
 Eindhoven University of Technology

BACHELOR

Appointment scheduling

van Egmond, Hannah

Award date:
2023

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/54f67bd3-992c-43bb-95d7-b80645248333

Appointment scheduling

H.M. van Egmond
1473190

Supervisor:
M.A.A. Boon.

Committee member:
C.A.J. Hurkens.

Department of Mathematics and Computer Science
Eindhoven University of Technology

The Netherlands
February 6, 2023

Abstract

In this Bachelor Final Project we study appointment scheduling both in the single server and the
multiserver setting. A static, a dynamic and an adaptive approach for the single server setting are
discussed and results of some experiments are presented. In the chapter about the static case it is
shown how appointment scheduling can be used in practice. For the dynamic approach the same
results as in [1] are found. For the adaptive approach we managed to derive a general expression
for the expected sojourn time of the first client conditional on the already elapsed service time.
Moreover a multiserver setting is discussed. The implementation of the discussed method seems
to be extremely slow, therefore the corresponding experiments are only executed for a few clients.
Lastly no-shows and walk-ins are included in multiple models, such as the static phase-type, static
homogeneous exponential and the multiserver case. Furthermore no-shows have been included in
the model for dynamic scheduling for homogeneous exponentially distributed service times, which
has not been done before. There seem to be two general methods for including no-shows. Either a
probability q of having a no-show is included in the model such that a client has, with probability
q, the service time that he would have if no-shows were not included and with probability 1− q a
service time equal to 0. Or, what only works in the phase-type case, an adapted squared coefficient
of variation is calculated and used to schedule all clients.

Page 1 of 55

Contents

Contents

1 Introduction 3

2 Applicable theory 4
2.1 Matrix exponential . 4
2.2 Continuous phase-type distribution . 4
2.3 Fitting a phase-type distribution . 5
2.4 Kronecker product and sum . 6

3 Literature overview 7

4 Mathematical model 9

5 Single server models 12
5.1 Static model . 12

5.1.1 Exponential homogeneous . 12
5.1.2 Phase-type distributions . 14
5.1.3 Experiments single server static scheduling 16

5.2 Dynamic model . 21
5.2.1 Exponential homogeneous . 21
5.2.2 Exponential heterogeneous . 22
5.2.3 Experiments single server dynamic scheduling 24

5.3 Adaptive model . 26
5.3.1 Experiments single server adaptive scheduling 27

6 Multi server model 30
6.1 Phase-type static multiserver . 30

6.1.1 Method . 31
6.1.2 Evaluating the objective function . 32
6.1.3 Example multiserver n = 3, s = 2, SCV> 1 33

6.2 Experiment multiserver scheduling . 35

7 Including no-shows and walk-ins 37
7.1 Adjusted expected service time . 37
7.2 Extended exponential distribution to hyperexponential distribution 38
7.3 Homogeneous exponential case . 38
7.4 Including no-shows in dynamic model . 39
7.5 Including no-shows in multiserver model . 40
7.6 Experiments including no-shows and walk-ins . 41

8 Conclusion and discussion 46

A Parameters phase-type fit 50

B Objective function 53

C Proof convexity single server 54

Page 2 of 55

1 Introduction

1 Introduction

There are many service systems where appointment scheduling plays a very important role, such as
patients visiting the doctor, patients visiting the dentist or people at home waiting for their package
to be delivered. Another example is the arrival of ships to the harbor in a seaport [2], due to limited
space, ships are scheduled to arrive at the seaport at specific times. Appointment scheduling is a
subject that is widely studied in mathematics. When the service times of the patient or ship at the
harbor are known, it is a problem that is solved by using combinatorial optimization [3]. In the
case that the service times are not known, the case which will be explored in this Bachelor Final
Project, the problem is solved using the theory of queuing systems [4].

When searching for an optimal schedule, the main objective is to properly weigh the interests of
the service provider and its clients. The server wants the service system to be efficient and the
clients want a sufficiently high level of service. Mostly, these two quantities are phrased in terms of
the server’s idle time and the individual client’s waiting time respectively [1]. In order to generate
an optimal schedule, one has the task to define the client’s arrival times that minimize the cost
function that comprises the weighted expected idle time of the server and the expected waiting
times of the clients.

Most studies in the literature focus primarily on static schedules. This means that the client’s
arrival times are determined a priori and are not updated during the makespan. However, as
proven in multiple papers, scheduling static is not the best method. Since for example gains can
be achieved if the schedule is updated [5]. If the server is ahead of schedule, one could let the next
clients arrive earlier, such that the increase of the cost function due to idle time of the server can
be limited. In the situation that one is behind schedule, one could let the next clients arrive later,
such that the increase of the cost function due to waiting time of the clients can be limited.

Moreover, most studies in literature consider the single server setting, despite the fact that this is
not always the most realistic one, as there are settings where a client can be served by different
doctors, for example in first aid. Additionally, most studies assume that all patients arrive, however,
also this seems to be unrealistic for many situations [6].

As discussed in [7] the problem why most of the literature about the appointment scheduling is
not yet applied in practice is that it discusses a too simplified setting of the reality. Therefore we
consider in this Bachelor Final Project not only different scheduling methods for the single server
setting, but also a multiserver setting and we study how no-shows and walk-ins can be dealt with.
Descriptions of the mathematical models and the results of experiments performed with those are
presented. All experiments are written in Wolfram Mathematica 13.1 on a Lenovo Thinkpad P1.

With this Bachelor Final Project we contribute to the already existing literature since we discuss
a lot of different models in one report. We have not found literature that, as we do, discusses both
single server and multiserver models. Moreover we show in Subsection 5.1.3, by means of some
experiments, how appointment scheduling can be used in practice. Furthermore we have derived
a general expression for the expected remaining service time in the adaptive single server model,
provided a worked out example of the multiserver procedure and discussed multiple methods of
including no-shows in one report.

This Bachelor Final Project is organized as follows. First in Section 2 some applicable theory is
discussed. Next, in Section 3 the relevant results from existing literature are discussed. In Section 4
the mathematical model is described. Section 5 discusses different single server scheduling methods
and per method the results of the experiments belonging to it. Moreover, in Section 6 a model
for the multiserver schedule is discussed. Different methods of including no-shows and walk-ins
are described in Section 7. We conclude this Bachelor Final Project in Section 8, in which some
conclusions from the results and ideas for further research are described.

Since most of the literature studied for this Bachelor Final Project is about the healthcare setting,
also this terminology will be used. In other words, the server can be referred to as the doctor, the
clients can be referred to as patients and the service times can be referred to as their treatment
durations.

Page 3 of 55

2 Applicable theory

2 Applicable theory

To make sure that the reader has a basic understanding of the concepts that are used in this
Bachelor Final Project some applicable theory is described in this section. In particular, the
matrix exponential, the continuous phase-type distribution, the concept of fitting a phase-type
distribution and the Kronecker product and sum are described.

2.1 Matrix exponential
The scalar exponential function exp(x) can be represented by the power series

ex = 1 + x+
x2

2!
+ ... =

∞∑
n=0

xn

n!
,

in which x is a number. This definition can be extended for the exponential function for n × n
matrices. So the matrix exponential denoted by exp(A), with A being a n × n constant matrix
equals

eA = I +A+
A2

2!
+ ... =

∞∑
k=0

Ak

k!
,

in which I is the n× n identity matrix [8]. As can be observed, we indicate vectors and matrices
in bold.

2.2 Continuous phase-type distribution
A phase-type distribution is the distribution of the time to absorption in a finite Markov chain
of dimension m + 1. Let {X(t)}t⩾0 be a Markov jump process on the finite state space E =
{1, 2, ...,m,m + 1}, where the states 1, ...,m are transient states and state m + 1 is absorbing.
Then {X(t)}t⩾0 has an intensity matrix of the form

Q =

(
T t

01×m 0

)
.

Here T is a m × m dimensional matrix, t is a m dimensional column vector and 0 is the m di-
mensional row vector of only zeros. Since the intensities of rows must sum to zero, we notice that
t = −T1. The intensities ti are the intensities by which the process jumps to the absorbing state
and are referred to as exit rates. The Ti,j denote the intensities by which the process jumps from
transient state i to transient state j. Lastly, let us define α as the initial probability which is m
dimensional. Since it is a probability vector, all its entries are non-negative and they sum up to 1.
Now the pair (α,T) is called the representation for the phase-type distribution [1, 9].

Next, consider the probabilities pi(t), with i = 1, ...,m, denoting the probability of the Markov
jump process being in transient state i at time t. These probabilities are collected in the vector
p(t), solving the system of differential equations

p′(t) = p(t)T ,

which satisfies the initial condition p(0) = α. This system has the solution p(t) = αe(tT). From
this it follows that the probability that the jump process is not yet absorbed at time t is p(t)1 =
αe(tT)1 = P (X > t). From this the cumulative distribution function and probability density
function can be deduced. The cumulative distribution function is:

P (X ⩽ t) = F (t) = 1−αe(tT)1.

By using etT =
∑∞

i=0
(tT)i

i! and T1+ t = 0 we find the probability density function:

f(t) = F ′(t)

= −αe(tT)T1

= αe(tT)t.

Lastly the expected value of a phase-type distributed random variable is given by α(−T)−11 [9].

Page 4 of 55

2.3 Fitting a phase-type distribution

2.3 Fitting a phase-type distribution
Fitting a phase-type distribution will be used in multiple models that we study. Phase-type distri-
butions are useful since their densities and distribution function can be calculated easily, as shown
in Subsection 2.2. Moreover, any positive distribution can be approximated closely by a phase-
type distribution [5]. As is common in literature, the squared coefficient of variation is used for
phase-type fitting. The SCV, the squared coefficient of variation, is defined as the variance divided
by the square of the mean,

SCV(Bi) =
σ(Bi)

2

µ(Bi)2
=

Var(Bi)

µ(Bi)2
.

Here Bi is a non-negative random variable. We continue by making a case distinction for the
SCV being smaller than, equal to or larger than 1. We briefly discuss how to map the mean and
SCV of a random variable B on the corresponding parameters. In Appendix A a more in-depth
description of how these parameters are determined is provided. If the SCV equals one, both fits
that you would get for SCV larger than 1 or smaller than 1 would also work, however, by doing so
the parameters become unnecessarily difficult [1, 5, 10].

Case 1: SCV equals 1. This is the easiest case. If the SCV equals 1, the standard deviation
and the mean are equal. This means that an exponential distributions fits well.

Case 2: SCV smaller than 1 If the SCV is smaller than 1, we approximate B by a mixture of
two Erlang distributions, denoted by

B ∼ E(K,µ)1{U<p} + E(K + 1, µ)1{U>p}.

for some K ∈ N, µ > 0 and p ∈ [0, 1]. Here E(K,µ) represents an Erlang distributed random
variable with parameters and µ, and U denotes an independent uniform random variable on [0,1].
So with probability p the random variable B equals an Erlang-distributed random variable with
K phases, and with probability 1 − p an Erlang-distributed random variable with K + 1 phases.
The parameters are determined as:

K =

⌊
1

S(B)

⌋
, p =

(K + 1)S(B)−
√
(K + 1)(1−K · S(B))

S(B) + 1
, µ =

K + 1− p

E[B]
.

The corresponding transition matrix T ∈ R(K+1)×(K+1) is


−µ µ 0 · · 0
0 −µ µ ·
· · · ·
· · µ 0
· −µ µq
0 · · · 0 −µ

 ,

with q = 1−p and initial probability distribution γ = (1, 0, ..., 0). The corresponding phase diagram
can be found in Figure 1

Figure 1: Phase diagram mixed Erlang. Figure courtesy of the authors of [11].

Case 3: SCV larger than 1. If the SCV is larger than 1, we approximate B by a hyperexponential
distribution. For some µ1, µ2 > 0 and p ∈ [0, 1],

Page 5 of 55

2.4 Kronecker product and sum

B ∼ exp(µ1)1{U<p} + exp(µ2)1{U>p},

So B equals with probability p an exponentially distributed random variable with mean µ−1
1 and

with probability 1− p an exponentially distributed random variable with mean µ−1
2 . We use the,

so called, balanced means condition to get µ1 and µ2, i.e. µ1 = 2pµ and µ2 = 2(1 − p)µ for some
µ > 0. Using this, we find

p =
1

2

(
1 +

√
SCV − 1

SCV + 1

)
, µ1 =

2p

E[B]
, µ2 =

2(1− p)

E[B]
.

The corresponding transition matrix T ∈ R2×2 is
(
−µ1 0
0 −µ2

)
and γ =

(
p, 1− p

)
. The corre-

sponding phase diagram can be found in Figure 2

Figure 2: Phase diagram hyperexponential. Figure courtesy of the authors of [11].

2.4 Kronecker product and sum
For two matrices A with dimension l × k and B with dimension n×m the Kronecker product ⊗
is defined as

A ⊗ B =


a11B a12B ... a1kB
a21B a22B ... a2kB
.
.
.

al1B al2B ... alkB


and the Kronecker sum is defined as A⊕B = A⊗ In + Il ⊗B [12]. For the matrices

(
a11 a12
a21 a22

)
and

(
b11 b12
b21 b22

)
the Kronecker sum equals

a11 + b12 b11 a12 0
b21 a11 + b22 0 a12
a21 0 a22 + b11 b12
0 a21 b21 a22 + b22

 .

Page 6 of 55

3 Literature overview

3 Literature overview

In this section a brief literature overview will be provided. A more extensive literature overview can
be found in Outpatient scheduling in health care: A review of literature and Outpatient appointment
systems in healthcare: A review of optimization studies [7, 13]. Many papers have appeared in the
literature on appointment scheduling, most of them are motivated by healthcare applications.

The vast majority of the literature considers the single server setting. Moreover, the dominant
approach in literature is the one that considers static scheduling. This means that clients’ arrival
times are determined before the start of the makespan and are not updated meanwhile the server
is serving clients [14, 15, 16, 17, 18]. [16] is known as the first formulation of the single server
environment, by Bailey and Welch. Those authors are known by the Bailey-Welch appointment
rule. They introduced the method in which the makespan is divided in blocks with lengths equal
to the average service time. The first block is booked by at least two patients and the subsequent
blocks are assigned to only one patient, to prevent possible idle times in early stages of the schedule.
By simulation it is found that this method works surprisingly well. In [19] Jo and Lau study
variants on this appointment rule and it is concluded that the three most important factors on the
performance of an appointment schedule are the number of clients to be scheduled, the service-
time variability and no-shows. More recent literature has considered the problem, without the
constraint that appointed arrivals need to be equidistant, see for example [15, 5, 1, 10]. Moreover,
the problem is made tractable by applying approximations or simulations [15, 18]. In 2015 in [20]
the so called Lag order approximation method is presented, that optimizes the arrival times of
clients based on only the last K of his predecessors. Since this method takes less variables into
account, the computation times are lower. In most papers the arrival times are chosen such that
the sum of the waiting time of the clients and the idle time of the server are minimized, this is
called the simultaneous approach. Therefore we want to mention [15], in which both this and
the sequential approach are studied, the approach in which the arrival times of the next client is
scheduled given the arrival epochs of all previous clients.

At first exponential service times were assumed. For example Pedgen and Rosenshine describe in
[14] a method to determine an optimal schedule for n customers, assuming that the customers have
homogeneous exponentially distributed service times. Later on, in multiple papers it is concluded
that in practice the service times are not likely to be exponentially distributed. Therefore phase-
type distributions are often used, as it is known that they approximate positive distributions closely
[14, 15, 18]. Another reason for using the phase-type distribution is that by doing so, tractability
is obtained. This phase-type distribution is fitted based on the SCV. In [7] realistic values for the
SCV are discussed. Generally this value seems to be in the range of 0.35 up to 0.85.

Other approaches than static scheduling for the single server case are also discussed in literature.
Firstly, in [5] an approach, called adaptive scheduling, is discussed that does update the schedule
after the server has already started serving the customers. It does so each τm := m∆ time units,
for some predefined interval length ∆ > 0. It is concluded that the costs of scheduling adaptive are
lower than when scheduling staticly. Secondly, [1] discusses an approach, called dynamic scheduling,
for which no such a priori schedule is made at all. The idea of the approach is that the servers
get jobs one by one, in the sense that at the moment client i enters the system, the arrival time of
client i + 1 is scheduled. This is an example of sequential scheduling, the patients are scheduled
one by one instead of simultaneously. As for adaptive scheduling it is concluded that scheduling
dynamic results in lower costs than scheduling static.

In the field of appointment scheduling that we consider in this Bachelor Final Project, the order
of the clients is given, however, there are papers, such as [21], that also discuss the sequencing
problem. Moreover, some papers that did not consider this problem mainly, still mentioned it
briefly, when considering heterogeneous distributed service times, such as [15].

Less research has been done regarding the multiserver setting. Research about this setting has
mostly been restricted to multistage settings, in which people for example first have a CT-scan and
then have an appointment with the doctor. In Appointment scheduling in healthcare the setting
of two servers in tandem is discussed by Kuiper [22]. Some research about the multiserver setting

Page 7 of 55

3 Literature overview

considers the single-stage multiserver setting, so the setting of multiple parallel servers. In [23] a
multiple server variant of the phase-type model is discussed.

Other papers discuss further extensions to make the setting more useful in practice by, for example,
including no-shows and walk-ins. The literature on including no-shows can basically be split in two
categories. One part uses adapted values for the quantities, such as the mean value and variance,
that are needed to make a schedule. [10] fits in this category, since they perform a phase-type fit
with an adapted mean value, variance and SCV of the expected service time of a client. Literature
from the second category considers including a factor p, and/or q for the probability that there is
a no-show or a walk-in. In [24] the case with homogeneous exponentially distributed service times
including no-shows is discussed using this method. This is done for the phase-type single server
case in [22]. Even in the multiserver setting no-shows are included [23]. The method applied in
this paper also falls in the latter category.

All of the literature works with a certain objective function for the costs that has to be minimized.
The exact function that is used differs a lot. Mostly it is a combination of the expected idle times
of the server and the expected waiting times of the clients. Sometimes also the overtime, the extra
time that is needed to serve all patients compared to the scheduled endtime, is included. However,
by [15], this is not needed, since it has a similar effect as assigning a higher weight to the idle times
in the objective function.

Since the goal is to optimize the objective function it is important to know whether this function
is convex1. For the single server appointment scheduling problem in continuous time, strong
arguments have been giving that it is convex [10]. A proof has been added as an appendix, see
Appendix C. For the multiserver case such a proof has not been written yet. This is due to the fact
that most proofs for the single server case rely on keeping track of the work load per slot by the
Lindley recursion, but this does not work since the variables for clients waiting times and servers’
workload do not coincide in a multiserver setting [23]. Since in [23] they have strong reason to
believe that their solutions are global optima, they believe their multiserver setting is convex.

One of the earlier mentioned reviews of existing literature has the interesting conclusion that
despite the large amount of published theoretical work, the use in practice has been very limited.
According to this paper the main goal of further research should be to close this gap between
theory and practice [7].

1In optimization a convex function is known as a function with the property that every optimum is a global
optimum.

Page 8 of 55

4 Mathematical model

4 Mathematical model

In this section the modelling framework will be described that is used in this Bachelor Final
Project. This setting is intensively used in literature about appointment scheduling. Everything
that is stated in this section is applicable for the single server setting, however, this does not hold
for the multiserver setting. If something is not applicable it is explicitly mentioned.

As stated in the introduction, in order to generated an optimal schedule, one has the task to define
the clients’ arrival times that minimize the cost function. We consider a sequence of n ∈ N clients
with service times that are represented by the independent and non-negative random variables
B1, B2, ..., Bn. A schedule is then defined as an increasing sequence of arrival times t1, ..., tn at
which the n clients are supposed to arrive at the server. The times are typically chosen such that
there is a balance between the interests of the server and the clients. For both parties the goal is
to have the least amount of costs, defining the costs for the service provider to be the sum of the
idle times and the costs for the clients to be the sum of their waiting times. This results in the
following cost function, from now on referred to as the objective function,

C[x1, x2, ..., xn] = ω

n∑
i=1

E[Ii] + (1− ω)

n∑
i=1

E[Wi], (4.1)

with Ii the idle time of client i, Wi the waiting time associated with client i and ω a variable factor
to define which of the latter two quantities is the most important in the weighted sum. There
are a lot of variations possible for such an objective function. For example the objective function
could be quadratic or overtime could be included. However, the variant above, Equation (4.1),
will be used in this Bachelor Final Project. Therefore a more detailed explanation of the different
possibilities for the objective function can be found in Appendix B. For this objective function
it holds that when ω approaches 1, i.e. the situation in which the value of the objective function
is essentially determined by the idle times only,

∑n
i=1 E[Wi] explodes. This rule is also known as

the utilization law of Hopp and Spearman [22]. On the other hand, when ω approaches 0, i.e. the
situation in which the value of the objective function is essentially determined by the waiting times
only,

∑n
i=1 E[Ii] increases extremely.

The arrival epoch of client i will be denoted by ti. Clearly t1 is always set equal to 0 and so
E[Ii] = 0, in order to minimize the objective function. The interarrival times ti − ti−1 are denoted
by xi, with x1 = 0. For an illustration of the introduced quantities see Figure 3.

Figure 3: Illustration of the quantities in a single server setting for appointment scheduling. Figure
courtesy of A.Kuiper [22].

Since we aim to minimize our objective function, it is important to know whether the function is

Page 9 of 55

4 Mathematical model

convex in its arguments, because in that case we are sure that such a (unique) minimum can be
found. Since a proof for the single server case is written in [10], we do not discuss that proof in this
Bachelor Final Project, but it can be found in Appendix C. For the multiserver case such a proof
is not written yet. However, due to some assumptions that are made, the model that we describe
in Subsection 6.1 is assumed to be convex [23].

An interesting quantity for appointment scheduling is the time needed until the last client has left
the system, called the schedule’s makespan. This can be expressed in multiple ways:

n∑
i=1

Ii +

n∑
i=1

Bi = tn +Wn +Bn =

n∑
i=1

xi +Wn +Bn; (4.2)

here the lefthand side follows from the observation that during the whole makespan, the server is
either busy serving a client or not. Therefore the makespan is the sum of the service times (the
time that the server is busy) and the idle times (the time that the server is not busy). The other
two expressions follow from the realization that the makespan equals the arrival time of the last
client increased by their service time and possible waiting time. The arrival time of the last client
can either be expressed as tn or the sum of all interarrival times,

∑n
i=1 xi. In the single server case

we have, due to Lindley’s recursion, the following equalities for the idle and waiting times

Ii = max{ti − ti−1 −Wi−1 −Bi−1, 0}

and

Wi = max{Wi−1 +Bi−1 − ti + ti−1, 0},

or, when we use xi for the interarrival times,

Ii = max{xi −Wi−1 −Bi−1, 0} (4.3)

and

Wi = max{Wi−1 +Bi−1 − xi, 0}. (4.4)

In the multiserver setting those equalities don’t hold as the variables for the waiting time of the
clients and the servers’ workload do not coincide.

Now we will show how the objective function can be rewritten such that the problem is refor-
mulated in the expected sojourn times only. This version of the objective function is important
for the phase-type case of the single server model and the same method is used for other models
to rewrite the objective function.
The sojourn time is the total time that a client is in the system. This can be denoted as
Si = Wi + Bi. This and the equations for Ii, Wi and Si are very useful when evaluating the
objective function in the phase-type case, since we can rewrite the objective function in terms of
the expected sojourn times of the clients, which will be done as follows. Let us have a look at the
time at which client i leaves the system. This time is equal to the sum of all service and idle times
corresponding to all clients up to and including this client. Hence, for j = 1, ..., n we have

j∑
i=1

Bi +

j∑
i=1

Ii,

which can be rewritten as tj + Sj , so as the sum of the time that client j arrives and the sojourn
time of client j (This fact can also be observed from Figure 3). From this equality it can be
concluded that we can express the (expected) waiting and idle times in terms of the (expected)
sojourn times. Obviously E[W1] = E[I1] = 0 and for i = 2, ..., n,

E[Wi] = E[Si]− E[Bi], E[Ii] = ti + E[Wi]− (ti−1 + E[Si−1]). (4.5)

Page 10 of 55

4 Mathematical model

The expression for the expected idle time can be interpreted as the expected difference between
the service completion of client i − 1 and the start of service of client i. As can be observed, we
have now rewritten the quantities E[Wi] and E[Ii] in terms of only the arrival times (ti and ti−1),
which are the values we will optimize, the expected service times E[Bi], which are given and the
expected sojourn times E[Si], which we can calculate. So it becomes clear that this reformulation
makes it easier to evaluate the objective function. Using those equalities, our objective function
becomes:

C[x1, x2, ..., xi] = ω

n∑
i=1

E[Ii] + (1− ω)

n∑
i=1

E[Wi]

= ω

n∑
i=1

(ti + E[Wi]− (ti−1 + E[Si−1])) + (1− ω)

n∑
i=1

(E[Si]− E[Bi])

= ω

n∑
i=1

(ti + E[Si]− E[Bi]− (ti−1 + E[Si−1])) + (1− ω)

n∑
i=1

(E[Si]− E[Bi])

= ω

n∑
i=1

(ti − ti−1 + E[Si]− E[Si−1]− E[Bi]) + (1− ω)

n∑
i=1

(E[Si]− E[Bi])

= ω

(
tn + E[Sn] +

n∑
i=1

(−E[Bi])

)
+ (1− ω)

n∑
i=1

(E[Si]− E[Bi])

= ω

(
n∑

i=1

xi + E[Sn]−
n∑

i=1

E[Bi]

)
+ (1− ω)

n∑
i=1

(E[Si]− E[Bi]). (4.6)

There are more options to rewrite our objective function. If another rewritten version is used for
a model, this is stated in the corresponding section. Lastly we will define the assumptions under
which we investigate the problem, they are listed below:

1. The number of servers, s, equals one.

2. The order of the served clients is fixed, i.e. The service order of the clients is first appoint-
ment, first serve.

3. The clients are punctual, i.e. client i arrives at its assigned time ti.

4. The server is punctual, i.e., if the server is idle and a client arrives, the server will immediately
start serving the client.

5. There is no additional stream of urgent arrivals, i.e. walk-in clients.

6. All clients show up for their appointment, i.e., the model does not include no-shows.

7. The service times of the customers are modelled by a probability distribution. Unless stated
otherwise, the service times for all customers are i.i.d.

From those assumptions it becomes clear that we study a queue with fixed arrival times, random
general distributed service times and one server. Further on in this Bachelor Final Project some
of those restriction will be relaxed, in particular the first, fifth and sixth, such that our results will
become more applicable to practical situations.

Page 11 of 55

5 Single server models

5 Single server models

In this section a static, a dynamic and an adaptive model for the single server case will be described.
Next to the mathematical descriptions also some experiments executed for those models will be
discussed.

5.1 Static model
The static model is also called the ‘a priori’ model. Using this model, the optimal arrival times are
determined before the server has started serving the customers and they can not be changed after
the process of serving has started. In this subsection a static model for the exponential homogeneous
and phase-type case will be discussed. After a description of the mathematical model of those cases,
also the results of some experiments are presented in Subsection 5.1.3. First some experiments are
performed that provide the reader with some general knowledge on appointment scheduling. After
those, we also describe, by means of some experiments, how appointment scheduling can be used
in practice.

5.1.1 Exponential homogeneous

For the exponential homogeneous case we studied the model described in the paper Scheduling
arrivals to queues written by Claude Dennis Pegden and Matthew Rosenshine [14]. This paper
considers the problem of finding an optimal schedule for n arriving customers to a server. The goal
is finding the schedule for the n customers which minimizes the total system cost which comprises
the customer waiting time and the server’s availability. Their objective function differs from ours,
see Equation (4.1), since they take into account the server’s availability instead of the servers idle
time, but of course the described algorithm for finding the schedule is still applicable. First we
look at how we have rewritten our objective function to make the model applicable and then we
look at the algorithm for calculating the schedule.

We have rewritten our objective function as follows:

C[x1, x2, ..., xi] = ω

n∑
i=1

E[Ii] + (1− ω)

n∑
i=1

E[Wi]

= ω

n∑
i=1

(ti + E[Wi]− (ti−1 + E[Si−1])) + (1− ω)

n∑
i=1

E[Wi]

= ω

n∑
i=1

(ti + E[Wi]− (ti−1 + E[Wi−1] + E[Bi−1])) + (1− ω)

n∑
i=1

E[Wi]

= ω

n∑
i=1

(
ti + E[Wi]−

(
ti−1 + E[Wi−1] +

1

µ

))
+ (1− ω)

n∑
i=1

E[Wi]

= ω

n∑
i=1

(
ti + E[Wi]− ti−1 − E[Wi−1]−

1

µ

)
+ (1− ω)

n∑
i=1

E[Wi]

= ω

n∑
i=1

(
x[i− 1] + E[Wi]−

(
E[Wi−1] +

1

µ

))
+ (1− ω)

n∑
i=1

E[Wi]. (5.1)

We have done this such that the objective function is rewritten as a function of only the waiting
times, since the E[Bi−1]’s are known and the arrival times, the t′is, are the values that we are
optimizing.

To be able to calculate the value of the objective function, the expected waiting times should be
computed first. For this, we have used the algorithm of Pegden and Rosenshine. Before diving
into the mathematics it is important to mention that the definition of xi in this paper is different
from most literature. In the paper of Pegden and Rosenshine xi is the time interval between the
scheduled arrival times of the i-th and the (i + 1)-th customer, instead of between the (i − 1)-th
and i-th customer.

Page 12 of 55

5.1 Static model

Now we will describe how the expressions for the waiting times as functions of the interarrival
times can be derived. An important quantity for this is N(ti), which is defined as the number of
customers in the system just prior to the time of the i-th arrival. Since the expected service times
of all clients are the same, the expected waiting time for customer i arriving at time ti depends
only upon the number of customers in the system at time ti. This gives the following expression
for the waiting times:

wi =

i−1∑
j=1

(
j

µ

)
P(N(ti) = j), with j ∈ {0, ..., n− 1}. (5.2)

From now on a case distinction is made for j = 0 and for j > 0. For both cases it will be shown
how the values of P(N(ti) = j) are derived and the probability will be computed from the state
probabilities at time ti−1.

Case j > 0 In this case the probability can be written as

P(N(ti) = j) =

i−j−1∑
k=0

P(j + k − 1 customers in the system just prior to (i− 1)-st arrival)

× P(k departures between the (i− 1)-st and the i-th arrival).

=

i−j−1∑
k=0

(µxi−1)
k

k!
e−µxi−1P(N(ti−1) = j + k − 1) with j > 0, i ⩾ 2. (5.3)

Here the probability that there are k departures between the (i− 1)-st and the i-th arrival equals
the probability that exactly k events in a Poisson process with rate µ happen.

Case j = 0 Observe that N(ti) = 0 if there are k − 1 customers in the system just prior to the
(i− 1)-st arrival and the service times between the (i− 1)-st and the i-th arrival are such that the
sum of k service times is less than xi−1. So if j = 0, the probability P(N(ti) = j) can be obtained
as follows:

P(N(ti) = 0) =

i−1∑
k=1

P(k − 1 customers in the system just prior to the (i− 1)-st arrival)

× P(time between (i− 1)-st and the i-th arrivals is sufficient for k or more departures)

=

i−1∑
k=1

P(N(ti−1) = k − 1)

∞∑
l=k

(µxi−1)
le−µxi−1

l!

=

i−1∑
k=1

P(N(ti−1) = k − 1)

(
1−

k∑
l=0

(µxi−1)
le−µxi−1

l!

)
with i ⩾ 2 . (5.4)

This all results in the following algorithm to derive the expression for the waiting times of all
clients.

Algorithm 1 Expected waiting times for exponential homogeneous static case
1: Set w1 = 0.
2: Set P{N(t1) = 0} = 1
3: for i = 2, 3, ..., n do
4: for j = 0, ..., i− 1 do
5: P(N(ti) = j) =

∑i−j−1
k=0

(µi−1)
k

k! e−µxi−1 · P(N(ti−1) = j + k − 1)
6: end for
7: end for
8: for i = 2, 3, ..., n do
9: wi =

∑i−1
j=1(

j
µ) · P(N(ti) = j)

10: end for
11: Return w1,, wn.

Page 13 of 55

5.1 Static model

Now the expressions for the waiting times are derived and the optimal schedule is determined by
first inserting the expressions of the waiting times in the objective function and then optimizing
this function with respect to ti with i ∈ {1, ..., n} as variables.

5.1.2 Phase-type distributions

As stated in the literature overview it is not realistic to assume that the service times are expo-
nentially distributed, therefore we also discuss the phase-type case. In this subsection a model
that can be used to derive a static schedule when the service times are phase-type distributed is
described and in an example it is shown what some of the matrices that are used look like in the
hyperexponential case. In Section 2 it is already described how a phase-type distribution can be
fitted when the mean and variance of all service times are known. In this subsection we will present
a method to derive the expected sojourn times of all clients. As described in Section 4 the value
of the (rewritten) objective function can then be calculated and thus the optimal schedule can be
obtained. The procedure presented in this section is the one described in [5].

For all clients that are to be scheduled their phase-type fit is derived as described in Section 2 and
therefore Bi ∼ PHdi(γi,Ti) for i ∈ {1, ..., n}. Given the schedule t1, ...tn, let xi = ti − ti−1 be the
i-th interarrival time. Furthermore let Ni(t) denote the number of clients in the system at the
shifted time t ∈ [0, xi+1), so t time units after the arrival of the i-th client and let Zi(t) denote the
phase the client in service is in at the same time t. When the system is idle, so when no client is in
service, we set Zi(t) = 0. Now denote the probability that the system is in state (k, z) at shifted
time t by

p
(i)
kz (t) := P (Ni(t) = k, Zi(t) = z) , with i = 1, ..., n, k = 1, ..., i and z = 1,di−k+1.

Observe that if Ni(t) = k, so if there are k clients in the system at shifted time t, then the index
of the client is service is i− k+1. Furthermore, observe that this probability is only defined when
the system is busy, so when the server is serving a job, since the only case for which the probability
is not defined is (0, 0). Now the sojourn time distribution Fi(t) of the i-th client equals

Fi(t) : = P(Si ⩽ t)

= 1− P(Si > t)

= 1−
i∑

k=1

di−k+1∑
z=1

p
(i)
kz (t)

= 1− Pi(t)1∑i
k=1 dk

= 1− Pi(t)1Di , (5.5)

here Pi(t) is defined as

Pi(t) := lim
s↑t

(
p
(i)
i,1(s), . . . , p

(i)
i,d1

(s), p
(i)
i−1,1(s), . . . , p

(i)
i−1,d2

(s), . . . , p
(i)
1,1(s), . . . , p

(i)
1,di

(s)
)
,

Di :=
∑i

k=1 di and 1d denotes the all-ones vector of dimension d ∈ N. Recall that di denotes
the dimension of γi. Now, the expected sojourn times of all clients i = 1, ..., n at time t ⩾ 0 are
calculated using Algorithm 2 [5].

Page 14 of 55

5.1 Static model

Algorithm 2 Expected sojourn times in phase-type single server case
1: G1 = γ1

2: Set V1 = T1

3: for i = 2, 3, ..., n do
4: Gi = [Pi−1 (xi) ,γiFi−1 (xi)] ;

5: Vi =

 Vi−1
0Di−2×di(

−Ti−11di−1

)
γi

0di×Di−1
Ti

 ;

6: Pi(t) = Gi exp (Vit) ;
7: Fi(t) = 1− Pi(t)1Di

8: end for
9: for i = 1, ..., n do

10: E[Si] = −GiV
−1
i 1Di

11: end for
12: Return E[S1], ...,E[Sn].

The theory about continuous phase-type distributions from Subsection 2.2 is extremely useful for
understanding how the expressions in line 4-7 and 10 are derived. The recursion for Gi can be
explained by the fact that when client i arrives at time xi there are two possible scenarios. Either a
previous client is still in service and thus client i needs to wait or the service of all previous clients
has been completed, with probability Fi−1(xi), and thus client i immediately goes into service.
The recursion for Vi can be explained by the same argument. To get a better feeling for how the
recursion works and what the matrices look like, an example is worked out in Example 1.

Since the expressions for the expected sojourn times are derived, the optimal schedule can now
be derived by first inserting those expressions in the objective function and then optimizing this
function with respect to ti with i ∈ {1, ..., n} as variables. For this, the rewritten version of the
objective function as described in Section 4 is used.

Example 1. Algorithm 2 for fitted hyperexponential
Assume that client i = 1 and i = 2 both have a SCV such that a hyperexponential distribution
is fitted. Then we get, by Algorithm 2, the following matrices. Since both clients get a
hyperexponential fit Gi = γ1 =

(
p1 (1− p1)

)
, γ2 =

(
p2 (1− p2)

)
,

V1 = T1 =

(
−µ1,1 0
0 −µ1,2

)
and T2 =

(
−µ2,1 0
0 −µ2,2

)
.

For client i = 1 we then get:

P1 = γ1exp(V1t) =
(
p1 (1− p1)

)
·
(
e−µ1,1 0

0 e−µ1,2

)
=
(
p1 · e−µ1,1 (1− p1) · e−µ1,2

)
and

Fi(t) = 1− Pi(t)1Di = 1− p1 · e−µ1,1 − (1− p1) · e−µ1,2 .

For client i = 2 we then get:

G2 = [P1 (x2) ,γ2F1 (x2)] =
(
pe−µ1,1t (1− p)e−µ1,2t p2F1(x2) (1− p2)F1(x2)

)
,

V2 =


−µ1,1 0 µ2,1γ2,1 µ2,1γ2,2

0 −µ1,2 µ2,2γ2,1 µ2,2γ2,2

0 0 −µ2,1 0
0 0 0 −µ2,2

 and

P2(t) = G2 · exp(V2t).

.

Page 15 of 55

5.1 Static model

5.1.3 Experiments single server static scheduling

In this subsection the results of some experiments performed for the static single server case are
discussed. The first two provide the reader some general results of appointment scheduling in the
single server case, the next three experiments provide an example of how appointment scheduling
can be used in healthcare. As for all experiments in this Bachelor Final Project it holds that, when
not stated otherwise, n = 5, s = 1, ω = 0.5.

Experiment 5.1 Dome-shape
In this first experiment we have studied the interarrival times of the optimal schedule when schedul-
ing static using the model for homogeneous exponential distributed service times described in Sub-
section 5.1.1 with as parameter E[Bi] = 1 for i ∈ {1, ..., 5}. When applying this method we yielded
the following plot.

0 1 2 3 4
Interarrival

0.6

0.8

1.0

1.2

1.4

Interarrival time

Figure 4: Interarrival times static scheduling Experiment 5.1.

As can be seen in Figure 4, the interarrival times have a so-called dome-shape [10]. The optimal
interarrival times increase in the beginning and decrease towards the end of the schedule. The
short interarrival times in the beginning can be explained by the fact that the risk of waiting is
relatively low, since there are less clients scheduled before you. The short interarrival times at
the end can be explained by the fact that there are less clients after you, so only a few clients
are suffering from the possibly high waiting times. In the middle the interarrival times are nearly
constant. This result becomes more clear when looking at the interarrival times for higher values
of n, see Figure 5. This phenomenon is studied more in depth by Kuiper, Kemper and Mandjes in
[15], that discusses stationary schedules.

0 2 4 6 8
Interarrival

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Interarrival time

(a) Case n = 10.

0 2 4 6 8 10 12 14
Interarrival

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Interarrival time

(b) Case n = 15.

Figure 5: Interarrival times exponential homogeneous static scheduling.

Experiment 5.2 Influence ω, variance and mean
In this experiment we study the influence of the expected value of the service time, ω and variance
of the service time on the interarrival times and costs. We have used the exponential homogeneous
model for checking the influence of the first two quantities and the phase-type model is used for
checking the influence of the latter one. If not stated otherwise E[Bi] = 1 for all i. The interarrival
times for different expected values and ω’s can be found in Figure 6.

Page 16 of 55

5.1 Static model

E[Bi] = 1

E[Bi] = 1.5

E[Bi] = 0.5

0 1 2 3 4
Interarrival

0.5

1.0

1.5

2.0

2.5

Interarrival time

(a) Interarrival times for different E[Bi]’s.

ω = 0.2

ω = 0.4

ω = 0.6

ω = 0.8

0 1 2 3 4
Interarrival

0.5

1.0

1.5

2.0

2.5

Interarrival time

(b) Interarrival times for different ω’s.

Figure 6: Interarrival times for varied E[Bi] or ω.

As is generally known, it can be observed that when the expected value gets higher or the value
of ω gets lower, the interarrival times increase. It is intuitive that when the patients have a
higher expected service time, their interarrival times increase. The second observation can also be
explained easily. As ω increases in our objective function, see Equation (4.1), it means that the
waiting times get less important and the idle times get more important for the costs and thus you
want to prevent having those. Therefore the interarrival times will decrease.

E[Bi] 0.5 1.0 1.5
cost 0.94 1.88 2.51

Table 1: Costs for E[B] ∈ {0.5, 1.0, 1.5}.

ω 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
costs 0.98 1.46 1.74 1.87 1.88 1.78 1.56 1.21 0.71

Table 2: costs for ω ∈ {0.1, ..., 0.9}.

From Table 1 it can be observed that costs become higher when the expected service time per
client increases. This seems intuitive, since for example waiting times can be much larger. From
Table 2 it can be observed that when ω = 0.5 the costs are higher than for any other value of ω,
when this value increases or decreases the costs will get lower. This has also been observed when
n or E[B] had different values. It can be explained by the fact that when ω = 0.5 there is no
preference between idle times and waiting times. Lastly we look at the influence of the variance.
As in the literature, it is found that the variance has a high influence on the costs, as can be seen
in Table 3, but not that much on the interarrival times, as can be seen in Table 7.

Variance costs
0.5 1.337
1 1.881

1.5 2.181
2 2.398

Table 3: Costs when variance ∈ {0.5, 1, 1.5, 2}.

Var[B] = 0.5

Var[B] = 1

Var[B] = 1.5

Var[B] = 2

0 1 2 3 4
Interarrival

0.8

1.0

1.2

1.4

1.6

Interarrival time

Figure 7: Interarrival times when variance
∈ {0.5, 1, 1.5, 2}.

For the following experiments information found about the mean service times for appointments
with the general practitioner in different countries is used. In [25] a cross sectional study in six
European countries of the consultation length in general practice is described. For this research

Page 17 of 55

5.1 Static model

consultations at a general practice are filmed, which is according to [26] the best method of re-
searching such consultations. For us the main interest is Table 4, that provides the mean and
standard deviation of the consultation length of six different countries, since we can use these val-
ues to perform a phase-type fit and therefore find an appropriate distribution. Those values result
in SCV’s in the range from 0.20 up to 0.40, consistent with [7], where it is stated that CV values
of the consultation length are typically in the range from 0.35 up to 0.85 and thus the SCV’s are
typically in between 0.1225 and 0.7225.

Country Mean Standard deviation
Germany 7.6 4.3

Spain 7.8 4.0
Netherlands 10.2 4.9

Belgium 15.0 7.2
Switzerland 15.6 8.7

Overall 10.7 6.7

Table 4: Mean and standard deviation of consultation length in general practice of six countries
[25].

Experiment 5.3 Costs and interarrival times of different countries
In this experiment we want to calculate the cost and interarrival times, when scheduling statically,
when patients are from different countries using the phase-type approach. It is expected that those
values are different, since this is basically just static scheduling with different values for the mean
and variance and thus for the SCV. Observe that in Table 4 the standard deviation is given, but
the variance is needed so therefore we need to square this value. In Figure 8 the costs and the
interarrival times are presented when a schedule is made for the different countries with n = 5 and
ω = 0.5. From Figure 8 it can be observed that the optimal schedules for the different countries
indeed differ. Moreover, it can be observed that the minimal costs increase when the variance
increases and the interarrival times increase when the mean consultation length increases.

(a) Costs of Experiment 5.3. (b) Interarrival times of Experiment 5.3.

Figure 8: Costs and interarrival times of Experiment 5.3.

Experiment 5.4. Expected sojourn time distribution and expected makespan
In Subsection 5.1.2 we described a method to calculate the expected sojourn time. When adding
this quantity from the last client and all the planned interarrival times, the expected total time
that the server needs to serve all clients, the makespan, can be calculated. In the same section, an
expression for the sojourn time distribution is given in Equation (5.5). This function can be used
to calculate the distribution of the makespan. In this experiment we show the calculations for both
quantities for the Netherlands, n = 5 and ω = 0.5. For this case the costs and interarrival times are
presented in Figure 8. Using those interarrival times, mean and variance of the consultation length
for all 5 clients, the expected sojourn time of the last, the fifth, client is calculated, resulting in
E[S5] = 13.2501. This means that we expect the doctor to be done with serving those five clients
at t =

∑4
i=1 xi + E[S5] = 60.39 minutes. The distribution of the sojourn time of client i can be

Page 18 of 55

5.1 Static model

calculated as follows:

Fi(t) : = P(Si ⩽ t)

= 1− P(Si > t)

= 1−
i∑

k=1

di−k+1∑
z=1

p
(i)
kz (t)

= 1− Pi(t)1∑i
k=1 dk

.

The sojourn time distribution of our last, fifth, client is plotted in Figure 9.

Figure 9: Sojourn time distribution of client i = 5 in case n = 5 and ω = 0.5 in the Netherlands.

If the doctor wants to be 95 percent sure about his end time, he wants P(Si ⩽ t) to be at least
0.95. It is found that from t = 27 min onwards P(S5 ⩽ t) > 0.95, so the doctor should use this
value to calculate the length of the makespan such that he is 95 percent sure about being finished
at that time. Thus the doctor should take as planned makespan t =

∑4
i=1 xi+27 = 74.14 minutes.

Experiment 5.5. Advised amount of clients to be scheduled
This last experiment is thought of because in a real life situation it would be likely that a general
practitioner is interested in knowing how many patients he should schedule to be 95 percent sure
that he is done serving all clients at the end of his workday. Most general practitioners work
from around 8:00 until 17:00 with a one hour break, which would result in a workday of 8 hours.
In the Netherlands it is then expected, using the values from Table 4, that around 45 patients
can be scheduled using the information from [25]. Since our code would run for too long, due to
possibly extremely large matrices and the fact that efficiency of the code did not have priority, the
experiment is executed for 1 hour instead of 8 hours. Hence the goal is to calculate how many
patients can be scheduled such that we can be 95 percent sure that the doctor is done serving
patients at t = 60 min, for the case that we look at the Netherlands and take ω = 0.5. Therefore
for n = 1, ..., 5 the value of P(

∑n−1
i=1 xi + Sn ⩽ 60) is calculated. A plot has been made from

the probability that the last client is served at time t, see Figure 10. Here probMn is defined as
P(
∑n−1

i=1 (xi + Sn) ⩽ t). Since from n = 4 onwards the probability that the last client is served at
t = 60 is less than 0.95, the doctor will be advised to schedule 3 patients.

Page 19 of 55

5.1 Static model

0 10 20 30 40 50 60
t

0.2

0.4

0.6

0.8

1.0

probMn

n = 1

n = 2

n = 3

n = 4

n = 5

Figure 10: Makespan distribution for n = 1, ..., 5 in case n = 5 with ω = 0.5 in the Netherlands.

Page 20 of 55

5.2 Dynamic model

5.2 Dynamic model
In this section we describe the dynamic method for the case of homogeneous and heterogeneous
exponentially distributed service times as in [1], in which a technique is set up to determine the
optimal arrival time of the next client. The dynamic approach is a sequential approach as the n-th
client is scheduled after the (n − 1)-st client has arrived. You are thus scheduling knowing that
you will schedule again, when the next client arrives. Since the n-th client is scheduled after the
(n− 1)-st client has arrived, there is less uncertainty than in the static case, so it is expected that
the costs will be lower, which is the main advantage of scheduling dynamic instead of static. The
main disadvantage is that, since the n-th client is scheduled after the (n− 1)-st client, the clients
have to be free all day, since they do not know when they are scheduled. First we will look at the
exponential homogeneous case, then at the exponential heterogeneous case and lastly we discuss
some experiments performed with those models.

5.2.1 Exponential homogeneous

In the case of exponentially distributed service times, the state of the system is just the number of
clients that are waiting, since the elapsed service time of the client in service is irrelevant due to
the memorylessness property. Recall that the memorylessness property states that if we define X
as an exponential random variable, then P(X > x+ a|X > a) = P(X > x), for a, x ⩾ 0. We want
to evaluate the costs between the arrival of the i-th client and the (i+1)-st client. We identify time
0 with the arrival of client i and we assume that immediately after this arrival there are k clients
in the system. Time t is then defined as the time at which (i+ 1)-st client is scheduled to arrive.
Moreover, we define Ns as the number of clients in the system at time s ∈ [0, t] including the client
that is in service. The contribution of the idle time to the cost function due to the interval [0, t] is
ωfk(t) with

fk(t) :=

∫ t

0

E(1{Ns=0}|N0+ = k)ds

=

∫ t

0

P(Ns = 0|N0+ = k)ds

= t · (1− Fµt(k − 1))− k

µ
· (1− Fµt(k)), (5.6)

for k = 1, ..., i and t ⩾ 0. Here Fµ(k) := P(Pois(µ) ⩽ k) denotes the distribution function of a
Poisson random variable with mean µ. The contribution of the waiting time to the cost function
due to the interval [0, t] is (1− ω)gk(t) with

gk(t) : =

∫ t

0

k−1∑
l=0

(k − l − 1)E(1{Ns=k−l}|N0+ = k)ds

=

∫ t

0

k−1∑
l=0

(k − l − 1)E(1{Ns=k−l}|N0+ = k)ds

= (k − 1)t · Fµt(k − 1)− µt2

2
· Fµt(k − 2) +

k(k − 1)

2µ
· (1− Fµt(k)), (5.7)

for k = 1, ..., i and t ⩾ 0 (see [1]). The last important quantity are the transition probabilities

pkl(t) := P(Nt+ = l|N0+ = k) for k = 1, ..., i and l = 1, ..., k + 1.

Their explicit form is described as:

pk1(t) =

∞∑
m=k

e−µt (µt)
m

m!
, pkl(t) = e−µt (µt)k−l+1

(k − l + 1)!
, (5.8)

for k = 1, ..., i and l = 2, ..., k + 1 and t ⩾ 0. These can be derived easily. The first quantity in
Equation (5.8) can be explained by pk1(t) being a Poisson process, where at least k events must

Page 21 of 55

5.2 Dynamic model

occur in the time interval [0, t]. The second quantity in Equation (5.8) one can be explained by
pkl(t) being a Poisson process, where exactly k− l+1 events must occur in the time interval [0, t].
The dynamic programming algorithm to find the optimal arrival time of the next client is then
defined as described in Algorithm 3. Here Ci(k) with i = 1, ..., n and k = 1, ..., i defines the cost
incurred from the arrival of the i-th client, given that there are k clients in the system immediately
after the arrival of this i-th client.

Algorithm 3 Dynamic program exponential homogeneous case
Let fk(t), gk(t) and pkl(t) be given as described above. We can determine the Ci(k) recursively for
i = 1, ..., n− 1 and k = 1, ..., i

Ci(k) = inf
t⩾0

(ωfk(t) + (1− ω)gk(t) +

k+1∑
l=1

pkl(t)Ci+1(l)))

whereas, for k = 1, ..., n,

Cn(k) = (1− ω)gk(∞) = (1− ω)
k(k − 1)

2µ
.

Instead of using gk(t) also hk, defined as hk = k−1
µ , can be used. This denotes the expected waiting

time of a client if the number of clients immediately after his arrival is k instead of the expected
waiting time by all customers in the system between two subsequent arrivals, given that there are
k clients present at the beginning of the slot.

5.2.2 Exponential heterogeneous

In this subsection the dynamic programming approach is discussed in the case of heterogeneous
exponentially distributed service times, as presented in [1]. The same approach as for homogeneous
exponentially distributed service times, as in Subsection 5.2.1, will be used. We will define fki(t)
and gki(t), the counterparts of fk(t) and gk(t) and the transition probabilities. But before doing
so we will first have a look at how the density of the sum of independent exponential random
variables can be written as a mixture of exponential terms, a fact that we will extensively use for
the expressions of the latter quantities.

As equivalent to notation in previous sections, the means of the B′
is are denoted by 1

µi
∈ (0,∞)

for client i = 1, ..., n. Let

φkl(s) :=
d

ds
P

k+l∑
j=k

Ej ⩽ s


denote the density of the sum of independent exponentially distributed random variables, with Ej

denoting an exponentially distributed random variable with mean 1
µj

. This density can also be
written as a mixture of exponential terms:

φkℓ(s) =

k+ℓ∑
j=k

ckℓje
−µjs,

for k = 1, 2, . . . and ℓ = 0, 1, . . . and s ⩾ 0, there are constants ckℓj ∈ R. The coefficients ckℓj are
given recursively through ck0k = µk and

ck,ℓ+1,j = ckℓj
µk+ℓ+1

µk+ℓ+1 − µj
for j = k, . . . , k + ℓ, ck,ℓ+1,k+ℓ+1 =

k+ℓ∑
j=k

ckℓj
µk+ℓ+1

µj − µk+ℓ+1
.

Now we will define the counterpart of the quantities fk(t) and gk(t) of Subsection 5.1.1. For fki(t)

Page 22 of 55

5.2 Dynamic model

we have

fki(t) :=

∫ t

0

Pi(Ns = 0|N0+ = k)ds

=

∫ t

0

P

 i∑
j=i−k+1

Ej ⩽ s

 ds

=

∫ t

0

i∑
j=i−k+1

ci−k+1,k−1,j

∫ s

0

e−µjudu ds

=

i∑
j=i−k+1

ci−k+1,k−1,j

∫ t

0

ψj(s)ds

= t−
i∑

j=i−k+1

ci−k+1,k−1,j

µj
ψj(t) (5.9)

with

ψj(t) :=

∫ t

0

e−µjsds =
1− e−µjt

µj
.

And for gki(t) we get

gki(t) :=

∫ t

0

k−1∑
l=0

(k − l − 1)Pi(Ns = k − l|N0+ = k)ds

=

∫ t

0

k−1∑
l=0

(k − l − 1)

∫ s

0

P

 i−k+ℓ∑
j=i−k+1

Ej ∈ du

P (Ei−k+ℓ+1 > s− u) duds

=

∫ t

0

k−1∑
l=0

(k − l − 1)

∫ s

0

φi−k+1,ℓ−1(u)e
−µi−k+ℓ+1(s−u)duds

=

∫ t

0

k−1∑
l=0

(k − l − 1)
φi−k+1,ℓ(s)

µi−k+ℓ+1
ds

=

k−1∑
ℓ=0

(k − ℓ− 1)

i−k+ℓ+1∑
j=i−k+1

ci−k+1,ℓ,j

µi−k+ℓ+1
ψj(t) for l = 0, ..., k − 1. (5.10)

Moreover, we define the transition probabilities, pkl,i(t) := P(Nt+ = l|N0+ = k), which can be
calculated as follows

pk1,i(t) = 1−
k+1∑
l=2

pkl,i(t), pkl,i(t) =
φi−k+1,k−l+1(t)

µi−l+2
,

here l = 2, ..., k + 1. Then the dynamic program to identify the optimal strategy is defined as in
Algorithm 4.

Page 23 of 55

5.2 Dynamic model

Algorithm 4 Dynamic program exponential heterogenous case
Let fki(t), gki(t) and pkℓ,i(t) be defined as above. We can determine the Ci(k) recursively: for
i = 1, . . . , n− 1 and k = 1, . . . , i,

Ci(k) = inf
t⩾0

(
ωfki(t) + (1− ω)gki(t) +

k+1∑
ℓ=1

pkℓ,i(t)Ci+1(ℓ)

)
,

whereas, for k = 1, . . . , n,

Cn(k) = (1− ω)gkn(∞) = (1− ω)

k−1∑
ℓ=0

(k − ℓ− 1)
1

µn−k+ℓ+1
.

As for the homogeneous case the quantity hki =
∑k−1

l=1
1

µi−k+l
can be used instead of gki.

5.2.3 Experiments single server dynamic scheduling

Lastly we will, on the basis of experiments, compare the costs of static scheduling with the costs of
dynamic scheduling. We will do this for both the exponential homogeneous and heterogeneous case.

Experiment 5.6. cost of exponential homogeneous case
In this experiment the costs of the dynamic and static schedule are calculated for multiple values
of n and ω, when µ = 1 for all jobs, so in the case of homogeneous exponential service times. Let
Kdyn(n, ω) be the value of the objective function for the given value of n and ω when the schedule
is calculated dynamically and let Kstat(n, ω) be the costs of the static schedule. Moreover, let
r(n, ω) be the ratio of Kdyn(n, ω) and Kstat(n, ω). The results are shown in Table 5. It can be
observed that the dynamic schedule has lower costs in all cases and that the benefit of scheduling
dynamic instead of static gets bigger for higher values for ω and n, so when idle time gets more
important or there are more clients to be scheduled. Nearly the same values as in [1] are obtained.

n ω 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5 Kdyn(n, ω) 0.94 1.36 1.58 1.67 1.65 1.54 1.34 1.04 0.61

Kstat(n, ω) 0.98 1.46 1.74 1.87 1.88 1.78 1.56 1.21 0.71
r(n, ω) 0.96 0.93 0.91 0.89 0.88 0.87 0.86 0.86 0.86

10 Kdyn(n, ω) 2.13 3.09 3.62 3.85 3.85 3.64 3.21 2.55 1.60
Kstat(n, ω) 2.25 3.39 4.12 4.54 4.69 4.58 4.19 3.44 2.21
r(n, ω) 0.95 0.91 0.88 0.85 0.82 0.79 0.77 0.74 0.72

15 Kdyn(n, ω) 3.32 4.83 5.66 6.03 6.05 5.73 5.08 4.07 2.57
Kstat(n, ω) 3.51 5.33 6.51 7.23 7.55 7.47 6.94 5.85 3.92
r(n, ω) 0.95 0.91 0.87 0.84 0.80 0.77 0.73 0.70 0.66

20 Kdyn(n, ω) 4.51 6.56 7.70 8.21 8.25 7.83 6.96 5.58 3.54
Kstat(n, ω) 4.78 7.26 8.90 9.93 10.41 10.36 9.72 8.32 5.73
r(n, ω) 0.95 0.90 0.87 0.83 0.79 0.76 0.72 0.67 0.62

25 Kdyn(n, ω) 5.70 8.29 9.74 10.40 10.45 9.92 8.82 7.10 4.51
Kstat(n, ω) 6.04 9.21 11.30 12.62 13.28 13.27 12.52 10.82 7.60
r(n, ω) 0.94 0.90 0.86 0.82 0.79 0.75 0.70 0.66 0.59

30 Kdyn(n, ω) 6.89 10.02 11.77 12.59 12.64 12.02 10.70 8.61 5.48
Kstat(n, ω) 7.30 11.14 13.69 15.32 16.14 16.18 15.32 13.33 9.50
r(n, ω) 0.94 0.90 0.86 0.82 0.78 0.74 0.70 0.65 0.58

Table 5: Cost of dynamic and static schedule.

Experiment 5.7. cost of exponential heterogeneous case
In this experiment we do exactly the same as in Experiment 5.6. but now for the heterogeneous
case. We have taken n equally spaced parameters in the interval [0.5, 1.5], µi = 0.5 + i−1

n−1 with

Page 24 of 55

5.2 Dynamic model

i ∈ {1, ..., n}. As you can see in Table 6, the costs grow more than linear in the number of clients.
Furthermore, as for the homogeneous case, scheduling dynamic is better than scheduling static and
nearly the same values as in [1] are obtained.

n ω 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5 Kdyn(n, ω) 1.23 1.79 2.10 2.24 2.24 2.11 1.87 1.47 0.90

Kstat(n, ω) 1.32 2.01 2.43 2.65 2.70 2.58 2.28 1.79 1.07
r(n, ω) 0.93 0.89 0.87 0.85 0.83 0.82 0.82 0.82 0.85

10 Kdyn(n, ω) 2.52 3.68 4.33 4.63 4.65 4.42 3.94 3.16 2.00
Kstat(n, ω) 2.71 4.16 5.13 5.73 6.00 5.94 5.51 4.60 3.01
r(n, ω) 0.93 0.88 0.84 0.81 0.78 0.74 0.71 0.69 0.67

Table 6: Costs of dynamic and static schedule for Experiment 5.7.

Page 25 of 55

5.3 Adaptive model

5.3 Adaptive model
In this subsection adaptive scheduling will be described, following the approach in [5]. The model
is described for the phase-type case. The idea of this adaptive scheduling method is that you are
able to reschedule by taking into account the state information. The adaptive approach is, as
static scheduling, a simultaneous approach, since all patients are scheduled in one go instead of
one-by-one. In [5] it is shown that adaptive scheduling results in less costs, which is definitely an
advantage. Similarly as for the dynamic method, a disadvantage is that the clients do not have a
fixed arrival time and therefore have to be available at all times.

The difference with static scheduling is that at every rescheduling epoch we are given the following
state information:

• k ∈ {0, 1, .., n}, the number of clients who have already entered the system at time 0. For
all clients that already have arrived, the arrival time is set equal to 0, so if k > 0, then
t1 = ... = tk = 0.

• u, the value of the elapsed service time of the clients in service. If no client is in service, so
k = 0, then we set u = 0. The remaining service time of the client in service is distributed
as B1 conditional on B1 > u.

• n, the number of clients that remain to be served. Since k of them already entered the system,
n− k clients still need to be scheduled.

The same method as described in Subsection 5.1.2 will be used to compute the mean sojourn times.
The differences with the static case are that now the vector γ is dependent on the value u, the
elapsed service time, and if the value k > 0, t1 = ... = tk = 0. In both the case of the Erlang
distribution and the hyperexponential distribution, the distribution of Bi, conditional on Bi > u,
for some u > 0 is still a phase-type distribution with the same Ti as the one of Bi, but with a
different initial distribution, which now depends on the elapsed service time u. This on u dependent
initial distribution is denoted by γi(u). Recall that the process {Xi(t)}t⩾0 for i = 1, ..., n denotes
the (di + 1)-dimensional continuous-time Markov chain corresponding to Bi ∼ PHdi(γi,Ti). Our
objective is then to find an expression for the j-th entry of γi(u), also denoted by γij(u). This
expression can be interpreted as P(Xu,i = j|Bi > u). We first consider the case where Bi is
mixed Erlang distributed with the parameters Ki, µi and pi as described in Appendix A, then
γij(u) =

γ◦
ij(u)

γ◦
i (u)

where

γ◦i (u) := P(Bi > u) =

Ki∑
j=1

(
e−µiu

(µiu)
j−1

(j − 1)!

)
+ (1− pi)e

−µiu
(µiu)

Ki

Ki!
and (5.11)

γ◦ij(u) := P(Xu,i = j, Bi > u)

= e−µiu
(µiu)

j−1

(j − 1)!
1{j=1,...,Ki} + (1− pi)e

−µiu
(µiu)

Ki

Ki!
1{j=Ki+1}. (5.12)

Secondly consider the case that Bi is hyperexponential, with parameters µi,1, µi,2 and pi. Again
γij(u) =

γ◦
ij(u)

γ◦
i (u)

where

γ◦i (u) := P(Bi > u) = pie
µi,1u + (1− pi)e

−µi2u and (5.13)

γ◦ij(u) := P(Xu,i = j, Bi > u) = pie
−µi1u1{j=1} + (1− pi)e

−µi2u1{j=2}[1]. (5.14)

Now exactly the same approach for computing the mean sojourn times can be used as described
in Subsection 5.1.2, except that every u does not have to be equal to 0. Observe that, when using
this method one can calculate the best schedule from that state onwards and that thus the costs
that will be optimized are the costs of the future. So only the costs of the future, instead of the
costs of the whole makespan, are evaluated. This means that it is hard to compare the costs with
the costs of the static model, since the costs of the clients that have been served already are not
taken into account for the costs of the adaptive model.

Page 26 of 55

5.3 Adaptive model

It is possible to periodically adapt the schedule [5], something which we will not look into in this
Bachelor Final Project. In that same paper also a method is described on how to evaluate the cost
of the adaptive schedule relying on Monte Carlo simulation.

5.3.1 Experiments single server adaptive scheduling

A function to calculate the optimal schedule given the state information as described above has
been written. In this section optimal schedules are calculated for different values of k and u and
so it will be shown that taking into account the value of k and u indeed has an influence on the
optimal schedule.

Experiment 5.8. Exponential case
First some runs are performed for the exponential case. The number of clients is again taken as
n = 5 and E[Bi] = Var[Bi] = 1 for i = 1, ..., 5. The variables used per run and the results are
shown in Table 7. The results contain the costs and the interarrival times xi for i = 1, ..., 4, with
xi = ti − ti−1. As said before, in all cases t0 is set equal to one.

Run k u ω costs x1 x2 x3 x4
1 0 0 0.5 1.881 0.976 1.421 1.400 1.113
2 0 0 0.5 1.881 0.979 1.420 1.432 1.114
3 1 0.5 0.5 1.881 0.968 1.442 1.377 1.104
4 1 0.6 0.5 1.881 0.968 1.442 1.377 1.104
5 1 0.7 0.5 1.881 0.968 1.442 1.377 1.104
6 1 0.8 0.5 1.881 0.968 1.442 1.377 1.104
7 2 0.5 0.5 2.106 - 2.133 1.419 1.114
8 3 0.5 0.5 2.738 - - 3.148 1.137
9 4 0.5 0.5 3.770 - - - 3.671

Table 7: Costs and interarrival times for adaptive scheduling Experiment 5.8.

The first run of Table 7 is executed with the function that makes static schedules for the phase-type
case as used in Subsection 5.1.2. This one is added as a check, since the outcome should be the
same as the outcome of the second run, for which the function that makes adaptive schedules for
the phase-type case is used. For run 3 - 6 the same value for k, 1, is used and the value of u is
changed. The costs and the interarrival times do not change. This is as expected, since due to the
memorylessness property of the exponential distribution, there is no impact of the elapsed service
time on the results. For run 3 and 7 up to and including 9 the value of u is kept the same and
the value for k differs. As more people are in the system, we also have that the costs and the
interarrival times are higher. The first interarrival time seems to be the one that is most impacted,
but the other ones have also changed a bit. See for example run 7, where x2 is increased the most
compared to the values of run 3, but also x3 and x4 have changed. The costs for run 7, 8 and 9 are
higher than for the other runs. Most of this increase can be explained by the waiting time of the
clients that are already in the schedule but are not served yet, so in run 8 this is about the waiting
time of client 2 and 3.

Experiment 5.9. Phase-type - Mixed Erlang and hyperexponential cases
Secondly we look at both the mixed Erlang and the hyperexponential case. For the mixed Erlang
case the values E[B] = 1 and Var[B] = 1

2 are taken, such that the SCV < 1 and for the hyper-
exponential case the values E[B] = 1 and Var[B] = 1

2 are taken such that SCV > 1. The same
values for k and u have been used for the different runs. The results of those runs can be seen in
Table 8. Looking at runs 3 - 5, a difference is found between the mixed Erlang and the hyperex-
ponential case. For the mixed Erlang case the costs and the first interarrival times decrease when
u increases and for the hyperexponential case the costs and the interarrival times increase. This
same difference has been observed when doing the experiments for other combinations of the mean
and the variance. This difference can be explained as follows. When we are in the mixed Erlang
case and u gets a higher value while the rest of the variables stay the same, so for example when
we compare run 2 and 3, the γ-vector is adapted such that the probability is higher that we are in

Page 27 of 55

5.3 Adaptive model

a later phase and thus the expected sojourn time of the client in service decreases. When we are
in the hyperexponential case and u gets a higher value while the rest of the parameters stays the
same, the γ-vector is adapted such that the probability gets higher that the service time of the
client in service is distributed with µ2 instead of µ1. By our definition, the probability p is always
greater than or equal to 0.5 and thus µ2 ⩽ µ1, what results in E[B1] ⩾ E[B2]. So the higher the
value of u, the higher we expect E[B] to be and thus the expected sojourn time of client 1 becomes
longer.

Mixed Erlang (SCV < 1) Hyperexponential (SCV > 1)
Run k u ω costs x1 x2 x3 x4 costs x1 x2 x3 x4

1 0 0 0.5 1.337 1.013 1.333 1.320 1.130 2.181 0.883 1.378 1.383 1.035
2 1 0.5 0.5 1.304 0.751 1.311 1.30 1.121 2.275 1.004 1.436 1.384 1.043
3 1 0.6 0.5 1.304 0.720 1.315 1.299 1.127 2.294 1.039 1.451 1.365 1.045
4 1 0.7 0.5 1.299 0.697 1.317 1.278 1.138 2.312 1.062 1.457 1.393 1.048
5 1 0.8 0.5 1.294 0.669 1.304 1.303 1.111 2.331 1.082 1.487 1.390 1.032
6 2 0.5 0.5 1.496 - 1.877 1.320 1.128 2.495 - 2.200 1.407 1.035
7 3 0.5 0.5 2.118 - - 2.884 1.146 3.099 - - 3.125 1.067
8 4 0.5 0.5 3.170 - - - 3.569 4.080 - - - 3.545

Table 8: Costs and interarrival times for adaptive scheduling Experiment 5.9.

Experiment 5.10. Different SCV’s and values of u
Due to the results found in the previous experiment plots have been made to show them more
clearly. Firstly in Figure 11a the sojourn time of the first client has been plotted for different
values of the SCV, while u = 0.5 and E[B1] = 1. From this plot one can observe that the higher
the SCV, the higher the expected sojourn time of the first client. The inflection point at SCV= 1
is caused by the transition from the mixed Erlang to the hyperexponential distribution. Secondly,
in Figure 11, the influence of u in the case of different SCV is plotted. It can be observed that, as
also observed in Experiment 5.9., the expected sojourn time decreases when SCV < 1, stays the
same when SCV = 1 and increases when SCV> 1.

0.0 0.5 1.0 1.5 2.0
SCV

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E[S1]

(a) E[S1] for different SCV’s.

SCV = 0.5

SCV = 1

SCV = 1.5

0.0 0.2 0.4 0.6 0.8 1.0
u

0.5

1.0

1.5

E[S1]

(b) E[S1 − u|S1 > u] for different u’s.

Figure 11: E[S1 − u|S1 > u] Experiment 5.10.

Lastly, also a general expression of the sojourn time of the first client under the condition that
already u time of his service time has elapsed, E[S1 − u|S1 > u], has been calculated for the mixed
Erlang and the hyperexponential case. As stated in Algorithm 2, the expected sojourn time of the
first calculated equals E[Si] = −γ1T

−1
1 1Di

. So in the adaptive case, we get E[S1 − u|S1 > u] =
−γ1(u)T

−1
1 1Di

In the mixed Erlang case γ1(u) is given by Equation (5.11) and Equation (5.12)

Page 28 of 55

5.3 Adaptive model

and

T =


−µ µ 0 · · 0
0 −µ µ ·
· · · ·
· · µ 0
· −µ µq
0 · · · 0 −µ

 so T−1 =



− 1
µ − 1

µ · · − 1
µ − q

µ

0 − 1
µ − 1

µ · − 1
µ ·

· · · · ·
· 0 − 1

µ − 1
µ ·

· − 1
µ − q

µ

0 · · · 0 − 1
µ


.

This results in

E[S1 − u|S1 > u] = −

K1∑
v=1

K1+1∑
j=1

(− 1

µ
γ1j(u)1{j⩽v} + 0 · γ1j(u)1{j>v})

+

K1∑
j=1

− q

µ
γ1j(u) +− 1

µ
γ1,K1+1(u)


= −

K1∑
v=1

K1+1∑
j=1

− 1

µ
γ1j(u)1{j⩽v}

+

K1∑
j=1

− q

µ
γ1j(u)−

1

µ
γ1,K1+1(u)


=

K1∑
v=1

K1+1∑
j=1

1

µ
γ1j(u)1{j⩽v}

+

K1∑
j=1

− q

µ
γ1j(u)−

1

µ
γ1,K1+1(u)

 . (5.15)

As, due to Equation (5.11) and Equation (5.12), the value of γ1,j(u) decreases for small j when u
increases and increases for larger j when u increases, one can relatively easy observe that Equation
(5.15) increases when the elapsed service time of client 1, u, becomes bigger, since then the positive
parts in this equation become smaller and the negative parts become bigger. In the hyperexpo-
nential case γ1(u) is determined by Equation (5.13) and Equation (5.14), resulting in

γ1(u) =
(

p1e
−µ1,1u

p1e
−µ1,1u+(1−p1)e

−µ1,2u ,
(1−p1)e

−µ1,2u

p1e
−µ1,1u+(1−p1)e

−µ1,2u

)
.

Moreover, for T we have that T =

(
−µ1 0
0 −µ2

)
and thus T−1 =

(− 1
µ1

0

0 − 1
µ2

)
. Combining this

in E[S1 − u|S1 > u] = −γ1(u)T
−1
1 1Di gives

E[S1 − u|S1 > u] = −
(

−p1e−µ1,1u

µ1,1(p1e−µ1,1u + (1− p1)e−µ1,2u)
+

−(1− p1)e
−µ1,2u

µ1,2(p1e−µ1,1u + (1− p1)e−µ1,2u)

)
=

µ1,2p1e
−µ1,1u + µ1,1(1− p1)e

−µ1,2u

µ1,1µ1,2(p1e−µ1,1u + (1− p1)e−µ1,2u)
. (5.16)

This function is plotted for different SCV values, and thus different µ1,2, µ1,2 and p1 in the following
figure.

0 2 4 6 8 10
u

1

2

3

4

Expected remaining sojourn time

SCV = 1

SCV = 2

SCV = 3

SCV = 4

Figure 12: E[S1 − u|S1 > u] hyperexponential case.

From this figure it can be observed that Equation (5.16) is a non-decreasing function when SCV ⩾ 1.
So now we have derived mathematically the same result as we found in the experiments above and
thus we can conclude that when the elapsed service time of the first client increases the remaining
sojourn time of this client decreases in the case of a mixed Erlang distributed service time and
increases in the case of a hyperexponential distributed service time.

Page 29 of 55

6 Multi server model

6 Multi server model

Until now we have only looked at single server models. We will now also have a look at the
multiserver case. Since there are multiple definitions of a multiple server setting, we have to define
which one we are talking about. Therefore we first mention the different options briefly, to clarify
the different possibilities, and then go in depth about the last option.

First there is the setting of having multiple servers that all have their own queue of clients, see
Figure 13a. In healthcare you find this setting for example when multiple general practitioners all
have their own set of patients. This setting is not that interesting since this is just a combination
of single server settings, which are unconnected.

(a) Two servers with both n customers. (b) Two servers in line.

Figure 13: Not in depth discussed multiple server settings.

Secondly there is the setting of one queue of clients that are all first served by one server and then
by a next one, see Figure 13b. In healthcare you find this setting for example when patients first
have an appointment with a doctor and then have a MRI scan afterwards. There are of course
extended versions of this setting, with more than two of those servers in a row, for example if
the patients have a follow-up appointment. The setting of two servers in tandem is discussed by
Kuiper [22].

Thirdly we have the setting that will be discussed more in depth in this Bachelor Final Project.
This is the setting in which multiple servers share the same queue of clients that need to be served,
also called pooling, see Figure 14. You can find such a setting for example at the emergency room.

Figure 14: Illustration of two servers with together n customers.

6.1 Phase-type static multiserver
In this subsection the phase-type static case of the multiserver setting, using the third definition
described above, will be discussed. We thus relax upon the first assumption from the model
description; in this section it is possible that the number of servers, denoted by s, is greater than
1. We will first describe the general method in Subsection 6.1.1 and subsequently work out the
expressions for a specific case, the case of n = 3, s = 2 and SCV > 1, in Subsection 6.1.3 to
provide a better explanation of how the model is set up. The method that is used is the one
described in [23] by Kuiper and Lee. As in that paper it is assumed that the servers and clients
are homogeneous and without loss of generality, we normalize the mean service time to one for all
clients, thus E[Bi] = µi = 1 for all i. Those two assumptions compress the state space.

Page 30 of 55

6.1 Phase-type static multiserver

6.1.1 Method

We will first have a look at how the evolution of the system can be described. Then we will describe
the initial probability vector and transition matrix of the system, so when the first s clients have
arrived, and subsequently we will describe the representation of the system after the arrival of the
rest of the clients.

As in the single server setting, a bivariate process is used to describe the evolution of the system,
(Ys+i(t), Zs+i(t)) for i = 0, ..., n − s. Here Ys+i(t) ∈ {0, 1, ..., s + i} clients are in the system as
we start with s clients in service and Zs+i = (Z1(t), ..., Zξ(t)), with ξ = min{Ys+i(t), s} for each
l = 1, ..., ξ and Zl(t) ∈ 1, ..., k denotes a vector of the phases of the jobs that are being processed
at time t. Here, Zl can be tought of as the l-th server because the servers are assumed to be
homogeneous, k denotes the number of phases of the phase-type counterpart and there are at most
ξ servers to keep track of, as either there are Ys+i clients to be served or all s servers are active.

We define the probabilities of finding j clients in the system, with j ∈ {0, ..., s+i} and the server(s)
in phase(s) ml ∈ {0, ..., k} for l ∈ {1, ..., ξ} as

p
(s+i)
j,(m1,...,mξ)

(t) = P[(Ys+i(t), Zs+i(t)) = (j, (m1, ...,mξ))].

Moreover, define the row vector that contains all possible phases for j clients in service by

p
(s+i)
j (t) = (p

(s+i)
j,(k,...,k)(t), ...,p

(s+i)
j,(k,...,1)(t), ...,p

(s+i)
j,(1,...,k)(t), ...,p

(s+i)
j,(1,...,1)(t)). (6.1)

This vector has size kmin{j,s} since as at maximum s machines are serving customers.

The initial probability vector can be written as

αs = (α⊗ ...⊗α, 0∑s−1
j=1 kj). (6.2)

In the latter the Kronecker product is applied s−1 times. The first part, represented by α⊗ ...⊗α,
describes all options for s clients being active and the second part, represented by 0∑s−1

j=1 kj , has
exactly the length of all options of having less than s clients. Those should all clearly be zero, as
we assume that in the initial state all s servers start serving jobs immediately.

The initial transition matrix is then given by :

Ss =



S(s) U (s) 0 · · · 0

0 S(s−1)
...

...
. U (3) 0

0 · · · 0 S(2) U (2)

0 · · · 0 0 S(1)

 , (6.3)

where the S(l) are defined recursively

S(l) = I|I| ⊗ S(l−1) + S ⊗ I|S(l−1)|, (6.4)

for 1 ⩽ l ⩽ s with S(1) = S and the U (l) are defined recursively by

U (l) = I|U(l−1)| ⊗U (1) +U (l−1) ⊗ I|U(1)|, (6.5)

with U (1) = −S1. Here |A| denotes the number of rows in matrix A, and thus I|·| denotes the
identity matrix with | · | rows and columns. U (1) is the phase-type exit vector that corresponds
to service completion. In the transition matrix, the matrix S(l) describes the transition between
states in which l servers are busy and U (l) denote the exit matrix that defines the transitions to
only l − 1 servers serving jobs.

Page 31 of 55

6.1 Phase-type static multiserver

The vector p(s)(t), denoting the probability for all possible phases t time units after the arrival of
the s-th client, is described by the phase-type distribution PH(αs,Ss):

p(s)(t) = (p(s)
s (t),p

(s)
s−1(t), ...,p

(s)
1 (t)) = αs exp(Sst). (6.6)

Now we will describe the phase-type representation of the system after arrival of all other clients.
Again we need an initial probability vector α(s+i) and a transition matrix S(s+i) for the phase-type
representation (αs+i,Ss+i) for each client i ∈ {1, ..., n− s} to keep track of the probabilities of the
vector p(s+i)(t), denoting the probabilities for all possible phases t time units after the arrival of
the (s+ i)-th client. This vector equals

p(s+i)(t) = (p
(s+i)
s+i (t),p

(s+i−1)
s+i (t), ...,p

(s+1)
s+i (t),p

(s)
s+i(t),p

(s+−1)
s+i (t),p

(1)
s+i(t)), (6.7)

for i = 1, ..., n− s. The transition matrix Ss+i is defined as

Ss+i =



S(s) T (s) 0 · · · 0 0 0

0 S(s) T (s) . . .
...

...
...

0 0
. 0

...
. S(s) T (s) 0

0 0 · · · 0 S(s) T (s) 0
0 Ss


=:

(
Swait
i T

(s)
s

0 Ss

)
. (6.8)

This matrix is constructed by extending Ss by i times adding S(s) to the diagonal. Each added
block S(s) corresponds to states where one might find an additional client in the waiting queue.
Furthermore, T (s) is added on the upperdiagonal to describe the flow from one client being finished
to the next one being served. It is therefore an exit matrix that describes transition form a system
with j ⩾ s clients in the system to one with precisely j − 1 ⩾ s clients in the system. The T (l) are
defined by the following recursion

T (l) = I|T (l−1)| ⊗ T (1) + T (l−1) ⊗ I|T (1)|, (6.9)

with T (1) = −S1 ⊗α. The to Ss+i corresponding αs+i are given by

αs+i =f
(
p(s+i−1) (xs+i) ,α

)
:=
(
p
(s+i−1)
s+i−1 (xs+i) , . . . ,p

(s+i−1)
s+1 (xs+i) ,p

(s+i−1)
s (xs+i) ,

α⊗ p
(s+i−1)
s−1 (xs+i) , . . . ,α⊗ p

(s+i−1)
1 (xs+i) ,

α⊗ p
(s+i−1)
0 (xs+i)

)
, (6.10)

where the first i states correspond to saturation and the rest corresponds to the start of service
of the new client. Moreover, p(s+i)

0 (t) = 1 − p(s+i)(t)1 denotes the probability of being in the
absorbing state of an empty system.

6.1.2 Evaluating the objective function

For evaluating the objective function we can just calculate the total waiting and idle time, so the
objective function does not have to be rewritten as for all other models up to now. We first look
at the waiting time, therefore we look at the probabilities that correspond to instances in which
clients are waiting. This is the case when all s servers are busy, thus for client i = 1, ..., n − s we
have

p
(s+i)
wait (t) = (p

(s+i)
s+i (t),p

(s+i)
s+i−1(t), ...,p

(s+1)
s+1 (t)).

Moreover, the initial vector is defined as αwait
i = p

(s+i)
wait (0). Then the expected total waiting time

Page 32 of 55

6.1 Phase-type static multiserver

can be calculated as

n∑
i=s+1

EWi =

n−s∑
i=1

−αwait
i

(
Swait
i

)−1
1. (6.11)

For the expected idle time, define FMs+i
(t) as the cumulative distribution function of the makespan

of finishing the first s+ i clients t time units after ts+i with i = 1, ..., n− s. This can be expressed
by

FMs+i(t) = p
(s+i)
0 (t) = 1− p(s+i)(t)1 = 1−αs+i exp (Ss+it)1, (6.12)

so that EMs+i = −αs+iS
−1
s+i. As for the expected waiting time we are interested in the total

expected idle time that equals

EI(s) = s (EMn + tn)−
n∑

i=1

EBi, (6.13)

since the total idle time is the total time that the system is available minus the time spent is the
system. The latter is denoted by the arrival time of the last client plus the expected makespan of
the last client after his arrival, multiplied by s, the amount of servers. Here it is assumed that all
machines stay available until the last client is served.

6.1.3 Example multiserver n = 3, s = 2, SCV> 1

In this example we show what all the vectors and matrices look like and show why they are built
up as described in the previous subsection. Since n and s differ by 1 > 0, we can show with
this example how the matrices from previous subsection develop when i ⩾ s. But by letting this
difference only be 1 and taking SCV> 1, resulting in a hyperexponential distribution, the matrices
do not become too large.

In our example the bivariate process is described by (Y2+i, Z2+i) for i = 0, 1. Y2+i ∈ 0, ..., 3 and
Z2+i = (Z1(t), ..., Zξ(t)), where ξ = min{Ys+i(t), 2} for each l = 1, ..., ξ, Zl(t) ∈ 1, 2.

Moreover, j ∈ {0, ..., 3}, ml ∈ {0, 1, 2} for l ∈ {1, ..., ξ}. So the row vector that contains all possible
phases for 2 clients t time units after the third arrival is described by the vector

p
(3)
2 (t) = (p

(3)
2,(2,2)(t),p

(3)
2,(2,1)(t),p

(3)
2,(1,2)(t),p

(3)
2,(1,1)(t)).

Since SCV> 1, a hyperexponential distribution is fitted and thus α = (µ1, µ2). Using Equation
(6.2) we get α1 = α and

αs = α2 = (α⊗α,0∑1
j=1 2j)

= (α⊗α,02)

= (µ2
1, µ1µ2, µ2µ1, µ

2
2, 0, 0).

Since we assume that each server starts by serving a client, we start with 2 machines being active
and thus there is a rate 0 for the positions that represent one machine being active serving a job
that either has E[Bi] =

1
µ1

or E[Bi] =
1
µ2

. The other positions represent all combinations of two
machines serving jobs; both machines serving a job with E[Bi] =

1
µ1

, the first machine serving a
job with E[Bi] =

1
µ1

and the second machine serving a job with E[Bi] =
1
µ2

, the other way around
or both machines serving a job with E[Bi] =

1
µ1

.

Due to the fitted hyperexponential distribution S =

(
−µ1 0
0 −µ2

)
, so by Equation (6.4)

Page 33 of 55

6.1 Phase-type static multiserver

S(1) =

(
−µ1 0
0 −µ2

)
and

S(2) =

(
1 0
0 1

)
⊗
(
−µ1 0
0 −µ2

)
+

(
−µ1 0
0 −µ2

)
⊗
(
1 0
0 1

)

=


−2µ1 0 0 0
0 −(µ1 + µ2) 0 0
0 0 −(µ1 + µ2) 0
0 0 0 −2µ2

 .

This matrix can be explained by the fact that if there are two machines both serving a job with
E[Bi] =

1
µ1

, then the transition rate is 2µ1 and thus S
(2)
1,1 = −2µ1 and if there is one machine

serving a job with E[Bi] =
1
µ1

and the other machine is serving a job with E[Bi] =
1
µ2

, then the

transition rate is 2µ2 and thus S(2)
1,1 = −(µ1 +µ2) etc. By Equation (6.5) we get U (1) =

(
µ1

µ2

)
and

U (2) =

(
1 0
0 1

)
⊗
(
µ1

µ2

)
+

(
µ1

µ2

)
⊗
(
1 0
0 1

)
=


2µ1 0
µ2 µ1

µ2 µ1

0 2µ2

 .

In the latter, the left columns represents the transitions from 2 machines being busy to only one
machine being busy, serving a job with E[Bi] =

1
µ1

and the right column represents to transitions
to only one machine being busy, serving a job with E[Bi] =

1
µ2

. Combining U (2),S(2) and S(1) we
get by this we get by Equation (6.6)

S2 =


−2µ1 0 0 0 2µ1 0
0 −(µ1 + µ2) 0 0 µ2 µ1

0 0 −(µ1 + µ2) 0 µ2 µ2

0 0 0 −2µ2 0 2µ2

0 0 0 0 −µ1 0
0 0 0 0 0 −µ2

 .

By Equation (6.9) we find T 1 = −
(
−µ1 0
0 −µ2

)(
1
1

)
⊗
(
p 1− p

)
=

(
µ1p µ1(1− p)
µ2p µ2(1− p)

)
and

T (2) =

(
1 0
0 1

)
⊗
(
µ1p µ1(1− p)
µ2p µ2(1− p)

)
+

(
µ1p µ1(1− p)
µ2p µ2(1− p)

)
⊗
(
1 0
0 1

)

=


2µ1p (1− p)µ1 (1− p)µ1 0
µ2p µ1p+ (1− p)µ2 0 (1− p)µ1

µ2p 0 µ1p+ (1− p)µ2 (1− p)µ2

0 pµ2 pµ2 2(1− p)µ2

 ,

describing the flow from one client being finished to the next one being served. Since T (2) is the
exit matrix from a state in which 2 clients are being served to another state in which there are
2 clients being served, this matrix is 4×4 as there are 2 ·2 = 4 possible states to come from or go to.

This all results in

Page 34 of 55

6.2 Experiment multiserver scheduling

S3 =



−2µ1 0 0 0 2µ1p (1− p)µ1 (1− p)µ1 0 0 0
0 −(µ1 + µ2) 0 0 µ2p µ1p+ (1− p)µ2 0 (1− p)µ1 0 0
0 0 −(µ1 + µ2) 0 µ2p 0 µ1p+ (1− p)µ2 (1− p)µ2 0 0
0 0 0 −2µ2 0 pµ2 pµ2 2(1− p)µ2 0 0
0 0 0 0 −2µ1 0 0 0 2µ1 0
0 0 0 0 0 −(µ1 + µ2) 0 0 µ2 µ1

0 0 0 0 0 0 −(µ1 + µ2) 0 µ2 µ1

0 0 0 0 0 0 0 −2µ2 0 2µ2

0 0 0 0 0 0 0 0 −µ1 0
0 0 0 0 0 0 0 0 0 −µ2


.

Lastly we show what the corresponding probability vector looks like:

α3 = α2+1 =
(
p
(2)
2 (x3) α⊗ p

(2)
1 (x3) α⊗ p

(2)
0 (x3)

)
=
(
p
(2)
2,(2,2)(x3),p

(2)
2,(2,1)(x3),p

(2)
2,(1,2)(x3),p

(2)
2,(1,1)(x3), µ1 · p(2)

1,(2)(x3), µ1 · p(2)
1,(1)(x3),

µ2 · p(2)
1,(2)(x3), µ2 · p(2)

1,(1)(x3), µ1 · p(2)0 (x3), µ2 · p(2)0 (x3)
)
.

6.2 Experiment multiserver scheduling
In this subsection we discuss one experiment for the multiserver setting. Moreover, we briefly
compare the results in the case of only one server and discuss the running time of the model.

Experiment 6.1. Interarrival times and costs
In this experiment we ran our function for s = 1, 2, 3, 4 and n = 7 for various SCV. The SCV values,
0.5, 1 and 1.5, are chosen such that we have a mixed Erlang, exponential and a hyperexponential
fit.

1 machine

2 machines

3 machines

4 machines

0 1 2 3 4 5 6
i

0.5

1.0

1.5

2.0

xi+s

(a) SCV = 0.5.

1 machine

2 machines

3 machines

4 machines

0 1 2 3 4 5 6
i

0.5

1.0

1.5

2.0

xi+s

(b) SCV= 1.

1 machine

2 machines

3 machines

4 machines

0 1 2 3 4 5 6
i

0.5

1.0

1.5

2.0

xi+s

(c) SCV = 1.5.

Figure 15: Interarrival times for n = 7 and s = 1, 2, 3 or 4.

Page 35 of 55

6.2 Experiment multiserver scheduling

In Figure 15 for the case s = 1 the domeshape is visible. The larger the number of machines the
less amplified this pattern is. Moreover, this pattern gets more clear for higher values of the SCV,
in which case there is more variation. In Figure 15a we observed a steep decline in the interarrival
times and for s = 2 we also observe a pattern of iterative increasing and decreasing interarrival
times. This structure is a so called reversed bullwhip [23]. In the results of [23] this pattern is better
visible since they have plotted the interarrival times for more clients. The explanation they give
for this pattern is that the synchronized start of service is completely absorbed by the randomness
in the system if there are sufficient clients to be scheduled. In the beginning you have a relatively
long time until the first client is being served, followed by a relatively short time until the second
client is served. This pattern of alternating long and shorter interarrival times will proceed, but
after some time it will disappear due to randomness.

s|SCV 0.5 1 1.5
1 2.10265 2.99426 3.56438
2 1.47120 1.89673 2.05757
3 1.53349 1.98602 2.27510
4 1.88130 2.54814 3.06381

Table 9: Costs s = 1, 2, 3, 4, n = 7 and SCV = 0.5, 1, 1.5.

In Table 9 we show the costs of the runs we have executed for Figure 15. As one can observe for
all values of s the costs get higher when the SCV increases, this effect can easily be explained by
the higher variability. The costs are the highest in the case of one server and the costs increase
when having more servers. The latter can be explained by the fact that 2, 3 and 4 are not divisors
of seven which is the number of clients, and thus the more machines there are, the more machines
that are idle at the end of the system, while the last job is being served. The fact that the costs
are the highest when only 1 machine is used can be explained by the expected benefits of pooling.
However, we can not investigate the benefits of pooling correctly right now. One would have
probably expected the costs to be lower when the amount of machines is higher. This is currently
not the case, as machines stay available until all jobs are served, so also when they will not get
a job anymore. This increases the expected total idle time drastically. Therefore, to be able to
investigate the benefits of pooling, one should adapt the model such that machines will no longer
be available, and will thus not contribute to the idle time, when they can not get a job anymore.
We will not go more in depth about this, but will refer to section 5.3 of [23].

A last important note is that running the model took a very long time, on a Lenovo Thinkpad P1
laptop with the following specifications: IIntel Core i7 8750H / 2.2 GHz. This is also the reason
why we only ran situations in which at maximum five variables were to be optimized. The more
machines the longer the running time, which can be explained by the fact that the matrices become
bigger when there are more machines.

Page 36 of 55

7 Including no-shows and walk-ins

7 Including no-shows and walk-ins

To make the different models more applicable in practice, no-shows and walk-ins can be considered
as well. No-shows are included since it is not realistic to assume that all patients that have made
an appointment will actually show up. Walk-ins are included since appointment scheduling is
used for healthcare and at the general practitioner and the dentist there are walk-ins. In this
section we describe how no-shows can be dealt with in the case of static single server scheduling,
dynamic single server scheduling and static multiserver scheduling. So in this section we relax upon
assumption five and six described in Section 4. For the static single server scheduling we discuss
three different methods. The first one is based on [10] and adapts the expected value, variance
and thus SCV of the random variable. For this method it is also discussed how walk-ins can be
included. The second one is thought of by ourselves and is based on modelling the random variable
as a hyperexponential. This one methods works only for the exponential case. The last method
that we have implemented is the one described in [24], which is again specifically for the exponential
case. The method we use for including no shows in the model for dynamic single server scheduling
is thought of ourselves, but is uses the method of [24] as a baseline. Lastly, for the multiserver
setting we have used the method discussed in [23].

7.1 Adjusted expected service time
The method in [10] describes how the expected service times can be adapted if the probability of
having a no-show or a walk-in is known. Since the expected value is different, also the variance
and thus the SCV become different, resulting in an adapted schedule.

The original variable Bi for the service times had an expected value E[Bi]. There is a probability,
q ∈ [0, 1), that a patient will not show up. Therefore the adjusted service time becomes B̄i = Bi

with probability 1 − q and B̄i = 0 with probability q, and thus E[B̄i] = E[Bi](1 − q). The same
method will be used to deal with walk-ins. Let v ∈ [0, 1] be the probability that an unscheduled
patient is added to an appointment slot (i.e. two patients take up the timeslot in which only one is
scheduled). The adjusted service time in this case is B̄i = Bi with probability 1− v and B̄i equal
to i.i.d. copies of E[Bi] with probability v. Observe that the walk-in probability, v, is chosen to be
a fixed number, despite it would be more realistic if this value was dependent on the service time
Bi, as when the service time increases there is a longer timeframe and thus a higher probability
that a walk-in can arrive. In conclusion, when we incorporate both no-shows and walk-ins, the
revised service time B̄i equals:

I. two i.i.d. copies of the service time Bi with probability (1 − q)v, when there is no no-show
and a walk-in.

II. equal to one service time Bi with probability (1 − q)(1 − v) + qv, either when there is no
no-show and no walk-in, or there is a no-show and a walk-in.

III. equal to 0 with probability q(1− v), when there is a no-show and no walk-in.

This results in the following new expressions.

E[B̄i] = 2(1− q)vE[Bi] + ((1− q)(1− v) + qv)E[Bi] = (1− q + v)E[Bi].

E[B̄2
i] = (1− q)vE[(Bi +B′

i)
2] + ((1− q)(1− v) + qv)E[B2]

= (1− q)vE(2E[B2
i] + 2(E[Bi])

2) + ((1− q)(1− v) + qv)E[B2
i],

where B′
i is an independent copy of Bi. For the variance we then get that

Var[B̄i] = (1− q)vE(2E[B2
i] + 2(E[Bi])

2) + ((1− q)(1− v) + qv)E[B2]− (1− q + v)2(E[Bi])
2

= (1− q + v)E[B2
i]− (v2 + (1− q)2)(E[Bi])

2.

Page 37 of 55

7.2 Extended exponential distribution to hyperexponential distribution

And finally for the adapted SCV we get

¯SCV(q, v) =
(1− q + v)E[B2

1]− (v2 + (1− q)2)(E[Bi])
2

(1− q + v)2(E[Bi])2

=
(1− q + v)SCV + q(1− q) + v(1− v)

(1− q + v)2(E[Bi])2
.

It can easily be observed that when q = 0 we are in the situation with only walk-ins and when
v = 0 we are in the situation with only no-shows.

Lastly we also have to adapt the objective function. Equation (4.6) changes consequently to

ω

(
n∑

i=1

xi + E[Sn]−
n∑

i=1

(1− q + v)E[Bi]

)
+ (1− ω)

n∑
i=1

(E[Si]− (1− q + v)E[Bi]) . (7.1)

7.2 Extended exponential distribution to hyperexponential distribution
In the previous method an adjusted expected value, variance and SCV for all the clients is used
to make the schedule. We now propose an alternative method, that is generally applicable, but
we will for illustration purposes describe it only for the case that service times of all clients are
exponentially distributed. We include both no-shows and the walk-ins, but not at the same time, by
extending an exponential distribution to an hyperexponential distribution. For the case of no-shows
it is assumed that a patient has a probability q of not showing up. The modelled hyperexponential
service time B̄i is therefore equal to 0 with probability q and equal to E[Bi] with probability 1− q.
So with probability q the service time is distributed with µ1 = ∞, such that the expected service
time is 0 and with probability (1−q) distributed with µ2 = µ. In the case of walk-ins it is assumed
that there is a probability v that two clients arrive instead of one. The modelled hyperexponential
service time B̄i is therefore equal to 2E[Bi] with probability v and equal to E[Bi] with probability
1− v.

The difference between this and the previous model is that a complete new phase-type fit is per-
formed for B̄i, therefore the phase-type fit in the first model can still result in a mixed Erlang
distribution. Note that when implementing this method for taking into account no-shows or walk-
ins the objective function should be adapted. To be exact, Equation (4.6) should be changed
respectively to either

ω

(
n∑

i=1

xi + E[Sn]−
n∑

i=1

(1− q)E[Bi]

)
+ (1− ω)

n∑
i=1

(E[Si]− (1− q)E[Bi])

or

ω

(
n∑

i=1

xi + E[Sn]−
n∑

i=1

(1 + v)E[Bi]

)
+ (1− ω)

n∑
i=1

(E[Si]− (1 + v)E[Bi]) ,

due to the expected value for the new stochast being either

E[B̄i] = (1− q)E[Bi] + q · 0 =
1− q

µ

or
E[B̄i] = (1− v)E[Bi] + v · 2E[Bi] =

1 + v

µ
.

7.3 Homogeneous exponential case
The third method for including no-shows for static single server scheduling is specifically for the
exponential homogeneous case as discussed in Subsection 5.1.1. It is the method as described in
[24]. This method works basically the same as the previous one, as both model B̄i being 0 with

Page 38 of 55

7.4 Including no-shows in dynamic model

probability q and being E[Bi] with probability 1 − q. Let q be the probability that there is a
no-show, then the formulas from Subsection 5.1.1 change to

P(N(ti) = j) = (1− q) ·
i−j−1∑
k=0

(µxi−1)
k

k!
e−µxi−1P(N(ti−1) = j + k − 1)

+ q ·
i−j−2∑
k=0

(µxi−1)
k

k!
e−µxi−1P(N(ti−1) = j + k) with j > 0, i ⩾ 2.

and

P(N(ti) = 0) = (1− q) ·
i−1∑
k=1

P(N(ti−1) = k − 1)

∞∑
l=k

(µxi−1)
le−µxi−1

l!

+ q ·
i−2∑
k=0

P(N(ti−1) = k)

∞∑
l=k

(µxi−1)
le−µxi−1

l!

= (1− q) ·
i−1∑
k=1

P(N(ti−1) = k − 1)

(
1−

k∑
l=0

(µxi−1)
le−µxi−1

l!

)

+ q ·
i−2∑
k=0

P(N(ti−1) = k)

(
1−

k∑
l=0

(µxi−1)
le−µxi−1

l!

)
i ⩾ 2.

When implementing this method for taking no-shows into account the objective function, Equation
(5.1), should be changed to

ω

n∑
i=1

(
xi−1 + E[Wi]−

(
E[Wi−1] + (1− q) · 1

µ

))
+ (1− ω)

n∑
i=1

E[Wi].

7.4 Including no-shows in dynamic model
As described in the concluding remarks of [1] it could be interesting to include no-shows in the
dynamic model that is described in that paper. The method that they propose is the one that uses
an adapted SCV, mean and variance, as described in Subsection 7.1. This method is only applicable
to the phase-type case that we have not studied in this Bachelor Final Project for the dynamic
approach. In this subsection we propose another method to include no-shows in the dynamic
model for the exponential case. This method uses adapted versions of the formulas described in
Subsection 5.2.1.

In the dynamic approach client n+ 1 is scheduled at the moment that the n-th client has arrived.
When including no-shows, it is not certain that a client arrives, so this definition of the dynamic
approach has to change to that the (n+ 1)-st client is scheduled at the moment that the
n-th client should arrive. This change of definition can be done since clients are assumed to be
punctual so at the moment that client n is scheduled you know whether it is a no-show or not.
In Subsection 5.2.1 ωfk(t) is said to be the contribution of the idle time to the cost function, due
to the interval [0, t] where k is the number of clients in the system immediately after the arrival
of client i. This definition has to change, since we are not sure whether client i actually arrives.
Therefore the contribution of the idle time to the cost function due to the interval [0, t] become
ω((1 − q) · fk(t) + q · fk−1(t)), since if client i shows up there are indeed k clients and if client i
is a no-show there are only k − 1 clients after the scheduled arrival time of client i, with again q
denoting the no-show probability. The same argument is used to rewrite the contribution to the
waiting time due to [0, t] from (1 − ω)gk(t) to (1 − ω) · (1 − q)gk(t) + (1 − ω) · q · gk−1(t). Lastly
also the transition probabilities are rewritten, they become:

pk1(t) = (1− q) ·
∞∑

m=k

e−µt (µt)
m

m!
+ q ·

∞∑
m=k−1

e−µt (µt)
m

m!
,

Page 39 of 55

7.5 Including no-shows in multiserver model

pkl(t) = (1− q) · e−µt (µt)k−l+1

(k − l + 1)!
+ q · e−µt (µt)k−1−l+1

(k − 1− l + 1)!
,

for k = 1, ..., i and l = 2, ..., k + 1 and t ⩾ 0. The objective function does not have to be changed
additionally, as all terms that it contains are already adapted.

7.5 Including no-shows in multiserver model
Lastly we look at the method of including no-shows in the multiserver as discussed in [23]. It uses
the same approach as Subsection 7.2 and Subsection 7.3, but is now, of course, applied to the
multiserver model as discussed in Subsection 6.1.

As before, q is the no-show probability, thus with probability q the service time of a client equals 0
and with probability 1− q the service time of client is approximated by a phase-type distribution.
To include this in our model, we only need to adapt the initial probability vectors. This is done as
follows. Define

αq
s,j = (α⊗ ...⊗α)(1− q)jq(s−j)

(
s

j

)
, (7.2)

where the Kronecker product is applied j − 1 times. This gives the part of the adapted initial
probability vector representing all states in which there are s− j clients who showed up and thus j
no-shows. When we combine this quantity for all possible values for j, so for 1 up to and including
s, we get the new initial probability vector:

αq
s = (αq

s,s,α
q
s,s−1, ...,α

q
s,1). (7.3)

Moreover, when we take no-shows into account for subsequent clients, Equation (6.10) changes to

αq
s+i = (1− q)(f(p(s+i−1)(xs+i),α)) + q(0ks ,p(s+i−1)(xs+i)), (7.4)

since with probability 1− q there is indeed a new client and with probability q there is not. Lastly,
we should also adapt the objective function. The formula for the expected waiting time, Equation
(6.11), can stay the same, but the formula for the expected idle time, Equation (6.13), changes to

E[I(s)] = s (E[Mn] + tn)− (1− q)

n∑
i=1

E[Bi], (7.5)

since a client shows up with probability 1− q.

Page 40 of 55

7.6 Experiments including no-shows and walk-ins

7.6 Experiments including no-shows and walk-ins
As for the other chapters, we end this one with some experiments. We will discuss all implemen-
tations of no-shows as described above and compare them when possible. Moreover, we will study
in Experiment 7.5. whether including no-shows is really necessary.

Experiment 7.1. Analyzing the impact of no-shows and walk-ins
We start with analyzing the impact of no-shows and walk-ins on the interarrival times and the
costs, using the method of including them in our model as described in Subsection 7.1. This is
implemented by first calculating the adapted mean, variance and SCV values and then applying the
phase-type algorithm for finding the schedule as described in Subsection 5.1.2 with those adjusted
SCV’s. The results are shown in Table 10 and Figure 16.

Run q v ω costs
1 0 0 0.5 1.88126
2 0.5 0 0.5 1.34134
3 0.5 0.5 0.5 2.18146
4 0 0.5 0.5 2.50886

Table 10: Costs of runs.

run 1

run 2

run 3

run 4

0 1 2 3 4
Interarrival

0.5

1.0

1.5

2.0

2.5

3.0

Interarrival time

Figure 16: interarrival times.

one can observe that the first run and the corresponding results correspond to the results of the
static case with E[Bi] = 1 in Subsection 5.1.3, see Figure 6a. As can be seen from run 2 and
run 4, the interarrival times decrease when the no-shows are taken into account and they increase
when walk-ins are taken into account. The costs are lower when no-shows are included, due to
the expected idle times being lower. The costs are higher when walk-ins are included, due to both
the expected idle times and expected waiting times being higher. For run 1 and 3 the interarrival
times are nearly the same. This can be explained by the fact that the expected value of the service
times of all clients is the same in those runs, since in the third run q and v cancel each other out.
However, the costs for run 3 are higher than for run 1, due to the variability being higher.

Experiment 7.2. Adjusted expected service time
Secondly we study the method that uses an adjusted expected service time more in depth and we
study the impact of differing the values for q and v. We calculate the costs and interarrival times
for the schedules, that are again found with the method described in Subsection 7.1. The input
values used for the different runs can be read in Table 12.

As can be seen in Table 12, when the value of q is increased, and thus when the expected value
of the service times decreases, the interarrival times decrease. So an increase of the no-show
probability has the same effect as decreasing the expected value. When the value of v is increased,
and thus when the expected value of the service times increases, the interarrival times increase. So
an increase of the walk-in probability has the same effect as increasing the expected value.

Page 41 of 55

7.6 Experiments including no-shows and walk-ins

Run q v ω costs
1 0 0 0.5 1.88126
2 0.2 0 0.5 1.74516
3 0.4 0 0.5 1.50643
4 0.6 0 0.5 1.14177
5 0.8 0 0.5 0.63502
6 0 0 0.5 1.88126
7 0 0.2 0.5 2.20311
8 0 0.4 0.5 2.42768
9 0 0.6 0.5 2.57188
10 0 0.8 0.5 2.65011

run 1

run 2

run 3

run 4

run 5

0 1 2 3 4
Interarrival

0.5

1.0

1.5

Interarrival time

run 6

run 7

run 8

run 9

run 10

0 1 2 3 4
Interarrival

1.0

1.5

2.0

2.5

Interarrival time

Table 12: Costs and interarrival times including no-shows and walk-ins n = 5.

Experiment 7.3. Extended exponential distribution to hyperexponential distribution
Now we calculate the costs and interarrival times of the optimal schedules using the second method
of including no-shows and walk-ins, as described in Subsection 7.2. The chosen parameters for the
different runs and the results can be found in Table 14. For all runs n equals five.

Run q v ω costs
1 0 0 0.5 1.88
2 0.2 0 0.5 1.86
3 0.4 0 0.5 1.73
4 0.6 0 0.5 1.46
5 0.8 0 0.5 0.94
6 0 0 0.5 1.88
7 0 0.2 0.5 2.42
8 0 0.4 0.5 2.87
9 0 0.6 0.5 3.24
10 0 0.8 0.5 3.53

run 1

run 2

run 3

run 4

run 5

0 1 2 3 4
Interarrival

0.5

1.0

1.5

Interarrival time

run 6

run 7

run 8

run 9

run 10

0 1 2 3 4
Interarrival

1.0

1.5

2.0

2.5

Interarrival time

Table 14: Costs and interarrival times including no-shows and walk-ins n = 5.

As for the first method the interarrival times and the costs decrease when q is increased and they
increase when v is increased. When q increases the costs seem to not decrease linearly, but more
exponentially. When comparing the costs from method 1 and 2 differences are found. In Table 15
the costs of both methods and their ratio are presented for different no-show probabilities. For all
runs n = 5 and ω = 0.5 are used. A well-founded explanation for the big difference between the
costs of method 1 and 2 has not been found, for now, we assume it can be explained by the two
different methods just having a different impact.

Page 42 of 55

7.6 Experiments including no-shows and walk-ins

q 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
costs method 1 1.88 1.82 1.75 1.64 1.51 1.34 1.14 0.91 0.64 0.33
costs method 2 1.88 1.87 1.86 1.80 1.74 1.61 1.47 1.28 1.04 0.91

ratio 1 0.97 0.94 0.91 0.87 0.83 0.78 0.71 0.62 0.36

Table 15: Comparison of costs of method 1 and 2.

Experiment 7.4. Homogeneous exponential case
In this experiment the costs and interarrival times for scheduling n = 5 clients for different no-show
probabilities are calculated using the third method that we have described for including no-shows,
that included no-shows in the exponential homogeneous static model described in Subsection 5.1.1,
see Subsection 7.3. Again ω = 0.5 is used for all runs. The results can be found in Table 16 and
Figure 17.

Run q costs
1 0 1.88
2 0.2 1.85
3 0.4 1.72
4 0.6 1.46
56 0.8 0.94

Table 16: Costs of runs.

run 1

run 2

run 3

run 4

run 5

4
Interarrival

0.5

1.0

1.5

2.0

Interarrival time

Figure 17: Interarrival times.

As for the other methods the costs and the interarrival times decrease when the no-show probability
increases. The most interesting observation is that the costs (and the interarrival times) coincide
with the costs of the second method (see Table 14). On the other hand it is not that interesting
as the similarity can easily be explained by the fact that in method 2 and 3 we schedule clients
that all still have the original expected service time, but sometimes don’t show up. So for both
methods it holds that the service time is either 0 or the original service time, while for the first
method there is always an adapted expected service time.

We also ran the model for q = 1, so for the case that there is a no-show probability of one, in
which nobody shows up at all. It is expected that both the costs and the interarrival times are
equal to zero, since there are no customers that need to arrive and thus also no costs made. This
was indeed the case.

Experiment 7.5. Benefits of including no-shows
This experiment is performed to look into the benefits, considering the costs of the schedule, of
including no-shows, and thus whether it is important to do so or not. For this, we have first
calculated the costs of the optimal schedule for n = 5, E[Bi]= Var[Bi] = SCV[Bi] = 1, ω = 0.5 and
q = 0.1, 0.2, ...0.9, using the method of including no-shows that extends a exponential distribution
to a hyperexponential distribution, as discussed in Subsection 7.2. Those costs are referred to as
costqincluded. Then the optimal interarrival times in the case of no-show probability q = 0, that
thus corresponds to the values of Figure 4, are used to calculate the costs of the schedule when
there are no-shows, but those were not taken into account when making the schedule„ defined as
costqnotincluded. Per no-show probability the ratio of those two costs, defined as costqnotincluded

costqincluded
, is

calculated and the results are presented in Figure 18.

Page 43 of 55

7.6 Experiments including no-shows and walk-ins

0.0 0.2 0.4 0.6 0.8
q

0.5

1.0

1.5

2.0

2.5

3.0
ratio

Figure 18: ratio of interarrival times for q = 0.1, 0.2, ..., 0.9.

From this figure it can be observed that including no-shows in your model is definitely worth it.
The higher the no-show probability, the higher the gain of including them in your model.

Experiment 7.6. Dynamic
In this experiment we ran the dynamic model including no-shows, as described in Subsection 7.4,
with different no-show probabilities and different values of ω. The results can be found Table 17.
One can observe that also in the dynamic case the costs decreases when no-shows are included. The
same pattern as for the static case in Experiment 7.2. appears, the higher the no-show probability
the higher the decrease of costs. In Table 18 the costs for scheduling dynamic and static when
no-shows are included with ω = 0.5 are plotted. Moreover, the ratio of those costs is calculated,
defined as r(NS) = Kdyn(NS)

Kstat(NS) . The gain of scheduling dynamic instead of static seems to become
more substantial when the no-show probability increases.

q| ω 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.94 1.36 1.58 1.67 1.65 1.54 1.34 1.04 0.62

0.2 0.935 1.34 1.56 1.64 1.61 1.50 1.29 0.99 0.58
0.4 0.90 1.28 1.46 1.51 1.47 1.33 1.12 0.83 0.47
0.6 0.82 1.12 1.24 1.23 1.14 0.99 0.81 0.60 0.33
0.8 0.63 0.76 0.74 0.69 0.62 0.54 0.44 0.32 0.18

Table 17: dynamic with no-shows.

NS Kdyn(NS) Kstat(NS) r(NS)
0 1.65 1.88 0.88

0.2 1.61 1.86 0.87
0.4 1.47 1.73 0.84
0.6 1.14 1.46 0.78
0.8 0.62 0.94 0.65

Table 18: Costs dynamic and static scheduling including no-shows with ω = 0.5.

Experiment 7.7. Multiserver
Lastly we also implemented no-shows in the multiserver model. The function got a longer running
time, due to extra matrix multiplications that have to be done, compared to the multiserver model
without no-shows. Therefore we have ran the model only for the case with two servers. To generate
the results both our Mathematica code and the Matlab code of Kuiper, the writer of [23], are used.

We have generated the results for s = 2, n = 7 and no-show probability q = 0, 0.2, ..., 0.8. The
interarrival times are presented in Figure 19 and the costs in Table 19. Comparing the results from
this experiment with the results from experiment 6.1 might be difficult, due to a difference in the
objective function.

As expected the interarrival times and the costs decrease when the no-show probability increases,
as in the single server case. The reversed bullwhip that was visible in Figure 15a disappears when
there are no-shows, see Figure 19a.

Page 44 of 55

7.6 Experiments including no-shows and walk-ins

q = 0

q = 0.2

q = 0.4

q = 0.6

q = 0.8

0 1 2 3 4 5
i

0.2

0.4

0.6

0.8

xi+s

(a) SCV = 0.5.

q = 0

q = 0.2

q = 0.4

q = 0.6

q = 0.8

0 1 2 3 4 5
i

0.2

0.4

0.6

0.8

xi+s

(b) SCV= 1.

q = 0

q = 0.2

q = 0.4

q = 0.6

q = 0.8

0 1 2 3 4 5
i

0.2

0.4

0.6

0.8

xi+s

(c) SCV = 1.5.

Figure 19: Interarrival times for n = 7 and s = 1, 2, 3 or 4.

q|SCV 0.5 1 1.5
0 1.4712 1.8968 2.0576

0.2 1.4293 1.7096 1.8095
0.4 1.2485 1.4106 1.4655
0.6 0.9371 1.0024 1.0288
0.8 0.4649 0.4966 0.5134

Table 19: Costs for s = 2, q = 0, 0.2, ..., 0.8, n = 7 and SCV = 0.5, 1, 1.5.

Page 45 of 55

8 Conclusion and discussion

8 Conclusion and discussion

In this Bachelor Final Project different methods for appointment scheduling in the single server
setting, static, dynamic and adaptive have been discussed. Additionally a multiserver setting has
been studied and no-shows and walk-ins are included in different models. For all models some
experiments are performed and their results are analysed.

For the single server setting we started with the static case. For this, we have worked out a model
for the case of homogeneous exponential distributed service times and one for the case of general
distributed service times. For the latter, we have used a phase-type fit, as is generally done in
literature. In Subsection 5.1.3 we investigated the influence of the mean, variance and ω on the
costs and interarrival times. All results that we have found are similar to results discussed in
already existing literature. Moreover, we have presented a method how appointment scheduling
can be used in practice. By using data from different countries about the mean and standard
variation of the consultation length, we have shown how doctors per country can be provided an
advised number of clients to be scheduled per day. In Subsection 5.2 we discussed the dynamic
approach, following a paper by Mahes, Mandjes, Boon and Taylor [5]. We got nearly the same
results as them, so we can follow their conclusion that the dynamic approach results in lower
costs than the static approach. The last method we discussed for the single server setting is an
adaptive one, following [5]. We found that in the case of a mixed Erlang distribution (SCV < 1)
the expected sojourn time of the client in service decreases when u increases, while in the case of a
hyperexponential distribution (SCV > 1) this value increases. Moreover, we managed to calculate
a general expression for the expected sojourn time in both cases.

Furthermore, we have discussed the multiserver setting in Section 6, following a recent paper by
Kuiper and Lee [23]. We have described their method and have provided a worked out example
in Subsection 6.1.3, to make it easier to understand the inner workings of the method. Due to the
long running time we have ran the multiserver model only for two, three or four servers and seven
clients. This relatively low number of servers and clients makes it hard to conclude something
from the results, but so far we have found results along the ones Kuiper and Lee discussed in their
paper.

Finally we have discussed in Section 7 for multiple models how no-shows (and for some models
also walk-ins) can be dealt with. For the exponential static case we have done this in four different
ways. We have used an adjusted expected service time as in [10], we have extended the exponential
distribution to a hyperexponential distribution, adapted the probabilities in the static exponential
model as discussed in Subsection 5.1.1 and we have used the multiserver method as discussed in
[23]. Extending the exponential distribution to a hyperexponential distribution and adapting the
probabilities in the static exponential model gave the same results. However, the first method gave
different results. We expected that those methods would yield the same results, as it is known that
phase-type distributions approximate other distributions well. An explanation for those differing
results has not been found yet. It could still be the case that this is due to an optimization or
modelling error. Including no-shows in the multiserver model yielded the same results as discussed
in [23]. Lastly we have also included no-shows in the exponential homogeneous dynamic model,
which has not been done before. For this we have changed the definition of dynamic scheduling
from "scheduling the arrival epoch of client i+1 at the moment that client i enters the system" to
"scheduling the arrival epoch of client i+ 1 at the moment that client i should enter the system".
It is found that also when no-shows are included, dynamic scheduling results in lower costs than
static scheduling. The gain of dynamic scheduling instead of static scheduling seems to become
even more substantial when the no-show probability increases.

The main part of this Bachelor Final Project that could be improved upon is the amount of clients
for which the schedules are calculated. Due to long running time, especially for the multiserver
case, results are only gathered for a small amount of customers. The running time could be made
shorter by either using a better computer or by making the code more efficient. With a lower
running time, for example, Experiment 5.5 could be performed for a day instead of an hour, such
that an advice could be given for the number of clients that should be scheduled per day instead
of per hour. Moreover, the multiserver model including no-shows could be ran for more than 1

Page 46 of 55

8 Conclusion and discussion

server.

Further research could consider more aspects discussed in [23] for the multiserver setting, for ex-
ample the benefit of pooling. Moreover, it would be a great development if one could improve the
multiserver model, such that it is also applicable for heterogeneous phase-type distributed service
times, since as of now, the model only works if the service times of all clients follow the same
distribution. Additionally it would be interesting to look into a dynamic and adaptive approach
for the multiserver model, since that would probably result in lower costs as for the single server
setting. Regarding including no-shows, finding an argument for the difference between the optimal
interarrival times and costs when using the methods described in Subsection 7.1 and Subsection 7.2
would be an interesting next step. A last aspect for further research is to look into whether the
fourth assumption, that is about customers being punctual, is realistic. If not, relaxing upon this
assumption would give possibilities to make the models better applicable in reality. To conclude,
all improvements that close the gap between theory and practice are welcome.

.

Page 47 of 55

References

References
[1] R. Mahes, M. Mandjes, M. Boon, and P. Taylor, “Dynamic Appointment Scheduling,” 2022.

[2] F. Sabria and C. F. Daganzo, “Approximate Expressions for Queueing Systems with
Scheduled Arrivals and Established Service Order,” University of California, Berkely, Tech.
Rep. 3, 8 1989. [Online]. Available: https://www.jstor.org/stable/25768375?seq=1&cid=pdf-

[3] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, “Deterministic
machine scheduling problems,” in Elements of Scheduling, 2021, ch. 1. [Online]. Available:
https://elementsofscheduling.nl/

[4] I. Adan, C. Comte, J. Resing, and R. Timmerman, Queueing Systems. Eindhoven: Depart-
ment of Mathematics and Computer Science, 3 2022.

[5] R. Mahes, M. Mandjes, and M. Boon, “Adaptive Appointment Scheduling,” 2022.

[6] T. Cayirli, E. Veral, and H. Rosen, “Designing appointment scheduling systems for
ambulatory care services,” Health Care Management Science, vol. 9, no. 1, pp. 47–58, 2 2006.
[Online]. Available: https://doi.org/10.1007/s10729-006-6279-5

[7] T. Cayirli and E. A. Veral, “Outpatient scheduling in health care: A review of literature,”
Production and Operations Management, vol. 12, pp. 519–549, 2009. [Online]. Available: https:
//www.semanticscholar.org/paper/OUTPATIENT-SCHEDULING-IN-HEALTH-CARE%
3A-A-REVIEW-OF-Cayirli-Veral/5351df157d87f12608aeefd6e37315d8575b5f5a

[8] William E. Boyce and Richard C. DiPrima, Elementary differential equations and boundary
value problems, 9th ed. John Wiley & Sons,Inc., 2009.

[9] R. Verbelen, “A study of theoretical concepts, calibration techniques & actuarial applications
Phase-type distributions & mixtures of Erlangs,” Tech. Rep., 2012.

[10] A. Kuiper, M. Mandjes, J. de Mast, and R. Brokkelkamp, “A flexible and optimal approach
for appointment scheduling in healthcare,” Decision Sciences, 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/deci.12517

[11] R. Bierbooms, I. J. Adan, and M. van Vuuren, “Approximate analysis of single-server tandem
queues with finite buffers,” Annals of Operations Research, vol. 209, no. 1, pp. 67–84, 10
2013. [Online]. Available: https://link.springer.com/article/10.1007/s10479-011-1021-1

[12] B. F. Nielsen, Lecture notes on phase-type distributions for 02407 Stochastic Processes, 2017.

[13] A. Ahmadi-Javid, Z. Jalali, and K. J. Klassen, “Outpatient appointment systems in
healthcare: A review of optimization studies,” European Journal of Operational Research,
vol. 258, no. 1, pp. 3–34, 4 2017. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0377221716305239

[14] C. Dennis Pegden and M. Rosenshine, “Scheduling arrivals to queues,” Computers
& Operations Research, vol. 17, no. 4, pp. 343–348, 1990. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/030505489090012V

[15] A. Kuiper, B. Kemper, and M. Mandjes, “A Computational approach to optimized
appointment scheduling,” Queueing Systems, vol. 79, no. 1, pp. 5–36, 1 2015. [Online].
Available: https://doi.org/10.1007/s11134-014-9398-6

[16] N. T. J. Bailey, “A Study of Queues and Appointment Systems in Hospital Out-Patient
Departments, with Special Reference to Waiting-Times,” Source: Journal of the Royal
Statistical Society. Series B (Methodological), vol. 14, no. 2, pp. 185–199, 1952. [Online].
Available: https://www.jstor.org/stable/2983867

[17] Soren Asmussen, Applied Probability and queues. Aarhus: Springer, 2003.

Page 48 of 55

https://www.jstor.org/stable/25768375?seq=1&cid=pdf-
https://elementsofscheduling.nl/
https://doi.org/10.1007/s10729-006-6279-5
https://www.semanticscholar.org/paper/OUTPATIENT-SCHEDULING-IN-HEALTH-CARE%3A-A-REVIEW-OF-Cayirli-Veral/5351df157d87f12608aeefd6e37315d8575b5f5a
https://www.semanticscholar.org/paper/OUTPATIENT-SCHEDULING-IN-HEALTH-CARE%3A-A-REVIEW-OF-Cayirli-Veral/5351df157d87f12608aeefd6e37315d8575b5f5a
https://www.semanticscholar.org/paper/OUTPATIENT-SCHEDULING-IN-HEALTH-CARE%3A-A-REVIEW-OF-Cayirli-Veral/5351df157d87f12608aeefd6e37315d8575b5f5a
https://onlinelibrary.wiley.com/doi/abs/10.1111/deci.12517
https://link.springer.com/article/10.1007/s10479-011-1021-1
https://www.sciencedirect.com/science/article/pii/S0377221716305239
https://www.sciencedirect.com/science/article/pii/S0377221716305239
https://www.sciencedirect.com/science/article/pii/030505489090012V
https://doi.org/10.1007/s11134-014-9398-6
https://www.jstor.org/stable/2983867

References

[18] P. P. Wang, “Optimally scheduling n customer arrival times for a single-server system,”
Computers & Operations Research, vol. 24, no. 8, pp. 703–716, 1997. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054896000937

[19] C.-J. Ho and H.-S. Lau, “Minimizing total cost in scheduling outpatient appointments,” Man-
agement Science, vol. 38, pp. 1750–1764, 12 1992.

[20] W. Vink, A. Kuiper, B. Kemper, and S. Bhulai, “Optimal appointment scheduling
in continuous time: The lag order approximation method,” European Journal of
Operational Research, vol. 240, no. 1, pp. 213–219, 1 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S037722171400527X

[21] H. Y. Mak, Y. Rong, and J. Zhang, “Appointment scheduling with limited distributional
information,” Management Science, vol. 61, no. 2, pp. 316–334, 2 2015. [Online]. Available:
https://doi.org/10.1287/mnsc.2013.1881

[22] A. Kuiper, “Appointment scheduling in healthcare,” Ph.D. dissertation, Amsterdam
Business School Research Institute, Amsterdam, 6 2016. [Online]. Available: https:
//dare.uva.nl/search?identifier=c929e434-7756-470f-b581-d17d5fae1707

[23] A. Kuiper and R. H. Lee, “Appointment Scheduling for Multiple Servers,” Articles in Advance,
2 2022. [Online]. Available: http://pubsonline.informs.org/doi/10.1287/mnsc.2021.4221

[24] R. Hassin and S. Mendel, “Scheduling arrivals to queues: A single-server model with
no-shows,” Management Science, vol. 54, no. 3, pp. 565–572, 3 2008. [Online]. Available:
https://doi.org/10.1287/mnsc.1070.0802

[25] M. Deveugele, A. Derese, A. Van Den Brink-Muinen, J. Bensing, and J. de Maeseneer,
“Consultation length in general practice: Cross sectional study in six European countries,”
BMJ: British Medical Journal, vol. 325, no. 7362, pp. 472–474, 2002. [Online]. Available:
http://www.jstor.org/stable/25452211

[26] G. Irving, A. L. Neves, H. Dambha-Miller, A. Oishi, H. Tagashira, A. Verho, and J. Holden,
“International variations in primary care physician consultation time: A systematic review
of 67 countries,” British Medical Journal Publishing Group, vol. 7, no. 10, 10 2017. [Online].
Available: https://bmjopen.bmj.com/content/7/10/e017902

Page 49 of 55

https://www.sciencedirect.com/science/article/pii/S0305054896000937
https://www.sciencedirect.com/science/article/pii/S037722171400527X
https://doi.org/10.1287/mnsc.2013.1881
https://dare.uva.nl/search?identifier=c929e434-7756-470f-b581-d17d5fae1707
https://dare.uva.nl/search?identifier=c929e434-7756-470f-b581-d17d5fae1707
http://pubsonline.informs.org/doi/10.1287/mnsc.2021.4221
https://doi.org/10.1287/mnsc.1070.0802
http://www.jstor.org/stable/25452211
https://bmjopen.bmj.com/content/7/10/e017902

A Parameters phase-type fit

A Parameters phase-type fit

In this appendix we will derive the expressions for the parameters µ, K and p for the phase-type
fit as described in Subsection 2.3.

Case SCV ⩽ 1 As written in Subsection 2.3, in this case we approximate a non-negative random
variable B by a mixture of Erlang distributions. Let us denote by E(K,µ) an Erlang distributed
random variable with shape parameter K and scale parameter µ, and U an independent uniform
random variable on [0, 1]. Then for some K ∈ N, µ > 0 and p ∈ [0, 1],

B ∼ E(K,µ)1{U<p} + E(K + 1, µ)1{U>p}.

Then we have
E[B] = p · K

µ
+ (1− p) · K + 1

µ

and
E[B2] = p · K(K + 1)

µ2
+ (1− p) · (K + 1)(K + 2)

µ2
.

From this first equality we get

E[B] = p · K
µ

+ (1− p) · K + 1

µ

E[B] =
pK

µ
+

(1− p)(K + 1)

µ

E[B] =
pK +K + 1− pK − p

µ

E[B] =
K + 1− p

µ

µ =
K + 1− p

E[B]
.

So E[B2]
E[B]2 becomes

E[B2]

E[B]2
=

(K+1)(pK+(1−p)(K−2))
µ2(

(K+1−p)2

µ2

)
=

(K + 1)(pK + (1− p)(K − 2))

µ2
· µ2

(K + 1− p)2

=
(K + 1)(pK + (1− p)(K − 2))

(K + 1− p)2

=
(K + 1)(K + 2(1− p))

(K + 1− p)2
.

Page 50 of 55

A Parameters phase-type fit

Resulting in

SCV =
E[B2]

E[B]2
− 1

=
(K + 1)(K + 2(1− p))

(K + 1− p)2
− 1

=
(K + 1)(K + 2(1− p))

(K + 1− p)2
− (K + 1− p)2

(K + 1− p)2

=
(K + 1)(K + 2(1− p))− (K + 1− p)2

(K + 1− p)2

=
K + 1− p2

(K + 1− p)2
.

Define the function f(·) and its antiderivative through f(p) = K+1−p2

(K+1−p)2 and f(p) = 2(K+1)(1−p)
(K+1−p)3 > 0

with p ∈ [0, 1]. Then f(0) = 1
K+1 and f(1) = K

K2 = 1
K . So the SCV lies in between those two

values. If SCV ⩽ 1, then K is the floor of 1
SCV . Lastly we need to find p. To find this value, we

solve the following equations from above

SCV =
K + 1− p2

(K + 1− p)2

K + 1− p2 = SCV(K + 1− p)2

K + 1− p2 = SCV(K + 1)2 − 2SCV(K + 1)p+ p2SCV

0 = (SCV + 1)p2 − 2SCV(K + 1)p+ (K + 1)2SCV − (K + 1).

So by solving the latter quadratic equation we get

p =
(K + 1)SCV ±

√
(K + 1)(1−K · SCV)

SCV + 1
.

We choose the one with the minus sign, since this one lies in [0, 1], what is needed since p is a
probability.

Case SCV > 1 If the SCV is larger than 1, we approximate the non-negative random variable
B by a hyperexponential distribution. For some µ1, µ2 > 0 and p ∈ [0, 1],

B ∼ exp(µ1)1{U<p} + exp(µ2)1{U>p}.

We then get E[B] = p · 1
µ1

+ (1 − p) · 1
µ2

and E[B2] = p · 2
µ2
1
+ (1 − p) · 2

µ2
2
. Using the principle of

balanced means, so choose µ1 = 2pµ and µ2 = 2(1− p)µ, we get

E[B] =
p

µ1
+

1− p

µ2

=
p

2pµ
+

1− p

2(1− p)µ

=
1

2µ
+

1

2µ
=

1

µ
,

Page 51 of 55

A Parameters phase-type fit

thus µ = 1
E[B] . To get the SCV, we first determine E[B2]

E[B]2 .

E[B2]

E[B]2
= µ2

(
p · 2

(2pµ)2
+ (1− p) · 2

4(1− p)2µ2

)
=

1

2p
+

1

2(1− p)

=
1

2p(1− p)
.

The SCV then becomes

SCV =
E[B2]

E[B]2
− 1

=
1

2p(1− p)
− 1

=
1

2p(1− p)
− 2p− 2p2

2p− 2p2

=
1− 2p+ 2p2

2p− 2p2
.

After rewriting this formula, we can get the value for p.

SCV =
1− 2p+ 2p2

2p− 2p2

(2p− 2p2)SCV = 1− 2p+ 2p2

−2p2(SCV + 1) + 2p(SCV + 1)− 1 = 0

p2 − p+
1

2(SCV + 1)
= 0.

When solving the latter quadratic equation we get

p = 2

(
1±

√
SCV − 1

SCV + 1

)
.

We always take p = 2
(
1−

√
SCV−1
SCV+1

)
, since we assume µ1 > µ2.

Page 52 of 55

B Objective function

B Objective function

As written in the model description we use a linear objective function. However, there are also
other options for objective functions. A brief description of possible cost functions is provided in
this appendix.

Most of the papers in literature regarding appointment scheduling include the idle time and waiting
time in the objective function. There are mainly two variants of doing so. Firstly there is the linear
objective function, the one that we use, which is also used in [5, 1, 22]. It is a weighted sum of
the expected idle times of the server and the expected waiting times of the client. Such a function
looks as follows:

C[x1, x2, ..., xi] = ω

n∑
i=1

E[Ii] + (1− ω)

n∑
i=1

E[Wi], (B.1)

with Ii the idle time of client i, Wi the waiting time associated with client i and ω a variable factor
to define which of the latter two quantities is the most important in the weighted sum.

Secondly there is the quadratic objective function. Which is a weighted sum of the squared expected
idle times of the server and the squared expected waiting times of the client. Such a function looks
as follows:

C[x1, x2, ..., xi] = ω

n∑
i=1

E[I2i] + (1− ω)

n∑
i=1

E[W 2
i]. (B.2)

When using such a quadratic objective function, you are punished harder for higher values than
when using a linear objective function. This variant is studied in a.o. [22, 15].

Furthermore there are two other quantities that are relatively often included in the objective
function. Firstly there is the overtime. The overtime is the difference between the real and
the expected makespan, the time that the server should be available. Mathematically, when Treal
denotes the real makespan and Texp the expected makespan, the overtime is defined as Treal−Texp.
Overtime is clearly something that is bad for the server. Overtime results in the server having to
work longer than expected. To deal with this extra term, ω̄E[O], can be included in the objective
function, such that the objective function becomes

C[x1, x2, ..., xi] = ω

n∑
i=1

E[Ii] + (1− ω)

n∑
i=1

E[Wi] + ω̄E[O]. (B.3)

Here O denotes the overtime and ω̄ is a factor that defines the weight of the overtime. When
overtime is included into the objective function it has, in all papers that we studied, always been
added to an objective function that already contained expected idle and waiting times, resulting in
an expression as Equation (B.3), instead of that it replaced one of those two quantities. Including
overtime in the objective function is studied in a.o. [22].

Secondly there is the availability of a server. When this quantity is used it mostly replaces the
server’s idle time, see for example [14] or [24]. When doing so the objective function becomes:

C[x1, x2, ..., xi] = ωw

n∑
i=1

wi + ωs

(
t1 +

n−1∑
i=1

xi + wn + E[Bn]

)
, (B.4)

where ωw and ωs denote the weight of customers waiting time and the servers availability. In [14]
those quantities are defined as the customer waiting cost per unit time and the server availability
cost per unit time.

Page 53 of 55

C Proof convexity single server

C Proof convexity single server

Theorem: C[x2, x3, ..., xn] is convex in x = (x2, x3, ..., xn), and therefore, there is a unique
minimum on Rn−1

+ . Here xn = ti − ti−1 and x1 is fixed at 0.

Proof. C[x2, x3, ..., xn] is defined as

C[x2, x3, ..., xn] = ω

n∑
i=1

E[Ii] + (1− ω)

n∑
i=1

E[Wi]. (C.1)

By using

Bi + Ii = xi + Si − Si−1

Ii = xi + Si −Bi − Si−1

Ii = xi +Wi −Wi−1 −Bi−1 (C.2)

we can rewrite the objective function to

C[x2, x3, ..., xn] = arg min
x2,...,xn

(
ω

n∑
i=1

E[Ii] + (1− ω)

n∑
i=1

E[Wi]

)

= arg min
x2,...,xn

(
ω

n∑
i=1

E[xi +Wi −Wi−1 −Bi−1] + (1− ω)

n∑
i=1

E[Wi]

)

= arg min
x2,...,xn

(
ω

n∑
i=1

E[xi −Bi−1] + E[Wn] + (1− ω)

n−1∑
i=1

E[Wi]

)
(C.3)

where in the last line the E[Bi−1] terms can be dropped for the optimization, as these are constants
and will thus not affect the optimal interarrival times. This then results in the following equation

= ω

n∑
i=1

E[xi] + E[Wn] + (1− ω)

n−1∑
i=1

E[Wi]. (C.4)

From the equality in Equation C.3 it follows that the objective function is a linear combination of
expected waiting times minus a linear combination of x, which is convex. Therefore the only thing
left to prove is that expected waiting times are convex. Define by Wi(x) the waiting time of the
i-th patient if the vector of interarrival times is given by x. Then we have to prove

E[Wi(νx1 + (1− ν)x2)] ⩽ ν[Wi(x1)] + (1− ν)E[Wi(x2)], (C.5)

for x1,x2 ∈ Rn−1
+ and ν ∈ [0, 1].

For a given i define

Zj =

i∑
k=i−j+1

Bk

and

yj =

i∑
k=i−j+1

xk+1,

where Bk denotes the service time of client k, Zj the total service time of client i and the j − 1
clients before them and yj the sum of the interarrival times of client i and the j − 1 before them.
By repeatedly applying Wi = max{Wi−1+Bi−1−xi, 0}, that followed from the Lindley Recursion,
the following distributional equality is obtained:

Wi(x)
d
= max

j∈{0,1,...,i−1}
{Zj − yj(x)} .

Page 54 of 55

C Proof convexity single server

Then

E[Wi (νx1 + (1− ν)x2)] = E
[

max
j∈{0,...,i−1}

{Zj − yj (νx1 + (1− ν)x2)}
]

= E
[

max
j∈{0,...,i−1}

{Zj − νyj (x1)− (1− ν)yj (x2)}
]

= E
[

max
j∈{0,...,i−1}

{ν (Zj − yj (x1)) + (1− ν) (Zj − yj (x2))}
]

⩽ E
[

max
j∈{0,...,i−1}

{ν (Zj − yj (x1))}
]

+ E
[

max
j∈{0,...,i−1}

{(1− ν) (Zj − yj (x2))}
]

where the last inequality follows from the triangle inequality. So we have proven Equation (C.5)
and thus as a consequence, it can be concluded that there is a unique minimum on Rn−1

+ [10].

Page 55 of 55

	Introduction
	Applicable theory
	Matrix exponential
	Continuous phase-type distribution
	Fitting a phase-type distribution
	Kronecker product and sum

	Literature overview
	Mathematical model
	Single server models
	Static model
	Exponential homogeneous
	Phase-type distributions
	Experiments single server static scheduling

	Dynamic model
	Exponential homogeneous
	Exponential heterogeneous
	Experiments single server dynamic scheduling

	Adaptive model
	Experiments single server adaptive scheduling

	Multi server model
	Phase-type static multiserver
	Method
	Evaluating the objective function
	Example multiserver n =3, s = 2, SCV>1

	Experiment multiserver scheduling

	Including no-shows and walk-ins
	Adjusted expected service time
	Extended exponential distribution to hyperexponential distribution
	Homogeneous exponential case
	Including no-shows in dynamic model
	Including no-shows in multiserver model
	Experiments including no-shows and walk-ins

	Conclusion and discussion
	Parameters phase-type fit
	Objective function
	Proof convexity single server

