
 Eindhoven University of Technology

BACHELOR

Optimising the Occupancy of Theatres under Minimal Distance Constraints

Datema, Gerrit J.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/124e7ea1-5e65-4fc3-a344-d96d72531c6c

Optimising the Occupancy of Theatres under
Minimal Distance Constraints

Author
G.J. Datema

1022222

Supervisor
R. Pendavingh

Eindhoven University of Technology
Department of Applied Mathematics

2WH40 Bachelor Final Project

March 22, 2022
Eindhoven University of Technology

Abstract

This report was written to provide the findings of an investigation into the maximisation of the
rate of seats that can be occupied in a theatre, while taking minimal distance rules into account.
Both finite and infinite theatres were analysed, and it was found that, for any minimal distance, the
rate of seats that can be occupied in an infinite theatre provides a lower bound to the rate of seats
that can be filled in a finite theatre with equivalent distance between consecutive rows and seats.
In this report, methods are provided that allow to calculate the maximal number of seats that can
be occupied in any finite theatre exactly. Moreover, an upper and a lower bound are given to the
rate of seats that can be occupied in an infinite theatre. The results for a number of examples are
given, in which it can be seen that the minimal distance rules significantly lowers the rate of seats
that can be filled in a theatre.

1

Contents

1 Introduction 3

2 Problem Description 4
2.1 Situational Analysis . 4
2.2 Distance Function . 4
2.3 Theatre Setup and Seating Arrangements . 5
2.4 Constraints . 6
2.5 Occupancy and Occupancy Rate . 7
2.6 Problem Statement . 9

3 Methods and Upper Bound 10
3.1 Characteristic Vectors . 10
3.2 Analysing the Objective Problems . 10

3.2.1 LP-Relaxation and the Dual . 10
3.2.2 The First Upper Bound . 11
3.2.3 Improving the Upper Bound . 12

3.3 Proof for Theorem 1 . 14
3.4 Additional Constraints . 14

3.4.1 The First Additional Constraint . 14
3.4.2 The Second Additional Constraint . 15

3.5 Constraint on a Finite Region . 17
3.6 The Upper Bound . 17

4 Lower Bound 18
4.1 Lattices and Density . 18
4.2 Rewriting the Distance Function . 20
4.3 Safety of Lattices . 20
4.4 The Lower Bound . 21

5 Results 26
5.1 Distinction between Solutions . 26
5.2 The Examined Situations . 27
5.3 Solutions to r(S, a, b, c) . 29
5.4 Solutions to r(S∞, a, b, c) . 34
5.5 Interpretation of the Results . 36

6 Discussion 37

7 Conclusion 38

2

1 Introduction

The coronavirus has influenced peoples’ lives all around the world. Many countries have taken a
variety of measures to prevent the spread of the virus. In the Netherlands, most of these measures
have not been in place for the entire duration of this COVID-affected time, but have been put in
place in response to the increase or decrease of the number of infections. However, one measure that
has been in place for the majority of the past two years is the rule of social distancing (Coronavirus
tijdlijn — Rijksoverheid.nl , n.d.). This measure prevents people from being too close to each other,
in order to limit possible infections. Social distancing has a big impact on everyday life in many
ways, one of which is the reduced number of people that can fit in a certain room, such as a theatre.
Blom et al. (2020) discusses methods to determine the maximum number of people that can fit
in the Music Building in Eindhoven (MBE), taking the social distancing rules in the Netherlands
into account. This paper is used as the basis of the current project. In contrast with the paper
by Blom et al. (2020), in which the objective is to mathematically optimise the occupancy of the
MBE specifically, this report addresses the more general case by considering arbitrary theatres and
minimal distances.

The report will be structured as follows. In Section 2, the problem description is given. To do so,
an analysis is made of the situations that are investigated. In Section 3, the linear optimisation
methods used to find solutions to the problem statement are explained. Furthermore, an upper
bound is described for a specific case where the theatre considered is infinitely large. In Section
4, the corresponding lower bound is analysed. Section 5 consists of various results to the problem
statement. The findings and the methods used are being discussed in Section 6. Finally, in Section
7 the final conclusions are drawn.

3

2 Problem Description

2.1 Situational Analysis

The objective considered in this project regards the maximisation of the number of people that are
seated in a theatre under minimum distance constraints. The theatre that is considered has the
following properties. First, it is assumed that the spacing between consecutive rows is constant.
This distance is denoted by b. Similarly, the spacing between consecutive seats within a row is
constant, and this distance is denoted by a. Furthermore, it is assumed that consecutive rows
are shifted relative to each other by half a seat, which is customary in many theatres. A seat is
referred to with coordinates, where the first entry is the row number, and the second entry is the
seat number. For instance, seat (4, 6) is seat number 6 in row number 4. Thus, all seats can be
referred to using a pair of integers. The situation as described is visualised is Figure 1. Here, the
dots represent the centers of seats. In this example, the blue arrows show the distance between
consecutive rows and the distance between consecutive seats. These distances a and b are both
chosen to be 1 in this case, but they may be different from each other in other examples.

Figure 1: Example of a theatre setup.

2.2 Distance Function

For any theatre with a seating setup satisfying the properties as explained in the situational analysis,
a function can be found that gives the distance between any two seats in the theatre. This function
will be crucial in solving the problem. Throughout this report, this function will be referred to as
the distance function (Blom et al., 2020). Let s ∈ Z2 and t ∈ Z2 be two seats within a theatre.
Then we can write s = (sr, ss) and t = (tr, ts), where the first coordinate is the row number and
the second is the seat number. As a convention, in the remainder of the report for any seat the
subscript r will be used for the entry corresponding to the row number, and the subscript s will
be for the entry corresponding to the seat number. Note that due to the shift between rows, the
two integer entries do not directly indicate the seat’s coordinates in the Euclidean space, but are
merely two numbers that are associated to a particular seat within the theatre. Thus, to find the
Euclidean distance between any two seats, the shift between consecutive rows and the seat and row
spacing of the theatre, denoted by a and b, need to be taken into account. In order to find the
Euclidean distance, we use Pythagoras’ Theorem. A right-angled triangle can be created within the
theatre with s and t as two of the three corners. We can easily complete the right-angled triangle
by adding a “vertical” line between the rows of s and t and a “horizontal” line within the row.
Then this “vertical” distance between the rows of seats s and t is simply (sr− tr) · b. The rows shift
by half a seat for consecutive rows, so the “horizontal” distance is given by (ss− ts+

1
2(sr − tr)) ·a.

4

Using Pythagoras, we find the distance function

d(s, t) =

√
(ss − ts +

1

2
(sr − tr))2a2 + (sr − tr)2b2.

2.3 Theatre Setup and Seating Arrangements

Before we can use the distance function to analyse the distance between seats within a theatre,
we first need to be able to mathematically specify the shape and size of the theatres that will
be examined exactly. To do this, recall that any seat within the theatre may be indicated by its
row and seat number. Thus, to the seats of any particular theatre satisfying the assumptions as
described in the situational analysis, a set containing two dimensional, integer-valued elements can
be associated. Such a set will be called S throughout the rest of the report. So, any set of seats
is represented by a set S ⊂ Z2. Therefore, the exact setup of any theatre can exactly be described
by a set S ⊂ Z2, and the parameters a and b. As an example, the theatre represented by the set
S = {s ⊂ Z2 : d(0, s) ≤ 2}, and the parameters a = b = 1 are depicted in Figure 2, where 0
represents the seat with row and seat number 0.

Figure 2: Theatre setup determined by S, a and b.

Within a theatre, we are interested in the seats that are occupied. To this end, the concept of
a seating arrangement is introduced. Let some set S ⊂ Z2 be fixed. Then a seating arrangement
is a set containing all seats within S that are occupied. So, a subset A ⊆ S ⊂ Z2 is a seating
arrangement if each s ∈ A indicates an occupied seat. Therefore, if a set S, parameters a and b,
and a seating arrangement A are fixed, the theatre and the occupied seats within the theatre are
exactly determined. In Figure 3, an example is given using S = {s ⊂ Z2 : d(0, s) ≤ 2}, a = b = 1,
and A = {s ∈ S : d(0, s) > 3/2}. Here, the green dots represent occupied seats, and the red dots
represent empty seats.

5

Figure 3: Theatre setup determined by S, a and b.

2.4 Constraints

Now that all components necessary to exactly determine a theatre setup and a seating arrange-
ment have been explained, we can start to consider the restrictions that need to be put on the
seating arrangements such that we can distinguish between arrangements that are of interest and
arrangements that are not. In this report, the seating arrangements that are of interest are those
containing only elements associated to seats that are separated by at least some minimal distance.
We call this minimal distance the forbidden distance, and will refer to it with the letter c. In this
report, no exceptions to the minimum distance rule are considered. So, a situation where certain
people, such as family members, may sit next to each other is not taken into account. The forbidden
distance determines the safety of a seating arrangement. This concept of safety is made clear in
the following definition.

Definition 1: Let S ⊂ Z2 be fixed. Then a seating arrangement A ⊆ S is called (a, b, c)-safe
if and only if d(s, t) > c for all s, t ∈ A such that s ̸= t.

As a consequence, a seating arrangement A ⊆ S in which some s ∈ A is occupied can only be safe
if all seats t ∈ S such that d(s, t) ≤ c are empty. An example of this is given in Figure 4. However,
if seat s is not occupied, there are multiple ways of distributing the seats in the same region around
s safely, an example of which is given in Figure 5.

Figure 4: Example of an (a, b, c)-safe arrangement A around occupied seat s ∈ A.

6

Figure 5: Example of an (a, b, c)-safe seating arrangement A around empty seat s ∈ A.

2.5 Occupancy and Occupancy Rate

Suppose that we have fixed a set S ⊂ Z2, and parameters a and b. So, we have exactly determined
the characteristics of some theatre. Then for every seating arrangement A ⊆ S a size can be
determined. This size is denoted by |A|, and equals the amount of elements of A. This notion of
size is used to define the occupancy of a theatre.

Definition 2: The occupancy of a theatre is defined by

q(S, a, b, c) := max {|A| : A ⊆ S,A is (a, b, c)- safe} .

In other words, the occupancy of a theatre is the maximum amount of seats that can safely be
occupied. Thus, the occupancy depends on the choices for S, a, b and c. Using this notion of
occupancy, we define the occupancy rate to be the maximum amount of seats in a theatre that can
safely be occupied, divided by the total amount of seats within that theatre.

Definition 3: Suppose that S ⊂ Z2 is finite. Then the occupancy rate of a theatre is defined
by

r(S, a, b, c) := q(S, a, b, c)
|S|

=
max {|A| : A ⊆ S,A is (a, b, c)- safe}

|S|
.

Note that this definition for the occupancy rate is well-defined if the size of S is finite. Therefore,
we require the set S to be finite. However, for reasons that will soon become apparent, we would
also like to investigate infinitely large theatres, besides finitely large theatres. In order to do so, we
define a specific example of a set of seats S ⊂ Z2. Let Sk ⊂ Z2 be defined by

Sk :=

{
s ∈ Z2 : d((sr, 0), (0)) ≤

1

2
k, d((sr, ss), (sr,−

1

2
sr)) ≤

1

2
k, k ∈ R

}
.

Then the set Sk can be used to refer to a theatre that contains the seats within a square area
around seat 0. An example of a theatre represented by the set Sk is given in Figure 6. By changing
the value of k, we can adjust the size of the theatre.

7

Figure 6: Example of a set Sk.

We can use the set Sk ⊂ Z2 to define the occupancy rate for all theatres, even for those that
are infinitely large.

Definition 4: Let S ⊆ Z2 be fixed. Then the occupancy rate of a theatre is defined by

r(S, a, b, c) := lim
k→∞

q((S ∩ Sk), a, b, c)

|(S ∩ Sk)|

= lim
k→∞

max {|A| : A ⊆ S ∩ Sk,A is (a, b, c)- safe}
|(S ∩ Sk)|

.

Note that Definition 4 is equal to Definition 3 for finite S ⊂ Z2. This can be seen in the following
way. Suppose S ⊂ Z2 is finite. Then there exists a k0 ∈ R such that S ⊆ Sk for all k ≥ k0. So for
finite S

lim
k→∞

max {|A| : A ⊆ S ∩ Sk,A is (a, b, c)- safe}
|(S ∩ Sk)|

=
max {|A| : A ⊆ S ∩ Sk0 ,A is (a, b, c)- safe}

|(S ∩ Sk0)|

=
max {|A| : A ⊆ S,A is (a, b, c)- safe}

|S|
.

So, for finite S ⊂ Z2, Definition 4 is equivalent to Definition 3. Therefore, we can conclude that
Definition 4 is well-defined for all S ⊆ Z2. A specific example of these infinite theatres are the
theatres that include all seats corresponding to all elements of Z2. We define

S∞ := Z2.

Then, a theatre represented by parameters a, b, and the set S∞ includes seat s for all s ∈ Z2. We
use the set S∞ to state the following theorem.

Theorem 1: For all finite S ⊂ Z2 and all a, b, c ≥ 0 we have

r(S, a, b, c) ≥ r(S∞, a, b, c).

8

This theorem will be proven in Section 3.6. By Theorem 1, for certain fixed a, b and c, the occupancy
rate of the theatre with the set of seats S∞ provides a lower bound to the occupancy rate of any
finite theatre. Therefore, it is useful to investigate the occupancy rates of infinite theatres S∞, for
various a, b and c.

2.6 Problem Statement

The objective of this report is to investigate the occupancy rate r(S, a, b, c) for various sets of seats
S, parameters a and b, and forbidden distances c. Thus, we want to find solutions to the following
maximisation problem.

r(S, a, b, c) := lim
k→∞

q((S ∩ Sk), a, b, c)

|S ∩ Sk|
= lim

k→∞

max {|A| : A ⊆ S ∩ Sk,A is (a, b, c)- safe}
|S ∩ Sk|

. (1)

In particular, we want to investigate the occupancy rates of theatres with the set of seats S∞,
in order to find lower bounds to problem (1). Thus, we want to find solutions to the following
maximisation problem.

r(S∞, a, b, c) := lim
k→∞

q((S∞ ∩ Sk), a, b, c)

|S∞ ∩ Sk|
= lim

k→∞

max{|A| : A ⊆
⋃k

i=1 Si,A is (a, b, c)- safe}
|Sk|

. (2)

9

3 Methods and Upper Bound

Before being able to start searching for solutions to problems (1) and (2), we want to express the
occupancy rates in such a way that we can use integer programming to find solutions. To this
purpose, we introduce a number of methods that will help solving the problem. The methods
explained in this chapter will be used to calculate the occupancy rates for finite S ⊂ Z2, and to
calculate upper bounds to r(S∞, a, b, c).

3.1 Characteristic Vectors

Consider a seating arrangement A ⊆ S ⊂ Z2. With A, we can associate a characteristic vector
x ∈ {0, 1}S with xs = 1 if and only if s ∈ A. In order to find r(S, a, b, c), we need to find an (a, b, c)-
safe seating arrangement A of maximum size. This is equivalent to finding a characteristic vector
x corresponding to a safe A with the most entries equal to 1. Throughout the rest of the report,
such an x corresponding to a safe A will be called a safe characteristic vector. Then, maximising
the size of safe A is equivalent to maximising the sum

∑
s∈Sk

xs = 1 · x for x safe. By definition,
A is (a, b, c)-safe if d(s, t) > c for all s, t ∈ A, s ̸= t. So, if d(s, t) ≤ c and s ̸= t, we cannot have
that s ∈ A and t ∈ A. So, if d(s, t) ≤ c and s ̸= t, we cannot have that xs = xt = 1. Therefore, x
is safe if and only if

xs + xt ≤ 1 ∀s, t ∈ S such that d(s, t) ≤ c and s ̸= t. (3)

Thus, using the characteristic vector, we have that

q(S, a, b, c) := max {|A| : A ⊆ S,A is (a, b, c)- safe} (4)

= max
{
1x : x ∈ {0, 1}S , (3)

}
. (5)

maximisation problem (5) is an integer linear program. Therefore, for any finite S, we can now
determine the optimal solution for r(S, a, b, c). However, solving (5) can be rather time-consuming,
especially for large S. Moreover, (5) provides no way to gain further information about the case
where we have S∞. So, we will analyse problems (1) and (2) more closely, using the characteristic
vectors, in order to get a better understanding of how to find an upper bound to r(S∞, a, b, c).

3.2 Analysing the Objective Problems

3.2.1 LP-Relaxation and the Dual

In the above section, it was shown that equation (5) characterises q(S, a, b, c). Using this, we can
rewrite r(S, a, b, c) as

r(S, a, b, c) := lim
k→∞

q(S ∩ Sk, a, b, c)

|(S ∩ Sk)|
= lim

k→∞

max
{
1x : x ∈ {0, 1}S∩Sk , (3)

}
|(S ∩ Sk)|

.

By Theorem 1, we can acquire more information about this r(S, a, b, c) by considering the case
where S = S∞. Therefore, we try to find bounds to r(S∞, a, b, c). In order to find an upper bound,
we first consider the Linear Programming Relaxation (LP-Relaxation) of q. We have

q(S, a, b, c) = max
{
1x : x ∈ {0, 1}S , (3)

}
≤ max

{
1x : x ∈ RS , x ≥ 0, (3)

}
.

We can apply the Duality Theorem (Conforti et al., 2014) to this last expression to find an upper
bound.

10

Duality Theorem: For any m× n matrix A and vectors b ∈ Rm and c ∈ Rn, we have

max{cx : Ax ≤ b, x ∈ Rn, x ≥ 0} = min{yb : yA ≥ c, y ≥ 0, y ∈ Rm},
provided that the maximisation problem or the minimisation problem, is both feasible and
bounded.

In order to apply this theorem, we need to write constraint (3) in the form Ax ≤ 1, where A is
a matrix. In Section 3.2.2, we will explain how to do this. However, any matrix A that satisfies
Ax ≤ 1 for all safe x is sufficient to achieve an upper bound. Let A be a matrix such that Ax ≤ 1
for all safe x on S ⊆ Z2. Then A is an m×n matrix, where n = |S|. Applying the Duality Theorem
then yields

q(S, a, b, c) (6)

LP−Relaxation
≤ max

{
1x : x ∈ RS , x ≥ 0, (3)

}
(7)

≤ max
{
1x : Ax ≤ 1, x ∈ RS , x ≥ 0,

}
(8)

Duality Theorem
= min {y1 : yA ≥ 1, y ∈ Rm, y ≥ 0} (9)

So, the dual of the LP-relaxation of q(S, a, b, c) provides a way to find upper bounds to r(S, a, b, c).
Therefore the dual of the LP-relaxation of q((S∞∩Sk), a, b, c) = q(Sk, a, b, c) provides a way to find
an upper bound to r(S∞, a, b, c). Note that since x ≥ 0, by constraint (3) we have for all s ∈ S and
if there exists a t ∈ S such that d(s, t) ≤ c and t ̸= s

xs + xt ≤ 1 ⇒ xs ≤ 1.

Therefore, the constraint x ≤ 1 is redundant in (8), and does not need to be considered.

3.2.2 The First Upper Bound

If we can write constraint 3 using a matrix A such that Ax ≤ 1, we can apply the method as
described in Section 3.2.1 to find an upper bound to r(S∞, a, b, c). We can do this in the following
way. First of all, we define the following set using the distance function.

Definition 5: Let w ∈ R2. Then the set Bp(w) ⊆ R2 is defined by

Bp(w) := {t ∈ R2 : d(w, t) ≤ p}.

Thus, the set Bp(w) is a ball around a point in R2 containing all points within a certain distance
of its center. Now, let S, a, b and c be fixed. Then the set (Bc(s) ∩ Z2) \ {s} contains exactly all
points t within distance c of point s such that t ̸= s. We generate matrix A in the following way.
For all s ∈ S, we consider the set (Bc(s) ∩ Z2) \ {s}. For each element t ∈ (Bc(s) ∩ Z2) \ {s}, we
add a row in matrix A containing a 1 at the position of t and a 1 at the position of s if t ∈ S, and
we add a row with just a 1 at the position of s if t /∈ S. Doing so for all t ∈ (Bc(s) ∩ Z2) \ {s} and
for all s ∈ S, we have generated a matrix A that corresponds to constraint (3). Then, matrix A is

an m× n matrix, where n = |S| and m = |S|·|(Bc(s)∩Z2)\{s}|
2 . Note that the sum of each column of

matrix A equals |Bc(s)∩Z2)\{s}|. Thus, the vector y where yi =
1

|(Bc(s)∩Z2)\{s}| for all i ∈ {1, ...,m}
is a feasible solution to the dual problem. Suppose that (Bc(s) ∩ Z2) \ {s} ≠ ∅. Then the upper
bound to r(S∞, a, b, c) that we found is

lim
k→∞

y1

|Sk|
= lim

k→∞

|Sk| · |(Bc(s) ∩ Z2) \ {s}|
2|Sk|

· 1

|(Bc(s) ∩ Z2) \ {s}|
=

1

2
.

This upper bound is not very good. Therefore, we need to find better way to apply the methods
explained in Section 3.2.1 to find an upper bound to r(S∞, a, b, c).

11

3.2.3 Improving the Upper Bound

The quality of the LP-Relaxation determines the quality of the integer linear programming of the
upper bound. Therefore, we will focus on improving the quality of the LP-Relaxation. First, we
define the set Q as follows.

QS,a,b,c := {x ∈ {0, 1}S : (3)}.

Then Q is the set containing all feasible solutions to maximisation problem q(S, a, b, c). Constraint
(3) can be seen as a list of inequalities that bounds a certain polyhedron in which all x ∈ Q are
located. We define this polyhedron P as

PS,a,b,c := Conv(QS,a,b,c).

Then, we can use set Q and polyhedron P to deduce the following. Suppose that S ′ ⊆ S. Then if A
is (a, b, c)-safe on S, A restricted to S ′ is also (a, b, c)-safe, on S ′. Namely, we have that d(s, t) > c
for all s, t ∈ A ⊆ S such that s ̸= t, so d(s, t) > c for all s, t ∈ A ⊆ S ′. Let x ∈ RS and s ∈ S, then
we define xS′ ∈ RS′

as
(xS′)s := xs ∀ s ∈ S ′.

Then we have

S ′ ⊆ S
⇒ {xS′ : x ∈ QS,a,b,c} ⊆ QS′,a,b,c

⇒ {xS′ : x ∈ PS,a,b,c} ⊆ PS′,a,b,c. (10)

So, if we can find an inequality that is true for all PS′,a,b,c, then it is also true for all {xS′ : x ∈ PS,a,b,c}.
Thus, we can use knowledge about subsets S ′ ⊆ S in order to gain knowledge about the entire
theatre. This is shown by the following theorem.

Theorem 2: Let S ⊂ Z2 finite, a ∈ RS , a ≥ 0 and suppose that a satisfies ax ≤ 1 for all
x ∈ {0, 1}S safe. Then

1

1a
≥ r(S∞, a, b, c).

Proof: By symmetry, we can translate S over Z2. Let l ∈ Z2, then we can write such a
translation as

S + l := {s ∈ Z2 : (s− l) ∈ S}.

Then, by symmetry, we have that ax ≤ 1 on all these regions S + l for all l ∈ Z2. Note that
by translation symmetry, for finite k ∈ R, there exists a finite L ⊂ Z2 such that

Sk ⊆
⋃
l∈L

(S + l).

We choose L such that Lk = {l ∈ Z2 : (S + l) ∩ Sk ̸= ∅}. Then, we generate a matrix A such
that

Als =

{
as−l if s ∈ S + l

0 otherwise.

12

Then by (6), it follows that Ax ≤ 1 for all safe x ∈ {0, 1}Sk . Matrix A is an L× Sk matrix.
Then, by construction, A satisfies∑

l∈L
Als =

∑
l∈L

as−l = 1a.

Therefore, vector y such that

yi =
1

1a

is a feasible solution to the dual problem:∑
l∈L

1

1a
Als

=
1

1a

∑
l∈L

Als

=
1

1a
1a

= 1.

By the method explained in Section 3.2.1, we have

r(s∞, a, b, c)

≤ lim
k→∞

1y

|Sk|

= lim
k→∞

|L|
1a|Sk|

=
1

1a
lim
k→∞

|L|
|Sk|

.

By choice of L, we have that |L| ≥ |Sk| for all k ≥ 0. Therefore

|L|
|Sk|

≥ 1 ⇒ lim
k→∞

|L|
|Sk|

≥ 1.

Since S is finite, it follows that it is bounded. Therefore, there exists a p ∈ R such that
S + l ⊂ Bp(0) for each l ∈ L. We fix such a p. Then we have

|L| ≤
(
k + 2p

b
+ 1

)(
k + 2p

a
+ 1

)
=

k2 + k(4p+ a+ b) + 4p2 + 2ap+ 2bp+ ab

ab
.

Therefore

lim
k→∞

|L|
|Sk|

≤ lim
k→∞

k2+k(4p+a+b)+4p2+2ap+2bp+ab
ab
k2

ab

= lim
k→∞

k2 + k(4p+ a+ b) + 4p2 + 2ap+ 2bp+ ab

k2

= lim
k→∞

(
1 +

(4p+ a+ b)

k
+

4p2 + 2ap+ 2bp+ ab

k2

)
= 1.

13

So, we have that 1 ≤ limk→∞
|L|
|Sk| ≤ 1, and therefore limk→∞

|L|
|Sk| = 1. From this, it follows

that
1

1a
≥ r(S∞, a, b, c). □

So, any a that satisfies ax ≤ 1 on some finite subset S ⊂ Z2 provides an upper bound to
r(S∞, a, b, c). Such constraint vectors a on any finite S can be found using a cutting-plane method
that will be explained in Section 3.4. In the cutting-plane method, we repeatedly need to generate
safe x on S. This can be done, as explained in Section 2.1, by solving maximisation problem (5)

max
{
1x : x ∈ {0, 1}S , (3)

}
.

However, due to constraint (3) this method is quite slow and since we need to use it repeatedly, it
slows down the cutting-plane method significantly. Therefore, we use some additional constraints.
Before doing this, we give the proof for Theorem 1.

3.3 Proof for Theorem 1

The proof for Theorem 1 is given in this section. Theorem 1 states

Theorem 1: For all finite S ⊂ Z2 and all a, b, c ≥ 0 we have

r(S, a, b, c) ≥ r(S∞, a, b, c).

Proof: Fix S ⊂ Z2 finite, and a, b, c ∈ R such that a, b, c ≥ 0. Suppose that x ∈ {0, 1}S is
safe. Then by definition of q we have

1x ≤ q(S, a, b, c).

Let a = 1
q(S,a,b,c)1, a ∈ RS . Then

1a = 1
1

q(S, a, b, c)
1 =

|S|
q(S, a, b, c)

⇒ 1

1a
=

q(S, a, b, c)
|S|

= r(S, a, b, c).

Furthermore, we have

ax =
1

q(S, a, b, c)
1x ≤ q(S, a, b, c)

q(S, a, b, c)
= 1.

So, ax ≤ 1 for all x ∈ {0, 1}S safe. Therefore, we can apply Theorem 2, which yields

r(S, a, b, c) = 1

1a

Theorem 2
≥ r(S∞, a, b, c). □

3.4 Additional Constraints

3.4.1 The First Additional Constraint

Let some S ∈ Z2, a, b and c be fixed. Consider a seat s ∈ S, and a ball with radius c/2 around
seat s. Then for all safe characteristic vectors x, we have that∑

t∈Bc/2(s)

xt ≤ 1∀s ∈ S. (11)

This is shown in the following theorem.

14

Theorem 3: Let S ⊂ Z2, and a, b and c be fixed. Then all safe characteristic vectors x
satisfy ∑

t∈(Bc/2(w)∩S)

xt ≤ 1∀w ∈ R2.

Proof: This can be seen in the following way. Suppose that t ∈ (Bc/2(w) ∩ S), and that
xt = 1. By definition of the ball, we have that d(t, w) ≤ c/2. Now consider any other
v ∈ (Bc/2(w) ∩ S), then d(v, w) ≤ c/2. Using the triangle equality, it follows that

d(t, v) ≤ d(t, w) + d(v, w) ≤ c

2
+

c

2
= c.

So, d(t, v) ≤ c. Therefore, for any safe x on S we have that xt + xv ≤ 1. Since we assumed
xt = 1, it follows that we need xv = 0 for all v ∈ (Bc/2(w) ∩ S) such that v ̸= t. Thus, if a
safe x on S contains a 1 on (Bc/2(w) ∩ S), then all other entries of x on that ball must be 0.
Therefore, it follows that for any safe x,

∑
t∈(Bc/2(w)∩S) xt ≤ 1. □

Since this constraint holds for all safe x, we can add it to Q, and we obtain

QS,a,b,c = {x ∈ {0, 1}S : (11), (3).} (12)

3.4.2 The Second Additional Constraint

In the first additional constraint, we calculate the value of characteristic vectors restricted to an
area around a seat. However, in Theorem 3 it is not assumed that these balls have to be chosen
around seats. The balls could be chosen around any element in R2, and the statement would still
hold. Thus, in this second constraint we calculate the balls not just around seats in S, but also
around points halfway in between. We do not need to use more balls than this, as is shown by
Theorem 5. The advantage of using extra balls is that they provide some extra correspondence
between consecutive rows, especially for small c, in which case the balls around seats can be too
small to contain seats from different rows. All safe characteristic vectors x satisfy∑

t∈(Bc/2(w)∩S)

xt ≤ 1∀w ∈ (
1

2
Z)2. (13)

The proof of (13) is analogous to the proof of (11). Adding this extra constraint to Q yields

QS,a,b,c =
{
x ∈ {0, 1}S : (11), (13), (3)

}
. (14)

If we want to find the contents of Q, or solve the corresponding maximisation problem q(S, a, b, c),
we could in fact leave (3) and (11) out and only use (13), as we show in the following two theorems.

Theorem 4: Let S ⊆ Z2, and a, b and c be fixed. Then we have

QS,a,b,c =
{
x ∈ {0, 1}S : xs + xt ≤ 1 ∀ s, t ∈ S such that d(s, t) ≤ c, s ̸= t

}
=

x ∈ {0, 1}S :
∑

t∈(Bc/2(w)∩S)

xt ≤ 1∀w ∈ R2

 .

15

Proof: For ease on notation, we say

K :=

x ∈ {0, 1}S :
∑

t∈(Bc/2(w)∩S)

xt ≤ 1∀w ∈ R2

 .

Then we need to show thatQS,a,b,c = K. By Theorem 3, we have thatQS,a,b,c ⊆ K. Therefore,
it remains to be shown that K ⊆ QS,a,b,c. Suppose that x ∈ K. Then, it follows that∑

t∈(Bc/2(w)∩S)

xt ≤ 1∀w ∈ R2.

Let s, t ∈ S such that d(s, t) ≤ c. Then for w = (sr−tr
2 , ss−ts

2) ∈ R2 we have d(w, t) ≤ c/2 and
d(w, s) ≤ c/2. Thus, s, t ∈ (Bc/2(w)∩S). Therefore, xs+xt ≤ 1. It follows that K ⊆ QS,a,b,c.
Hence, QS,a,b,c = K. □

Theorem 5: Let S ⊆ Z2, and a, b and c be fixed. Then we havex ∈ {0, 1}S :
∑

t∈(Bc/2(w)∩S)

xt ≤ 1∀w ∈ R2

 =

x ∈ {0, 1}S :
∑

t∈(Bc/2(w)∩S)

xt ≤ 1∀w ∈ (1/2Z)2
 .

Proof: First of all, note that the zero vector is an element of both sets. For ease of notation,
we say that

L :=

x ∈ {0, 1}S :
∑

t∈(Bc/2(w)∩S)

xt ≤ 1∀w ∈ (1/2Z)2
 .

We need to show that K = L. To do so, we first show that all elements of K are also an
element of L, so K ⊆ L. Then, we show that all vectors that are not in K are also not in L,
so L ⊆ K.

– Suppose that x ∈ K. Then x satisfies∑
t∈(Bc/2(w)∩S)

xt ≤ 1∀w ∈ R2.

Since (1/2Z)2 ⊂ R2, it follows that∑
t∈(Bc/2(w)∩S)

xt ≤ 1∀w ∈ (1/2Z)2.

Therefore x ∈ L. So, K ⊆ L.

– Now, suppose that x /∈ K. Then there exist a t, s ∈ S such that xs = xt = 1 and
s, t ∈ Bc/2(w) for some w ∈ R2. We fix such a w. By the same argument as above, we
have

s, t ∈ (Bc/2((
sr − tr

2
,
ss − ts

2
)) ∩ S).

Thus, there exists a w ∈ (12Z)
2 such that

∑
t∈(Bc/2(w)∩S) xt ≥ 1. Therefore, x /∈ L, and

so L ⊆ K. Hence K = L. □

By Theorems 4 and 5, we have

QS,a,b,c = {x ∈ {0, 1}S : (13)}.

Therefore, solutions to q(S, a, b, c) and r(S, a, b, c) can be found using only constraint (13).

16

3.5 Constraint on a Finite Region

Now, we are ready to explain how to find a constraint vector a that satisfies ax ≤ 1 for all safe x
on finite S ⊂ Z2. Let an a, b and a forbidden distance c ∈ R be fixed. Since, as shown in Theorem
2, vector a will be used to find upper bounds to r(S∞, a, b, c), we try to find 1a as large as possible.
Thus, we have the following new optimisation problem (15) that we want to solve.

max{1a : ax ≤ 1 ∀x ∈ {0, 1}S safe, a ∈ [0, 1]S}. (15)

We try to find a solution to problem (15) using the cutting-plane method explained in the following
three steps. First of all, notice that any seating arrangement where only 1 seat is occupied is safe.
Thus, to start our iterative process, we take vector a to be the vector of maximum size such that
ax ≤ 1 for all x where only 1 seat is occupied. Thus, we start with a = 1.

Step 1: Using the vector a that we found, we try to find a safe vector x ∈ {0, 1}S such that
ax is as large as possible. Thus, we solve maximisation problem (16):

max{ax : x ∈ {0, 1}S , x safe.}. (16)

In Section 2.3, we explained the methods that we use to solve this problem.

Step 2: Let x∗ denote the generated vector x. Since x∗ is safe, we want to ensure that a
satisfies that ax∗ ≤ 1. Thus, we try to find a new a using maximisation problem (17).

max{1a : ax∗ ≤ 1, x ∈ {0, 1}S , a ∈ [0, 1]S}. (17)

Step 3: Using the newly found vector a, we repeat Step 1 and solve problem (16) again.
Then, we add ax∗ ≤ 1 using the newly found safe vector x∗ that has just been generated to
the list of constraints of problem (17), and solve that again. This process is repeated until the
solution of problem (16) is smaller than or equal to 1. Namely, if it is not possible anymore
to generate a safe vector x such that ax > 1, we must have that ax ≤ 1 for all safe x, which
was the goal we tried to achieve. Therefore, the latest found a is a solution to problem (15).

3.6 The Upper Bound

Now that all methods needed to find an upper bound to r(S∞, a, b, c) have been explained, it
remains to be explained which finite S we use to apply our methods to. Not every choice for S is
equally suitable. For instance, for each forbidden distance c, S can be chosen such that d(s, t) > c
for all s, t ∈ S. Then the vector 1 is a safe characteristic vector. Thus, a would have to satisfy
a1 ≤ 1. Thus, it follows that

1

1a
≥ 1.

1 is an upper bound to any occupancy rate, but it is a very poor one. Therefore, we need to be
smart about the choice for S on which we try to find a. The best upper bound is achieved when
1a is as large as possible, which in turn is larger if all safe x for which we need ax ≤ 1 are smaller.
Thus, a good S to choose is one with a small occupancy rate. In other words, we want to use an S
that contains a cluster of seats, on which the distance constraints have large effect. Therefore, we
choose S = (Bp(0) ∩ Z2), for some p > 0. So, for our upper bound we find a such that ax ≤ 1 for

all safe x ∈ {0, 1}(Bp(0)∩Z2), and use 1
1a as our upper bound.

17

4 Lower Bound

To find a lower bound to problem r(S∞, a, b, c), we first note that

A ⊆ S∞ (a, b, c)-safe ⇒ r(S∞, a, b, c) ≥ lim
k→∞

|Sk ∩ A|
|Sk|

. (18)

So, the density of any seating arrangement A ⊂ S∞ that is safe is a lower bound. Therefore, the
goal of this chapter is to develop a general method to find safe seating arrangements in S∞ and to
calculate the density of these safe arrangements. To do this, we assume that A follows a consistent
pattern throughout the infinite theatre. In other words, we will try to find a safe A, such that A
forms a lattice spanned by two basis vectors within S∞. In order to find the lower bound as close
as possible to the upper bound, we want to find a safe lattice such that the density of that lattice
is maximal.

4.1 Lattices and Density

Let l1, l2 ∈ Z2 be two vectors. Then lattice Ll1,l2 ⊆ S∞ is the set

Ll1,l2 := {s ∈ S∞ : s = λl1 + µl2 ∀ λ, µ ∈ Z}. (19)

Thus, a lattice contains all linear combinations of two basis vectors l1, l2 ∈ S∞. In order to use these
lattices as a lower bound, we need to determine the density of the seating arrangement associated to
a certain lattice. To do so, we first note that, in the Euclidean space, the area of the parallelogram
spanned by two vectors equals the absolute value of the determinant of the matrix that has these
two vectors as columns. Thus, if Pl1,l2 denotes the parallelogram spanned by l1 and l2, we have

Area(Pl1,l2) =
∣∣det (l1 l2

)∣∣ . (20)

By symmetry, this holds for each translation of P by λl1 + µl2 for all λ, µ ∈ Z. Therefore, for any
fixed λ, µ ∈ Z, a set P ∗

l1,l2
(λ, µ) ⊆ Z2 of |det

(
l1 l2

)
| points can be associated to point (λl1 + µl2),

such that ⋃
(λ,µ)∈Z2

P ∗
l1,l2(λ, µ) = Z2 = S∞. (21)

As a result,
1∣∣det (l1 l2

)∣∣
gives the density of a lattice Ll1,l2 . Since this last fact does not depend on the distances within the
grid, it also holds for the theatres considered in this report. An example of this method is given

in Figure 7. Here,

(
1
2

)
and

(
3
−1

)
are chosen as basis vectors. Thus, the absolute value of the

determinant of the corresponding matrix is∣∣∣∣det(1 3
2 −1

)∣∣∣∣ = | − 7| = 7.

Thus, to each element of the corresponding lattice, a set P ∗ of 7 seats can be associated. One of
these regions is depicted by the 7 blue dots. So, if we interpret the lattice as a seating arrangement,
the corresponding density of that seating arrangement is 1/7. An example of (21) is shown in

18

Figure 8. Moreover, all elements of the lattice are depicted by crosses, such that the fact that the
density is 1/7 can more easily be seen.

Figure 7: Parallelogram Spanned by

(
1
2

)
and

(
3
−1

)
.

Figure 8: Union of Parallelograms.

19

4.2 Rewriting the Distance Function

Now that we have the methods to find the density of any lattice, we need to ensure that the lattices
are associated to safe seating arrangements in order to find a lower bound to r(S∞, a, b, c). Before
we do so, we explain a new way to write the distance function. Note that we can associate a
seat’s row and seat number to its coordinates in the Euclidean space. To do this, we have to use
parameters a and b. Then, the vertical component of the coordinates of a seat s in the Euclidean
space is given by b · sr, and the horizontal component is given by a · ss + 1

2a · sr. Therefore, the
coordinates of a seat s in the Euclidean space can be given by(

b 0
1
2a a

)
·
(
sr
ss

)
,

where we call (
b 0
1
2a a

)
the transition matrix. Using this, we rewrite the distance function, and give meaning to the inner
product of some vectors s and t. We have

d(s, t) = ∥s− t∥ =

√
(

(
b 0
1
2a a

)
(s− t))T (

(
b 0
1
2a a

)
(s− t))

=

√
(s− t)T (

(
b 1

2a
0 a

)
(

(
b 0
1
2a a

)
(s− t)

=

√
(s− t)T

(
b2 + 1

4a
2 1

2a
2

1
2a

2 a2

)
(s− t).

Furthermore, we have

⟨s, t⟩ =
((

b 0
1
2a a

)(
sr
ss

))T ((
b 0
1
2a a

)(
tr
ts

))
(
b2 +

1

4
a2
)
srtr +

1

2
a2srts +

1

2
a2sstr + a2ssts.

4.3 Safety of Lattices

A lattice is safe if the distance between each distinct pair of elements of the lattice is larger than
c. Using the information of Section 4.2, we can state and proof the following lemma.

Lemma 1: Let s, t ∈ S∞. Suppose that ∥s∥ ≤ ∥t∥ and that |⟨s, t⟩| ≤ 1
2∥s∥

2. Then

min{∥λs+ µt∥ : λ, µ ∈ Z, (λ, µ) ̸= (0, 0)} = ∥s∥.

Proof: Suppose that the statement does not hold. Then there exist λ, µ ∈ Z, (λ, µ) ̸= (0, 0),
such that ∥s∥ > ∥λs+ µt∥. Then

∥s∥2 > ∥λs+ µt∥2

= λ2∥s∥2 + 2λµ⟨s, t⟩+ µ2∥t∥2

≥ λ2∥s∥2 − λµ∥s∥2 + µ2∥s∥2

= ∥s∥2(λ2 − λµ+ µ2).

20

Thus
∥s∥ > ∥λs+ µt∥ ⇐⇒ λ2 − λµ+ µ2 < 1.

We consider four cases.

1. First, we consider the case |λ| ≥ |µ|, λ ̸= 0, µ ̸= 0. In this case,

λ2 − λµ+ µ2 ≥ λ2 − λ2 + µ2 = µ2 ≥ 1.

2. Second, we consider the case |λ| < |µ|, λ ̸= 0, µ ̸= 0. In this case,

λ2 − λµ+ µ2 > λ2 − µ2 + µ2 = λ2 ≥ 1.

3. Third, we consider the case where λ = 0, µ ̸= 0. Then,

λ2 − λµ+ µ2 = µ2 ≥ 1.

4. Last, we consider the case where λ ̸= 0, µ = 0. Then,

λ2 − λµ+ µ2 = λ2 ≥ 1.

Thus, for all (λ, µ) ̸= (0, 0), we have λ2 − λµ+ µ2 ≥ 1. Therefore

∥s∥2 > ∥s∥2(λ2 − λµ+ µ2) ≥ ∥s∥2.

This is a contradiction. Therefore, no λ, µ ∈ Z, (λ, µ) ̸= (0, 0), exist such that ∥s∥ > ∥λs+µt∥.
Thus, it follows that ∥λs+ µt∥ ≥ ∥s∥ for such λ and µ. Notice that for λ = 1 and µ = 0,

∥λs+ µt∥ = ∥s∥.

Therefore, if ∥s∥ ≤ ∥t∥ and |⟨s, t⟩| ≤ 1
2∥s∥

2,

min{∥λs+ µt∥ : λ, µ ∈ Z, (λ, µ) ̸= (0, 0)} ≤ ∥s∥. □

Thus, if Ll1,l2 is a lattice such that ∥l2∥ ≤ ∥l1∥ > c and |⟨l1, l2⟩| ≥ 1
2∥l1∥

2, it follows that for all
s, t ∈ Ll1,l2

d(s, t) = d(λ1l1 + µ1l2, λ2l1 + µ2l2)

= ∥(λ1l1 + µ1l2)− (λ2l1 + µ2l2)∥
= ∥(λ1 − λ2)l1 + (µ1 − µ2)l2∥

Lemma 1
≥ ∥l1∥ > c.

Therefore, Ll1,l2 is safe.

4.4 The Lower Bound

To find a suitable lower bound to r(S∞, a, b, c) for any a, b and c, using the methods as explained
in this chapter, we use an algorithm. The goal of this algorithm is to find a basis l1, l2 such that
the lattice Ll1,l2 is safe, and such that its density

1∣∣det (l1 l2
)∣∣

is maximal, or equivalently, such that
∣∣det (l1 l2

)∣∣ is minimal. The methods explained in this
chapter allow us to find vectors that span safe lattices. However, we have no way to limit the area
in which to look for such vectors. The following lemma forms the basis for a method to find such
an area.

21

Lemma 2: Let s, t ∈ S∞ be integer valued vectors. Suppose that ∥s∥ ≤ ∥t∥ and that
|⟨s, t⟩| ≤ 1

2∥s∥
2. Then

|det(s, t)| ≥ 1

2ab

√
3∥s∥∥t∥.

Proof: We have

|det(s, t)| =
∣∣∣∣det(sr tr

ss ts

)∣∣∣∣ = |srts − trss|.

We want to apply the property of the cross product that for some m,n ∈ R3 we have
m × n = ∥m∥∥n∥ sin(θ), where θ is the angle between vectors m and n. However, this
definition is applicable in the Euclidean space. Therefore, we have to use the Euclidean
coordinates of s and t using the transition matrix. The vector corresponding to s in the
Euclidean space is given by (

bsr
1
2asr + ass

)
and the vector corresponding to t in the Euclidean space is given by(

btr
1
2atr + ats

)
.

Let the Euclidean norm be denoted by ∥.∥E , and let the norm as given in Section 4.2 be
denoted by ∥.∥. Then∥∥∥∥∥∥

 bsr
1
2asr + ass

0

×

 btr
1
2atr + ats

0

∥∥∥∥∥∥
E

=

∥∥∥∥∥∥
 0

0
1
2absrtr + absrts − 1

2absrtr − absstr

∥∥∥∥∥∥
E

=

∥∥∥∥∥∥
 0

0
ab(srts − sstr)

∥∥∥∥∥∥
E

= ab|srts − trss| = ab| det(s, t)|.

Then, by the definition of the cross-product,

ab|det(s, t)| =

∥∥∥∥∥∥
 bsr

1
2asr + ass

0

×

 btr
1
2atr + ats

0

∥∥∥∥∥∥
E

=

∥∥∥∥∥∥
 bsr

1
2asr + ass

0

∥∥∥∥∥∥
E

∥∥∥∥∥∥
 btr

1
2atr + ats

0

∥∥∥∥∥∥
E

sin(θ)

=

∥∥∥∥(bsr
1
2asr + ass

)∥∥∥∥
E

∥∥∥∥(btr
1
2atr + ats

)∥∥∥∥
E

sin(θ)

= ∥s∥ ∥t∥ sin(θ)

where θ denotes the angle between the vectors

 bsr
1
2asr + ass

0

 and

 btr
1
2atr + ats

0

. Let ⟨., .⟩E

be the Euclidean inner product, and ⟨., .⟩ denote the inner product as given in Section 4.2.

22

By the properties of the inner product and by the assumptions follows

cos(θ) =

〈 bsr
1
2asr + ass

0

 ,

 btr
1
2atr + ats

0

〉
E∥∥∥∥∥∥

 bsr
1
2asr + ass

0

∥∥∥∥∥∥
E

∥∥∥∥∥∥
 btr

1
2atr + ats

0

∥∥∥∥∥∥
E

=

〈(
bsr

1
2asr + ass

)
,

(
btr

1
2atr + ats

)〉
E∥∥∥∥(bsr

1
2asr + ass

)∥∥∥∥
E

∥∥∥∥(btr
1
2atr + ats

)∥∥∥∥
E

=
⟨s, t⟩
∥s∥∥t∥

≥
−1

2∥s∥
2

∥s∥2

= −1

2
.

Therefore,

−2

3
π ≤ θ ≤ 2

3
π. (22)

By similar reasoning, we find

cos(θ) =
⟨s, t⟩
∥s∥∥t∥

≤
1
2∥s∥

2

∥s∥2

=
1

2
.

So, we also have

1

3
π ≤ θ ≤ 5

3
π. (23)

By (22) and (23),
1

3
π ≤ θ ≤ 2

3
π.

As a result,

sin(θ) ≥ 1

2

√
3.

Therefore,

ab| det(s, t)| = ∥s∥∥t∥ sin(θ)

≥ ∥s∥∥t∥1
2

√
3

⇒ |det(s, t)| ≥ ∥s∥∥t∥ 1

2ab

√
3. □

23

Thus, for any safe lattice Ll1,l2 , such that l1 and l2 satisfy the conditions of Lemma 1 and Lemma
2, we have

|det(l1, l2)| ≥
1

2ab

√
3∥l1∥∥l2∥.

Furthermore, the lattice L spanned by l1 =
(
0,
⌊
c
a

⌋
+ 1

)
and l2 =

(
2
⌊

c
2b

⌋
+ 2,−

⌊
c
2b

⌋
− 1

)
satisfies

∥∥∥(0, ⌊ c
a

⌋
+ 1

)∥∥∥ =

√(
0

⌊
c
a

⌋
+ 1

)(b2 + 1
4a

2 1
2a

2

1
2a

2 a2

)(
0⌊

c
a

⌋
+ 1

)
=

√
a2

(⌊ c
a

⌋
+ 1

)2
> c,

∥∥∥(2 ⌊ c

2b

⌋
+ 2,−

⌊ c

2b

⌋
− 1

)∥∥∥ =

√(
2
⌊

c
2b

⌋
+ 2 −

⌊
c
2b

⌋
− 1

)(b2 + 1
4a

2 1
2a

2

1
2a

2 a2

)(
2
⌊

c
2b

⌋
+ 2

−
⌊

c
2b

⌋
− 1

)

=

√(
2
⌊

c
2b

⌋
+ 2 −

⌊
c
2b

⌋
− 1

)(b2(2 ⌊ c
2b

⌋
+ 2) + 1

2a
2(2

⌊
c
2b

⌋
+ 2) + 1

2a
2(−

⌊
c
2b

⌋
− 1)

a2(
⌊

c
2b

⌋
+ 1) + a2(−

⌊
c
2b

⌋
− 1)

)

=

√(
2
⌊

c
2b

⌋
+ 2 −

⌊
c
2b

⌋
− 1

)(b2(2 ⌊ c
2b

⌋
+ 2)

0

)
=

√
b2(2

⌊ c

2b

⌋
+ 2)2 = 2b

(⌊ c

2b

⌋
+ 1

)
> c

and ∣∣∣〈(0, ⌊ c
a

⌋
+ 1

)
,
(
2
⌊ c

2b

⌋
+ 2,−

⌊ c

2b

⌋
− 1

)〉∣∣∣
=

∣∣∣∣12a2 (⌊ ca⌋+ 1
)(

2
⌊ c

2b

⌋
+ 2

)
+ a2

(⌊ c
a

⌋
+ 1

)(
−
⌊ c

2b

⌋
− 1

)∣∣∣∣
=

∣∣∣a2 (⌊ c
a

⌋
+ 1

)(⌊ c

2b

⌋
+ 1

)
− a2

(⌊ c
a

⌋
+ 1

)(⌊ c

2b

⌋
+ 1

)∣∣∣ = 0.

Therefore, using Lemma 1, L is a safe lattice. Now, suppose that Ll∗1 ,l
∗
2
is a safe lattice that gives

an optimal lower bound. So, | det(l∗1, l∗2)| is minimal. Then∣∣∣∣det(0 2
⌊

c
2b

⌋
+ 2⌊

c
a

⌋
+ 1 −

⌊
c
2b

⌋
− 1

)∣∣∣∣ ≥ |det (l∗1, l∗2)| ≥
1

2ab

√
3∥l∗1∥∥l∗2∥

⇒
(
2
⌊ c

2b

⌋
+ 2

)(⌊ c
a

⌋
+ 1

)
≥ |det (l∗1, l∗2)| ≥

1

2ab

√
3∥l∗1∥∥l∗2∥

⇒
(c
b
+ 2

)(c

a
+ 1

)
≥ |det (l∗1, l∗2)| ≥

1

2ab

√
3∥l∗1∥∥l∗2∥

⇒ 2ab√
3

(c
b
+ 2

)(c

a
+ 1

)
≥ 2ab |det (l∗1, l∗2)|√

3
≥ ∥l∗1∥∥l∗2∥.

Therefore, when looking for the lattice that provides an optimal lower bound, we are only interested
in lattices Ll1,l2 for which

∥l1∥∥l2∥ ≤ 2ab√
3

(c
b
+ 2

)(c

a
+ 1

)
.

By safety of Ll1,l2 , we have

∥l1∥∥l2∥ ≥ c∥l2∥,
∥l1∥∥l2∥ ≥ c∥l1∥.

So, we are interested in lattices Ll1,l2 for which

∥li∥ ≤ 2ab√
3c

(c
b
+ 2

)(c

a
+ 1

)
for i = 1, 2.

24

For ease, we define

m(a, b, c) :=
2ab√
3c

(c
b
+ 2

)(c

a
+ 1

)
.

Then, in the search for a safe lattice with a minimal determinant it is sufficient to restrict to the
area Bm(a,b,c)(0)∩S∞. We apply this in the algorithm used to find the lower bound. The algorithm
consists of the following four steps.

Step 1: First of all, we consider the area Bm(a,b,c)(0) ∩ S∞. We assign a vector l1 to a seat
s in this area, such that d(0, s) > c.

Step 2: We find a t in the area Bm(a,b,c)(0) ∩ S∞ such that the conditions of Lemma 1 are
met, and assign vector l2 to t. Then we calculate the determinant of those l1 and l2, and add
it to a list.

Step 3: We repeat Step 2 until we have considered every t ∈ Bm(a,b,c)(0)∩S∞ such that the
conditions of Lemma 1 are satisfied. Then, we repeat Step 1 until all seats s ∈ Bm(a,b,c)(0)∩S∞
such that d(0, s) > c are considered.

Step 4: By the previous three steps, a list is generated that consists of determinants of the
vectors assigned to every possible pair of seats s and t in the area Bm(a,b,c)(0)∩S∞ such that
s and t satisfy the conditions of Lemma 1. Thus, the inverse of each of these determinants is
a lower bound to r(S∞, a, b, c). We select the minimum of this list, and use this number as
our lower bound to r(S∞, a, b, c).

25

5 Results

In the previous two chapters, we discussed all methods that we need to calculate r(S, a, b, c) for
finite S, and the methods to find upper and lower bounds to r(S∞, a, b, c), which in turn is a lower
bound to all occupancy rates using the same a, b and c by Theorem 1. In this chapter, we will
show some of the results that we found using the methods as discussed.

5.1 Distinction between Solutions

At first glance, it would seem that there are an infinite number of strictly different solutions to
both r(S, a, b, c) and r(S∞, a, b, c). After all, a, b and c are all real numbers larger than zero, and
can therefore take an infinite number of values. In fact, the number of possible solutions is infinite,
but, under a few assumptions, those with a certain relevance to real life are much more sparse than
it would seem. To see this, we must note a few things. First of all, we consider a fixed a and
b. Then, not all different c necessarily yield a different result. The restriction put on the optimal
solutions that are investigated is that they must be safe. By Definition 1, an arrangement A is safe
when d(s, t) > c for all s, t ∈ A such that s ̸= t. Thus, if for any s ∈ A and two c1, c2 ∈ R such
that c1 ̸= c2, we have

{t ∈ S : d(s, t) ≤ c1} = {t ∈ S : d(s, t) ≤ c2}, (24)

then it follows that the safety constraint applies to the same set of seats for both c1 and c2, and so
the optimal solution will be equal in both cases. We refer to a set such as the ones in (22) as the
forbidden zone of seat s. In Figure 9, an example of this idea is visualised in a theatre with a = 1
and b = 1. The forbidden zone of a seat s consists of the seats within the circle. This is done for
a forbidden distance of c = 1.2 in blue, and a forbidden distance of 1.7 in orange. Both forbidden
zones contain the same set of seats. Therefore, the optimal solution in both cases will be equal.

Figure 9: Forbidden Zone around seat s for c = 1.2 and c = 1.7.

The fact that for fixed a and b not all different c lead to different solutions greatly reduces the
number of situations that need to be checked. In fact, if we consider only forbidden distances up
to some finite number, then the number of different solutions for some fixed a and b are finite.

26

However, we wish to analyse solutions for varying a and b, not for some fixed situation. To this
purpose, we can use the fact that not all different combinations of a and b yield a different situation.
By scaling, a theatre in which we have a = 1, b = 1 and where we consider a forbidden distance of
c = 2, will have the same solution as a theatre with a = 2, b = 2 and c = 4, since the forbidden
zones consist of the same set of seats. Therefore, we are only interested in different ratios between
a and b.

5.2 The Examined Situations

Of course, looking at varying ratios between a and b still leaves many different situations to analyse.
In this report, we will show the results corresponding to a few examples of ratios of a and b between
a = 2b and b = 2a, since the measurements of a theatre typically lie within this region. We will
consider the following four cases.

1. We take a = 0.51 and b = 0.95, since these are the distances in the Music Building in
Eindhoven.

2. We take a = 1 and b = 1.

3. We take a = 1 and b = 1
2

√
3, since in this case we have d(0, (0, 1)) = d(0, (1, 0)).

4. We take a = 1 and b = 1
2 .

Within these situations, we will consider forbidden distances such that the smallest forbidden zones
are examined, up to some bound. This bound is chosen arbitrarily for each forbidden distance. We
use this bound, because including too many larger distances would cause for too many results to be
presented. Within this bound, we can present all solutions to r(S∞, a, b, c), as explained in Section
5.1. The solutions to r(S, a, b, c) also depend on the choice of the finite set S. However, we will
still present solutions for all c that yield different forbidden zones, and we will consider a number
of different sized sets S. Since the constraints have most effect on clusters of seats, we will consider
S = Bp(0)∩Z2, for various ridii p. By symmetry, these S could be translated to be centered around
any seat s ∈ S∞. For each of the four cases, we can easily determine all forbidden distances, up
to the bound, that need to be considered in order to examine every possible forbidden zone in the
following way. Observe that, if we were to increase the forbidden distance c starting from zero, the
forbidden zone of any seat s would grow by some set of seats as soon as the forbidden distance
reaches the distance between those seats and the centre seat s. For instance, the forbidden zone
of seat 0 would include seats (0, 1) and (0,−1) as soon as c = d(0, (0, 1)) = a. Thus, if we list all
distances of seats s ∈ Bp(0) ∩ Z2 to seat 0, we can determine all c that yield distinct results by
choosing one c between all distances in the list. Note that each grid is symmetrical along two lines,
which is shown in Figure 10, where the blue lines are the lines of symmetry. Therefore, it suffices to
list only the distances of seats in one quadrant of the set Bp(0)∩Z2. The quarter that we consider
consists of the blue seats. For a = 0.51 and b = 0.95, this list of distances is given in Table 1.

27

Figure 10: Symmetry within the grid.

Seat s d(0, s)

0 0
(0,1) 0.51
(1,0) 0.9863
(0,2) 1.02
(1,1) 1.2197
(0,3) 1.53
(1,2) 1.59
(2,-1) 1.9
(2,0) 1.9673
(1,3) 2.0221
(0,4) 2.04
(2,1) 2.1565
(2,2) 2.4394
(1,4) 2.4839
(0,5) 2.55
(2,3) 2.7878
(3,-1) 2.8614
(3,0) 2.9509
(1,5) 2.9615
(0,6) 3.06

(a) a = 0.51, b =
0.95

Seat s d(0, s)

0 0
(0,1) 1
(1,0) 1.118
(1,1) 1.8028
(0,2) 2
(2,-1) 2
(2,0) 2.2361
(1,2) 2.6926
(2,1) 2.8284
(0,3) 3
(3,-1) 3.0414
(3,0) 3.3541
(2,2) 3.6056
(1,3) 3.6401
(3,1) 3.9051
(0,4) 4
(4,-2) 4
(4,-1) 4.1231
(4,0) 4.4721
(2,3) 4.4721
(1,4) 4.6098
(3,2) 4.6098
(0,5) 5
(4,1) 5
(5,-2) 5.0249

(b) a = 1, b = 1

Seat s d(0, s)

0 0
(0,1) 1
(1,0) 1
(1,1) 1.7321
(2,-1) 1.7321
(0,2) 2
(2,0) 2
(1,2) 2.6458
(2,1) 2.6458
(3,-1) 2.6458
(0,3) 3
(3,0) 3
(2,2) 3.4641
(4,-2) 3.4641
(1,3) 3.6056
(3,1) 3.6056
(0,4) 4
(4,0) 4
(2,3) 4.3589
(3,2) 4.3589
(5,-2) 4.3589
(1,4) 4.5826
(4,1) 4.5826
(5,-1) 4.5826
(0,5) 5
(5,0) 5

(c) a = 1, b = 1
2

√
3

Seat s d(0, s)

0 0
(1,0) 0.7071
(0.1) 1
(2,-1) 1
(2,0) 1.4142
(1,1) 1.5811
(3,-1) 1.5811
(0,2) 2
(4,-2) 2
(3,0) 2.1213
(2,1) 2.2361
(4,-1) 2.2361
(1,2) 2.5495
(5,-2) 2.5495
(4,0) 2.8284
(3,1) 2.9155
(5,-1) 2.9155
(0,3) 3
(6,-3) 3
(2,2) 3.1623
(6,-2) 3.1623
(1,3) 3.5355
(5,0) 3.5355
(7,-3) 3.5355
(4,1) 3.6056
(6,-1) 3.6056

(d) a = 1, b = 1
2

Table 1: Distances between seats and 0 for various a and b.

28

5.3 Solutions to r(S, a, b, c)

The solutions to r(S, a, b, c) that we found are presented in the following tables. In Table 2, the
results for a = 0.51 and b = 0.95 are given. For a = 1 and b = 1, the results can be found in Table
3. The results for a = 1 and b = 1

2

√
3 are listed in Table 4, and the results for a = 1 and b = 1

2 are
given in Table 5. In Figure 11, a visualisation of the optimal solution for a finite theatre is given.

Figure 11: Optimal solution to r(Bp ∩ Z2, a, b, c) for p = 3, a = 0.51, b = 0.95, and c = 2.1.

29

c p q(Bp(0), a, b, c) r(Bp(0), a, b, c) r(Bp(0), a, b, c) decimals

0.3 4 107 1 1
0.7 1 4 4/7 0.5714
0.7 2 14 14/25 0.56
1 2 10 10/25 0.4
1 3 22 22/61 0.3607
1.1 2 9 9/25 0.36
1.1 3 22 22/61 0.3607
1.3 2 7 7/25 0.28
1.3 3 14 14/61 0.2295
1.55 2 7 7/25 0.28
1.55 3 14 14/61 0.2295
1.6 2 5 5/25 0.2
1.6 3 11 11/61 0.1803
1.95 2 4 4/25 0.16
1.95 3 10 10/61 0.1639
2 2 4 4/25 0.16
2 3 9 9/61 0.1475
2 4 15 15/107 0.1402

2.03 3 8 8/61 0.1311
2.03 4 14 14/107 0.1308
2.1 3 7 7/61 0.1148
2.1 4 12 12/107 0.1121
2.2 3 7 7/61 0.1148
2.2 4 11 11/107 0.1028
2.45 3 7 7/61 0.1148
2.45 4 10 10/107 0.0935
2.5 3 7 7/61 0.1148
2.5 4 9 9/107 0.0841
2.6 3 7 7/61 0.1148
2.6 4 9 9/107 0.0841
2.8 3 5 5/61 0.0820
2.8 4 9 9/107 0.0841
2.9 3 5 5/61 0.0820
2.9 4 9 9/107 0.0841

2.951 3 5 5/61 0.0820
2.951 4 8 8/107 0.0748
3 3 5 5/61 0.0820
3 4 7 7/107 0.0654
3 5 11 11/167 0.0659
3.1 4 7 7/107 0.0654
3.1 5 10 10/167 0.0599
3.15 4 7 7/107 0.0654
3.15 5 10 10/167 0.0599
3.2 4 7 7/107 0.0654
3.2 5 9 9/167 0.0539

Table 2: Occupancy rates for finite S for a = 0.51 and b = 0.95.

30

c p q(Bp(0), a, b, c) r(Bp(0), a, b, c) r(Bp(0), a, b, c) decimals

0.7 1 3 1 1
1.1 1 2 2/3 0.6667
1.1 2 9 9/15 0.6
1.1 3 16 16/29 0.5517
1.5 2 7 7/15 0.4667
1.5 3 10 10/29 0.3448
1.9 2 5 5/15 0.3333
1.9 3 10 10/29 0.3448
2.1 2 4 4/15 0.2667
2.1 3 7 7/29 0.2414
2.1 4 11 11/53 0.2075
2.3 3 5 5/29 0.1724
2.3 4 9 9/53 0.1698
2.7 3 5 5/29 0.1724
2.7 4 9 9/53 0.1698
2.9 3 4 4/29 0.1379
2.9 4 7 7/53 0.1321
3 3 4 4/29 0.1379
3 4 7 7/53 0.1321
3 5 9 9/79 0.1139
3.1 4 7 7/53 0.1321
3.1 5 9 9/79 0.1139
3.5 4 7 7/53 0.1321
3.5 5 8 8/79 0.1013
3.61 4 6 6/53 0.1132
3.61 5 8 8/79 0.1013
3.7 4 5 5/53 0.0943
3.7 5 7 7/79 0.0886
3.95 4 5 5/53 0.0943
3.95 5 7 7/79 0.0886
4 4 5 5/53 0.0943
4 5 7 7/79 0.0886
4 6 9 9/111 0.0811
4.2 5 7 7/79 0.0886
4.2 6 9 9/111 0.0811
4.5 5 5 5/79 0.0633
4.5 6 7 7/111 0.0631
4.7 5 5 5/79 0.0633
4.7 6 7 7/111 0.0631
5 5 5 5/79 0.0633
5 6 7 7/111 0.0631
5 7 8 8/149 0.0537

5.03 6 7 7/111 0.0631
5.03 7 8 8/149 0.0537

Table 3: Occupancy rates for finite S for a = 1 and b = 1.

31

c p q(Bp(0), a, b, c) r(Bp(0), a, b, c) r(Bp(0), a, b, c) decimals

0.7 1 7 1 1
1.5 2 7 7/19 0.3684
1.5 3 13 13/37 0.3513
1.8 2 7 7/19 0.3684
1.8 3 10 10/37 0.2703
2.5 3 7 7/37 0.1892
2.5 4 9 9/61 0.1475
2.8 3 7 7/37 0.1892
2.8 4 7 7/61 0.1148
3.2 4 7 7/61 0.1148
3.2 5 8 8/91 0.0879
3.5 4 7 7/61 0.1148
3.5 5 8 8/91 0.0879
3.8 4 7 7/61 0.1148
3.8 5 7 7/91 0.0769
4.2 5 7 7/91 0.0769
4.2 6 8 8/127 0.0630
4.5 5 7 7/91 0.0769
4.5 6 7 7/127 0.0551
4.8 5 7 7/91 0.0769
4.8 6 7 7/127 0.0551
5 5 5 5/91 0.0549
5 6 7 7/127 0.0551
5 7 8 8/187 0.0428

Table 4: Occupancy rates for finite S for a = 1 and b = 1
2

√
3.

32

c p q(Bp(0), a, b, c) r(Bp(0), a, b, c) r(Bp(0), a, b, c) decimals

0.7 1 9 1 1
0.8 1 5 5/9 0.5556
0.8 2 13 13/25 0.52
1.2 2 9 9/25 0.36
1.2 3 19 19/61 0.3115
1.5 2 6 6/25 0.24
1.5 3 13 13/61 0.2131
1.6 2 5 5/25 0.2
1.6 3 10 10/61 0.1639
2.1 3 9 9/61 0.1475
2.1 4 14 14/101 0.1386
2.2 3 9 9/61 0.1475
2.2 4 12 12/101 0.1188
2.3 3 7 7/61 0.1148
2.3 4 10 10/101 0.0990
2.6 3 7 7/61 0.1148
2.6 4 9 9/101 0.0891
2.9 3 7 7/61 0.1148
2.9 4 9 9/101 0.0891
2.95 3 5 5/61 0.0820
2.95 4 7 7/101 0.0693
3.1 4 7 7/101 0.0693
3.1 5 12 12/161 0.0743
3.2 4 7 7/101 0.0693
3.2 5 9 9/161 0.0559
3.6 4 7 7/101 0.0693
3.6 5 9 9/161 0.0559
3.7 4 5 5/101 0.0495
3.7 5 9 9/161 0.0559

Table 5: Occupancy rates for finite S for a = 1 and b = 1
2 .

33

5.4 Solutions to r(S∞, a, b, c)

In Table 6, we show the upper and lower bounds to r(S∞, a, b, c) for various a, b and c. Furthermore,
we show the p that is used as the radius for the balls used to find the upper bound. In Figure 12,
a visualisation of an optimal solution to r(S∞, a, b, c) is given.

Figure 12: Optimal solution to r(S∞, a, b, c) for a = b = 1 and c = 1.5.

34

c p Upper Bound Lower Bound

0.3 0.3 1 1
0.7 0.7 1/2 1/2
1 1 1/3 1/3
1.1 1.1 1/3 1/3
1.3 1.3 1/5 1/5
1.55 1.55 1/5 1/5
1.6 1.6 1/7 1/7
1.95 1.95 1/8 1/8
2 2 1/8 1/8

2.03 2.03 1/8 1/8
2.1 2.1 1/10 1/10
2.2 2.2 1/12 1/12
2.45 2.45 1/13 1/13
2.5 5 1/14.9984 1/15
2.6 2.6 1/15 1/15
2.8 2.8 1/16 1/16
2.9 2.9 1/17.7727 1/18

2.951 2.951 1/18 1/18
3 3 1/18 1/18
3.1 3.1 1/19.9231 1/20
3.15 3.15 1/20 1/20
3.2 3.2 1/21 1/21

(a) a = 0.51, b = 0.95

c p Upper Bound Lower Bound

0.7 0.7 1 1
1.1 1.1 1/2 1/2
1.5 1.5 1/3 1/3
1.9 1.9 1/4 1/4
2.1 2.1 1/6 1/6
2.3 2.3 1/7 1/7
2.7 2.7 1/8 1/8
2.9 2.9 1/9 1/9
3 3 1/10 1/10
3.1 3.1 1/11.7143 1/12
3.5 3.5 1/12 1/12
3.61 3.61 1/13 1/13
3.7 3.7 1/15 1/15
3.95 3.95 1/16 1/16
4 4 1/17 1/17
4.2 4.2 1/19 1/19
4.5 4.5 1/20.8571 1/21
4.7 4.7 1/23.94 1/24
5 5 1/24 1/24

5.03 5.03 1/26 1/26

(b) a = 1, b = 1

c p Upper Bound Lower Bound

0.7 0.7 1 1
1.5 1.5 1/3 1/3
1.8 1.8 1/4 1/4
2.5 2.5 1/7 1/7
2.8 2.8 1/9 1/9
3.2 3.2 1/12 1/12
3.5 3.5 1/13 1/13
3.8 3.8 1/16 1/16
4.2 4.2 1/19 1/19
4.5 4.5 1/21 1/21
4.8 4.8 1/25 1/25
5 5 1/27 1/27

(c) a = 1, b = 1
2

√
3

c p Upper Bound Lower Bound

0.7 0.7 1 1
0.8 0.8 1/2 1/2
1.2 1.2 1/4 1/4
1.5 1.5 1/5 1/5
1.6 1.6 1/8 1/8
2.1 2.1 1/9 1/9
2.2 2.2 1/10 1/10
2.3 2.3 1/12 1/12
2.6 2.6 1/15 1/15
2.9 2.9 1/15 1/15
2.95 2.95 1/18 1/18
3.1 3.1 1/19.75 1/20
3.2 3.2 1/22.931 1/23
3.6 3.6 1/24 1/24
3.7 3.7 1/27.8571 1/28

(d) a = 1, b = 1
2

Table 6: Upper and lower bounds to r(S∞, a, b, c).

35

5.5 Interpretation of the Results

From the results it becomes apparent that the distance rules have a huge impact on the occupancy
rates of theatres. For very small forbidden distances for which the forbidden zone consists of more
than just one seat, an occupancy rate of 1/2 can be achieved, as we can see in Table 6. However,
when we look further into the results, we see that the occupancy rate decreases very quickly for
increasing forbidden distances. For instance, a theatre with the row and seat distance of the Music
Building Eindhoven with a forbidden distance of 1.5 meters has an occupancy rate of around 28%
for a small circular theatre with a radius of 2 meters, and the lower bound is merely 20%.

36

6 Discussion

Although the methods used in this report have been proven successful to solve the problem state-
ment, there are still a number of things that could be improved, or are relevant for future research.

Firstly, a number of methods have a rather large computation time. Especially the cutting-plane
method, explained in Section 3.4, can take several minutes and in some rare cases up to several
hours to reach a solution, the total duration depending on the forbidden distance and the corre-
sponding forbidden zone. When trying to find a solution for a limited amount of choices for a, b
and c, this is manageable, but when trying to find solutions for a larger variety of selections for
these parameters, this can become a problem, especially if a greater variety of larger forbidden dis-
tances are included. Thus, if one would be interested in calculating optimal seating arrangements
for infinitely large theatres and large forbidden zones, it might be worthwhile to re-evaluate the
methods to find the bounds, in order to save time. This could be relevant as well if one tries to
find optimal seating arrangements for very large finite theatres.

Secondly, the upper and lower bounds to r(S∞, a, b, c) are not equal for all forbidden distances
c. This might have several causes. For instance, it could be that there is an optimal solution that
cannot be spanned by two vectors. In that case, the method for finding the lower bound is not
good enough, since it relies on two vectors that span a grid. More likely, however, is that in some
cases, the region Bp(0) ∩ Z2 used to find vector a is not large enough to find the upper bound. In
that case, we might find an upper bound equal to the lower bound if we use a larger p. How large
p would have to be for which distance could be a separate research topic. In this paper, however,
the previously discussed large computation times has prevented the calculation of a for larger p,
perhaps such that all lower and upper bounds would have been equal.

Lastly, a number of suggestions that are not considered in current research, but might still be
relevant of interesting for future research can be made. In the Netherlands, people of one house-
hold do not have to maintain distance from each other (Corona en regels voor afstand houden —
Coronavirus COVID-19 — Rijksoverheid.nl , n.d.). This has not been taken into account in this
paper, but would improve the relevance of the research. Another interesting idea that extends
these exceptions to the distance rules and that has been included in previous research (Blom et al.,
2020), and has proven to significantly improve the amount of people being able to attend a certain
theatre performance, is to give the same show twice consecutively, for different audiences. This
allows for a larger part of the theatre to be used.

All in all, there are several possibilities to improve or extend current research. Still, this paper
provides satisfactory solutions to the problem statement, and the methods to find them. In doing
so, a good basis is given that allows to find optimal seating arrangements for theatres of general
size and shape.

37

7 Conclusion

In this report, we have investigated the occupancy rates of theatres of a general size or shape.
Using several linear optimisation methods, we have been able to find these occupancy rates for
both finite theatres, and, in most cases, for infinitely large theatres, which provide a lower bound
for finite theatres. These methods are applicable for any combination of the parameters a, b and c,
and any set of seats S. In the results, the solutions for a number of examples are shown. We can
see that the distance constraint has a huge impact on the occupancy rates of theatres, lowering the
rate of seats that can be filled by at least 50% for an infinitely large theatre and a small forbidden
distance, and even more for larger forbidden distances. To conclude, all the methods needed to
find solutions to the objectives have been provided, and in most cases have proven successful to
find results. In COVID times, these results are relevant and applicable for the improvement of
occupancy in theatres while practicing social distancing.

38

References

Blom, D., Pendavingh, R., & Spieksma, F. C. R. (2020). Filling a theatre in times of corona (Tech.
Rep.). Retrieved from http://arxiv.org/abs/2010.01981

Conforti, M., Cornuéjols, G., & Zambelli, G. (2014). Integer Programming. In (1st ed., pp. 89–
90). Springer International Publishing. Retrieved from https://doi.org/10.1007/978-3-319

-11008-0

Corona en regels voor afstand houden — Coronavirus COVID-19 — Rijksoverheid.nl.
(n.d.). Retrieved from https://www.rijksoverheid.nl/onderwerpen/coronavirus-covid

-19/algemene-coronaregels/regels-voor-afstand-houden

Coronavirus tijdlijn — Rijksoverheid.nl. (n.d.). Retrieved from https://www.rijksoverheid.nl/

onderwerpen/coronavirus-tijdlijn

39

http://arxiv.org/abs/2010.01981
https://doi.org/10.1007/978-3-319-11008-0
https://doi.org/10.1007/978-3-319-11008-0
https://www.rijksoverheid.nl/onderwerpen/coronavirus-covid-19/algemene-coronaregels/regels-voor-afstand-houden
https://www.rijksoverheid.nl/onderwerpen/coronavirus-covid-19/algemene-coronaregels/regels-voor-afstand-houden
https://www.rijksoverheid.nl/onderwerpen/coronavirus-tijdlijn
https://www.rijksoverheid.nl/onderwerpen/coronavirus-tijdlijn

Appendix

This appendix shows the Sagemath scripts that were used to find the results.

c1 = 0.51
c2 = 0.95
c = 2 .5
mf = 2
def d(s , t) :

return s q r t ((c1 ∗(s [1]− t [1]+1/2∗ (s [0]− t [0]))) ˆ 2+(c2 ∗(s [0]− t [0])) ˆ 2)

B = {(x , y) for x in range (−40 ,41) for y in range (−40 ,41)}
C = { (0 . 5∗x , 0 . 5 ∗ y) for x in range (−32 ,33) for y in range (−32 ,33)}
Czone = { s for s in C i f d(s , [0 , 0]) <= c∗mf}
S = { s for s in B i f d(s , [0 , 0]) <= c∗mf}
T = [s for s in S i f d(s , [0 ,0])<= c /2]

print (S)
print (len (S))

#CALCULATING THE DISTANCE BETWEEN ANY SEAT AND SEAT 0
Distances = []
for s in S :

z = d(s , [0 , 0])
w = round(z , 4)
p = [w, s]
Di s tances . append (tuple ([p]))

Di s tances . s o r t ()
print (Dis tances)

#SOLUTION FOR FINITE S AND INITIALIZING THE CUTTING−PLANE METHOD
print (’Make MIP1 ’)
print (len (S) , len (T) , round(len (S)/ len (T) , 2))

MIP1 = MixedIntegerLinearProgram ()
a = MIP1 . new var iab l e (nonnegat ive=True)
for s in S :

MIP1 . add cons t ra in t (a [s]<=1)
MIP1 . s e t o b j e c t i v e (sum([a [s] for s in S]))

print (’ Object ive Value : {} ’ . format (MIP1 . s o l v e ()))
for i , v in sorted (MIP1 . g e t va l u e s (a) . i tems ()) :

print (f ’ a { i } = {v} ’)

print (’Make MIP2 ’)

40

MIP2 = MixedIntegerLinearProgram ()
x = MIP2 . new var iab l e (binary=True)
#FIRST ADDITIONAL CONSTRAINT
for s in S :

MIP2 . add cons t ra in t (sum(x [t] for t in S i f d(s , t)<=c/2)<=1)
#SECOND ADDITIONAL CONSTRAINT
for s in Czone :

MIP2 . add cons t ra in t (sum(x [t] for t in S i f d(s , t)<=c/2)<=1)
#ORIGINAL CONSTRAINT
for s in S :

for t in S :
i f t != s :

i f d(s , t) <= c :
MIP2 . add cons t ra in t (x [s]+x [t]<=1)

MIP2 . s e t o b j e c t i v e (sum(x [v] for v in S))
q=MIP2 . s o l v e ()
print (len (S) , round(len (S)/q , 2) , round(q , 2))
print (’Done ’)

print (’ Object ive Value : {} ’ . format (MIP2 . s o l v e ()))
for i , v in sorted (MIP2 . g e t va l u e s (x) . i tems ()) :

print (f ’ x { i } = {v} ’)

#FINDING THE SOLUTION FOR INFINITE THEATRES
while True :

p1 = MIP1 . s o l v e ()
a s o l = MIP1 . g e t va l u e s (a)
MIP2 . s e t o b j e c t i v e (sum([a s o l [n]∗ x [n] for n in S]))
p2 = MIP2 . s o l v e ()
print (round(p1 , 4) , round(p2 , 4))
i f p2<=1.0001:

break
x s o l=MIP2 . g e t va l u e s (x)
print (sum(v for s , v in x s o l . i tems ()))
MIP1 . add cons t ra in t (sum([x s o l [s]∗ a [s] for s in S])<=1)

#VIEW THE FINAL CONSTRAINT VECTOR
for s in sorted (a s o l) :

i f a s o l [s] >0 .001 :
print (s , round(a s o l [s] ∗ 1 , 4))

#CODE FOR LOWER BOUND, BASED ON LEMMA 1 AND LEMMA 2
d i s t anc e = 3 .7
d i s t an c e s e a t = 1
distancerow = 1/2

41

l 2 = (2∗ distancerow ∗ d i s t an c e s e a t) / ((s q r t (3))∗ d i s t anc e)∗ (d i s t ance / dis tancerow+2)∗
(d i s t anc e / d i s t an c e s e a t+1)

L = { s for s in B i f d(s , [0 , 0]) <= l2 }

def f (w, x , y , z) :
return abs (w∗z−x∗y)

def inp (w, x , y , z) :
return abs ((d i s tancerow ˆ2+1/4∗ d i s t an c e s e a t ˆ2)∗w∗y+1/2∗ d i s t an c e s e a t ˆ2∗w∗z+1/2∗
d i s t an c e s e a t ˆ2∗x∗y+d i s t an c e s e a t ˆ2∗x∗z)

Lega lDi s tances = []
LowerBound = []

for s in L :
for t in L :

d2 = d ([0 , 0] , s)
d3 = d(t , [0 , 0])
i f d3>d i s t anc e :

i f d2>=d3 :
i f inp (s [0] , s [1] , t [0] , t [1])<=1/2∗(d3 ˆ2) :

Lega lDi s tances . append (tuple ([s , t]))
LowerBound . extend ([abs (s [0] ∗ t [1]− t [0] ∗ s [1])])

LB=min(LowerBound)
Bas i s={(s , t) for (s , t) in Lega lDi s tances i f abs (s [0] ∗ t [1]− t [0] ∗ s [1])<=LB}
print (Bas i s)
print (LB)
print (l 2)

42

	Introduction
	Problem Description
	Situational Analysis
	Distance Function
	Theatre Setup and Seating Arrangements
	Constraints
	Occupancy and Occupancy Rate
	Problem Statement

	Methods and Upper Bound
	Characteristic Vectors
	Analysing the Objective Problems
	LP-Relaxation and the Dual
	The First Upper Bound
	Improving the Upper Bound

	Proof for Theorem 1
	Additional Constraints
	The First Additional Constraint
	The Second Additional Constraint

	Constraint on a Finite Region
	The Upper Bound

	Lower Bound
	Lattices and Density
	Rewriting the Distance Function
	Safety of Lattices
	The Lower Bound

	Results
	Distinction between Solutions
	The Examined Situations
	Solutions to r(S,a,b,c)
	Solutions to r(S,a,b,c)
	Interpretation of the Results

	Discussion
	Conclusion

