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Abstract
K2CO3 is seen as a promising heat storage material, available for applications in the 
domestic sector. For practical purposes, the material is hereby often employed in a packed 
bed containing millimeter-sized particles. To gain more insight into the hydration behavior 
of these packed beds, quantitative NMR measurements, capable of following the in-situ 
hydration behavior, are presented for the first time. It is found that hydration behavior var-
ies significantly, depending on the specific hydration conditions that are chosen. At low 
airflows hydration is found to proceed via a hydration front, while higher airflows cause 
the hydration front to widen. Since an increase in flow rate coincided with an increase in 
the supplied water vapor, hydration is eventually found to proceed in a uniform manner. 
A comparison between TGA and NMR measurements shows that the overall packed bed 
hydration kinetics hereby transition to the reaction kinetics of single  K2CO3 particles.
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1 Introduction

Over the past few years, solar energy harvesting has been increasingly employed, reaching 
a total globally installed capacity over 1 TW in the year 2022 (SolarPower Europe 2022). 
Mismatch between periods of high heat demand and high solar radiation does however, 
limit the effectiveness of solar energy harvesting in its current form (Aarts et  al. 2022; 
Aydin et al. 2015; Beving et al. 2020; Clark et al. 2020; Donkers et al. 2017b). Heat stor-
age is therefore necessary to increase its effectiveness (Aarts et al. 2022; Aydin et al. 2015; 
Beving et al. 2020; Clark et al. 2020; Donkers et al. 2017b; Houben et al. 2020; Sögütoglu 
et al. 2019, 2018). Different heat storage techniques like sensible, latent and thermochemi-
cal heat storage are available for this purpose (Aydin et al. 2015; Clark et al. 2020; Criado 
et  al. 2014; Goldstein 1961; Scapino et  al. 2017). Thermochemical heat storage hereby 
relies on the physisorption or chemisorption of a sorbent gas in a thermochemical mate-
rial (TCM) (Aydin et al. 2015; Sögütoglu et al. 2018; Solé et al. 2015). Compared to other 
heat storage techniques it has a high energy density, combined with the ability to store heat 
almost loss-free over an indefinite period of time (Aydin et al. 2015; Donkers et al. 2017b; 
Goldstein 1961; Scapino et al. 2017; Solé et al. 2015). As a result, Goldstein already high-
lighter heat storage via TCMs as a suitable option for home heating purposes in the year 
1958 (Goldstein 1961).

Salt hydrates, belonging to the class of TCMs, are seen as a group of materials that is 
particularly suitable for applications in the domestic sector, since water vapor can be com-
bined with it as a safe sorbate (Donkers et al. 2017b; Houben et al. 2020). Furthermore, the 
material group has a relatively low charging temperature suiting solar energy heat (Clark 
et al. 2020; Solé et al. 2015). Donkers et al. therefore performed a review on 563 hydra-
tion reactions to select salt hydrates that are available for heat storage in the domestic sec-
tor (Donkers et al. 2017b). Potassium carbonate  (K2CO3) was hereby selected as the most 
promising candidate, since it is not strongly corrosive and since the material does not have 
any unsafe side- or decomposition reactions. The material allows the storage/release of heat 
through the reversible gas–solid reaction (Donkers et al. 2017b; Sögütoglu et al. 2018):

Here the hydration reaction, going from left to right, corresponds to the exothermic dis-
charging of the material, while the dehydration reaction from right to left corresponds to 
the endothermic charging of the material. The corresponding phase diagram, constructed 
by Sögütoglu et al., is depicted in Fig. 1 (Sögütoglu et al. 2019, 2018). Here the black solid 
line represents the equilibrium line, where the hydration and dehydration reaction are in 
equilibrium (Donkers et  al. 2017b; Sögütoglu et  al. 2018). Below this line the material 
dehydrates to its anhydrous state, resulting in a loading, L [mol ⋅  mol−1], of 0 mol  H2O per 
mol  K2CO3, while above the equilibrium line the material hydrates, resulting in a load-
ing of 1.5 mol  H2O per mol  K2CO3. These reactions do not always occur instantaneously. 
Close to the equilibrium line the metastable zone (MSZ) can be found, where kinetics are 
inhibited by a nucleation barrier (Sögütoglu et al. 2021, 2019). As a result, an induction 
time has to pass before the growth of a new material phase can occur.

Next to the MSZ boundaries and the equilibrium line, Fig. 1 also indicates the deli-
quescence line and the condensation line. Here the deliquescence line denotes another 

(1)K2CO3(s)+1.5H2O(g) ⇄ K2CO3 ⋅ 1.5H2O(s) + Q.
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phase change that hydrated  K2CO3 can undergo above certain vapor pressures. In this 
deliquescence phase, the salt attracts more water than it can hold inside its crystal lat-
tice, causing the material to go into solution (Greenspan 1977; Sögütoglu et al. 2018). 
At even higher vapor pressure, the condensation line is reached. At these environmental 
conditions water vapor will condense, leading to the formation of liquid water.

To use salt hydrates like  K2CO3 in heat storage devices, they are oftentimes employed 
in a packed bed. Millimeter sized particles of the material are hereby poured into a reactor, 
creating a porous material layer with open channels (Aarts et al. 2022; Houben et al. 2020). 
These channels allow an airflow to be blown through the reactor, while ensuring that the 
pressure drop, giving rise to flow resistance does not get too high. Since the temperature 
and vapor pressure of the airflow entering the reactor can be controlled, a packed bed can 
hereby be hydrated or dehydrated in a controlled fashion. Although the application of these 
 K2CO3 packed beds as a heat battery seems promising, further research is necessary before 
commercial implementation is possible. The hydration and dehydration processes of these 
packed beds should for example be investigated to determine if reactions are occurring uni-
formly or via fronts travelling through them. After all, these reaction dynamics will deter-
mine the thermal characteristics of the salt hydrate packed beds under consideration. Fur-
thermore, insight into the reaction dynamics of the packed beds will allow the optimization 
of future reactor design, allowing for more efficient thermal energy storage systems.

To investigate hydration and dehydration processes inside  K2CO3 packed beds, an 
imaging tool is necessary. NMR imaging is an example of a tool that is available for 
this purpose, since it allows non-destructively visualization of hydrogen atoms with 
spatial resolution (Donkers et  al. 2017a, 2016, 2015). NMR studies have however 
shown that performing measurements on salt hydrates like  K2CO3 can be challenging 
due to short T2 relaxation times which give rise to fast signal decay. As a result, the 
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Fig. 1  Plot of the  K2CO3 phase diagram as constructed by Sögütoglu et al. (Sögütoglu et al. 2019, 2018). 
The black solid line represents the  K2CO3 equilibrium line, while the red solid line indicates the material’s 
deliquescence line. The blue solid line, indicating the condensation condition for water, is added as a refer-
ence. The metastable zones (MSZ) are indicated by the black dashed lines
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signal intensity in measurements can be low, causing a reduced signal-to-noise ratio. 
Donkers et al. for example, showed that structural water in  Na2SO4 ⋅  10H2O has a T2 
relaxation time in the order of 100  µs (Donkers et  al. 2015), while lattice water in 
 CuCl2,  CuSO4,  MgCl2 and  MgSO4 has T2 relaxation times in the range 10 to 1000 µs 
(Donkers et al. 2016).

In view of the desire to understand the reaction processes in  K2CO3 packed beds better, 
the goal of this study is to investigate how a packed bed containing  K2CO3 grains hydrates 
at different flow rates. To that end, NMR measurements are employed for the first time to 
quantitatively study the hydration process in  K2CO3 packed beds. To allow these measure-
ments to take place, the signal has to be understood. NMR relaxation times are therefore 
first characterized as a function of  K2CO3 packed bed loading and a signal calibration is 
carried out. Subsequently, the quantitative NMR measurement technique is employed to 
study the hydration process in  K2CO3 packed beds more closely. The influence of different 
flow rates is hereby considered and the results found are compared to an analytical model. 
Furthermore, a comparison between single-grain reaction kinetics and packed bed reaction 
kinetics is made by comparing NMR measurements with TGA results.

2  Materials and Methods

2.1  Materials

K2CO3 grains as developed in the CREATE project are investigated in this publication 
(Houben et al. 2020). The grains produced by Caldic have an irregular shape and size 
and consist out of a mixture of hydrated potassium carbonate,  K2CO3 ⋅ 1.5H2O, and 
graphite. Due to their irregular shape and size the grains were sieved into different size 
fractions after production. For experimentation grains in the range 1.25 mm to 3 mm 
and 3 mm to 5 mm are combined in a ratio of 2 to 1 to increase the bulk density of the 
investigated TCM beds.

Prior to the start of a hydration experiment, the sample material under investigation 
is dehydrated in an oven at 130 °C. The material is subsequently allowed to cool down 
in an enclosed container before it is poured into the NMR sample holder. To enable a 
comparison of different experiments the starting masses and heights of the investigated 
packed beds are chosen equally. Packed beds with an average height of 10.6 cm (stand-
ard deviation: 0.1  cm) are used, while the average mass is equal to 37.7 g (standard 
deviation: 1.1 g). The average porosity, including contributions from the packed bed 
filling fraction and the grain porosities itself, is calculated to be 63% (standard devia-
tion: 1%).

2.2  NMR Imaging

NMR imaging is a technique with which the presence and quantity of 1H nuclei can be 
measured non-destructively (Donkers et al. 2017a, 2016). The technique relies on the fact 
that the nuclei possess a magnetic dipole moment, causing them to resonate with a fre-
quency f0 [MHz] when placed in an external magnetic field ���⃗B0 [T] (Brown et al. 2014). 
The resonance frequency, called the Larmor frequency, is proportional to the strength of 
the external magnetic field via the gyromagnetic ratio -� [MHz ⋅  T−1]:
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By utilizing the resonance property, a sample containing 1H nuclei can be measured when 
placed in a magnetic field. To that end, radio frequency pulses (RF pulses) have to be sent 
with an RF coil. The 1H nuclei subsequently emit a signal at the Larmor frequency which 
can be measured. Since spatially resolved measurements are often required, a gradient ��⃗G [T 
⋅  m−1] can be applied to the external magnetic field. The Larmor frequency then becomes 
position dependent, allowing an experimenter to excite and measure thin sample slices by 
utilizing finite bandwidth RF pulses (Brown et al. 2014):

In this publication, the slice-selective Hahn spin echo sequence is used to perform 
spatially resolved quantitative NMR measurements on  K2CO3 packed beds (Brown et al. 
2014). A schematic overview of this pulse sequence can be seen in Fig. 2.

In this pulse sequence, a hard 90° RF pulse, which has a pulse duration tp [µs], is com-
bined with a hard 180° pulse which has an equal length, but twice the power. As a result, 
an echo is formed at the echo time te [μs]. The time interval WW [s] indicates the time 
window in which this echo is acquired. To improve the signal-to-noise ratio in the experi-
mental data, measurements can be repeated and averaged. The different measurements are 
hereby separated by the repetition time tr [ms]. During the entire measurement procedure, 
a gradient G [T ⋅  m−1] is engaged. Its purpose is to excite sample slices with a well-defined 
thickness Δl [mm], given by the equation:

(2)f0 = –𝛾
|||
B⃗0

|||
.

(3)f0(x) = –𝛾
(
|||
B⃗0

|||
+
|||
G⃗
|||
x
)
.

(4)Δl =
1

G ⋅ –� ⋅ tp
.

Fig. 2  Schematic representation of the Hahn spin echo sequence that is used for the measurements in this 
publication. A 90° and 180° RF pulse with time duration tp are applied to form an echo at the echo time, te . 
The echo is hereby measured during a time window indicated as the window width, WW . To improve the 
signal-to-noise ratio of the results, measurements are repeated and averaged. The different measurements 
are hereby separated by the repetition time, tr
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To construct a 1D image of an investigated sample, slice-selective Hahn-spin echo 
measurements have to be performed at regular position intervals along one of the sample’s 
axis. The Fourier transform should subsequently be applied to each of the individual meas-
urements to determine the signal intensity at the Larmor frequency. By plotting the signal 
intensities found as a function of position, a sample profile or 1D image is hereby obtained. 
Note that the signal intensity found at each of the positions depends on the local density of 
the hydrogen nuclei, as well as their relaxation times. Since nuclei experiencing different 
mobilities can be present in a sample, the total signal intensity S [a.u.] should be split up 
in contributions from the different species i . The resulting signal equation then becomes 
(Brown et al. 2014):

where �H,i represents the density of the 1H protons in species i and where T1,i and T2,i repre-
sent their respective longitudinal and transversal relaxation times. To ensure a sufficiently 
high signal in NMR measurements, the repetition time should be at least 4 times as high as 
the longest T1 time that is encountered. Furthermore, Hahn spin echoes should be acquired 
with an echo time that is sufficiently short to prevent too much signal decay due to T2 
relaxation.

2.3  Hydration Experiments

A schematic overview of the NMR setup used in the hydration experiments of  K2CO3 
packed beds can be seen in Fig. 3.

The NMR system has a main magnetic field of 0.80 T, causing 1H nuclei to resonate 
with a frequency of 33.89  MHz. To allow quantitative measurements to take place, 90° 
and 180° RF pulses with a duration of 30 µs are sent with a solenoid containing a Faraday 
shield. The solenoid has a height of approximately 25 mm and is constructed around a Tef-
lon tube with a bore diameter of 30 mm. Hahn spin echo measurements are taken with an 
echo time and window width of 250 µs and 200 µs respectively. Each measurement point is 
hereby averaged 16 times to improve signal-to-noise ratio. The repetition time in between 
these measurements is equal to 1.5 s. To allow slice-selection to take place, a gradient with 
a strength of 10.42 kHz ⋅  mm−1 is engaged during the measurements. According to Eq. (4), 
the selected gradient strength and pulse duration therefore result in excited sample slices of 
3.2 mm.

The NMR setup contains a stepper motor from which a cylindrical reactor can be sus-
pended. During hydration experiments, a Teflon reactor with an inner diameter of 22 mm 
is used. It is able to accommodate packed beds with a height up to 166 mm. Glass filters 
are placed at the top and bottom of the reactor to keep the sample material in place and 
to ensure a free flow of air. To hydrate the  K2CO3 bed during experiments, a home-built 
humidifier is connected to the reactor. The humidifier can generate an airflow between 0 
and 10 L ⋅  min−1 with a humidity between 0 and 29.7 mbar. Sensirion SHT85 Temperature 
& Humidity sensor are placed at the reactor in- and outlet. They measure temperature and 
humidity with a typical accuracy of 0.1 °C and 1.5% RH respectively (Sensirion 2021).

In a hydration experiment, the dehydrated  K2CO3 grains are poured into the reactor to 
create a packed bed. A dry airflow of 10 L ⋅  min−1 is subsequently blown through the reac-
tor to prevent hydration, while the starting condition of the packed bed is measured. A 1D 

(5)S ∝
∑

i
�H,i exp

(

−
te

T2,i

)(

1 − exp

(

−
tr

T1,i

))

,
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image of the packed bed is hereby obtained by measuring slice-selective Hahn spin echo 
measurements at regular position intervals along the reactor’s longitudinal axis. The step-
per motor is hereby used to move the reactor through the NMR setup. Following the meas-
urement of the packed bed’s initial stage, the airflow is switched to the desired humidity 
and flow rate to start the hydration process. Scans of the reactor are hereby continuously 
made by moving the reactor up and down through the NMR setup. A full scan of the reac-
tor is hereby achieved in approximately 45 min. Next to NMR measurements, temperature 
and humidity data are also gathered during the hydration experiments. A measurement is 
hereby taken together with every NMR measurement.

Since the NMR measurements are performed in a step-by-step fashion, the loading that 
is measured in each layer of the  K2CO3 packed bed corresponds to a different moment dur-
ing the hydration experiment. To make sure that the results from the experiments can be 
interpreted more easily, the data are time interpolated. As a result, the hydration profiles 
resulting from the NMR experiments all correspond to a single moment in time.

2.4  NMR Signal and Loading

As was illustrated by Eq. (5), both the T1 and T2 relaxation time directly influence the signal 
that is measured in an NMR experiment. This section therefore focusses on determining 
the T1 and T2 relaxation time as a function of packed bed loading, as well as calibrating 
the NMR signal. To that end calibration samples consisting out of fine  K2CO3 crystals are 
investigated. These samples are prepared such that they have different fractions of hydrated 
material. As a consequence, the effective loading of the samples varies between L = 0 and 
L = 1.5 . To create the calibration samples  K2CO3 ⋅ 1.5H2O is dehydrated inside an oven at 
130 °C. The samples are subsequently poured into the sample holder for experimentation.

To measure the T1 relaxation time of the calibration samples the saturation recovery 
sequence is used (Arnold 2007; Nicasy et al. 2022). Results indicate that all samples have a 
T1 relaxation time between 250 and 350 ms. In Sect. 2.2 it is indicated that a repetition time 
of at least 1.4 s should therefore be used during hydration experiments. As was indicated in 
Sect. 2.3, the repetition time in all experiments is equal to 1.5 s, satisfying this requirement. 

Fig. 3  Schematic overview of the 
NMR setup. The reactor accom-
modating the investigated packed 
bed is suspended inside the setup 
with a stepper motor, while an 
air supply blows an airflow, set 
to the desired flow rate and vapor 
pressure through it. Spatially 
resolved, quantitative NMR 
measurements are achieved by 
using an RF coil with a Faraday 
shield and by combining the 
measurements with a 1D gradient 
in the main magnetic field



824 T. Raemaekers et al.

1 3

T2 relaxation times of the samples are measured using the CPMG sequence with an echo 
time of 250  µs (Brown et  al. 2014). It is found that the samples have an approximately 
constant relaxation time in the sub-millisecond scale. This timescale corresponding to the 
interval of relaxation times previously indicated by Donkers et al. to belong to structural or 
lattice water in different types of salt hydrates (Donkers et al. 2016, 2015). A full overview 
of the T1 and T2 relaxation time measurements, as well as a discussion on the measurement 
results can be found in the appendix.

Following the determination of the T1 and T2 relaxation characteristics of  K2CO3 packed 
beds, the signal calibration is carried out. To that end, the calibration samples are poured 
into the Teflon sample holder introduced in Sect. 2.3. Hahn spin echo measurements are 
subsequently taken at different positions along the axial direction of the created packed 
beds and the signal intensities found at these different positions are averaged. Plotting the 
resulting values as a function of sample loading Fig. 4 is found. Here it can be seen that the 
NMR signal intensity depends linearly on the loading of the  K2CO3 calibration samples. 
This can be understood by considering Eq. (5), which indicates that the NMR signal inten-
sity should scales linearly with 1H proton density. After all, the T2 relaxation times of the 
calibration samples are approximately constant as a function of sample loading. Since the 
 K2CO3 calibration samples have experienced limited changes in density during their prepa-
ration, the proton density here is approximately equivalent to sample loading, explaining 
the linear correlation between NMR signal and sample loading found in Fig. 4. Note that it 
can also be observed in the figure that the signal intensity of a completely anhydrous sam-
ple is not equal to zero. The noise baseline of the NMR instrument can be indicated as the 
cause for this behavior.

Now it has been shown that the signal of a  K2CO3 sample depends linearly on its load-
ing, an arbitrary measurement signal can simply be transformed into a loading. To that end, 
the constant noise baseline of the NMR machine is taken to correspond with a completely 
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Fig. 4  Calibration plot illustrating the linear relationship between NMR signal intensity and packed bed 
loading in mol  H2O per mol  K2CO3
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anhydrous sample, while the maximum average signal intensity, which is found in the 
measurement under consideration, should be coupled to a fully hydrated sample. The load-
ing of partially hydrated  K2CO3 material can then be calculated using the linear relation 
between signal intensity and loading. Note that it is hereby implicitly assumed that the fill-
ing fraction of the  K2CO3 packed bed is uniform along its axial direction, since the maxi-
mum average signal intensity is coupled to a fully hydrated sample.

2.5  TGA Experiments

Single grain  K2CO3 hydration measurements are conducted with a Mettler-Toledo TGA/
DSC 3 + , connected to a home-built humidifier. The humidifier blows a nitrogen flow with 
the desired relative humidity through the TGA, allowing precise in situ measurements of 
sample mass, while hydration occurs with a well-defined vapor pressure and temperature. 
TGA temperature can be regulated with an accuracy of 0.3 °C, while mass measurements 
are taken with a resolution of 0.1 µg. The flow rate of the humidifier is fixed at 0.3 L ⋅ 
 min−1. Vapor pressure and temperature were both calibrated prior to experiments using the 
methodology of Sögütoglu et al. (Sögütoglu et al. 2018, 2019, 2021 ).

In a hydration experiment, the  K2CO3 grains are first brought to their anhydrous state 
by applying a humidity of 8  mbar (0.2%RH) with a temperature of 140  °C. Conditions 
are maintained until a stable thermogravimetric signal is obtained, corresponding to a 
fully anhydrous sample. Hydration is subsequently performed by exposing the sample to a 
humidity of 8 mbar (25.2%RH) and a temperature of 25 °C.

3  Results

Quantitative NMR measurements are now employed to study the hydration behavior of 
 K2CO3 packed beds under different experimental conditions. First, the results of a typi-
cal hydration experiment are discussed in more detail. Amongst other things, it is hereby 
explained how the hydration profiles obtained by the NMR setup should be interpreted. 
Subsequently, the hydration behavior of  K2CO3 packed beds is studied as a function of 
flow rate. The changes in the observed front widths are hereby coupled to the theory of an 
analytical model. Finally, the hydration kinetics measured in the experiments with different 
flow rates are studied and compared to single-grain hydration kinetics which are observed 
in TGA measurements.

3.1  Water Distribution During Hydration

Quantitative NMR imaging can now be employed to study the hydration behavior of 
 K2CO3 packed beds under different experimental conditions. First, the results of a typi-
cal measurement at a water vapor pressure of 8 mbar (27.6% RH at a lab temperature of 
23.5 °C) and a flow rate of 0.4 L ⋅  min−1 are discussed in more detail. The sample is pre-
pared following the procedure described in Sect. 2.1. Loading profiles which illustrate the 
course of the hydration process are shown in Fig. 5. Here the left-hand side of the profiles 
corresponds with the top of the investigated packed bed, while the right-hand side indicates 
its bottom. The airflow which is used in the experiment is blowing through the reactor 
from top to bottom. Its direction is indicated by the blue horizontal arrow in the figure. The 
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measurement of a single hydration scan takes approximately 45 min, but to improve clarity 
of the figure a loading profile is only shown every 12 h.

Investigating the experimental results it can be seen that the black dashed line, cor-
responding to the initial reactor scan, shows a loading of approximately 0  mol ⋅  mol−1 
throughout the entire packed bed. As expected, the  K2CO3 material inside the reactor is 
therefore confirmed to be in its anhydrous state at the start of the experiment. After this 
initial reactor scan, the applied airflow is switched to the desired settings for the hydration 
experiment and the  K2CO3 packed bed is continuously measured. As can be seen, hydra-
tion occurs via a hydration front that travels through the  K2CO3 packed bed in the direction 
of the applied airflow. When the hydration level in a  K2CO3 layer approaches the maximum 
value of 1.5 mol ⋅  mol−1, the hydration process slows down, causing the hydration front to 
become increasingly shallower as time progresses. After 6 days of hydration the packed 
bed is almost completely hydrated and the loading profiles only show a marginal difference 
with respect to each other. These profiles are therefore not plotted in Fig. 5. Instead, the 
loading profile that was measured in the last scan of the experiment is plotted. It is indi-
cated by the blue solid line.

Although the loading of  K2CO3 salt can only attain a value of 0 or 1.5 mol ⋅  mol−1 at the 
crystalline level, the loading profiles in Fig. 5 are found to vary continuously in between 
these two values. The hydration kinetics of the individual particles that make up the packed 
bed can be identified as the cause of this behavior. As was described in the work of Aarts 
et al., the hydration kinetics of these salt particles is diffusion limited, causing the hydra-
tion process to occur via a hydration front that travels into the grain (Aarts et al. 2022). 
Consequently, the overall loading of a  K2CO3 particle, or a layer inside the investigated 
packed bed can assume an overall loading varying in between 0 to 1.5 mol ⋅  mol−1.
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loading profile from the initial reactor scan, while the solid lines represent the hydration process. The final 
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To study the hydration process of the  K2CO3 packed bed more closely it is insightful 
to compare the hydration level of different packed bed layers as a function of time. The 
hydration level at positions 25  mm, 59  mm and 94  mm are therefore plotted as a func-
tion of time in Fig. 6A. As can be seen, the initial hydration rates of the different layers 
inside the packed bed are not constant. Instead, it is found that the hydration rate decreases 
for positions deeper inside the reactor. This behavior can be explained by considering the 
water vapor pressure of the airflow, plotted in Fig. 6B. Here it can be seen that the water 
vapor pressure at the outflow of the reactor is unequal to the inflow vapor pressure during 
a significant portion of the hydration process. As a result, it must be concluded that the 
vapor pressure inside the packed bed has a gradient, leading to a decrease in humidity for 
positions deeper inside the reactor. It can therefore be anticipated that hydration kinetics 
inside the  K2CO3 packed bed are fastest near the reactor’s inlet and decrease for position 
deeper inside of it. After all, single jump experiments performed by Beving et al. showed 
that hydration kinetics of  K2CO3 powder beds are increased when water vapor pressure 
is increased (Beving et al. 2022), while Aarts et al. showed that power output and there-
fore the hydration kinetics of cylindrical  K2CO3 particles increases when hydration is per-
formed at higher water vapor pressures (Aarts et al. 2022).

Another observation which can be made from Fig.  6B is that the measured water 
vapor pressure at the reactor outflow remains approximately constant at a value of 2 mbar 
(5.6%RH at 27  °C) during the initial stage of the hydration experiment. This effect can 
be explained, since the hydration profiles have not yet reached the end of the packed bed 
during this period. As a result, the packed bed can absorb water vapor until reaction con-
ditions corresponding closely to the MSZ line are reached (Sögütoglu et  al. 2019). For 
the conditions in this experiment it is found that the outflow temperature of the reactor is 
approximately equal to 27 °C. Figure 1 indicates that the water vapor pressure correspond-
ing to the MSZ line should therefore be equal to 3.0 mbar (8.4%RH at 27 °C). This is in 
reasonable agreement with the 2 mbar (5.6%RH at 27 °C) water vapor pressure found in 
the experimental data, considering the fact that accuracy of such measurements decreases 
at lower water vapor pressures.
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3.2  Hydration in Relation to Flow Rate

Experiments at different flow rates can now be compared to each other to determine the 
influence that flow rate has on the hydration behavior of  K2CO3 packed beds. Experiments 
that are compared were conducted at a water vapor pressure of 8 mbar (27.6%RH at a lab 
temperature of 23.5 °C) and flow rates of 0.4, 1.0, 2.3 and 8.7 L ⋅  min−1. The loading pro-
files belonging to these different experiments are plotted in Fig. 7. The respective loading 
profiles have a time interval of 3 h in between each other.

Comparing the different plots it can be seen that the width of the hydration front in fig-
ures A to C increases as the flow rate is raised. An effect like this can be anticipated, since 
the flux of water vapor entering the reactor becomes larger when the flow rate is increased, 
while the single-grain reaction kinetics remain approximately constant. After all, the tem-
perature and vapor pressure of the applied airflow is kept constant in each experiment. An 
explanation for this behavior can also be found in the work of Huinink et al., where a theo-
retical model, describing the isothermal hydration process in a packed bed is formulated 
(Huinink et al. 2023). Here it is found that the width of a hydration front traveling through 
an infinitely long packed bed increases when the average air velocity in the packed bed, U 
[m ⋅  s−1], is elevated:

(6)W ≈ Cn

(
�

1 − �
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r2U
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The model also shows that front width W [m] depends on the packed bed porosity � [ −] 
and the particles that make up the packed bed. Properties that hereby play a role are their 
size r [m], the diffusivity of water vapor inside of them, D  [m2 ⋅  s−1], and a constant Cn [ −], 
which is a geometry-dependent factor associated with the hydration process inside the par-
ticles ( Cn ≈ 0.25 for spherical particles). Similar expressions have been derived for a dif-
ferent, but analogous problems. An example is the analytical model, developed by Gerber 
et al., to describe the deposition process of colloidal particles in an infinitely long porous 
medium (Gerber et al. 2020).

Investigating Fig. 7 further, it can be seen that in figure D the hydration process pro-
ceeds in a uniform manner without the presence of a hydration front. The flow rate has 
become so high that the hydration process is no longer limited by the supply of water 
vapor. Using Eq. (6), an estimate can be made on the front width that can be expected in 
this situation. Assuming typical values for the involved parameters and using the average 
properties of the investigated packed beds ( Cn ≈ 0.25, � ≈ 0.63, r ≈ 1.375 mm, U ≈ 0.6 m ⋅ 
 s−1, D ≈ 1  mm−1 s⋅−1 (Aarts et al. 2022)), the front width in this situation can be estimated 
to be approximately 0.5 m. This front width significantly exceeds the packed bed length, 
explaining why uniform hydration is observed.

Since the uniform hydration process in Fig.  7D indicates that the hydration rate has 
become constant over the whole reactor, it can be expected that the water vapor pressure 
inside the reactor no longer has a significant gradient during the course of the hydration 
process. Investigating the vapor pressure measurements belonging to the experiment at 
flow rate 8.7 L ⋅  min−1, it can indeed be seen that such results are found in the experiment. 
The data, plotted in Fig. 8, shows that the outflow vapor pressure quickly rises to a value 
similar to the inflow vapor pressure at the start of the experiment. Both vapor pressures lie 
within 1 mbar of each other within a time period of 3.5 h. To compare the timescale of the 
change in outflow vapor pressure to the total timescale of the hydration experiment, the 
average packed bed loading is also plotted as a function of time in Fig. 8.

3.3  Packed Bed & Single Grain Hydration Kinetics

To investigate the differences between the experiments at different flow rates more closely, 
plots of the average loading are presented as a function of time in Fig.  9. As can be 
expected, it is found that the reaction rate in the investigated packed beds increases when 
the flow rate is raised. After all, the flux of water vapor entering the reactor is linearly 
dependent on the chosen flow rate. For low flow rates, this means that the overall hydration 
rate of the  K2CO3 packed bed is limited by the supply of water vapor and not by the hydra-
tion kinetics of the individual grains. For higher flow rates the reverse is true: Here the sup-
ply of water vapor is increasingly less limiting to the overall hydration rate as the flow rate 
is raised. Finally, when uniform hydration is reached in the experiment at flow rate 8.7 L ⋅ 
 min−1, kinetics are no longer limited by the supply of water vapor. Instead, hydration rate 
is fully determined by the individual grains that make up the  K2CO3 packed bed. Conse-
quently, a further increase in flow rate would not lead to a raise in the overall hydration rate 
of the packed bed.

The results in Fig.  9 are also compared with data from two single-grain hydration 
experiments conducted in the TGA. Data are hereby obtained by hydrating the separate 
grains inside the TGA at a temperature and vapor pressure of 25 °C and 8 mbar (25.2%RH) 
respectively. Since the  K2CO3 grains are irregular in shape and size, the two hydration 
curves do not match each other exactly. Furthermore, the exact transport mechanisms 
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involved in the hydration process of the particles are not taken into consideration. Never-
theless, the presented hydration curves give a good indication of the single-grain hydration 
kinetics at these specific experimental conditions. Comparing the hydration curves of the 
TGA measurements to those of the NMR experiments, it can be seen that the hydration 
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kinetics of single  K2CO3 grains match the average hydration rate of a  K2CO3 packed bed 
at a flow rate of 8.7 L ⋅  min−1. The experimental results therefore confirm that the hydra-
tion kinetics of a packed bed coincide with the hydration kinetics of single particles when 
hydration is occurring in a uniform manner.

The dependence of overall packed bed hydration rate on flow rate, presented in Fig. 9, 
also has an impact on the temperature lift that can be measured at the reactor outflow dur-
ing the different hydration experiments. After all, the reaction enthalpy associated with 
the hydration of  K2CO3 is constant (Donkers et al. 2017b), indicating that experiments at 
increasingly higher airflows generate incrementally larger thermal powers, as long a uni-
form hydration has not yet been reached. Consequently, the hydration experiments per-
formed at flow rates of 2.3 L ⋅  min−1 and 8.7 L ⋅  min−1 are found to result in peak tem-
perature lifts of approximately 3 °C and 5 °C respectively, while hydration experiments at 
airflows of 0.4 and 1.0 L ⋅  min−1 are not found to result in observable temperature lifts. It 
can however be argued that the lack of thermal insulation in the used experimental setup is 
most likely affecting the temperature measurements, most notably at lower flow rates. An 
in-depth analysis of the thermal output of the investigated packed beds is therefore beyond 
the scope of this publication.

4  Conclusion

In this publication, the hydration behavior of packed beds containing  K2CO3 grains is 
investigated at different flow rates. To that end, NMR imaging is performed to quantita-
tively measure the in-situ hydration process in these packed beds. The hydration kinetics 
observed in packed bed hydration experiments are hereby also compared with single grain 
hydration kinetics, observed in TGA experiments.

Calibration measurements show that the signal intensity, observed in an NMR measure-
ment, scales linearly with packed bed loading. Consequently, the signal intensity observed 
in a hydration experiment can be converted into a packed bed loading by knowing the sig-
nal of a fully hydrated packed bed, as well as the noise baseline of the NMR machine. 
The loading of partially hydrated material can then be calculated with its linear relation to 
signal intensity.

Hydration experiments show that hydration of a  K2CO3 packed bed can occur via a 
hydration front, or in a uniform manner, depending on the specific flow rate that is cho-
sen. Low airflow results in sharp hydration fronts that travel through the packed bed in 
the direction of the applied airflow. The water vapor pressure, measured at the outflow of 
the packed bed, is hereby found to be close to the edge of the MSZ, as long as the hydra-
tion front has not yet reached the end of the packed bed. Since this means that the inflow 
and outflow vapor pressure differ significantly during this period, a gradient in water vapor 
pressure can be expected to form itself inside the packed bed during the initial phase of the 
hydration experiment. Consequently, it is found that the packed bed hydration rate is higher 
at the reactor inflow, compared to the reactor outflow.

For hydration experiments at increased flowrates it is found that the hydration fronts 
become wider. After all, an increase in flow rate coincides with an increase in the supply of 
water vapor that is introduced to the packed bed, while the single-grain hydration kinetics 
can be anticipated to remain constant. An analytical model describing isothermal hydra-
tion of an infinitely long packed bed is compared to the experimental data. The model is 
found to predict the same front widening at increasing flow rates, observed in the different 
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hydration experiments. At a sufficiently high flow rate the hydration process is even found 
to progress in a uniform manner, rather than via a hydration front. The overall hydration 
kinetics of the investigated packed bed are hereby found to coincide with the kinetics of 
single  K2CO3 grains, indicating that the packed bed hydration kinetics are no longer lim-
ited by the supply of water vapor. Since the hydration rate in the different layers of the 
reactor should be equal in this measurement, it is found that a strong gradient in vapor 
pressure cannot occur inside the packed bed. As a result, the inflow vapor pressure rapidly 
rises to a value close to the inflow vapor pressure at the start of the hydration experiment.

In future research, the investigations into  K2CO3 packed beds could be expanded by 
including the effect of water vapor pressure in the analysis of the hydration behavior. In 
this way, the hydration behavior and kinetics could be further investigated and a more elab-
orated overview of  K2CO3 packed bed hydration processes can be created. Furthermore, 
the thermal output of these packed beds could be studied by employing a separate insulated 
reactor outside of the NMR setup and by performing thermal measurements inside of the 
packed bed itself. In this way, in-situ temperature measurements can be obtained and the 
insight into the thermal performance of  K2CO3 packed beds can be improved.

Appendix

As is indicated by Eq.  (5), the signal intensity in an NMR measurement is significantly 
affected by the T1 and T2 relaxation time of an investigated sample. This section therefore 
focuses on determining the T1 and T2 relaxation characteristics of  K2CO3 salt as a function 
of loading. To that end, the calibration samples introduced in Sect.  2.4, are poured into 
polypropylene sample tubes to form packed beds suitable for characterization.

To measure the T1 relaxation time of the calibration samples the saturation recovery 
sequence is used (Arnold 2007; Nicasy et al. 2022). The experimental results, plotted in 
Fig. 10, indicate that all samples have a T1 relaxation time between 250 and 350 ms. As is 
mentioned in Sect. 2.2, the repetition time in experiments should be at least 4 times as high 
as the longest T1 relaxation time to ensure a sufficiently high signal. Here this means that a 
repetition time of at least 1.4 s should be used during experiments on  K2CO3 packed beds.

Transversal relaxation times of the calibration samples are measured via the CPMG 
sequence with an echo time of 250 µs (Brown et al. 2014). In the measurements presented 
in Fig.  11, it is found that the T2 relaxation times consist out of two components which 
have different timescales and intensities. Measurements on an empty polypropylene sample 
holder are found to give results that are very similar to those of a completely dehydrated 
calibration sample: The relaxation times found are T2,1 = 0.46 ± 0.05 ms and T2,2 = 5 ± 3 ms 
with signal intensities S1 = 11.2 ± 0.7 a.u. and S2 = 0.6 ± 0.4 a.u. respectively.

Investigating the measurement results, it can be argued that T2,2 is most probably origi-
nating from the polypropylene sample holder that was used for the measurements. After 
all, the signal intensity S2 is approximately constant in all measurements and coincides 
with the value found for an empty sample holder. The signal intensity S1 , belonging to the 
short relaxation component, also corresponds to that of an empty sample holder when an 
anhydrous sample is measured. Increasing the loading of the calibration samples, it is how-
ever found to scale linearly with sample loading. Furthermore, the relaxation times T2,1 are 
found to lie in the range of relaxation times that were previously found by Donkers et al. to 
belong to structural or lattice water in different types of salt hydrates (Donkers et al. 2016, 
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2015). It can therefore be argued that the increasing intensity of this relaxation component 
must originate from the protons inside the  K2CO3 material.
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