ gi = xi + xj + a1 and ∀k ̸= i, j, for all
m ∈ {2, ..., d}: fk = xk − xi ⇐⇒ gk = xk + xj + a1, fk = xk + xi + a1 ⇐⇒
gk = xk − xj, fk = xk − e1,mxi − e2,m ⇐⇒ gk = xk − e3,mxj − e4,m and
fk = xk − e3,mxi − e4,m ⇐⇒ gk = xk − e1,mxj − e2,m.

Example 6.2.2. Suppose we have that I3,2 = ( f (x1), f (x2), f (x3)) ⊂ R[x1, x2, x3] , where
we have that each f (xi) can be factored in R[x1, x2, x3] in the following way f (xi) = (x2

i +
axi + b)y1(x2

i + cxi + d)y2 . Fix i ∈ {1, 2, 3}. We now have for any p that contains x2
i +

axi + b (for simplicity, in this example ei,2 := ei and a1 := a, b1 := b, a2 := c, b2 := d):
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• We have for each j ∈ [n] \ {i}, there is an f j ∈ {xj − xi, xj + xi + a, xj − e1xi −

e2, xj − e3xi − e4}, where e1 =
√

c2−4d
a2−4b , e2 =

−c+
√

c2−4d
a2−4b

a

2 , e3 = −e1, e4 = e2 − e1a
such that p = (x2

i + axi + b, f j|j ∈ [n] \ {i}).

• If there is a j: f j = xj − xi, then p = (x2
j + axj + b, gk|k ∈ [n] \ {j}), where

gk ∈ {xk − xj, xk + xj + a, xk − e1xj − e2, xk − e3xj − e4} such that f j = xj −
xi ⇐⇒ gi = xi − xj and for all k ̸= i, j: fk = xk − xi ⇐⇒ gk = xk − xj, fk =
xk + xi + a ⇐⇒ gk = xk + xj + a, fk = xk − e1xi − e2 ⇐⇒ gk = xk − e1xj − e2
and fk = xk − e3xi − e4 ⇐⇒ gk = xk − e3xj − e4.

• If there is a j: f j = xj + xi + a, then p = (x2
j + axj + b, gk|k ∈ [n] \ {j}), where

gk ∈ {xk − xj, xk + xj + a, xk − e1xj − e2, xk − e3xj − e4} such that f j = xj + xi +
a ⇐⇒ gi = xi + xj + a for all k ̸= i, j: fk = xk − xi ⇐⇒ gk = xk + xj + a, fk =
xk + xi + a ⇐⇒ gk = xk − xj, fk = xk − e1xi − e2 ⇐⇒ gk = xk − e3xj − e4,
fk = xk − e3xi − e4 ⇐⇒ gk = xk − e1xj − e2.

So now if we write down all p which contain an x2
i + axi + b we get the following:

p1 = (x2
1 + ax1 + b, x2 − x1, x3 − x1);

p2 = (x2
1 + ax1 + b, x2 − x1, x3 + x1 + a);

p3 = (x2
1 + ax1 + b, x2 − x1, x3 − e1x1 − e2);

p4 = (x2
1 + ax1 + b, x2 − x1, x3 − e3x1 − e4);

p5 = (x2
1 + ax1 + b, x2 + x1 + a, x3 − x1);

p6 = (x2
1 + ax1 + b, x2 + x1 + a, x3 + x1 + a);

p7 = (x2
1 + ax1 + b, x2 + x1 + a, x3 − e1x1 − e2);

p8 = (x2
1 + ax1 + b, x2 + x1 + a, x3 − e3x1 − e4);

p9 = (x2
1 + ax1 + b, x2 − e1x1 − e2, x3 − x1);

p10 = (x2
1 + ax1 + b, x2 − e1x1 − e2, x3 + x1 + a);

p11 = (x2
1 + ax1 + b, x2 − e1x1 − e2, x3 − e1x1 − e2);

p12 = (x2
1 + ax1 + b, x2 − e1x1 − e2, x3 − e3x1 − e4);

p13 = (x2
1 + ax1 + b, x2 − e3x1 − e4, x3 − x1);

p14 = (x2
1 + ax1 + b, x2 − e3x1 − e4, x3 + x1 + a);

p15 = (x2
1 + ax1 + b, x2 − e3x1 − e4, x3 − e1x1 − e2);

p16 = (x2
1 + ax1 + b, x2 − e3x1 − e4, x3 − e3x1 − e4);
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p17 = (x2
2 + ax2 + b, x1 − x2, x3 − x2);

p18 = (x2
2 + ax2 + b, x1 − x2, x3 + x2 + a);

p19 = (x2
2 + ax2 + b, x1 − x2, x3 − e1x2 − e2);

p20 = (x2
2 + ax2 + b, x1 − x2, x3 − e3x2 − e4);

p21 = (x2
2 + ax2 + b, x1 + x2 + a, x3 − x2);

p22 = (x2
2 + ax2 + b, x1 + x2 + a, x3 + x2 + a);

p23 = (x2
2 + ax2 + b, x1 + x2 + a, x3 − e1x2 − e2);

p24 = (x2
2 + ax2 + b, x1 + x2 + a, x3 − e3x2 − e4);

p25 = (x2
2 + ax2 + b, x1 − e1x2 − e2, x3 − x2);

p26 = (x2
2 + ax2 + b, x1 − e1x2 − e2, x3 + x2 + a);

p27 = (x2
2 + ax2 + b, x1 − e1x2 − e2, x3 − e1x2 − e2);

p28 = (x2
2 + ax2 + b, x1 − e1x2 − e2, x3 − e3x2 − e4);

p29 = (x2
2 + ax2 + b, x1 − e3x2 − e4, x3 − x2);

p30 = (x2
2 + ax2 + b, x1 − e3x2 − e4, x3 + x2 + a);

p31 = (x2
2 + ax2 + b, x1 − e3x2 − e4, x3 − e1x2 − e2);

p32 = (x2
2 + ax2 + b, x1 − e3x2 − e4, x3 − e3x2 − e4);

p33 = (x2
3 + ax3 + b, x1 − x3, x2 − x3);

p34 = (x2
3 + ax3 + b, x1 + x3 + a, x2 − x3);

p35 = (x2
3 + ax3 + b, x1 − e1x3 − e2, x2 − x3);

p36 = (x2
3 + ax3 + b, x1 − e3x3 − e4, x2 − x3);

p37 = (x2
3 + ax3 + b, x1 − x3, x2 + x3 + a);

p38 = (x2
3 + ax3 + b, x1 + x3 + a, x2 + x3 + a);

p39 = (x2
3 + ax3 + b, x1 − e1x3 − e2, x2 + x3 + a);

p40 = (x2
3 + ax3 + b, x1 − e3x3 − e4, x2 + x3 + a);

p41 = (x2
3 + ax3 + b, x1 − x3, x2 − e1x3 − e2);

p42 = (x2
3 + ax3 + b, x1 + x3 + a, x2 − e1x3 − e2);

p43 = (x2
3 + ax3 + b, x1 − e1x3 − e2, x2 − e1x3 − e2);

p44 = (x2
3 + ax3 + b, x1 − e3x3 − e4, x2 − e1x3 − e2);

p45 = (x2
3 + ax3 + b, x1 − x3, x2 − e3x3 − e4);

p46 = (x2
3 + ax3 + b, x1 + x3 + a, x2 − e3x3 − e4);

p47 = (x2
3 + ax3 + b, x1 − e1x3 − e2, x2 − e3x3 − e4);

p48 = (x2
3 + ax3 + b, x1 − e3x3 − e4, x2 − e3x3 − e4).

And here we see that we can say that a few of these are the same ideal under permutation
and are thus in the same Sym(n)-orbit. This means there is a permutation over the indices of
the variables x1, x2 and x3 such that pi ∼ pj for two of the ideals pi, pj given above. We see
that pm ∼ pm+16 for the permutation (1, 2) and that pm ∼ pm+32 for the permutation (1, 3)
(we also have that some ideals are actually the same due to the second and third property
above, for example 6.1, 6.17 and 6.33). And due to the second and third property above
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combined with permutations we can also say looking solely at 6.1 to 6.16, that

6.1 is single;
6.2 ∼ 6.5 ∼ 6.6;

6.3 ∼ 6.9;
6.4 ∼ 6.13;

6.7 ∼ 6.8 ∼ 6.10 ∼ 6.14;
6.11 is single;
6.12 ∼ 6.15;

6.16 is single.

So we get that we have 8 Sym(n)-orbits of the minimal prime ideals that contain I3,2 and
x2

i + axi + b.

We again see the sort of case that happened in 6.1.2. We get that the total number
of minimal prime ideals p that contain the ideal I3,2 ⊂ R[x1, ..., x3] is bigger than
the number of Sym(n)-orbits of the minimal prime ideals that contain I3,2. We will
show below that this is the case for any In,d. We will do this after we have made
a representation that makes counting the number of Sym(n)-orbits of the minimal
prime ideals p that contain In,d easier.

Definition 6.2.3. If p is the ideal (x2
i + a1xi + b1, f j|j ∈ [n] \ {i}), where f j ∈ {xk −

xj, xk + xj + a1, xk − e1,mxj − e2,m, xk − e3,mxj − e4,m} for all m ∈ {2, ..., d}, we say it is of
type (i, k1, l1, k2, l2, ..., kd, ld). We have here that k1 = #j ̸= i : f j = xj − xi, l1 = #j ̸= i :
f j = xj + xi + a1 and where, for m ∈ {2, ..., d}: km = #j ̸= i : f j = xj − e1,mxi − e2,m and
lm = #j ̸= i : f j = xj − e3,mxi − e4,m.

Lemma 6.2.4. Suppose p, q are minimal prime ideals containing In,d. Now suppose p is of
type (i, k1, l1, k2, l2, ..., kd, ld). Then p, q are in the same Sym(n)-orbit if there is a j such that q
is of type (j, k1, l1, k2, l2, ..., kd, ld); moreover, in this case q is of type (i, k1, l1, k2, l2, ..., kd, ld)
or (i, l1 − 1, k1 + 1, l2, k2, ..., ld, kd).

Proof. We want to know that if p is of type (i, k1, l1, k2, l2, ..., kd, ld) and q is of type
(j, s1, t1, s2, t2, ..., sd, td) whether they are in the same Sym(n)-orbit. This will be the
case if and only if either sm = km and tm = lm for all m ∈ {1, ..., d} or s1 = l1 − 1,
t1 = k1 + 1, sm = lm and tm = km for all m ∈ {2, ..., d}.

So assume that p is of type (i, k1, l1, k2, l2, ..., kd, ld). First (a) we will prove that if q
is of type (i, k1, l1, k2, l2, ..., kd, ld), then p and q are in the same Sym(n)-orbit. Then (b)
we will prove that if q is of type (i, l1 − 1, k1 + 1, l2, k2, ..., ld, kd), then p and q are in the
same Sym(n)-orbit. At last (c) we will prove that if q is of type (j, s1, t1, s2, t2, ..., sd, td),
then q is not in the same Sym(n)-orbit as p if we do not have that either sm = km and
tm = lm for all m ∈ {1, ..., d} or s1 = l1 − 1, t1 = k1 + 1, sm = lm and tm = km for all
m ∈ {2, ..., d}.

(a) Since p is of type (i, k1, l1, k2, l2, ..., kd, ld), there are ik1,1, ..., ik1,k1 , il1,1, ..., il1,l1 ,
ik2,1, ..., ik2,k2 , il2,1, ..., il2,l2 , ......, ikd,1, ..., ikd,kd , ild,1, ..., ild,ld ̸= i which are pairwise distinct,
such that p = (x2

i + a1xi + b1, xik1,1 − xi, ..., xik1,k1
− xi, xil1,1 + xi + a1, ..., xil1,l1

+ xi +
a1, xik2,1 − e1,2xi − e2,2, ..., xik2,k2

− e1,2xi − e2,2, xil2,1 − e3,2xi − e4,2, ..., xil2,l2
− e3,2xi − e4,2,

......, xikd ,1 − e1,dxi − e2,d, ..., xikd ,kd
− e1,dxi − e2,d, xild ,1 − e3,dxi − e4,d, ..., xild ,ld

− e3,dxi − e4,d).
Now if q is is of type (j, k1, l1, k2, l2, ..., kd, ld), then likewise there are jk1,1, ..., jk1,k1 ,

jl1,1, ..., jl1,l1 , jk2,1, ..., jk2,k2 , jl2,1, ..., jl2,l2 , ......, jkd,1, ..., jkd,kd , jld,1, ..., jld,ld ̸= j which are pair-
wise distinct, such that q = (x2

j + a1xj + b1, xjk1,1 − xj, ..., xjk1,k1
− xj, xjl1,1 + xj + a1, ...,
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xjl1,l1
+ xj + a1, xjk2,1 − e1,2xj − e2,2, ..., xjk2,k2

− e1,2xj − e2,2, xjl2,1 − e3,2xj − e4,2, ..., xjl2,l2
−

e3,2xj − e4,2, ......, xjkd ,1 − e1,dxj − e2,d, ..., xjkd ,kd
− e1,dxj − e2,d, xjld ,1 − e3,dxj − e4,d, ..., xjld ,ld

−
e3,dxj − e4,d).

Now take the permutation σ of 1, ..., n that sends i to j, ikm, f to jkm, f for f ∈
{1, ..., km} and ilm,g to jlm,g for g ∈ {1, ..., lm} for m ∈ {1, ..., d}. Then σ(p) = q, so
we have that p of type (i, k1, l1, k2, l2, ..., kd, ld) and q of type (j, k1, l1, k2, l2, ..., kd, ld)
are in the same Sym(n)-orbit. From here it can clearly be seen that if p is of type
(i, k1, l1, k2, l2, ..., kd, ld) and q is of type (i, k1, l1, k2, l2, ..., kd, ld), that they are in the
same Sym(n)-orbit.

(b) If q is of type (j, l1 − 1, k1 + 1, l2, k2, ..., ld, kd), then there are jk1,1, ..., jk1,l1−1, jl1,1,
..., jl1,k1+1, jk2,1, ..., jk2,l2 , jl2,1, ..., jl2,k2 , ......, jkd,1, ..., jkd,ld , jld,1, ..., jld,kd ̸= j (note that the first
spot in the subtext denotes the placement in the type in this specific case, the sec-
ond spot in the subtext denotes the count), such that q = (x2

j + a1xj + b1, xjk1,1 −
xj, ..., xjk1,l1−1 − xj, xjl1,1 + xj + a1, ..., xjl1,k1+1 + xj + a1, xjk2,1 − e1,2xj − e2,2, ..., xjk2,l2

− e1,2xj
− e2,2, xjl2,1 − e3,2xj − e4,2, ..., xjl2,k2

− e3,2xj − e4,2, ......, xjkd ,1 − e1,dxj − e2,d, ..., xjkd ,ld
− e1,dxj

− e2,d, xjld ,1 − e3,dxj − e4,d, ..., xjld ,kd
− e3,dxj − e4,d)

Now from the third statement of Lemma 6.2.1 we find that q = (x2
jl1,1

+ a1xjl1,1 +

b1, xjk1,1 + xjl1,1 + a1, ..., xjk1,l1−1 + xjl1,1 + a1, xjl1,2 − xjl1,1 , ..., xjl1,k1+1 − xjl1,1 , xjk2,1 − e3,2xjl1,1 −
e4,2, ..., xjk2,l2

− e3,2xjl1,1 − e4,2, xjl2,1 − e1,2xjl1,1 − e2,2, ..., xjl2,k2
− e1,2xjl1,1 − e2,2, ......, xjkd ,1 −

e3,dxjl1,1 − e4,d, ..., xjkd ,ld
− e3,dxjl1,1 − e4,d, xjld ,1 − e1,dxjl1,1 − e2,d, ..., xjld ,kd

− e1,dxjl1,1 − e2,d, xj

+ xjl1,1 + a1)

This can be reordered so that we find q = (x2
jl1,1

+ a1xjl1,1 + b1, xjl1,2 − xjl1,1 , ..., xjl1,k1+1

− xjl1,1 , xjk1,1 + xjl1,1 + a1, ..., xjk1,l1−1 + xjl1,1 + a1, xj + xjl1,1 + a1, xjl2,1 − e1,2xjl1,1 − e2,2, ...,
xjl2,k2

− e1,2xjl1,1 − e2,2, xjk2,1 − e3,2xjl1,1 − e4,2, ..., xjk2,l2
− e3,2xjl1,1 − e4,2, ......, xjld ,1 − e1,dxjl1,1

− e2,d, ..., xjld ,kd
− e1,dxjl1,1 − e2,d, xjkd ,1 − e3,dxjl1,1 − e4,d, ..., xjkd ,ld

− e3,dxjl1,1 − e4,d) and we
find that we now have that q is of type (xjl1,1 , k1, l1, k2, l2, ..., kd, ld). As seen above,
we now know that p and q are in the same Sym(n)-orbit. So we have that p of type
(i, k1, l1, k2, l2, ..., kd, ld) and q of type (j, l1 − 1, k1 + 1, l2, k2, ..., ld, kd) are in the same
Sym(n)-orbit. From here it can clearly be seen that if p is of type (i, k1, l1, k2, l2, ..., kd, ld)
and q is of type (i, l1 − 1, k1 + 1, l2, k2, ..., ld, kd), that they are in the same Sym(n)-orbit.

(c) Now if p is of type (i, k1, l1, k2, l2, ..., kd, ld) and q is of type (j, s1, t1, s2, t2, ..., sd, td),
then without loss of generality, namely by using a permutation of the indices of
the variables x1, ..., xn, we have that p is of type (1, k1, l1, k2, l2, ..., kd, ld), where p =
(x2

1 + a1x1 + b1, x2 − x1, ..., xk1+1 − x1, xk1+2 + x1 + a1, ..., xk1+l1+1 + x1 + a1, xk1+l1+2 −
e1,2x1 − e2,2, ...,
xk1+l1+k2+1 − e1,2x1 − e2,2, xk1+l1+k2+2 − e3,2x1 − e4,2, ..., xk1+l1+k2+l2+1 − e3,2x1 − e4,2,
......, x(∑d−1

u=1 ku+lu)+2 − e1,dx1 − e2,d, ..., x(∑d−1
u=1 ku+lu)+kd+1 − e1,dx1 − e2,d, x(∑d−1

u=1 ku+lu)+kd+2 −
e3,dx1 − e4,d, ..., xn − e3,dx1 − e4,d).
Now if p and q were to be in the same Sym(n)-orbit, we would have a permutation
σ, where p = σ(q).
Now if this were the case we would have that p is of type (1, k1, l1, k2, l2, ..., kd, ld) and
σ(q) is of type (1, s1, t1, s2, t2, ..., sd, td) or (1, t1 − 1, s1 + 1, t2, s2, ..., td, sd), depending
on whether xσ−1(1) − xj is in q or xσ−1(1) + xj + a1 is in q.

Without loss of generality in the case that q is of type (1, s1, t1, s2, t2, ..., sd, td), we
have that p = (x2

1 + a1x1 + b1, x2 − x1, ..., xk1+1 − x1, xk1+2 + x1 + a1, ..., xk1+l1+1 + x1 +
a1, xk1+l1+2 − e1,2x1 − e2,2, ..., xk1+l1+k2+1 − e1,2x1 − e2,2, xk1+l1+k2+2 − e3,2x1 − e4,2, ...,
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xk1+l1+k2+l2+1 − e3,2x1 − e4,2, ......, x(∑d−1
u=1 ku+lu)+2 − e1,dx1 − e2,d, ..., x(∑d−1

u=1 ku+lu)+kd+1 −
e1,dx1 − e2,d, x(∑d−1

u=1 ku+lu)+kd+2 − e3,dx1 − e4,d, ..., xn − e3,dx1 − e4,d) and that σ(q) = (x2
1 +

a1x1 + b1, x1k1,1 − x1, ..., x1k1,k1
− x1, x1l1,1 + x1 + a1, ..., x1l1,l1

+ x1 + a1, x1k2,1 − e1,2x1 −
e2,2, ..., x1k2,k2

− e1,2x1 − e2,2, x1l2,1 − e3,2x1 − e4,2, ..., x1l2,l2
− e3,2x1 − e4,2, ......, x1kd ,1 − e1,dx1

− e2,d, ..., x1kd ,kd
− e1,dx1 − e2,d, x1ld ,1 − e3,dx1 − e4,d, ..., x1ld ,ld

− e3,dx1 − e4,d), where all
1km,i and 1lm,i for all m ∈ {1, ..., d} are pairwise distinct and not equal to 1. The case
that q is of type (1, t1 − 1, s1 + 1, t2, s2, ..., td, sd) is treated similarly.

Suppose now that there is a position i, such that there is xi − x1 in p and xi +
x1 + a1 in σ(q). Then since we have that σ(q) = p, we get that xi + x1 + a1 ∈ p. So
we also get that xi + x1 + a1 − (xi − x1) = 2x1 + a1 = x1 +

a1
2 ∈ p. Then now since

x2
1 + a1x1 + b1 ∈ p, we have that (− a1

2 )
2 + a1 · − a1

2 + b1 = − a2
1

4 + b1 ∈ p. We have

that − a2
1

4 + b1 ̸= 0, since x2
1 + a1x1 + b1 has no real zeroes. So we have that p contains

a non-zero constant, so we have that p = R. This is a contradiction with the fact that
p is a minimal prime ideal. Analogously, we can show that on this position i, there is
no xi + e1,mx1 + e2,m or xi + e3,mx1 + e4,m for m ∈ {2, ..., d}. So we have that s1 should
be greater or equal to k1. Analogously it can be shown that t1 should be greater or
equal to l1. Also analogously it can be shown that sm should be greater or equal to
km and tm should be greater or equal to lm for m ∈ {2, ..., d} in this case. From the fact
that k1 + l1 + k2 + l2 + ...+ kd + ld + 1 = n and s1 + t1 + s2 + t2 + ...+ sd + td + 1 = n,
we get that k1 + l1 + k2 + l2 + ... + kd + ld = s1 + t1 + s2 + t2 + ... + sd + td and from
this we get that s1 = k1, t1 = l1, sm = km and tm = lm, for m ∈ {2, ..., d}. In the
case that q is of type (1, t1 − 1, s1 + 1, t2, s2, ..., td, sd), we find that t1 − 1 is equal to k1
and s1 + 1 is equal to l1, we also find that tm is equal to km and sm is equal to lm for
m ∈ {2, ..., d}.

So we have that if p, q are minimal prime ideals containing In,d and p is of type
(i, k1, l1, k2, l2, ..., kd, ld). Then p, q are in the same Sym(n)-orbit when we have that
there is a j such that q is of type (j, k1, l1, k2, l2, ..., kd, ld), moreover, in this case q is of
type (i, k1, l1, k2, l2, ..., kd, ld) or (i, l1 − 1, k1 + 1, l2, k2, ..., ld, kd).

Theorem 6.2.5. The number of Sym(n)-orbits of the minimal prime ideals p containing In,d
is equal to

d

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
+

( n−4
2 + u
u − 1

)
)) for even n;

d

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
)) for odd n.

Proof. First we note the fact that p and q are in the same Sym(n)-orbit if we have that
p is of type (i, k1, l1, k2, l2, ..., kd, ld) and q is of type (j, k1, l1, k2, l2, ..., kd, ld) for some
i, j, k1, l1, k2, l2, ..., kd, ld. 6.2.1 So now to count the number of Sym(n)-orbits, we look
at the number of Sym(n)-orbits of p where p is of the form (1, k1, l1, k2, l2, ..., kd, ld)
and where we have that ∑d

i=1 ki + li = n − 1. We look at the fact that we have
d pairwise distinct irreducible quadratic polynomials. So p contains either f1(xi),
f2(xi),..., fd(xi) for each xi. So p contains n1 f1(xi), n2 f2(xi), ..., nd fd(xi) . We have
that n1 has values in the range from 0 to n. Now when we have that n1 = 0, we
get that ∑d

u=2 nd = n. This gives us the number of Sym(n)-orbits for the minimal
prime ideals that contain In,d−1, since these ideals are generated by f (xi) that consist
of powers of d − 1 distinct irreducible quadratic polynomials.
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To find an equation for the number of Sym(n)-orbits of the minimal prime ideals that
contain In,d, we will use induction. Suppose that for d ∈ N and d ≥ 1, we have that
the number of Sym(n)-orbits of the minimal prime ideals p that contain In,d is equal
to

d

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
+

( n−4
2 + u
u − 1

)
)) for even n;

d

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
)) for odd n.

We now take as base case d = 1, then we get that the number of Sym(n)-orbits of
the minimal prime ideals p that contain In,d is equal to

1

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
+

( n−4
2 + u
u − 1

)
)) for even n;

1

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
)) for odd n.

Which is equal to

1
2
(

(
n + 2 − 2

2 − 1

)
+

(
n + 2 − 3

2 − 2

)
+

( n−4
2 + 1
1 − 1

)
)) =

1
2
(

(
n
1

)
+

(
n +−1

0

)
+

( n−2
2
0

)
)

=
n
2
+ 1 for even n;

1
2
(

(
n + 2 − 2

2 − 1

)
+

(
n + 2 − 3

2 − 2

)
) =

1
2
(

(
n
1

)
+

(
n − 1

0

)
)

=
n − 1

2
+ 1 for odd n.

Which is correct by 6.1.5.
Now for our induction step, we assume that the induction hypothesis is correct

for d = w − 1. For our induction hypothesis to stand, we should have that d = w
also holds.

We look at the fact that we have w quadratic polynomials. So p contains one of
f1(xi), f2(xi),..., fw(xi) for each xi. So p contains n1 f1(xi), n2 f2(xi), ..., nw fw(xi) .
We have that n1 has values in the range from 0 to n. Now when we have that n1 = 0,
we get that ∑w

u=2 nu = n. This gives us the number of Sym(n)-orbits for the minimal
prime ideals that contain In,w−1 which is generated by f (x) which consists of powers
of w − 1 distinct irreducible quadratic polynomials.
So if we have that n1 = 0, we get that there are

w−1

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
+

( n−4
2 + u
u − 1

)
)) for even n;

w−1

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
)) for odd n,
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Sym(n)-orbits.
Now for n1 > 0, without loss of generality we take that the minimal prime ideals

p are of type (1, k1, l1, k2, l2, ..., kw, lw). We have three possibilities that we will count.
We can count the Sym(n)-orbits of the minimal prime ideals p using the fact that
0 ≤ l1 ≤ n − 1. We will count:

1. The Sym(n)-orbits where l1 = 0.

2. The Sym(n)-orbits where l1 > 0, k1 = l1 − 1 and km = lm for m ∈ {2, ..., w}.

3. The Sym(n)-orbits which consists of two types of minimal prime ideals follow-
ing 6.2.1.

In the first case, we have an egg colouring problem 2.3.1, where we have n − 1 eggs
and 2w − 1 colours, since we have to divide the n − 1 xi, where i ̸= 1 over the 2w − 1
different options that xi can take when leaving xi + x1 + a1, aka the option that is
counted by l1, out. So to count the number of Sym(n)-orbits, we have to calculate

f (2w − 1, n − 1) =
(

n − 1 + 2w − 1 − 1
2w − 1 − 1

)
=

(
n + 2w − 3

2w − 2

)
.

In the second case, we count the prime ideals where, we have to have that n is
even, so we have that n − 1 is odd. Then we have to have that n1 − 1 is odd and nm
for m ∈ {2, ..., w} is even. So in this egg colouring problem, we first fix one egg to
have colour l1. After this we want to colour the eggs in pairs of two, either l1 and
k1, k2 and l2, ..., kw and lw so that we keep the conditions of this case. So now we get
an egg colouring problem with w colours (n1, n2,..., nw) and n−2

2 eggs, since the eggs

will be coloured in pairs of 2. So we get that there are f (w, n−2
2 ) =

( n−2
2 + w − 1

w − 1

)
=( n−4

2 + w
w − 1

)
.

Now in the third case, we can count the Sym(n)-orbits where we have that if
p = (1, k1, l1, k2, l2, ..., kw, lw) and q = (1, l1 − 1, k1 + 1, l2, k2, ..., lw, kw). To do this, first
we will count the total possibilities of how the n − 1 eggs can be divided among the
2w colours k1, l1, k2, l2, ..., kw, lw. Then we will subtract the cases where the switch
from the third item of 6.2.1 cannot be made, so for odd n we will subtract the first
case and for even n we subtract the first and second case. Then after this subtraction
is made, the total will be divided by two, since there are two p with a fixed indicator
1 that switch to each other in one Sym(n)-orbit in this case. So in total we get that
there are

1
2
( f (2w, n − 1)− f (2w − 1, n − 1)− f (w,

n − 2
2

))

=
1
2
(

(
n + 2w − 2

2w − 1

)
−

(
n + 2w − 3

2w − 2

)
−

( n−4
2 + w
w − 1

)
) for even n;

1
2
( f (2w, n − 1)− f (2w − 1, n − 1)− f (w,

n − 2
2

))

=
1
2
(

(
n + 2w − 2

2w − 1

)
−

(
n + 2w − 3

2w − 2

)
) for odd n,

Sym(n)-orbits in the third case.
So in total we get that the number of Sym(n)-orbits of the minimal prime ide-

als containing I = ( f (x1), f (x2), ..., f (xn)), where we have that f (xi) consists of d
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distinct irreducible quadratic polynomials is

w−1

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
+

( n−4
2 + u
u − 1

)
)) +

1
2
(

(
n + 2w − 2

2w − 1

)
−

(
n + 2w − 3

2w − 2

)
−

( n−4
2 + w
w − 1

)
) +

(
n + 2w − 3

2w − 2

)
+

( n−4
2 + w
w − 1

)
for even n;

w−1

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
)) +

1
2
(

(
n + 2w − 2

2w − 1

)
−

(
n + 2w − 3

2w − 2

)
) +

(
n + 2w − 3

2w − 2

)
for odd n.

Which equals

w−1

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
+

( n−4
2 + u
u − 1

)
))

+
1
2
(

(
n + 2w − 2

2w − 1

)
+

(
n + 2w − 3

2w − 2

)
+

( n−4
2 + w
w − 1

)
) for even n;

w−1

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
))

+
1
2
(

(
n + 2w − 2

2w − 1

)
+

(
n + 2w − 3

2w − 2

)
) for odd n.

Which equals

w

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
+

( n−4
2 + u
u − 1

)
)) for even n;

w

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
)) for odd n.

Thus the hypothesis for d = w − 1 + 1 = w also holds.
So we have that the number of Sym(n)-orbits of the minimal prime ideals p con-

taining In,d is equal to

d

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
+

( n−4
2 + u
u − 1

)
)) for even n;

d

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
)) for odd n.

Remark 6.2.6. We have that the equation in that we found in 6.2.5 can be reduced, which
we will show here. The original equation looks as follows.

d

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
+

( n−4
2 + u
u − 1

)
)) for even n;

d

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
)) for odd n.
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We will first look at the equation for odd n:

d

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
))

=
1
2

d−1

∑
u=0

(

(
n + 2(u + 1)− 2

2(u + 1)− 1

)
+

(
n + 2(u + 1)− 3

2(u + 1)− 2

)
) by index shift

=
1
2

d−1

∑
u=0

(

(
n + 2u
2u + 1

)
+

(
n + 2u − 1

2u

)
).

Now when we write out this equation, we get

1
2

d−1

∑
u=0

(

(
n + 2u
2u + 1

)
+

(
n + 2u − 1

2u

)
)

=
1
2
(

(
n
1

)
+

(
n − 1

0

)
+

(
n + 2

3

)
+

(
n + 1

2

)
+

(
n + 4

5

)
+

(
n + 3

4

)
+ ...

+

(
n + 2(d − 1)
2(d − 1) + 1

)
+

(
n + 2(d − 1)− 1

2(d − 1)

)
).

When we first solve this for brackets and then reorder we will see that we get

1
2
(

(
n
1

)
+

(
n − 1

0

)
+

(
n + 2

3

)
+

(
n + 1

2

)
+

(
n + 4

5

)
+

(
n + 3

4

)
+ ...

+

(
n + 2d − 2

2d − 1

)
+

(
n + 2d − 3

2d − 2

)
)

=
1
2
(

(
n − 1

0

)
+

(
n
1

)
+

(
n + 1

2

)
+

(
n + 2

3

)
+

(
n + 3

4

)
+

(
n + 4

5

)
+ ...

+

(
n + 2d − 3

2d − 2

)
+

(
n + 2d − 2

2d − 1

)
)

=
1
2

2d−1

∑
u=0

(
n − 1 + u

u

)
.

Finally, by the Christmas Stocking Theorem (CST) [6] which states that ∑k−1
i=0

(
n + i

i

)
=(

k + n
k − 1

)
, we see that

1
2

2d−1

∑
u=0

(
n − 1 + u

u

)
=

1
2

(
n − 1 + 2d

2d − 1

)
=

1
2

(
n + 2d − 1

n

)
.
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Now we will look at the equation for even n:

d

∑
u=1

(
1
2
(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
+

( n−4
2 + u
u − 1

)
))

=
1
2
(

d

∑
u=1

(

(
n + 2u − 2

2u − 1

)
+

(
n + 2u − 3

2u − 2

)
) +

d

∑
u=1

( n−4
2 + u
u − 1

)
)

=
1
2
(

(
n + 2d − 1

n

)
+

d

∑
u=1

( n−4
2 + u
u − 1

)
)

=
1
2
(

(
n + 2d − 1

n

)
+

d−1

∑
u=0

( n−4
2 + u + 1

u

)
) by index shift

=
1
2
(

(
n + 2d − 1

n

)
+

d−1

∑
u=0

( n−2
2 + u

u

)
)

=
1
2
(

(
n + 2d − 1

n

)
+

( n−2
2 + d
d − 1

)
) by CST

=
1
2
(

(
n + 2d − 1

n

)
+

( n
2 + d − 1

n
2

)
).

So we get that the equation that we found in 6.2.5 is equal to

1
2
(

(
n + 2d − 1

n

)
+

( n
2 + d − 1

n
2

)
) for even n;

1
2
(

(
n + 2d − 1

n

)
) for odd n.

Remark 6.2.7. When we take a look at example 6.2.2, we see that we have 8 Sym(n)-orbits
for the minimal prime ideals that contain I3,2 and x2

i + axi + b. Then looking at example
6.1.2 we see that we will have 2 Sym(n)-orbits for the minimal prime ideals that contain
I3,2 and not x2

i + axi + b. Thus in total we have that there are 10 Sym(n)-orbits for the
minimal prime ideals p that contain I3,2 = ((x2

1 + ax1 + b)y1(x2
1 + cx1 + d)y2 , (x2

2 + ax2 +
b)y1(x2

2 + cx2 + d)y2 , (x2
3 + ax3 + b)y1(x2

3 + cx3 + d)y2) ⊂ R[x1, x2, x3].
Looking at the equation we got at 6.2.6 and we take d = 2 and n = 3, we get that there

are 10 Sym(n)-orbits for the minimal prime ideals that contain I3,2, which is the same as we
found earlier.

6.3 The minimal prime ideals containing I ∈ R[x1, ..., xn]

Theorem 6.3.1. The number of Sym(n)-orbits of the minimal prime ideals p containing
In,d,v = ( f (x1), f (x2), ..., f (xn)) ⊂ R[x1, ..., xn], where each f (xi) can be factored as
(x2

i + a1xi + b1)
y1(x2

i + a2xi + b2)y2 ...(x2
i + adxi + bd)

yd(xi − c1)
e1(xi − c2)e2 ...(xi − cv)ev ,

where all x2
i + a1xi + b1, x2

i + a2xi + b2, ..., x2
i + adxi + bd are distinct and irreducible in

R[x1, ..., xn], where c1 ̸= c2 ̸= ... ̸= cv are all in R and where the exponents y1, ..., yd, e1, ..., ed ∈
N, is equal to

n

∑
z=0,z even

(

(
n − z + v − 1

v − 1

)
· 1

2
(

(
z + 2d − 1

z

)
+

( z
2 + d − 1

z
2

)
))

+
n

∑
z=0,z odd

(

(
n − z + v − 1

v − 1

)
· 1

2
(

(
z + 2d − 1

z

)
)).
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Proof. For a minimal prime ideal p to contain In,d,v, we have to have that p contains
one of x2

i + amxi + bm or xi − ch for m ∈ {1, ..., d} and h ∈ {1, ..., v} for each i ∈
{1, ..., n}.

So now we should count over the linear and quadratic polynomials that p con-
tains. After dividing the linear and quadratic polynomials, we can use the equations
found in 5.0.2 and 6.2.6. Now if we have that p contains z irreducible quadratic poly-
nomials in a single variable, we have that p contains n− z linear polynomials in a sin-
gle variable. So to count the number of Sym(n)-orbits, we have to plug the equations
found in 5.0.2 and 6.2.6 into the following sum: ∑n

z=0 linear orbits · quadratic orbits,
which will split into two sums, one counting over the even z and one over the odd
z, because of the division between even and odd n in the equation found in 6.2.6. So
we get that there are

n

∑
z=0,z even

(

(
n − z + v − 1

v − 1

)
· 1

2
(

(
z + 2d − 1

z

)
+

( z
2 + d − 1

z
2

)
))

+
n

∑
z=0,z odd

(

(
n − z + v − 1

v − 1

)
· 1

2
(

(
z + 2d − 1

z

)
))

Sym(n)-orbits of the minimal prime ideals p that contain In,d,v.

Lemma 6.3.2. The degree of the number of Sym(n)-orbits of the minimal prime ideals con-
taining In,d,v as found in 6.3.1 as a function of n is equal to v + 2d − 1.

Proof. The degree of a polynomial is the highest power that is taken in the polyno-
mial, so if we look at the aspects of the polynomial found in 6.3.1, we see that the
highest power that the polynomial in (n − z):(

n − z + v − 1
v − 1

)
,

can take is v − 1. We also see that the highest power that the polynomials in z:

1
2
(

(
z + 2d − 1

z

)
+

( z
2 + d − 1

z
2

)
) and

1
2
(

(
z + 2d − 1

z

)
),

can take is 2d − 1.
So we find that we have a polynomial of degree v − 1 in n − z, which we multiply
with one of the polynomials of degree 2d − 1 in z. This gives us the two polynomials(

n − z + v − 1
v − 1

)
· 1

2
(

(
z + 2d − 1

z

)
+

( z
2 + d − 1

z
2

)
)

and (
n − z + v − 1

v − 1

)
· 1

2
(

(
z + 2d − 1

z

)
).

These two functions in z, if we take n to be a constant, have a degree equal to the
sum of the two degrees earlier found, which is equal to (v − 1) + (2d − 1). Now the
degree of number of Sym(n)-orbits of the minimal prime ideals that contain In,d,v as
found in 6.3.1 is at most equal to (v − 1) + (2d − 1) + 1 = v + 2d − 1 by 4.2.2.

Lemma 6.3.3. The number of Sym(n)-orbits of the minimal prime ideals containing In,d,v
as found in 6.3.1 forms a quasi-polynomial.
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Proof. A quasi-polynomial can be written as q(k) = cd(k)kd + cd−1(k)kd−1 + ... +
c0(k). We can rewrite the equation that we found in the following way:

n

∑
z=0,z even

(

(
n − z + v − 1

v − 1

)
· 1

2
(

(
z + 2d − 1

z

)
+

( z
2 + d − 1

z
2

)
))

+
n

∑
z=0,z odd

(

(
n − z + v − 1

v − 1

)
· 1

2
(

(
z + 2d − 1

z

)
))

=
n

∑
z=0

(

(
n − z + v − 1

v − 1

)
· 1

2
(

(
z + 2d − 1

z

)
+ q(z)

( z
2 + d − 1

z
2

)
)).

We have here that q(z) is 1 for z even and 0 for z odd. We now have that

h(z) =
1
2
(

(
z + 2d − 1

z

)
+ q(z)

( z
2 + d − 1

z
2

)
)

is a quasi-polynomial. Then if we look at the multiplication of
(

n − z + v − 1
v − 1

)
and

h(z), we clearly see there will still be a quasi-polynomial, as we multiply a polyno-
mial with a quasi-polynomial and quasi-polynomials are closed under multiplica-
tion [4].

At last we have a summation of quasi-polynomials as we have

n

∑
z=0

(

(
n − z + v − 1

v − 1

)
· 1

2
(

(
z + 2d − 1

z

)
+ q(z)

( z
2 + d − 1

z
2

)
)).

Thus by the fact that quasi-polynomials are closed under addition [4], we still have
a quasi-polynomial, but now the quasi-polynomial is in n, with at most the degree
we found in 6.3.2.
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Chapter 7

Discussion

In this project we proved a couple of statements relating to minimal prime ideals
and we derived an expression for the number of Sym(n)-orbits of the minimal prime
ideals that contain an ideal I in R[x1, ..., xn]. We also looked at whether this expres-
sion is a quasi-polynomial or not and which degree it can have. There is still further
research that can be done, building on top of what we found, and we will now give
some examples.

The smallest extension that can be done is to prove whether the degree of the
polynomial found in 6.3.1 is actually equal to v + 2d − 1.

Another possible extension would be to find the number of Sym(n)-orbits in
Q[x1, ..., xn], by first finding a good representation for the minimal prime ideals
that contain an ideal that consists of f (xi) which can not be factored into linear or
quadratic polynomials in Q[xi] and then using combinatorics and induction like in
6.1.5 and 6.2.6 to find an expression for the number of Sym(n)-orbits of the min-
imal prime ideals that contain this ideal. Then by using this expression and the
expressions found in 5.0.2 and 6.2.5, we can find an expression for the number of
Sym(n)-orbits of the minimal prime ideals that contain an ideal that consists of f (xi)
that can be factored into irreducible terms in Q[xi]. As an addition to this, an expres-
sion can be found for the number of Sym(n)-orbits of the minimal prime ideals that
contain an ideal that consists of f (xi) that can be factored into irreducible terms in
any polynomial ring K[xi].

What also can be investigated further, is whether there is an approach to find the
number of Sym(n)-orbits of the minimal prime ideals that contain In,d as in Section
6.2, that leads directly to the equations we found in 6.2.6. We now used an approach
that led to a sum which could be transformed into the equation found in 6.2.6, but
we have not found a direct approach yet. If a direct approach is found, this approach
could maybe also be used for the extensions above.

Regarding the polynomial rings that we have already explored, we note that an
addition to these could be the addition of multiple variables. With this we mean that
we can find an expression for the number of Sym(n)-orbits of the minimal prime ide-
als that contain an ideal that consists of f (xi, xj) that can be factored into irreducible
terms in C[xi, xj] and other polynomial rings. This then could be expanded to ideals
that consist of functions with n variables.

Investigating these additions and the expressions we already found could be in-
teresting for research purposes in the fields of ring theory.
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