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In wafer metrology, the knowledge of the photomask together with the deposition process only reveals the
approximate geometry and material properties of the structures on a wafer as a priori information. With
this prior information and a parametrized description of the scatterers, we demonstrate the performance
of the Gauss-Newton method for the precise and noise-robust reconstruction of the actual structures,
without further regularization of the inverse problem. The structures are modeled as three-dimensional
finite dielectric scatterers with a uniform polygonal cross-section along their height, embedded in a
planarly layered medium. A continuous parametrization in terms of the homogeneous permittivity and
the vertex coordinates of the polygons is employed. By combining the global Gabor frame in the spatial
spectral Maxwell solver with the consistent parametrization of the structures, the underlying linear system
of the Maxwell solver inherits all the continuity properties of the parametrization. Two synthetically
generated test cases demonstrate the noise-robust reconstruction of the parameters by surpassing the
reconstruction capabilities of traditional imaging methods at signal-to-noise ratios up to -3 dB with
geometrical errors below λ/7, where λ is the illumination wavelength. For signal-to-noise ratios of 10 dB,
the geometrical parameters are reconstructed with errors of approximately λ/60 and the material properties
are reconstructed with an error of around 0.03%. The continuity properties of the Maxwell solver and the
use of prior information are key contributors to these results. © 2023 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Optical scatterometry is a non-destructive metrology technique
for evaluating the manufacturing quality of semiconductor struc-
tures on a wafer [1]. This technique measures and analyses the
electric fields reflected from these structures, to monitor changes
in a structure’s geometry and permittivity distribution. In the
analysis, the fields reflected from a structure are compared to
fields generated by a computational model acting as a function
of the estimated spatial permittivity distribution [2]. Here, the
estimated geometry and permittivity distribution is based on the
photomask and the material deposition process. Therefore, the
geometry and material properties of the structures on a wafer
are approximately known beforehand, but not exactly due to
process variations. To extract these aspects of the produced struc-
tures precisely, the estimated spatial permittivity distribution
is adjusted such that it minimizes the differences between the
measurements and the output of the computational model [3–6].
This is a so-called inverse scattering problem.

The underlying computational model influences the recon-
struction accuracy: a first-order Born approximation is only capa-
ble of reconstructing target features larger than about one third

of a wavelength of the illumination source [Ch. 10, 7], whereas
a full-wave Maxwell solver [8] with a priori information was
shown to be capable of reconstructing details in the range of
a tenth of this wavelength. This makes a full-wave Maxwell
solver a key ingredient for solving inverse scattering problems.
Luckily, there are several computationally efficient full-wave
Maxwell solvers [9–12] that focus on the electric scattering from
semiconductor structures on a wafer. In [9–12], these structures
are modeled as three-dimensional (3D) finite dielectric scatterers
embedded in a planarly layered background medium.

The full-wave Maxwell solver in [10] has been successfully
used for inverse scattering problems in the optical spectrum
[8, 13, 14], where a set of parameters is introduced to describe
and reconstruct (parts of) the spatial permittivity distribution of
the scatterers via a low-order representation. This results in a di-
mensionality reduction for the inverse scattering problem, which
can eliminate the need for additional regularization strategies for
controlling the ill-posedness of the inverse scattering problem
[15]. Further, a parametrized representation of the spatial per-
mittivity distribution of the scatterers enables a straight-forward
sensitivity analysis via a Gauss-Newton method, to obtain the
impact of variation per parameter onto the scattered fields, i.e.

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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Fig. 1. Finite dielectric scatterers embedded in a single layer of
the planarly layered background medium.

gradient information [15]. So, the parametrization of the spa-
tial permittivity distribution for scatterers seems to be a viable
approach for an accurate reconstruction process.

Unfortunately, there are parametrization pitfalls. First, it is
possible that the introduced parameters only describe a part of
the spatial permittivity distribution and, therefore, the misalign-
ment between the measured and computed reflected fields can
only be resolved as far as they have been parametrized. On the
other hand, using too many parameters, i.e. overparametriza-
tion, can result in dependencies between the parameters, which
leads to ill-conditioning of the Jacobian matrices within opti-
mization problems [16]. In addition, overparametrization can
also lead to overfitting [17]. Overall, it is important to keep track
of the parameters. Fortunately, techniques such as the Morris
method [18] gives insight into the impact of parameters, but at
the cost of an increased computational workload. The second
parametrization pitfall concerns the case where the parametriza-
tion of the permittivity distribution does not correspond with
the discretization employed in the Maxwell solver, e.g. a discrete
dipole approximation suffers from a discontinuous staircasing
effect when the boundary of the geometry of a scatterer does
not align with the axes of the coordinate system [19]. It lim-
its the resemblance between the parametrized model and the
intended spatial permittivity distribution and, therefore, the re-
covered parameters are expected to be of limited consistency
[20]. Additional regularization strategies can aid the consis-
tency of the recovered parameters [21]. However, it can increase
the workload for the entire regularization strategy and it limits
the reconstruction accuracy. Thus, a consistent parametrization
of the spatial permittivity distribution of the scatterers is not
straightforward and it is prone to the introduction of additional
operations.

In the context of wafer metrology via optical scatterometry,
we show that the continuous and consistent parametrization of
the geometry and permittivity distribution of the scatterers by
their polygon-shaped cross-sections provides access to analytic
first-order partial derivatives of the scatterers per parameter in
the spectral domain. This makes it possible to evaluate continu-
ous variations of the parametrized permittivity distribution onto
the scattered electric field via a Gabor-frame-based full-wave
frequency-domain Maxwell solver, i.e. the spatial spectral vol-
ume integral equation (VIE) [9, 22]. Further, it enables a straight-
forward application of a parametrized Gauss-Newton method.
Consequently, a Gauss-Newton inverse scattering method is
constructed, which is based on the spatial spectral VIE with the

consistent parametrization of the scatterers and its associated
first-order partial derivatives. This method does not exploit any
form of regularization, other than the parametrization itself. As a
result, we demonstrate a noise-robust and accurate parameter re-
construction in two test cases via this method: the reconstruction
error for the geometrical parameters ranges from approximately
λ/60 to λ/7 with λ the illumination wavelength, while working
with signal-to-noise-ratio (SNR) levels from 10 dB to -3 dB, re-
spectively. Further, the material parameters are obtained with
less than 4.2% error with SNR levels up to -6 dB.

This paper is organized as follows. Section 2 briefly describes
the key points of the spatial spectral VIE for the forward scatter-
ing problem, while Sec. 3 focuses on the Gabor-frame expansion
of the analytic parametrization of the geometry and permittivity
distribution for finite scatterers and the associated first-order
partial derivatives. In Sec. 4, we describe key points of the in-
verse scattering framework. Two reconstruction test cases are
discussed in Sec. 5, followed by the conclusions in Sec. 6.

2. FORWARD SCATTERING PROBLEM FORMULATION

A. Geometrical description
Figure 1 displays the geometrical description employed in the
spatial spectral VIE [p. 27, 22]. The background medium consists
of NL − 1 homogeneous isotropic dielectric layers stacked in
the z-direction, which is placed between two dielectric half-
spaces. The relative permittivities of the layers are set by εrb,n
and the layer interfaces are located at zn with the layer index
n = 1, . . . , NL−1. We use index values n = 0 and n = NL for the
top and bottom half-space, respectively. The simulation domain
D resides in only one layer and it is visualized by the black wire
frame of size [−Wx, Wx]× [−Wy, Wy]× [zmin, zmax] that contains
all scatterers.

B. Spatial spectral VIE
The total electric field E(x) is set as the superposition of the
incident electric field Ei(x) and the scattered electric field Es(x),
i.e.

E(x) = Ei(x) + Es(x) (1)

with the Cartesian coordinates x = (x, y, z). Here, we assume
an ejωt time dependence, where ω is the angular frequency. The
incident field originates from the top half-space in the form of a
plane wave as

Ei(x) = Ewe−jk·x, (2)

where k = (kx, ky, kz) and Ew is the amplitude vector of the
plane wave. For the scattered electric field, the contrast function
χ(xt, z) is introduced that captures the finite dielectric scatterers
embedded in layer n. The contrast function depends on a permit-
tivity function εr(x) that describes the permittivity distribution,
including the dielectric scatterers, in layer n at position x, such
that we write the contrast function as

χ(x) =
εr(x)
εrb,n

− 1, (3)

with εrb,n the relative permittivity of the background in layer
n. The contrast function is only non-zero at the location of
scatterers. Thus, each scatterer is represented by a compact and
finite permittivity distribution with respect to the background
medium. Subsequently, the contrast current density is defined
as

J(xt, z) = jωε0εrb,nχ(xt, z)E(xt, z). (4)
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In the spatial spectral VIE, the scattered electric field is dis-
cretized simultaneously in the spatial and spectral domain. This
way, the reflection and transmission coefficients of the layered
background medium can be incorporated in a spectral Green
function [23, 24]. To this end, we introduce the two-dimensional
(2D) transverse Fourier transform f (kt) of f (xt) as

f (kt) = Fxt [ f (xt)](kt) =
∫∫
R2

f (xt)e−jkt ·xt dxt, (5)

with xt = (x, y) and kt = (kx, ky). The argument kt is used
for functions residing in the spectral domain, while we use the
argument xt for functions in the spatial domain. The operator
F−1

kt
[. . .] represents the inverse 2D transverse Fourier transfor-

mation. The scattered electric field in domain D is represented
as

Es(kt, z) =
∫ zmax

zmin

G(kt, z|z′) · Fxt [J(x
′
t, z′)](kt, z′)dz′ (6)

with the spectral Green tensor G(kt, z|z′) containing the reflec-
tions and transmissions of the layered background medium as
formulated in [25, 26]. By combining Eq. (1), Eq. (4), and Eq. (6) ,
we write the spatial spectral VIE as

Ei(kt, z) = E(xt, z)− GNF [
χ(x′t, z′)E(x′t, z′)

]
(xt, z), (7)

with a Green operator

GNF [
χ(x′t, z′)E(x′t, z′)

]
(xt, z) = F−1

kt

[ ∫ zmax

zmin

G(kt, z|z′)·

Fxt

[
χ(x′t, z′)E(x′t, z′)

]
(kt, z′)dz′

]
(xt, z).

(8)

In the z-direction, this spatial spectral VIE is efficiently and re-
cursively evaluated in a piecewise-linear discretization, while
using the algorithm published in [27]. Further, Gabor frames
are employed in the xt-plane for the expansion of the electric
fields and the contrast current density function. Consequently,
the contrast function becomes also expanded in a Gabor frame.
The Gabor-frame expansion provides fast 2D transverse Fourier
transformations by scalar multiplication applied to its expansion
coefficients. In addition, Gabor frames exhibit exponential decay
properties, see 3. Overall, the employed discretization scheme
in the xt-plane and z-direction makes it possible to solve Eq. (7)
by an iterative method such as BiCGstab(ℓ) [28] and the pertain-
ing matrix-vector products have a computational complexity of
O(N log N), where N is the number of unknowns [9].

3. GABOR-FRAME EXPANSION OF A SCATTERER AND
ITS PARTIAL DERIVATIVES

A. Gabor-frame expansion
As mentioned above, the spatial spectral VIE employs a Gabor-
frame expansion in the transverse plane. Following [29], we
describe a 2D Gaussian window function as

g(xt) =
√

2e−π
(

x2

X2 +
y2

Y2

)
, (9)

to construct a spatial Gabor frame as

gmn(xt) = g(x − mxαxX, y − myαyY)ejβxnxKx x+jβynyKyy. (10)

The parameters X = 2π/Kx and Y = 2π/Ky control the
width of each Gaussian window function, while αxβx < 1

and αyβy < 1 are Gabor-frame oversampling parameters. The
Gabor-frame parameter αx = βx = αy = βy are equal to

√
2/3

in this work. The spatial shifts in the Gabor frames are described
by the indices m = (mx, my), whereas the modulation is set
by n = (nx, ny). We continue with the spatial dual window
function η(x) to construct spatial dual frames as

ηmn(xt) = η(x − mxαxX, y − myαyY)ejβxnxKx x+jβynyKyy. (11)

This function is synthesized as in [29] via a Moore-Penrose
pseudo-inversion combined with the Gaussian window function
as in Eq. (9). It provides dual frames with exponential decay.
Other window functions for Eq. (9) are also possible and this
choice influences the shape and decay of the dual window func-
tion [30, 31]. We define the Gabor expansion coefficients cmn of
a square-integrable function f (xt) as

cmn =
∫

R2
f (xt)η

∗
mn(xt)dxt, (12)

such that we represent f (xt) as

f (xt) = ∑
m

∑
n

cmngmn(xt). (13)

The spectral Gabor frames are formed by the Fourier transform
of Eq. (9). Therefore, the transformation between the spatial Ga-
bor coefficients and spectral Gabor ĉmn coefficients is provided
by

cmn = ĉnmej2π(αx βxmxnx+αy βymyny). (14)

The spectral dual window is also synthesized as in [29], which
ensures that the spectral dual frames are also exponentially de-
caying functions.

B. Gabor coefficients of polygon-shaped scatterers
Here, each (finite) scatterer, occupying a domain Ds, is assumed
to be a locally homogeneous distribution with respect to the
background medium at each z-sample, namely

χs(xt, z) =

{
εs

r/εrb,n − 1 (xt, z) ∈ Ds

0 (xt, z) ∈ R3 \ Ds,
(15)

with domain Ds as a subdomain of D. The scatterer’s relative
permittivity is described by εs

r. Index s = 1, . . . , S is used to
fill simulation domain D with all S scatterers. Unfortunately,
the spatially discontinuous behavior of Eq. (15) induces a heavy
computational workload for its spatial Gabor-frame expansion.
The method in [32] overcomes this workload by computing the
Gabor coefficients of the spectral equivalent of Eq. (15) under
the assumption that the geometry of a scatterer is described by a
2D polygon for its (uniform) cross-section at a fixed value of z.
This yields exponential decay of the truncation error within the
spectral Gabor-coefficient integrals, owing to the smoothness
of the cross-section in the spectral domain. The 2D polygonal
shape of a cross-section is defined by the spatial coordinates
of its vertices xs

i = (xs
i , ys

i ) for i = 1, 2, . . . , Ls, in a counter-
clockwise direction [32, 33]. Independent of the Gabor-frame
expansion, the spectral representation of a scatterer’s contrast
function Eq. (15) with polygonal cross-section is given by

χs(kt, z) = −χsc
s

Ls

∑
i=1

j(kν
t · di)

ejkt ·xs
i

(
ejkt ·di − 1

)
j(kt · kt) [kt · di]

, (16)

with kν
t = (−ky, kx), line segments di = xs

i+1 − xs
i , and a con-

trast scalar χsc
s = εs

r
εrb,n

− 1. This definition depends on line
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Fig. 2. The absolute amplitude of (a) a 2D cross-section with χsc
s = 2 expanded in Gabor frames. The spectral partial derivatives

with respect to (b) the x-coordinate of the vertex x1 = (0, 1) and (c) the y-coordinate of the vertex x1. The absolute amplitude of the
spatial partial derivative with respect to (d) the scaling factor χsc

s , (e) the x-coordinate of the vertex x1, and (f) the y-coordinate of the
vertex x1.

segments to connect the vertices xs
i and xs

i+1. Note that the xs
i+1

for i = Ls needs to be set as xs
1 to ensure a closed cross-section

boundary. The spatial Gabor coefficients of a scatterer can be
obtained by applying a Fourier transformation to the spectral
Gabor coefficients as in Eq. (14). As a result of Eq. (16), the
permittivity distribution of the scatterers is described by Np
parameters, gathered as the parameter vector

PT
= (p1, ..., pNp )

= (x1
1, y1

1, . . . , x1
L1

, y1
L1

, χsc
1 , . . . , xS

1 , yS
1 , . . . , xS

Ls
, yS

Ls
, χsc

S ).
(17)

A key advantage of this parametrization is that the permittiv-
ity distribution of scatterers is continuously differentiable with
respect to the parameters.

C. Gabor coefficients of a scatterer’s partial derivatives

We continue by introducing the spectral definitions of the partial
derivatives of a scatterer with respect to the parameter vector
P. The definitions of these partial derivatives can be classified
into three types, namely partial derivatives with respect to a
contrast scalar χsc

s , x-coordinate of a vertex, or y-coordinate of a
vertex. The first type, ∂/∂χsc

s , contains the relative permittivity
of a scatterer, while the other types, ∂/∂xs

I and ∂/∂ys
I with 1 ≤

I ≤ Ls, describe the shape of a scatterer. The partial derivative
with respect to the contrast scalar is obtained from Eq. (16) by
setting the factor χsc

s to 1. The partial derivative corresponding

to the x-coordinate of a vertex from a scatterer can be written as

∂χs

∂xs
I
(kt, z) =

−jχsc
s

kt · kt

I

∑
i=I−1

[
ejkt ·di − 1
j
[
kt · di

] (−1)I−iky+

j
1 − ejkt ·di + ej(I−i)kt ·di jkt · di(

j
[
kt · di

])2 (kv
t · di)(−1)I+1−ikx

]
.

(18)

The partial derivative with respect to the y-coordinate of a vertex
is obtained by replacing the variables ky and kx in the above
equation by −kx and ky, respectively.

The result in Eq. (18) has term-wise removable singularities
when kt · di → 0 and (kt · di)

2 → 0. The singularity for kt = 0
can be resolved by computing the partial derivative with re-
spect to the corresponding x- or y-coordinate from [Eq. (8.7), 34],
which is an equation to compute the area of a cross-section by
using only its vertices. The corresponding expressions are{

∂

∂xs
I
,

∂

∂ys
I

}
χs(0, z) =

1
2
{ys

I+1 − ys
I−1, xs

I−1 − xs
I+1}. (19)

Figure. 2 contains an example of the three types of partial
derivatives for a scatterer with a triangular cross-section. The
subplots (b) and (c) are the Gabor-frame expanded version of
Eq. (18) in the spectral domain, while subplots (d), (e), and (f)
are the Gabor-frame expanded versions of the partial deriva-
tives in the spatial domain. For this example, the Gabor-frame
parameters are mx, my, nx, ny ∈ {−8, . . . , 8} and X = Y = 1.
The Gabor-frame expansion is used to provide an analytical
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Fig. 3. An electromagnetic inverse scattering configuration
with the domain M and the domain D.

link between the spatial and spectral domain via Eq. (14). We
also note the appearance of the Gibbs phenomenon, due to the
Dirac-delta behavior in the spatial domain in combination with
a Gabor-frame expansion [9].

4. INVERSE SCATTERING PROBLEM FORMULATION

A. Geometrical description

We base our reconstruction of the scatterers on the electric fields
that are scattered upwards, see Fig. 3. These fields are detected
on the surface of a half-sphere with a fixed radius, i.e. the (mea-
surement) domain M. This half-sphere is placed on top of
layer 1 and, therefore, it is embedded in the top half-space. The
distance between domain D and M is sufficiently large with
respect to the wavelength to only consider the far-field response.

Here, the field components of the far-field response are ap-
proximated as plane waves with a direction indicated by spher-
ical coordinates. Since the electric field of a plane wave is per-
pendicular to its propagation direction, only the transverse com-
ponents Eθ(θ, ϕ) and Eϕ(θ, ϕ) are computed on the surface of a
half-sphere with a fixed radius r.

B. Near-to-far-field transformation

Now, we focus on linking the total electric E(x) in domain D, as
obtained via the spatial spectral VIE, with the detected electric
field in domain M expressed in the spherical coordinate system.
We first compute the scattered-field response from domain D at
the top of the layered background medium, i.e. z = z0, by

Es(kt, z0) = GFF[χ(x′t, z′)E(xt, z′)](kt, z0)

=
∫ zmax

zmin

G(kt, z0|z′)Fxt

[
χ(x′t, z′)E(x′t, z′)

]
(kt, z′)dz′.

(20)

Here, the 2D transverse Fourier transformation is without the
complex-plane deformation employed in Eq. (8). Results from
the spatial spectral VIE take the form of a planar plane-wave
decomposition in the top half-space. The far-field response of
Eq. (20) is obtained by only considering the propagating plane

waves, which satisfy
√

k2
x + k2

y ≤ k0 with k0 the wavenumber in
the top half-space. These propagating plane waves with their cor-
responding amplitudes in the spectral domain are transformed
to a spherical far-field response via a spherical coordinate trans-
formation combined with a phase-correction factor [35].

C. Inversion scheme
As mentioned in Sec. 1, optical scatterometry boils down to
comparing measured fields reflected from the scatterers with
the fields generated by a computational model. To this end,
we introduce the cost functional F(P) ∈ R+ to represent this
difference between the measured (reference) far-field data and
the far-field data from the spatial spectral VIE in measurement
domain M by a residual vector R(P) ∈ C(2Nh Nt)×1 as

F(P) =
∣∣∣∣R(P)

∣∣∣∣2
M

=
Nh

∑
h=1

Nt

∑
t=1

2

∑
u=1

∣∣Es,re f
u (θh, ϕh, Ei

t)− Es
u(θh, ϕh, Ei

t, P)
∣∣2.

(21)

The M-norm refers to the summation over the θ (u = 1) and ϕ
(u = 2) polarization of the far-field data, the sample points θh
and ϕh that represent the directions of scattering in domain M,
and the number of incident fields Nt. We use the variable Nh to
express the number of sample points in domain M. Ultimately,
the aim is to minimize Eq. (21) by accurately reconstructing
the geometry and permittivity distribution of the scatterers via
the parameter vector P for all considered measured far-field
responses. To this end, we employ a Gauss-Newton method
[36][Sec. 6.5, 37], which iteratively minimizes the cost functional
in Eq. (21) by determining the parameter values P that repre-
sent the geometry and permittivity distribution of the scatterers.
The Gauss-Newton method starts with an initial guess of the
parameter values P, which is iteratively adjusted as

Pm
= Pm−1

+ ∆Pm, (22)

where m is the iteration index and ∆Pm represents the update
step. According to [36], this update step is obtained by solving
the linear system

Am∆Pm
= dm, (23)

with the matrix Am ∈ CNp×Np defined at row r and column c as

Am
r,c =

〈
∂R
∂pr

,
∂R
∂pc

〉
M

, (24)

and the vector dm ∈ CNp×1 at row r as

dm
r =

〈
∂R
∂pr

, R
〉
M

. (25)

Note that the brackets ⟨...⟩ represent the inner product that in-
duces the associated norm in Eq. (21). Further, ∂R

∂pr
represents the

partial derivative of the (vector) function R, defined in Eq. (21),
with respect to a parameter pr.

Consequently, we need to obtain the partial derivative of
the function R for each parameter, such that we can employ
the Gauss-Newton method. Since the reference data Es,re f is
independent of the parameters, the partial derivative of the
function R with respect to a parameter p can be written as

∂R
∂p

=
∂

∂p
Es(kt, z0) =

∂

∂p
GFF[χ(x′t, z′)E(x′t, z′)]

= GFF[
( ∂

∂p
χ(x′t, z′)

)
E(x′t, z′) + χ(x′t, z′)

∂

∂p
E(x′t, z′)].

(26)

The parameter p represents one of the Np parameters in Eq. (17).
A key point in Eq. (26) is that the parameter derivative is brought
inside the operator GFF. We can actually compute all the terms
of the parameter derivative. We have access to χ(x′t, z′) and
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Table 1. The parameters defining the reference scatterers by their polygonal cross-section in accordance with Eq. (16) and their
height in the z-direction in line with Eq. (6). The cross-sections χ1 and χ2 are used in the first test case, see Section 5.B. Cross-section
χ3 is used in the second test case, namely C.

x1 [nm] y1 [nm] x2 [nm] y2 [nm] x3 [nm] y3 [nm] x4 [nm] y4 [nm] χsc,SUT
s [-] zmin [nm] zmax [nm]

χ1 -600 -1230 600 -1230 600 -30 -600 -30 0.2 0 150

χ2 -1200 30 1200 30 1200 1230 1230 -1230 0.3 0 150

χ3 -250 -500 250 -500 0 500 - - 0.25 0 120

Table 2. The incident field angles given the spherical coordi-
nates θ and ϕ for the demonstrations.

(θ, ϕ)1 (θ, ϕ)2 (θ, ϕ)3 (θ, ϕ)4

Test case 1 (0◦, 0◦) (0◦, 45◦) (75◦, 0◦) (63.6◦, 45◦)

Test case 2 (0◦, 0◦) (0◦, 50◦) (65◦, 0◦) (70◦, 60◦)

∂
∂p χ(x′t, z′) owing to Eq. (16) and Eq. (18), respectively. Further,
the spatial spectral VIE provides access to the total electric field
E(x′t, z′), see Eq. (7). The only missing component in Eq. (26) is
the partial derivative of the total electric field with respect to the
parameter. Since only the contrast function is parametrized, the
missing partial derivative can be obtained by applying ∂/∂p on
Eq. (7), which gives

GNF
[( ∂

∂p
χ(x′t, z′)

)
E(x′t, z′)

]
(xt, z) =

∂

∂p
E(xt, z)−

GNF
[

χ(x′t, z′)
∂

∂p
E(x′t, z′)

]
(xt, z).

(27)

This equation is of the same form as in Eq. (7) and therefore
the spatial spectral VIE can be used to solve Eq. (27) for ∂

∂p E.
Consequently, we compute the parameter derivatives without
resorting to a finite-difference approach and the result therefore
does not depend on a finite step size, see e.g. [Ch. 9, 38][39].

Regarding the outcome of the computations of the parameter
derivatives, it is noteworthy that the peak amplitude of the
partial derivatives of the scatterers with respect to their vertex
coordinates are proportional to the vertex coordinates of the
scatterers themselves, whereas the peak amplitude of the partial
derivatives of the scatterer with respect to the contrast scalar
remains equal to 1. These differences in peak amplitudes lead to
an ill-conditioned matrix Am. Therefore, the partial derivatives
of the scatterers with respect to the contrast scalars are scaled
by 1/

√
XY, since these quantities of the Gabor-frame expansion

are typically around the same order of magnitude as the vertex
coordinates of the scatterers.

5. PARAMETER RECONSTRUCTION RESULTS

A. Implementation and computation details
The 3D spatial spectral VIE is used as the forward model within
this frequency-domain inverse scattering framework. The accu-
racy of this method has been evaluated with several test cases
concerning electromagnetic scattering by finite objects embed-
ded in a layered background medium, see [9, 25, 26]. This VIE
was developed in FORTRAN, and it is accessible via Python
owing to a shared-object extension. The inversion algorithm, a
Gauss-Newton method, was developed in Python. The entire

Table 3. The Gabor-Frame Parameters for the demonstrations.

X,Y [nm] mx,my [-] nx, ny [-]

Test case 1 1200 {−4, . . . , 4} {−7, . . . , 7}

Test case 2a 200 {−7, . . . , 7} {−13, . . . , 13}

Test case 2b 650 {−4, . . . , 4} {−7, . . . , 7}

inverse scattering framework is executed on a single machine,
which uses an AMD 3700X processor with 8 cores in combination
with 32 GB RAM.

For the upcoming two test cases, each incident field is con-
sidered as a single plane wave of unit amplitude originating
from the top half-space. These plane waves are constructed
by their incident angle in terms of θ and ϕ as denoted in
[40][p. 17, 41] with the polarization angle ψ = 0 and the 3D (ef-
fective) reflection coefficients of the layered background medium
[25, 26, 42]. The spherical components of the reference far-
field and 3D spatial spectral VIE far-field are sampled on a
square

(
cos(ϕ) cos(θ), sin(ϕ) sin(θ)

)
-grid. Both θ and ϕ are

sampled, to obtain a stepsize of 0.04 for both cos(ϕ) cos(θ) and
sin(ϕ) sin(θ). In addition, the far-field response is evaluated on
the

(
cos(ϕ) cos(θ), sin(ϕ) sin(θ)

)
-grid with a numerical aper-

ture (NA) of 0.85, which leads to Nh = 1425 samples per spheri-
cal component of the far-field.

We use three error definitions to evaluate the reconstruction
error for this inverse scattering problem. The first error monitors
the progress of the cost functional in Eq. (21). We choose to
show the progress of this cost functional in a normalized form,
since the amplitudes of the electric fields are fairly small due
to the (nanometer) size of the scatterers. The normalized cost
functional is given by

L(P) =
∑Nh

h=1 ∑Nt
t=1 ∑2

u=1
∣∣Es,re f

u (θh, ϕh, Ei
t)− Es

u(θh, ϕh, Ei
t, P)

∣∣2
∑Nh

h=1 ∑Nt
t=1 ∑2

u=1
∣∣Es,re f

u (θh, ϕh, Ei
t)
∣∣2 .

(28)
The second error is applied to the material properties of the
scatterers and is defined as

Emat =

√√√√∑S
s=1 |χ

sc,SUT
s − χsc

s |2

∑S
s=1 |χ

sc,SUT
s |2

, (29)

where χsc,SUT
s represents the contrast scalar of the scatterer(s)

under test (SUT). The third error is applied to the geometric
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(a) (b) (c)

(d) (e) (f)

Fig. 4. The performance of the inverse scattering method per SNR level for the case consisting of two scatterers in vacuum. The
circular markers display the initial guesses of the shape parameters and the cross markers, linked by dotted line segments, are the
estimated shape parameters after the final Gauss-Newton update. The dashed line segments linking the circular markers and the
cross markers represent the progression of the shape parameters during the Gauss-Newton iterations. The grey polygons are the
actual scatterers as in Table 1. The χsc

s values are the final estimations by the Gauss-Newton method.

properties of the scatterers and is defined as

Eshape =

√
∑S

s=1 ∑Ls
i=1 |x

s,SUT
i − xs

i |2 + |ys,SUT
i − ys

i |2

λ
, (30)

with λ the wavelength in the top half-space. These two types of
parameter errors are explicitly decoupled, due to the differences
in their order of magnitude in the optical-scatterometry setting.
In addition, the performance of the inverse scattering method is
evaluated by adding complex-valued Gaussian noise to each of
the spherical components of the reference far-field data individ-
ually. This is done as follows. The average power in one of the
two spherical components for a single far-field measurement is

computed as σ2 = (1/Nh)∑Nh
h=1

∣∣∣Eu(θh, ϕh, Ei
t)
∣∣∣2. This value is

used to construct a Gaussian noise distribution, i.e. N (µ, 0.5σ2)
+ jN (µ, 0.5σ2) with µ = 0. This noise distribution is then added
as independent and identically distributed random variables to
the far-field data samples of the pertaining spherical component.

There are two stopping criteria for the Gauss-Newton method.
The first stopping criterion is that the minimum number of itera-
tions is set to five, while the maximum number of iterations is
set to a hundred. The second stopping criterion is linked to the
steplength of the update of the vertex parameters, namely we
stop when each vertex parameter satisfies

|pm
r − pm−1

r |
λ

≤ 1
70

. (31)

Here, pm
r refers to one of the Np parameters in the parameter

vector and m expresses the Gauss-Newton iteration count. The
value 1/70 is heuristically chosen.

B. Reconstructing multiple scatterers in vacuum
The first test case consists of two quadrilateral dielectric scatter-
ers in vacuum. The contrast functions of these two scatterers
χ1 and χ2 can each be described by a single cross-section for all
considered z-samples. The exact vertex coordinates and contrast
scalar of these two reference scatterers are listed in Table 1. In
other words, these are the parameter values that we need to ob-
tain as precisely as possible with the inverse scattering method.
We explicitly use the fact that each of these two scatterers can
be described by a single cross-section as a priori information.
Therefore, this inverse scattering problem is described by eigh-
teen parameters, namely eight vertex-coordinate parameters and
one contrast scalar parameter per scatterer. Note that these two
scatterers are separated by a gap of only 60 nm. The scatterers
are illuminated by Nt = 4 incident fields, where each plane
wave has a wavelength of λ = 600 nm. The incident angles are
displayed in Table 2 under test case 1. The reference far-field
response for this test case originates from CST Microwave Studio
2022 [43]. More specifically, its transmission line matrix (TLM)
method is used, which is a time-domain method that approxi-
mates the Maxwell equations locally on a grid. This software
package fits the geometric description in Fig. 3. For the spatial
spectral VIE, the Gabor-frame expansion parameters used in
domain D can be found in Table 3 under test case 1. Further,
21 piecewise linear functions are used in the z-direction with
∆z = 7.5 nm in domain D. Each far-field response is measured
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Fig. 5. (a) The performance of the inverse-scattering method per SNR in accordance to Eq. (28) for the case consisting of two scatter-
ers in vacuum. (b) The observed maximum steplength in the vertex parameters during each iteration of the Gauss-Newton method
per SNR. This is used to verify the stopping criterion as in Eq. (31), which is displayed by the dashed line. (c) The performance of
the inverse scattering method per SNR in accordance to Eq. (29), while (d) displays the performance per SNR following Eq. (30).

at the boundary of a half-sphere centered at (x, y, z) = (0, 0, 0)
with a radius of 1.2 m, which is an integer multiple of the wave-
length. A key detail is that the far-field responses, as computed
by the spatial spectral VIE, only differ by a relative ℓ2-error of
approximately 0.01 from the reference far-field responses as com-
puted by CST. Hence, the results of CST and the spatial spectral
VIE method agree well.

Figure 4 shows the vertex positions of the quadrilaterals ob-
tained by the Gauss-Newton method after five iterations (indi-
cated by crosses) compared to the initial vertex positions (indi-
cated by open circles) and the reference parameter values of the
cross-sections, see the caption of the figure for a further explana-
tion of the symbols. The initial vertex positions were obtained
by applying a small random perturbation to the reference value
of each parameter as in Table 1. This small random perturba-
tion takes the form of a Gaussian distribution N (0, 0.2λ) per
vertex parameter, while each material parameter is subjected

to a perturbation of N (0, 0.2χsc
s ). This means that we have ap-

proximate a priori information in the form of the approximate
location, shape, and material properties of the scatterers. Fig-
ure 4 shows the reconstruction errors per SNR level, as defined
in Eq. (29) and Eq. (30), for five iterations of the Gauss-Newton
method. We note the following details from these two figures.
First, Fig. 4 shows that the inverse-scattering framework is able
to distinguish two scatterers for all tested SNR levels. This can
be attributed to the parametrization, which forces the recon-
struction of two independent quadrilateral cross-sections: the
parameters of the large scatterer are completely independent
with respect to the parameters of the smaller scatterer and vice
versa. In addition, this independence between the parameters of
the two scatterers also properly resolves a gap between the two
scatterers, since the two scatterers do not morph into a single
scatterer, nor do they overlap. Second, the reconstruction results
regarding the vertex parameters for both scatterers achieve an er-
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Fig. 6. The performance of the inverse-scattering method per SNR for the case consisting of a single scatterer embedded in a lay-
ered background medium. The circular markers display the initial guesses of the vertex parameters and the cross markers, linked
by dotted line segments, are the estimated vertex parameters after the final Gauss-Newton update. The dashed line segments
linking the circular markers and the cross markers represent the progression of the vertex parameters during the Gauss-Newton
iterations. The grey polygons are the actual scatterers as in Table 1. The χsc

s values are the final estimations by the Gauss-Newton
method.

ror level of approximately 10% or less, for SNR levels up to 0 dB,
as shown Fig. 5c. In other words, the reconstruction accuracy
is at least a tenth of the wavelength for these SNR levels. The
results in Fig. 4e, Fig. 4f, and Fig. 5c show that the reconstruc-
tion precision reduces an accuracy of approximately 31.8% for
higher SNR levels. The reconstruction of the vertex parameters
of the smaller scatterer becomes problematic at these SNR levels,
whereas those of the larger scatterer are still quite accurately
reconstructed. This is to be expected, since the large scatterer
dominates the far-field response owing to its larger volume and
higher permittivity in comparison to the smaller scatterer. Conse-
quently, the far-field response of solely the smaller scatterer is the
first contribution of the entire far-field response to drown in the
noise. Third, the material properties are reconstructed with an
error ranging from 0.4% up to 4.2% and, fourth, Fig. 5 shows that
only three to five iterations are required for the Gauss-Newton
method to obtain stable parameter values. A likely reason is
that parametrization heavily reduces the solution space for this
inverse scattering problem, since it only considers solutions in
the form of two scatterers having four vertices each and an initial
guess with an error in the form of Eq. (30) that is maximally a
wavelength off. Our current implementation requires between
17 and 18 seconds on average to perform a full-wave solve of
Eq. (7), in combination with the far-field transformation as in
Eq. (20). This is also the case for a full-wave solve of Eq. (27)
per parameter, while also subjecting its resultant to a far-field
transformation as in Eq. (20). These computation times, in com-

bination with five iterations of the Gauss-Newton method, lead
to a total computation time of approximately 7000 seconds. It
might be possible to further reduce the total computation time by
exploiting the adjoint method [Ch. 12, 44], such that derivative
information can be computed in fewer steps. However, this is
currently not available for the framework of the spatial spectral
VIE. Overall, the parametrized permittivity distribution of two
scatterers in vacuum are accurately reconstructed, even for low
SNR levels.

C. Object reconstruction in a layered medium

For the second demonstration, we look into the case of a triangu-
lar scatterer embedded in a layered background medium. The
top half-space is vacuum with the layer interface z0 = 0 nm,
while the bottom half-space, with its layer interface z1 = 200 nm,
has a relative permittivity of 2. The background medium in
which the scatterer is embedded has a relative permittivity of 3
and it is placed between the two half-spaces. To make the case
more interesting, the triangular scatterer has its corner cut off,
to resemble production errors. So, we try to reconstruct this
scatterer as a triangular scatterer, while it is actually an irregular
hexagonal scatterer. The triangular shape of the scatterer without
cutting off the corners can be described by a single cross-section
χ3 for all considered z-samples and its details can be found in
Table 1. The corner cuts are observable in Fig. 6d, Fig. 6e, and
Fig. 6f. Since we assume to reconstruct a triangular scatterer, we
describe this inverse-scattering problem by six vertex parame-
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Fig. 7. (a) The performance of the inverse-scattering method per SNR in accordance to Eq. (28) for the case consisting of a single
scatterer embedded in a layered background medium. (b) The observed maximum steplength in the vertex parameters during each
iteration of the Gauss-Newton method per SNR. This is used to verify the stopping criterion as in Eq. (31), which is displayed by
the dashed line. Note that only a part of the SNR settings are shown for the sake of readability in Figures (a) and (b). (c) The perfor-
mance of the inverse scattering method per SNR in accordance to Eq. (29), while (d) displays the performance per SNR following
Eq. (30).

ters and one material parameter. The scatterer is illuminated by
Nt = 4 incident plane waves with a wavelength of λ = 480 nm
in vacuum. The incident angles are displayed in Table 2 under
test case 2. The far-field response is measured at the boundary
of the half-sphere centered at (x, y, z) = (0, 0, 0) with a radius
of 1.0 m. The Gabor-frame expansion settings for the reference
far-field data is denoted as Test case 2a in Table 3, while the
Gabor-frame settings for the test far-field data are indicated by
Test case 2b. The number of piecewise linear functions in the
z-direction for the reference far-field data Es,re f and far-field data
Es are 24 and 5, respectively.

Figure 6 shows the reconstruction results for the irregular
hexagonal scatterer approximated by a triangular cross-section
for SNR levels 6, 0, and -6 dB. The details and symbols used this
figure are explained in the caption. The accuracy of the recon-

struction is further illustrated and summarized in Fig. 7, which
depicts a worst-case geometrical reconstruction error of approxi-
mately 5%, i.e. one-twentieth of the wavelength, for a SNR of -6
dB. Further, the worst-case error for the material properties is
less than 4%. In addition, stable parameter values are already
achieved after four Gauss-Newton iterations, which matches the
number of iterations in the first demonstration for convergence.
The performance in terms of the error measures in Eq. (29) and
Eq. (30) in this test case is better than in the first test case. This is
to be expected: this case only consists of a single scatterer with a
total of seven parameters instead of two scatterers with a total
of eighteen parameters, which makes the solution space of the
second test case smaller than that of the first test case. For this
specific triangular scatterer, the computation time for the five
Gauss-Newton iterations is on average 756 seconds, since the
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computation times for both Eq. (27) per parameter and Eq. (20)
have been reduced to approximately 4 seconds. These compu-
tation times include the far-field transformation as in Eq. (20).
The significant difference in computation time between the first
and second demonstration can be attributed to the difference
in the number of parameters and the number of samples in the
z-direction.

6. CONCLUSION

We presented a Gauss-Newton inverse scattering method for the
reconstruction of the geometry and the permittivity distribution
of finite dielectric scatterers in vacuum or embedded in a layered
background medium, in the presence of prior information. The
dielectric scatterers were described by a continuous and con-
sistent parametrization of their polygon-shaped cross-sections.
This parametrization also gives access to the first-order partial
derivatives per parameter. Further, a spatial spectral VIE was
used in combination with this parametrization such that it was
possible to continuously vary the geometry and the permittivity
distribution of each scatterer by continuously varying its param-
eters. Two test cases were shown in which the Gauss-Newton
method in combination with the spatial spectral VIE and the
analytic parametrization was capable of accurate parameter re-
construction: the vertex parameters were reconstructed with
errors of λ/60 up to λ/7, with λ the illumination wavelength, at
signal-to-noise ratios ranging from 10 dB to -3 dB, respectively.
At a SNR of -6 dB, the material parameters were retrieved with
an error of only 4.2%.
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