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a b s t r a c t

The extensive penetration of distributed energy resources (DERs), particularly electric vehicles (EVs),
creates a huge challenge for the distribution grids due to the limited capacity. An approach for smart
charging might alleviate this issue, but most of the optimization algorithms has been developed so far
under an assumption of knowing the future, or combining it with complicated forecasting models. In
this paper we propose to use reinforcement learning (RL) with replaying past experience to optimally
operate an EV charger. We also introduce explorative rewards for better adjusting to environment
changes. The reinforcement learning agent controls the charger’s power of consumption to optimize
expenses and prevent lines and transformers from being overloaded. The simulations were carried
out in the IEEE 13 bus test feeder with the load profile data coming from the residential area. To
simulate the real availability of data, an agent is trained with only the transformer current and the local
charger’s state, like state of the charge (SOC) and timestamp. Several algorithms, namely Q-learning,
SARSA, Dyna-Q and Dyna-Q+ are tested to select the best one to utilize in the stochastic environment
and low frequency of data streaming.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A rapid pace of using electrical vehicles (EVs) leads to big
hanges in both the scale and the shape of electricity consump-
ion. Typical residential load shape already has its daily (as well
s seasonal) peaks. Utilization of electric vehicles along with
ther distributed energy resources (e.g. heat pumps) can make
he situation even worse. Thus, system operators will be forced
o postpone the EV chargers installation approval till the grid is
einforced adequately.

The price-based smart charging has been studied extensively,
s discussed in the literature section, and mainly with help of
ptimization methods [1–3]. Such models rarely include the EVs
umber or consumption pattern change into account. Most of op-
imization algorithms has been developed under the assumption
f having perfect future knowledge which is not quite applicable
or the high uncertainty from a massive number of EVs.

Reinforcement learning is considered as a promising approach
o handle the uncertainty, especially with on-line applications [4,
], since it allows the agent (EV charger) to learn from experience
nd make decisions from his current perspective maximizing

∗ Corresponding author.
E-mail addresses: a.poddubnyy@tue.nl (A. Poddubnyy),

.nguyen.hong@tue.nl (P. Nguyen), han.slootweg@enexis.nl (H. Slootweg).
ttps://doi.org/10.1016/j.segan.2023.101162
352-4677/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
the expected long-term return. Such a statement of the prob-
lem requires only to correctly describe the environment to the
agent and select relevant algorithms to learn. It does not require
knowing a physical model of a grid or EV batteries, nor the
statistical properties of the environment, but only the data from
these objects.

In this paper the reinforcement learning algorithms, control-
ling an EV charging station’s consumption power in real time are
utilized. The objective here will be the optimization of the charg-
ing expenses and prevention of the possible overload. This will
allow to loosen the capacity limits of the power grid, preventing
unnecessary investments and accelerating the deployment of EVs’
infrastructure.

The data for the model training will include samples from
the power flow problem-based environment. Residential daily
load profiles, along with their placement in distribution grid,
equipment capacities and EV chargers locations are acquired from
an industrial partner.

This paper is an improved version of the conference publica-
tion [6]. It introduces an extended version of Dyna-Q algorithm,
i.e. Dyna-Q+, to tackle the problem of concept drift in reinforce-
ment learning. It was tested on the load and price data and was
proven to better adjust to conceptually drifting environment. The
seasonality of the load dataset was removed with help of time
series decomposition to make the rewarding of the algorithm
consistent with its actions. In addition, the environment was
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

ϵ probability to make a random action in
the ϵ-greedy policy

γ discounting factor
κ small number, scaling factor for τ

λ electricity price
λmed median price before arrival or after

departure
ωcap reward factor for the transformer load

(capacity) objective term
ωcost reward factor for the electricity cost

objective term
ωSOC reward factor for the state-of-charge

objective term
π policy of an agent
πopt optimal policy of an agent
τ accumulated reward, increased by 1 for

every step it’s state is not visited
A set of actions
P probabilistic state transition model
Pload,disc discretized Pload
Pload consumption of the whole grid
Pthresh,disc discretized Pthresh
Pthresh transformer load threshold, used to di-

vide rewards into positive and negative
Qπ action value function, given the policy π

R reward function
rp reward during the planning step of the

Dyna-Q+ algorithm
s′ state after taking an action
S set of states
s state before taking an action
SOC state-of-charge of the EV battery

adjusted by adding the departure and arrival times and their
distribution to make the model more realistic. Also the general
agent’s behavior was improved in a way, that the clearly disad-
vantageous and infeasible state–action pairs, such as the action to
charge while having a full battery, were excluded from the search
domain. It all enhanced algorithms’ learning speed and made the
difference between them more expressed and visible.

The contribution of this paper is in the following:

• The planning algorithm (i.e. Dyna-Q), which learns the tran-
sition model from the interaction with the environment,
was introduced for replaying past experience and, thus,
making more use of the interaction with the environment.
• This algorithm was extended to a more explorative version,

which proved itself better under changing environment,
such as prices drift. The price change remained almost un-
noticed by Q-learning and SARSA but was detected by the
planning algorithms.
• The planning algorithms were benchmarked against the

other value-learning ones (i.e. Q-learning, SARSA) to validate
their performance.
• Smart-charging algorithms used are aware of not only elec-

tricity prices and time but also the state of the network, in
particular the load of the transformer.
2

2. Background

There have been many studies in recent years, dedicated to
the large-scale deployment of charging stations. Some of them
were mainly focused on the best allocation of EV stations in the
grid [7,8], others on the best battery load shape to meet the
sustainable energy supply or off-peak hours [9,10]. In this paper
the EV charging problem is discussed from both perspectives,
considering the personal needs of an EV owner, as well as the
requirements of the grid.

2.1. Traditional approaches

2.1.1. Optimization
The most widespread way to optimize EV charge is to uti-

lize conventional optimization algorithms. Generally, optimiza-
tion under the power flow constraint is considered non-convex
but can be relaxed using various techniques, e.g. second-order
conic programming [1]. EV charging is often considered in cou-
pling with another problem like photovoltaic (PV) generation [2].
Since the optimization task in a highly dimensional space is ex-
tremely time-consuming, there were proposed some algorithms
to tackle this issue [11]. Optimization models can also contain
modeling of EVs movement statistical properties, as with Monte
Carlo simulations [3]. Although traditional optimization models
present a solid approach to handle the issue in terms of the
accuracy of the solution, they have some limitations:

• They require the detailed and precise modeling of the envi-
ronment, including the EV battery model, and power flows,
which can pose a challenge, especially in complex distribu-
tion networks.
• They demand a forecast of the future data, used in the

model, to be able to observe the whole time scope, for which
the actions are taken. The performance of the forecast model
severely affects the overall performance of EV charge control
• In optimization-based models there should be a consid-

eration of non-stationarity of the variables (prices, loads),
either in the forecasting or optimization parts, depending
on the architecture. This can be tricky since both types of
models typically rely on the predetermined or stochastic
data, sampled from the stationary distribution.
• Conventional optimization models are poorly scalable to

large vehicle fleets, since the growth of computational com-
plexity with the increase of dimensionality.

2.1.2. Heuristic algorithms
A number of heuristic and meta-heuristic algorithms were

also introduced for the EV charging problem [12]. The main
motivation of such methods is in their ability to achieve the
solution faster, than with the regular optimization techniques, at
the cost of its sub-optimality. Since heuristic algorithms also have
to simulate the EV charging in the grid environment, It inherits
the same drawbacks from the optimization models, except it
has better scalability. Apart from that it introduces new issues,
connected to the sub-optimality of the solution.

2.2. RL for power grid balancing

When compared to the traditional optimization methods, Re-
inforcement Learning has several potential advantages:

• RL is a model-free approach for the optimization of the
agent’s reward function. Thus, it does not require any
knowledge of the environment but only a set of interactions

with it.
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• RL does not require a forecasting model either, since it
optimizes expected returns at the end of the episode from
the current state’s perspective.
• As it is shown in this study, RL agent’s online learning allows

policy adjustment, starting immediately after the change in
the environment.
• The scalability of RL algorithms varies depending on the ar-

chitecture, but for the independently learning agents with-
out any interaction and coordination between them, the
computational complexity grows linearly.

Reinforcement learning was applied to different aspects of
onsumption optimization problems with various goals and en-
ironment settings.
The problem of voltage security was discussed in [13]. In

his paper DDPG (Deep Deterministic Policy Gradient) algorithm
as used at the same time with a plain optimization problem.
he resulting agent mainly transfers the consumption from peak
ours to off-peak hours, as a consequence of lower prices.
Research, conducted in [14] sets the problem in a similar

ay, as it is proposed in this work, but the solution serves the
urpose of the PV panels overvoltage mitigation by means of
einforcement learning. The algorithm minimizes the curtailment
f PV power with regard to the voltage level and treats the state
f the network as known, running the power flow problem.
In RL-based energy consumption optimization, [15] can be

onsidered as one of the milestones in terms of architecture
nd the results achieved. The authors analyzed two different
eep neural networks (DNN) based architectures of RL: Deep Q-
earning (DQL) and Deep Policy Gradient (DPG). Both methods
pproximate a function with the help of DNN. In the first one,
he function is the action-value, in the second it is a directly
arametrized policy. Both algorithms managed to minimize the
ost, as well as reduce the peak load.

.3. RL for EV charging

The application of RL for EV charging was considered already
n some studies. They vary significantly in terms of problem
ormulation. The studies mainly focus on: minimizing charging
osts [16], transformer loadings [17] and waiting times [18],
aximizing welfare [19], renewables utilization [20], profits of

ndividual EV owner [21], charging station or distribution sys-
em [22]. In many cases, the objectives are combined into a single
ulti-objective reward function to chase several goals simulta-
eously. Constraints, whether it is the grid capacity or state of
he charge, are imposed indirectly via the reward function as
enalties for their violation.
In [5] the problem is to optimize EV charge bids taking the net-

ork constraints into account. The constraints are implemented
s a cap power consumption for the aggregated area. The Q-
earning algorithm is used for optimization. In [23] similar prob-
em was also considered but with the help of SARSA (State–
ction–reward–state–action) algorithm
Another EV charger optimization study was described in [24].

n this case, the EV charger is working at the same time with
he building and has two points of supply: PV panel and power
rid. The objectives in this model are PV usage and state of
harge at the moment of departure maximization. The authors
se the algorithms of DDQN (Double Deep Q-networks), DDPG
nd P-DQN (Parametrized Deep Q-networks). Contrary to the
lgorithms, used in this paper, the aforementioned algorithms
tilize deep neural networks, which utilize an artificial neural
etwork as a policy. The main advantage of these algorithms is
hat they can solve highly-dimensional tasks.

An extensive review on the EV charging RL algorithms was

one in [4]. From among the main conclusions is the fact, that

3

Q-learning algorithm, one of the basic ones in reinforcement
learning, was found one of the most effective, as well as its
deep extension DQN. The other conclusion is that multi agent
reinforcement learning solutions (MARL) are more probable to
converge to the optimal behavior of agent, yet they are more
difficult to do it and more computationally expensive due to
the time-consuming power flows simulations. The last issue was
addressed in various studies (e.g. in [25]).

2.4. RL under non-stationary conditions

RL agent can face certain issues, when the environment, where
it is deployed, is a subject of a change. That implies, that de-
veloped policies might no longer be relevant or can provide
completely wrong solution. Even though RL might be adaptive
to some changes, without modifications it prefers following the
existing, previously learned policies, since locally they provide the
best solution. For the small changes near the optimal it can be
enough to have an ϵ-greedy policy for some exploration, but it
may not help in case the optimal solution lies in a distance from
the currently preferred one.

RL under non-stationary conditions has been the topic of in-
terest for a long time. In principle, there are two different sources
of non-stationarity in RL problems:

• Environment-induced non-stationarity, caused by the inher-
ent change of the environment
• Agent-induced non-stationarity, which is mainly an issue for

multi-agent models [26] and Deep RL [27].

Non-stationarity in the environment’s distributions can also
be divided into predictable and random. Predictable changes can
be taken into account by explicit modeling of this change, using,
for example, time-series analysis techniques [26], or context-
depending learning [28]. These methods specifically focus on the
changes, that are assumed to be known in advance or predicted.

It is generally difficult to track the changes in the distribution
network since it is the most branched and stochastic part of
the power grid. Thus, particularly in this part of the grid, it is
desirable to avoid the perfect knowledge requirements. With this
said, it is supposed in this study, that we want to make non-
stationarity adaptation as automatic as possible, relying only on
the experience, acquired by the RL agent. This is also supported
by one of the main ideas of RL, which is a model-free learning,
that does not require the physical modeling of the environment.

In this paper we use the extended version of the Q-learning
algorithm by adding the experience replay for general better per-
formance (Dyna-Q). These algorithms was already applied to EV
charge problem in [29] for an additional learning in the simulated
experience, which gives better overall learning results.

In this paper we also utilize the further extended Dyna-Q+
algorithm, which is an explorative version of Dyna-Q, that better
handles conceptually drifting data. In Dyna-Q+ exploration has a
different nature, than in the ϵ-greedy policy. It rewards agent for
once in a while visiting the long abandoned states. The reward is
assigned to all the states, no matter how remote they are from
the current optimal path.

Most of the algorithms, used in this paper, are described
in [30], which is a comprehensive handbook for reinforcement
learning.

3. Methodology

Here we discuss the theoretical background of reinforcement
learning environment representation as well as introduce agent
behavioral algorithms to be tested. In the paper two experience
replay algorithms (i.e. Dyna-Q and Dyna-Q+) were benchmarked
with two other tabular algorithms, which only make a single

update per data point.



A. Poddubnyy, P. Nguyen and H. Slootweg Sustainable Energy, Grids and Networks 36 (2023) 101162

f
u
s
r
a

s
d
w

r
t
t
l

o
a
t
t
s

l
i
g
b
t
i
T
b
n
i

Q

3

t
a
a

3.1. Markov decision process

Reinforcement learning model can be applied to the problem,
ormulated in terms of Markov Decision Process (MDP). MDP is
sually represented by the tuple: (S, A, P, R, γ ). Here s ∈ S is a
et of states, a ∈ A is a set of actions, P is a transition model,
eturning the probability of transition to the state s′ given the
ction a taken in the state s. To evaluate the actions’ immediate

reward from taking an action a, that leads to a state s′ from the
tate s the reward function R = f (s, a, s′) must be introduced. The
iscounting factor γ is used for the long-term reward calculation
ithin the action-value function Qπ .
Qπ (s, a) is a function, that estimates the expected long-term

eturn from taking an action a in the state s in accordance with
he policy π . Policy π (s) = a is a function, that returns the action
o be taken in s. Thus, the ultimate goal of the reinforcement
earning algorithm running is to find the optimal policy π , which
can be represented as the action, leading to the highest long-term
return:

πopt = argmaxaQπ (s, a) (1)

In order to find the optimal policy, the action-value function
has to be approximated also. There are various methods to do
this, using parametric and non-parametric functions. These meth-
ods form a variety of RL algorithms, that have their advantages
and bottlenecks and fit different types of problems. For example
in [15,24] the artificial neural network was used, while in [5]
more conventional SARSA algorithm. In this paper we consider
algorithms, which utilize a table for state–action couples, where
cells are updated after visiting the corresponding state–actions in
accordance to the rules, varying for every algorithms. These rules
and algorithms are explained in the following sections.

3.2. Temporal difference learning

Intuitively, it can be thought about finding the action-value
function Qπ (s, a) and corresponding optimal policy πopt as a set
f Monte Carlo (MC) experiments: starting at a particular state
nd making transitions till the end of an episode for an episodic
ask or a time horizon for a continuous task in accordance with
he greedy policy. In this case the averaged returns for each
tate–action pair will be an estimation for Qπ (s, a).
Because of end episode update, with such an approach online

earning is not possible. Family of methods, allowing online learn-
ng by utilizing bootstrapping (i.e making a guess from another
uess), is called Temporal Difference (TD) learning. The difference
etween MC and TD algorithms is that in TD the value func-
ion estimation is made each step via the update rule, which
ncludes the estimated value of the following state. Both MC and
D algorithms utilize sample updates, contrary to the model-
ased approaches, such as Dynamic Programming, where it is
ecessary to know the model of the environment. This difference
s illustrated on Fig. 1

The two common algorithms from the family are SARSA and
-learning.

.2.1. SARSA algorithm
SARSA is the on-policy algorithm which utilizes the informa-

ion of the current state, current action, reward from taking that
ction, next state and the action to be taken in the next state in
ccordance with the policy (St , At , R, St+1, At+1) for each update:

Q (St , At ) ← Q (St , At )+
α[Rt+1 + γ · Q (St+1, At+1)− Q (St , At )] (2)

Each episode ends with the terminal state, at which the en-

vironment resets to its initial condition. Using the update rule,

4

Fig. 1. Information needed for different types of update rules.

Algorithm 1 SARSA algorithm

Initialize Q (S, A) arbitrarily for all s ∈ S+, a ∈ A(s), except
terminal states, where Q = 0
for each episode do

Initialize St ;
Choose At from St based on the policy and current Q
estimation;
while St ̸= terminal do

Take At , observe R, St+1;
Choose At+1 from St+1 based on the policy and current Q
estimation;
Make an update by the rule (2);
St ← St+1, At ← At+1;

end while
end for

the whole algorithm can be formulated as a nested loop over the
episodes and over the states:

If it is desired for the agent to not get stack in sub-optimal so-
lution and explore the environment more, it would be necessary
to utilize the exploration type of policy, e.g. ϵ−greedy policy. This
policy takes a greedy action with the probability 1− ϵ and takes
an exploration step with the probability ϵ.
3.2.2. Q-learning algorithm

Q-learning is another algorithm, utilizing bootstrapping, but
the main difference with SARSA is that it allows to learn the target
policy and explore by behavior policy, which is different from the
target. Typically such quality is used to simplify exploration. Its
update rule looks like this:

Q (St , At ) ← Q (St , At )+
α[Rt+1 + γ ·max

a
Q (St+1, a)− Q (St , At )] (3)

The formalized algorithm looks similar to the one for SARSA,
with the main difference in the update rule, which is now defined
by (3):

3.3. Dyna-Q algorithm

All the aforementioned models are related to the model-free
class of RL algorithms. That means, that learning (value function
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Algorithm 2 Q-learning algorithm

Initialize Q (S, A) arbitrarily for all s ∈ S+, a ∈ A(s), except
terminal states, where Q = 0
for each episode do
Initialize St ;
while St ̸= terminal do
Take At , observe R, St+1;
Choose At from St based on the behavior policy and current
Q estimation;
Make an update by the rule (3);
St ← St+1;

end while
end for

update) happens only through the experiments and real actions
in the environment. But in case of the real data learning the
data availability is quite limited, i.e. the amount of experiments
needed to get a satisfactory results may not always be produced.
In this case it can be addressed by the model-based RL algo-
ithms. This class of algorithms reconstructs the state transition
epending on the current state and the action taken. The updates
f the value function based on the modeled, rather than real,
nvironment are called planning steps.
Modeling of the environment can generally be done in two

ays: sample model and distribution model. Distribution models
re assumed in dynamic programming, which is the basis for
he reinforcement learning. But in case of the distribution based
odel it would be necessary to calculate the probabilities of all

he possible outcomes, which is unrealistic in case of stochas-
ic power systems with a plenty of elements. Sample models
roduce a single result according to the distribution behind the
nvironment, but the distribution itself remains unknown. Thus,
istribution models are better in terms of results, but they are
ometimes impractical and the sample based ones are much
asier to acquire.
For the computationally expensive environments, like power

ystems, model-based algorithms give one more advantage. The
lanning updates do not require re-computation of the new
tates, but rather sample them.
One of the most widely known model-based algorithms is

yna-Q [30]. In fact, it utilizes the Q-learning update rule, but
lso incorporates the modeling part:

Algorithm 3 Dyna-Q algorithm

Initialize Q (S, A),Model(S, A) for all s ∈ S+, a ∈ A(s),
for each episode do
Initialize St ← current state;
Initialize At ← ϵ-greedy policy(St ,Q );
Take action At observe reward R and state St+1;
Make an update from the Q-learning update rule (3);
Model(St , At )← R, St+1 assuming the deterministic environ-
ment
for each planning step do
St ← random previous state;
At ← random action, taken in the previous state;
Rt , St+1 ← Model(St , At );
Make an update by the rule (3);

end for
end for

3.4. Dyna-Q+ algorithm

All above mentioned algorithms perform relatively good in
he stochastic environment with the same underlying distribution
5

for the state–action–reward dependency all the time. But real
environments often are far from static. In an environment of a
distribution grid, prices and consumption patterns may change
drastically due to a variety of reasons, such as weather sea-
sonality, new electrically powered equipment installations, solar
panels integration, demand response due to the market incentives
and others. All these may severely deteriorate the quality of the
models (e.g. q-values become outdated, learned transition models
become wrong). Above mentioned reasons lead to the necessity
of the concept drift resistant approaches, that may quickly adjust
to the changes in the environment. Presence of the ϵ parameter
ay save the model in case of minor drifts, but such important
hanges, as shifting of the optimal charge time to a different part
f the day can easily stay unnoticed by the agent. The modifica-
ion of the Dyna-Q algorithm, called Dyna-Q+ makes the agent
ore leaning towards exploration, during the planning stage. By

ntroducing the additional reward for the states, not visited for
while, proportionally to the time they were not visited, the
ecessary exploration can be achieved:

p = r + κ
√

τ

where rp is a reward during a planning step, τ is an accumulative
reward, which is zeroed in case the state is visited, and increased
by 1 when not, κ is a small number.

With this, Dyna-Q+ algorithm can be written as:

Algorithm 4 Dyna-Q+ algorithm

Initialize Q (S, A),Model(S, A), τ (S, A) for all s ∈ S+, a ∈ A(s),
for each episode do

Initialize St ← current state;
Initialize At ← ϵ-greedy policy(St ,Q );
Take action At observe reward R and state St+1;
Make an update from the Q-learning update rule (3);
τ (S, A) = τ (S, A)+ 1, τ (St , At ) = 0
Model(St , At )← R, St+1 assuming the deterministic environ-
ment
for each planning step do

St ← random previous state;
At ← random action, taken in the previous state;
Rt , St+1 ← Model(St , At );
Rt ← Rt + κ

√
τ (St , At );

Make an update by the rule (3);
end for

end for

3.5. Naive rule-based control

As an benchmark intuitive algorithm in this paper the rule-
based control is considered. It follows easily comprehensible
rules, which are to consume at earliest opportunity until fully
charged under specific limitations. The limitations are that the
agent has to consume only when the price or grid load are lower
than a threshold. In our case for price we choose the median
value one and the load is a value within first Pthresh = 1 slot in
the discretized load. These values are based on the estimation
of ability to fully charge the vehicle before the departure and
consider other objectives at the same time. Mathematically the
decision making process can be described as:

a(λt , Pload,disc) =

⎧⎪⎪⎨⎪⎪⎩
1 if (λt ≤ λmed,t

and Pload,disc ≤ Pthresh,disc)
and SOCt < 100
0 else

(4)

where λt is the electricity price, λmed,t is a median price before
departure or after arrival.
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4. Study case

4.1. Environment

At first, the environment for the problem has to be properly
efined in the form of MDP. Set of states is represented by
he power flows problem results, in particular the currents of
lements to be protected:

t = (Pload,t , SOCt , t) (5)

here Pload,t is the active power consumption of the whole grid,
SOC is a state of the charge. Power consumption is assumed to be
acquired from the transformer in the particular model setting.

Set of actions is be given by the discretized power consump-
ion of an EV battery, as a share of maximal:

t = {0, δ, 2δ, . . . , 1} (6)

where δ is a discretization step. The model choice in the pa-
per consists of two discrete actions: charge 1 and stay still 0.
Small amount of actions allow to decrease dimensionality of the
problem and thus increase computational efficiency.

The reward function will represent the necessity to minimize
cost as well as to avoid consumption in the high load of the
elements and ensure the charging of the battery. Also the reward
function features the rescaling of load and price terms in relation
to the threshold values for them. It is needed to emphasize the
goal and to avoid RL agent preferring not charging over charging
everywhere.

Rt = at (ωcost (λmed,t − λt )Pmax∆t +

ωcap
Pthresh − Pload,t

Pthresh
)+ ωSOC (SOCt − 100),

0 < SOCt < 100 (7)

where Pmax is a maximum consumption of EV charging, ωcost , ωcap,

ωSOC are reward factors for the cost, capacity and SOC reward
terms, Pload,t is the load of the transformer at time t , Pthresh is the
transformer load threshold, used to divide rewards into positive
and negative (in this case 25% of the transformer capacity).

The problem considered does not have clear episode division,
since there is no any real resetting time point. That means one can
consider time periods as episodes and assumptions for them. In
this paper the time domain is split into days, as they are natural
boundaries for the electrical energy consumption cycle. Because
of this, it would be a valid assumption that the results of one day
modeling will not affect the following day, which is a mandatory
condition for the RL episodes.

States in the problem have to also be discretized to satisfy the
requirements of the algorithms. Ptrans,t is divided into 4 intervals
— less than 25, 50, 75 and 100% of the maximum consumption in
the dataset. SOC is divided into 5 20% intervals.

Environment implemented in python as three separate ob-
jects: environment, grid and battery. The grid topology, used for
the test is IEEE 13 bus test feeder [31], with substation trans-
former 0.25 MVA 10/0.4 kV (Fig. 4), thus, without step-down
transformer between nodes 633 and 634. The main goal of the
model is to show, if it is possible for RL algorithm, dispatching
the EV charger output power and assuming the EV connected,
to avoid overloading the transformer and to optimize cost of the
consumption.

The other important aspect of the modeling is the algorithm
that will control the behavior of the agent. There are 4 algorithms
tested here: SARSA, Q-learning, Dyna-Q and Dyna-Q+. The main
metric to compare their ability to learn is the cumulative reward
after an episode. If objective function coefficients are selected
6

Fig. 2. Average aggregated load profiles for different scenarios, with 95%
confidence intervals.

correctly, the cumulative reward reflects the priorities of differ-
ent goals to achieve. It is especially important, considering that
the objectives are competitive, i.e. the faster state of charge is
increased, the more transformer is loaded and money is spent and
vice-versa. The consumer is interested in the faster charge and
the distribution system at the lowest price, while DSO in keeping
the distribution network not congested. Both targets are directly
reflected by the cumulative reward.

4.2. Data and environment non-stationarity

Data is acquired from industrial partners, it consists of two-
year datasets with consumption of residential buildings. These
buildings were assigned to the nodes of the network. It has 3
winter peaks since it starts at the beginning of 2016 and ends at
the end of 2017. The data was scaled to fit the considered power
grid. The aggregated load can go up to 0.1 MW in the summer
and 0.2 MW in the winter time (Fig. 2). Only the weekdays were
considered for the training process, as it is supposed, that people
commute by EVs between home and work in the middle of the
day, which is supported by the data.

The yearly seasonal variability poses a significant obstacle to
algorithms. One of the reasons is that every season will likely put
an agent into that part of the states, that was not visited before,
because they have different consumption levels. In this case we
would need more data to visit these new states enough to learn a
proper policy. Moreover, the algorithm should have a consistently
scaled reward to ensure the ability to compare the action values
in different seasons and distinguish the good actions from the
actions in good circumstances. For example, without removing
the seasonal component of the load data a completely random
action in a summer episode can easily give a better expected
return than the optimal action in the winter episode. In other
words, the reward function significantly depends not only on the
agent’s actions but also on the season, which deteriorates the
training process. It is possible because the capacity penalty term
depends on the absolute value of the load, which scale varies from
season to season. To handle this issue, before training the loading
data was deseasonalized using the multiplicative moving average
method. The data was decomposed into a product of trend, season
and residuals:

Trend(t) · Season(t) · Residuals(t) (8)
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Fig. 3. Moving average of the original and normalized load profiles with the
indow of 1 month.

The moving average method of decomposition implies first
rocessing the data through a convolution filter, with high
nough window to capture the trend accurately. In our case, the
indow was selected to capture the time of the year deviation.
he yearly seasonal deviation was approximated as a trend and
emoved from the data. The seasonal component represents the
ay-to-day seasonality, which is retrieved via averaging daily
onsumption. Residuals are calculated by removing trend and
easonality from the data. In total, the preprocessed load profile
onsists of two out of three components: daily seasonality and
esiduals. Daily seasonality is necessary as it contains important
eatures of daily consumption for RL training process. The mov-
ng average of the original and deseasonalized load profiles are
epicted on Fig. 3
Apart from the removed yearly seasonality, there will be con-

idered an environment change from the side of the prices of
lectrical energy. The electricity day-ahead prices were assumed
o be deterministic in this study. The change of the stationary
ondition will be represented by the price change: they will be
eroed in the last 2 h of the episode. It is expected to be difficult
o notice this change for the agents since the optimal solution
efore the change is in some distance from this event.
The EV battery was chosen with 100 kWh capacity and the

ower of the EV charger is 40 kW. EV is assumed to have a
tochastic arrival and departure schedule in the household. It de-
arts from the household around 8 a.m. and arrives back around
p.m., both sampled from the normal distribution. After arrival,

he state of the charge is assumed to reduce to 20% due to the
onsumption on the way.

ϵ parameter was selected to be 5% or 0.05 as a good balance
etween exploration and exploitation for the beginning of the
raining process.

. Results

The comparison of the algorithms using deseasonalized data
s presented on Fig. 5. Due to the high density and stochasticity
f values, it is shown as an average for every 20 steps.
As it can be seen, different algorithms have different per-

ormances both in the beginning and after the concept drift in
he environment data. Dyna-Q and Dyna-Q+ significantly outper-
ormed simple tabular algorithms after the concept drift, while
agging a bit behind before it. The ability to notice the change of

nvironment is connected to several planning updates after the

7

Fig. 4. Test distribution network based on IEEE 13 Node Test Feeder.

Fig. 5. Comparison of the training process with 50 independent runs for
different algorithms with environment change in episode 200.

occasional discovery is made, while tabular methods learn only
from the experience. The lower performance in the beginning
is connected with the fact, that these algorithms make many
updates using only a few experience points they have in the
model, thus overfitting to the first data points. The rule-based
algorithm showed good performance at the beginning of the
training process. After the concept drift its cumulated reward
started to oscillate. This is due to several factors. First, because
now there is a new very beneficial area in the end of the episode.
Second, the load data still contains some noise, which is higher in
certain periods of the dataset. While the algorithms are resistant
to noise, the rule-based approach sometimes fails to fulfill the
requirements to charge the vehicle. That means that the rule-
based approach has to be manually adjusted to the change in the
environment.

Interesting conclusions can be done from the behavior of
different components of the multi-objective function. As it is seen
in Fig. 6, the costs and transformer load rewards go up, while
the SOC reward is going down (Fig. 7) before the concept drift.
This is due to postponing the battery charge to more beneficial
time points later. After the drift the capacity term starts to drop
because at the end of the episode, the prices become much
more important and the capacity is ignored at this time. Dyna-Q+
algorithm shows a better ability to learn the prices and sacrifice
capacity reward for that.

The trained Dyna-Q+ policy was utilized during the roll-out
experiment against the rule-based approach. The results are
shown on Fig. 8. As it can be seen, the significant reduction
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Fig. 6. Components behavior during the training process of the Q-learning
algorithm.

Fig. 7. SOC component of the reward function during the change of
environment.

Fig. 8. Policy roll-out experiment. The trained policy was utilized on the last 40
days of the dataset and its performance metrics were traced: (a) average cost
of the charge, (b) average transformer load during the charge, (c) SOC before
departure or at the end of the day.

of the charging cost was achieved, maintaining the SOC at the
appropriate level. This came with the cost of consuming in a
more loaded hours. Considering, that the typical highly loaded
times were avoided, it is not important, what is the transformer
load during the charge. Also, the rule-based algorithm failed to
charge to appropriate battery levels, since sometimes SOC does
not exceed 60%.

A comparative analysis of different γ influence on the training
rocess is provided in the paper. Discount factor γ represents,
ow valuable the algorithm perceives the information, achieved
t later stages of an episode to estimate the value function at a
urrent state. Generally, the lower the value of γ , the more im-
ortant the agent considers the immediate reward in comparison
o the future rewards, and vice-versa.

Another hyperparameter is the step size α, which defines, how
uch of the action-value is to be updated at each iteration. This
arameter was selected as α = 0.5 as a trade-off between slow
earning and overfitting to the most recent timesteps.
8

Fig. 9. Influence of γ on the training process for Dyna-Q+ algorithm with 20
independent runs.

Fig. 10. Influence of the number of planning steps on the training process for
Dyna-Q+ algorithm with 20 independent runs.

Some demonstrative tests with Dyna-Q+ algorithm and differ-
ent γ with a fixed value of α = 0.5 are shown in Fig. 9.

As it can be seen, higher γ s = 0.5 and 0.9 lead to the better
learning after the environment change. This is due to the fact, that
in order to distribute the delayed rewards back to the beginning
of the episode it is necessary to take the future rewards as more
important. Therefore higher discount rate leads to a larger share
of the last timesteps’ rewards will be accounted for in the first
timesteps after arrival.

Other important parameters, that are part of Dyna-Q+ algo-
rithm, are the number of planning steps during the experience
replay and parameter κ , which is responsible for the scaling of
the rewards from θ . Optimal κ depends on the scales of the
multi-objective function factors and had to be coordinated with
them. Generally, too high κ leads to a lower average reward even
with the optimal policy. Too small kappa makes the exploration
happen rarely and negates the effect of additional explorative
reward, making the Dyna-Q+ to get closer to the regular Dyna-Q.
The sensitivity analysis of planning steps with the fixed κ = 0.3
is presented on Fig. 10

A few planning steps would turn the algorithm into a simple
Q-learning, which is seen in the figure. Higher value 10 leads
a more stable result, than for 1 step. Number of planning steps



A. Poddubnyy, P. Nguyen and H. Slootweg Sustainable Energy, Grids and Networks 36 (2023) 101162

D

w
i

w
T
a
h
i
b
p
i
e
t
l
h
r
D
w

6

m
w
Q
c
l
i
I
t
i
I
c
o
m
s
r

p
a
w
i
a
d
p
a
r

c
S

D

r
i
m

D

A

Fig. 11. Behavior of the agent in the distribution grid. Left: Q-leaning, right:
yna-Q+.

as selected to be 10 as the higher number would not give any
mprovement, but decreased computation speed.

The trained agent manages to shift the charge to the points,
here there is a trade-off between the load and the price rewards.
he example behavior of one day with two algorithms (Q-learning
nd Dyna-Q+) is presented on Fig. 11. In this case, the simulation
appens after the environment change, with zero price time slots
n the evening. Times of departure and arrival are close, but a
it different due to the randomness of every simulation. In this
lot, the EV departs in the morning around 8 a.m. (dashed line
n the morning) and arrives around 6 p.m (dashed line in the
vening). As it can be seen, in the case of Dyna-Q+ algorithm
he agent prefers now the area with zero price, contrary to Q-
earning, which still stays away from the evening time. This
appens because Q-learning algorithm visits the evening hours
arely and cannot exploit that experience to the full extent, while
yna-Q+ has the incentive to explore the state space once in a
hile and to uncover new rewarding trajectories.

. Conclusions

In this work the possibility of using a reinforcement learning
odel to ease the burden of growing number of electrical vehicles
as shown. Several algorithms, including completely model-free
-learning and SARSA and planning Dyna-Q and Dyna-Q+ were
onsidered. It was proven, that replaying experience can boost the
earning process in the changing environment, by applying more
terative updates with help of the generated transition model.
t was also discussed, that the system peaks can be a threat to
he reinforcement learning algorithms, but the data deseasonal-
zation can ease the issue and make rewards more consistent.
t was proven, that the exploration bonus to the Dyna-Q model
an have a positive effect and help to faster discover the more
ptimal solutions in changing environments. Although the tabular
ethods are generally known for their limited scalability, the
ame principles could be applied to other techniques, e.g. deep
einforcement learning algorithms.

There were also observed some limitations of the proposed ap-
roach. First, the learning process would be much more difficult
nd results unclear without the data preprocessing. In this study,
e focused on the deseasonalization of the data, but the general

dea is to make the rewards proportional only to how good the
gent action is and not connected to the specific features of the
ataset in a particular timepoint. Second, the learning process de-
ends very much on the multi-objective reward function shapes
nd their factors, especially on their mutual coordination, which
equires some effort to tune.
9
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