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Abstract: This work investigates how the signal-to-noise ratio (SNR) of an over-determined
Mueller matrix can be improved by changing the method of calculation. Specifically, our
investigation focused on comparing SNRs achieved using the vector methodology from the field
of partial Mueller polarimetry, and the matrix methodology. We use experimentally derived
measurements from an investigation into the time-varying signal produced by the Mueller matrix
of an electro-optic Bismuth Silicon Oxide (BSO) crystal undergoing cyclical impact of a Helium
plasma ionisation wave. Our findings show that the vector methodology is superior to the matrix
methodology, with a maximum SNR of 7.54 versus 4.97. We put forth that the superiority of the
vector methodology is due to its greater flexibility, which results in the Mueller matrix being
calculated with better condition matrices, and higher levels of SNR in the intensity measurements
used for calculation.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Polarimetry is a useful technique in the toolbox of remote sensing diagnostics. Broadly speaking,
it can be divided into two sub-disciplines: Stokes polarimetry [1–7] and Mueller polarimetry
[8–14]. The former is concerned with determining the polarisation state of light, and has been
employed in many fields ranging from astronomy to the study of beetles [15]. Mueller polarimetry
on the other hand is concerned with calculating how a particular medium affects the polarisation
state of light, the description of this interaction is mathematically represented as a 4x4 matrix
known as the Mueller matrix. This focus on materials has proven invaluable in fields such as
ellipsometry, crystallography and oncology [16–21], where the Mueller matrix of biological
tissue or thin films provides useful insights into their properties [22]. Alongside these static
measurements, Mueller polarimetry can also be used to make time resolved measurements
of external variables such as temperature and electric field. This functionality is added by
introducing a set of crystals whose interaction with polarised light is predictably and reversibly
dependent on these external factors [23,24]. In this paper we used a type of crystal known as
an electro-optic crystal, where the Mueller matrix of which is dependent on the electric field
through the crystal. In particular we used BSO [25] as we have previously shown that it can be
used to measure the electric field of charge deposited by a plasma ionisation wave, which is an
area of interest in the field of plasma catalysis. A full description of plasma catalysis is beyond
the scope of this paper and not relevant to the specific insights outlined, nevertheless for the
scope of this paper it can be said that the electric field from the plasma creates a time-varying
change in the Mueller matrix of the BSO, which can be measured in a polarimeter. This variation
in time of the BSO’s Mueller matrix can be thought of as a signal, and therefore whenever SNR
is mentioned throughout the text, it is this signal that we’re referring to. We have previously
written about using over-determination to overcome statistical noise [26], and in this paper we
build on that concept, except now with the aim of maximising the SNR of a time varying signal.
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Over-determining the Mueller matrix involves calculating the matrix using more measurements
than is strictly necessary. For example, 16 linearly independent measurements is the minimum
number required to fully determine the Mueller matrix, so therefore any Mueller matrix that is
calculated using more than 16 linearly independent measurements is considered over-determined.
In this paper we have a collection of 36 linearly independent measurements that can be used
to calculate the Mueller matrix, and of course, we do not have to use all 36 measurements at
once. We can use any combination of measurements with a total number between 16 and 36.
This results in a very large number of ways to combine these measurements, some of which
will result in a Mueller matrix with higher SNR than others. Therefore to produce a Mueller
matrix with the highest SNR as possible, we need a way of calculating the matrix using a subset
of measurements with the highest SNR. When we began this process of finding the subset of
measurements with the highest SNR, we were collecting these measurements in a matrix, and
then solving for M, the Mueller matrix, using the standard calculation shown in Eq. (1).

I = AMW → M = A−1IW−1 (1)

where I is the matrix containing the measurements, W and A are matrices containing the
Stokes vectors from the polarisation state generator (PSG) and polarisation state analyser (PSA)
respectively. Unfortunately we quickly ran into a problem, in that some of the possible subsets of
measurements cannot be represented using Eq. (1). For example, lets say we were calculating
the Mueller matrix using 16 out of our 36 total measurements, as is shown in Eq. (2), and we
now want to calculate the Mueller matrix using 17 measurements, as is shown in Eq. (3). You
can see immediately in Eq. (3) that a new row has to be added to the I matrix to accommodate
this new measurement, as well as a new Stokes vector added to the W matrix, both of which
are highlighted in bold. However the remaining 3 columns of this row have to be populated
with values. Therefore the measurements I17, I18 and I19 have to be added so that the row
is not empty, which means that you’re now no longer calculating the Mueller matrix with 17
measurements, which is what we initially set out to do. So we have to wonder whether it is
actually feasible to calculate the Mueller matrix using 17 measurements when they’re collected
in matrix form? We conclude then that Eq. (3) shows that the I matrix must be completely filled
with measurements, and therefore whole rows or columns have to be added at a time, rather than
individual measurements.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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So in our example where we have a total of 36 measurements taken using 6 distinct Stokes
vectors in the PSA and PSG. We can only perform calculations with I matrices of the following
sizes (4x4), (4x5), (5x4), (5x5), (5x6), (6x5) and (6x6), which corresponds to measurement
subsets of sizes 16, 20, 24, 25, 30 and 36, which is only a fraction of the possible subsets
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ranging from sizes 16 to 36. Therefore we need a way of calculating the Mueller matrix where
measurements can be added or removed individually rather than as whole rows or columns.
Thankfully there is an already existing framework used within the field of partial polarimetry
[27–34]. As the name suggests, its purpose is to only measure the Mueller matrix partially rather
than the whole 4x4 matrix. In many applications only one or a few elements of the Mueller
matrix are of interest, so measuring the entire matrix so that only one element can be extracted
is inefficient and can potentially introduce errors. In order to calculate certain elements of the
Mueller matrix it must be transformed into a vector by flattening it row-wise, the result of this
operation we denote M′. Now that the Mueller matrix has been transformed into a vector we
must also transform I, A and W. First, we also transform I into a vector by flattening it row-wise,
which we denote I′. The Transformation of A and W is more complex than I and M, as it involves
taking the kronecker product of the two to yield a matrix we denote P. Now that all the necessary
matrices have been transformed we can relate them using Eq. (4), where P, I′ and M′ are shown
in Eq. (5)

I′ = PM′ (4)

P = A⊗WT , I′ = Vec(I), M′ = Vec(M) (5)

where ⊗ is the Kronecker product, Vec() transforms matrices into a column vector and T denotes
the transpose. This representation is not intuitive at first glance, so we have provided an example
of how Eq. (2) can be represented using the transformations outlined in Eqs. (4) and (5)
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Throughout the following text we will refer to the vector methodology, it is the preceding
methodology shown in Eq. (4) to Eq. (6) that we’re referring to. And when we mention the matrix
methodology we are speaking of the more usual I = AMW method where I and M are matrices.

2. Experimental details

The measurements were made using a similar setup used in our previous work on over-
determination [26], a schematic of this is shown in fig. (1). The optical components begin with
an LED generating incoherent collimated monochromatic red light (625nm), this light travels
through the PSG, which is comprised of a linear polariser (LP) mounted at 180◦, followed by a
pair of two MeadowlarkTM liquid crystal variable retarders (LCVR) [35] that were mounted at
45◦ and 0◦ degrees respectively. Each pair of LCVR’s was managed by a Meadowlark control
unit that applies a voltage between 0V and 10V to the liquid crystal, and thus alters the retardance
of the liquid crystal over a range of 15◦ to 350◦. Once the light passes through the PSG, it travels
through the BSO, which is undergoing exposure to ionisation waves, or so called, plasma bullets
[36,37]. The light then moves through a collection of two lenses before it passes through the
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Fig. 1. A schematic of the equipment used to make measurements.

PSA. In an ideal system these two lenses would not be necessary, as the light would be perfectly
collimated throughout the whole setup. However the light source used was only capable of
producing collimated light over distances shorter than this setup, and therefore this sequence of
lenses was added to ensure that the light entering into the PSA was collimated and that the sample
was in focus at the camera. The PSA is made up of the same components as the PSG, except now
the order of the components (from left to right) is as follows: two LCVR’s mounted at 0◦ and
45◦, then a linear polariser mounted at 180◦. Immediately in front of the AndorTM Istar ICCD
camera there is a lens that magnifies the image before entering the cameras array of detectors
which measure the intensity of the light, producing an 1024x1024 pixel image. The camera used
for these measurements had possible gate widths ranging from the seconds to the nanoseconds, it
also had an adjustable gain ranging from 1 to 4095 that when applied, increased the intensity
of images taken. As the timescales involved in plasma phenomena are quite short, to capture
the effects accurately, a gate width of 1µs and a gain of 2000 was used. Because the plasma
generation is cyclical and uniform in time, with levels of jitter between each image capture much
lower than the 1µs exposure used, we are confident that the measurements presented here are
consistent. In total, images were taken over delays ranging from 0 to 30µs after the plasma
reaches the outer electrode, with each image being the accumulation of 5 separate images. The
Stokes vectors were held constant over the whole range of intervals, and were only changed once
the complete set was recorded. The BSO itself was a 30x30x0.5mm crystal placed perpendicular
to the light beam so that only Ez was measured, and the jet capillary was placed 4mm away from
the BSO and at an angle of 45◦. For the image capture process, 6 distinct, linearly independent
Stokes vectors were used in both the PSG and PSA, resulting in an over-determined system of 36
measurements. The Stokes vectors used for both the PSG and PSA are taken from the diamond
set of vectors, so called because they sit on the vertices of a diamond shape in the Poincaré
sphere [1,2,38,39]. An explicit description is shown in Eq. (7). This particular set of Stokes
vectors was chosen firstly because the 36 measurements being produced are large enough to
highlight the difference between the vector and matrix methods whilst not being too cumbersome
to show in figures. Secondly, these Stokes vectors are linearly independent, and as we stated
above, over-determination requires over 16 linearly independent measurements, so this set of
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Stokes vectors will satisfy that requirement.

A = 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
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, W = AT (7)

3. Figures of interest

In this section we show how we calculate our comparison statistics input SNR, output SNR and
condition number. The subscripts n and m correspond to a matrix element, and the superscript t
denotes the time, e.g. I12

4,3 represents the element of the I matrix in the 4th row and 3rd column,
at t = 12µs. We start with our definitions of input noise and output noise, denoted as ρtI and
ρtM respectively, where there is single value per moment in time. These two values are derived
from R and G, matrices of normalised values from I and M respectively, where each element is
normalised between 0 and 1 as follows.
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where Mint (Tt≥0
n,m ) and Maxt (Tt≥0

n,m ) denote the minimum and maximum values across time for
a given value of n and m. The calculation of ρtI and ρtM uses the weighted standard deviation
formula, where the weights used are outlined in Eq. (12) and Eq. (13). As you can see the weights
correspond to the absolute change in values over time for each n, m for the Mueller matrix M and
the experimentally determined intensity matrix I. The absolute change was chosen so that the
output would be consistent between increasing or decreasing values in the M and I matrices.
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where
∑︁4

n,m=1 is an abbreviation of
∑︁4

n=1
∑︁4

m=1. Now that we have the equations for input noise
and output noise we can calculate the input SNR and output SNR as follows.
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Output SNR =
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M
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The equation for condition number is shown below

Condition number = ∥P∥∥P−1∥ (18)

where ∥..∥ denotes the Frobenius norm and P is the kronecker product of A and W shown in
Eq. (5).

4. Results

In this section we will directly compare the vector method of calculation with the matrix method.
Our specific statistics used for comparison are as follows: The output SNR, which is the SNR
in the calculated Mueller matrix defined in Eq. (17). The input SNR, which is the SNR of the
experimentally derived intensity measurements used to calculate the Mueller matrix, and is
defined in Eq. (16). And finally, the condition number of the P matrices used in calculating the
Mueller matrix, which we define in Eq. (18). As well as comparing these three statistics, we also
show our experimentally derived data (see section Experimental Details for more information).
Specifically, some of this data can be seen in Fig. 2(a), where we see the changes in each element
of the BSO’s Mueller matrix as a function of time. Where the exact numbers are referring to the
average value taken across a 1x1mm area centred upon the plasma impact site (shown as the red
square in Fig. 2(b)). To show that the 1x1mm area that the average is taken across is spatially
homogeneous, we have included Fig. 2(b) which shows the spatial distribution of values taken
from the difference between M15

n,m − M0
n,m. For this particular figure, the reason for displaying a

change in Mueller matrix rather than a Mueller matrix itself was because the change in Mueller
matrix has a smaller range of values, and is therefore easier to compare. However, we reiterate
that the principal purpose of Fig. 2(b) is to show that we are taking the spatial average across a
homogeneous region. In addition to verifying the spatial homogeneity, we have also included the
standard deviation in each element of the Mueller matrix across this area, where these values
can be seen as the grey dashed lines in Fig. 2(a). As well as showing an example of a Mueller
matrix calculated using our experimentally derived data, we also show this data as well, which
can be seen in fig. (3). This figure is a visual representation of the T matrix which is used in
calculating the input SNR. The purpose of showing this figure is to highlight the varying levels of
SNR between each of the experimentally derived measurements, and is subsequently used to
highlight the difficulty in maximising the input SNR when these values are collected in a matrix.
We should also highlight that these results were averaged across the same 1x1mm area shown
in Fig. 2(b). In addition to this point, we also feel the need to stress that the Mueller matrix
shown in Fig. 2(a) is not the definitive Mueller matrix, as Table 1 shows, there are billions of
ways to calculate the Mueller matrix with our collection of data, therefore this is just one of those
multitudes and subsequently is primarily intended as an example to aid in our explanations. If we
are to maximise the input SNR we must look at Eq. (16) to see that to maximise this equation a
subset of values from I must be drawn that have as minimal variance as possible (i.e. minimise
ρtI), whilst also having as large a signal as possible (i.e. maximise HI

n,m). This is where the
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Fig. 2. Spatial and temporal changes in the Mueller matrix of the BSO. The impact, stasis
and subsequent discharging are clearly represented by the sharp rise, plateau and decay
shown in Fig. 2(a)
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drawbacks of the matrix method become clear. To create a subset of measurements in the form
of a matrix we will have to add whole rows or columns of measurements at a time, rather than
individual measurements. This requirement means that there are subsets of measurements that
cannot be used when represented in the form I = AMW. Which means that in reality the subset
of measurements with globally maximum input SNR cannot be found and used to calculate the
Mueller matrix using the matrix methodology. If we contrast this with the vector methodology,
where individual measurements can be added. This means that we are not limited at all with
the number of subsets of measurements that can be used for calculating the Mueller matrix and
thus the subset with the globally maximum input SNR can be found and used to calculate the
Mueller matrix. This point is perhaps best illustrated in fig. (3). This figure displays a similar
analysis as Fig. 2(a), except that the subplots in this image are related to elements in the T matrix,
which is the absolute change in value of the intensity matrix I over time (see Eq. (8) for more
details). Each row and column is related to a particular Stokes vector in the A and W matrix
respectively. As can be clearly seen, not all the measurements have the same level of signal,
for example if we look at the [1,1,0,0]-[1,0,0,-1] (PSA vector-PSG vector) measurement we
will see a very clear signal with values exceeding 100 counts, whereas the [1,1,0,0]-[1,0,1,0]
measurement shows a similar form of signal, except with values much lower than 100. Alongside
differing magnitudes of signal, we can also see varying levels of noise. In particular, if we look
at [1,0,0,1]-[1,0,1,0] we will see a signal with counts around 25, but with a very high level of
noise, especially when compared to [1,0,-1,0]-[1,0,1,0] which has the same level of signal but
much lower noise. So in the case of maximising input SNR, the question then is, how do we
include as many high signal measurements and exclude as many low signal ones as possible? For
instance, let’s say we want to include all measurements but the [1,0,1,0]-[1,0,1,0] measurement
from our calculation. If we were collecting the measurements in a matrix then we would have to
remove the entire [1,0,1,0] row or column and therefore remove 5 other measurements alongside
the single element we actually want to remove. If the measurements are collected in a vector
however, we simply remove the measurement from I′ and then delete the associated row within
the P matrix, a process that leaves all the other measurements unaffected. So clearly, if we want
to work with as much control as possible, we must use the vector framework. If we further
explore the flexibility afforded to us by the vector methodology, we can begin to see that it is now
possible to move entirely away from the set based method commonly used in Mueller polarimetry,
i.e. using Stokes vectors from the cubic, diamond set etc., in the PSG and PSA. Using the vector
method it is entirely possible to use a completely new pair of Stokes vectors in the PSG and
PSA for each new measurement. The ramifications of this possibility are somewhat large, as
to date most investigations that compare different measurement schemes have only compared
pure sets against each other, e.g. pure cubic vs pure diamond. But now we can combine pairs
and sets of pairs of Stokes vectors in such a way that any non-singular P matrix can be created.
This dramatically increases the number of possible measurement schemes that can be compared
together. To further illustrate the advantages of the vector method over the matrix method, we
analysed the input SNR, output SNR and condition number produced by both the vector and
matrix calculation methods on our own data where the outcome of this can be seen in Table 1
and Fig. 4. We hasten to add that both the matrix and vector methods use data drawn from
the same complete dataset, the variation between them lies in different subsets of the complete
dataset being used. It should be highlighted that due to the extremely large number of possible
unique subsets that can be used in the vector methodology, we have limited the investigation of
these to a randomly chosen selection of 10,000 per value of N, which denotes the size of the
subsets to be drawn from the complete dataset of 36 measurements. Therefore since it cannot be
feasibly proven that the minimum values shown here actually correspond to the global minima,
they should be interpreted as the eventual local minima. If we look at Table 1 starting on the left
we have the N column. These values of N were chosen because these are all the values of N
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that are compatible with the matrix method, for instance, it is impossible to have N = 23 using
the matrix methodology as 23 is a prime number and within this methodology the possible N
has the equation N = NA ∗ NW , where NA and NW are the number of Stokes vectors in the PSA
and PSG respectively. As we stated previously, in the vector framework, measurements can be
added or removed at will, so this means that any value of N between 16 and 36 can be analysed,
however we have omitted the rows where it is impossible to use the matrix method, and instead
provided a full analysis in Fig. 4. The most striking difference between the two methods can
be seen in the Number of subsets columns. We immediately see that the magnitude of possible
unique subsets is 105 − 107 times greater for the vector than for the matrix method, which is a
colossal difference in magnitude. The reason for this marked difference is explained in Eq. (19),
where we see the equations which provide the number of unique subsets that can be drawn using
both methods. Where Nmat

C and Nvec
C are the number of unique subsets for the matrix and vector

methods respectively. Looking at the 36! (36! = 3.7199 × 1041) within the equation for Nvec
C we

can immediately see why the number is so high for the vector method. If we contrast that with the
equation for the matrix method we see that we have (6!)2 = 518400 as an indication of the scale.

Nmat
C =

(︃
6!

NA!(6 − NA)!

)︃ (︃
6!

NW !(6 − NW )!

)︃
, Nvec

C =
36!

N!(36 − N)!
(19)

Next, if we compare the input SNR and output SNR of both methods we will immediately see
that the vector method either provides the same value or better. The reason for this is that the
Mueller matrices that can be calculated using the matrix method can all be calculated using the
vector method. What this means is that the set of Mueller matrices determined using the matrix
method are in fact a small subset of matrices that can be calculated using the vector method.
So if the Mueller matrices calculated using the matrix method are a subset of those that can be
calculated by the vector method, therefore logically, the maximum input SNR and maximum
output SNR in the vector framework has to be greater than or equal to the maximum input SNR
and maximum output SNR in the matrix framework. This logical restriction also of course holds
true for the minimum condition number or for any measure for that matter. This is where the
true power of the vector method lies, in that the results from the matrix method are a subset of
results from the vector method, therefore the vector method has to be better or as good as the
matrix method by simple logic of construction. Fig. 4 shows a comparison between the two
calculation methods, where maximum, minimum and mean values of condition number, input
SNR and output SNR are shown for each value of N, the number of measurements drawn from
the total set of 36 measurements. Please note that the 99 percentile is displayed for Fig. 4(a) due
to the extremely large values produced in the calculation of the condition number. As stated
previously, the matrix method is only capable of calculating the Mueller matrix using N = 16, 20,
24, 25, 30 and 36. Consequently, the results shown in Fig. 4 only have matrix method values
for these values of N. Indeed, one of the main purposes of Fig. 4 is to clearly highlight how
limiting the matrix method is compared to the vector method. If we take a specific example
of this by looking at Fig. 4(b), where we see that the maximum value of input SNR for N = 17
is higher than that of N = 16, but as we have stated many times before, the matrix method is
completely unable to perform calculations using this value of N and therefore the only way to
calculate the Mueller matrix using measurements with this particular high level of input SNR
is to use the vector method. This fact is shown in all the sub-figures of Fig. 4, however each
sub-figure has unique characteristics worthy of investigation. Beginning with Fig. 4(a) we see
that, as expected, increasing the number of measurements results in a lower condition number,
and that the relationship between the two is non-linear. We can also clearly see that the vector
method produces a larger range of condition numbers than the matrix method, indeed the matrix
method has no range in values for each specific value of N. On average, the condition numbers
produced by the vector method tend to be higher than those generated by the matrix method,
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however this does not mean the vector method is inferior in this regard. Specifically, the average
may be higher, but the minimum values produced are much lower than those from the matrix
method, for example, for N = 16 we have minimum values of 32 and 24.67 for the matrix and
vector methods respectively. Now moving our attention to Fig. 4(c) we can see that increasing the
number of measurements has a positive linear influence on the output SNR, and this relationship
is shared between both calculation methods. Just like Fig. 4(b) and Fig. 4(a), Fig. 4(c) shows
the vector method has a wider range of values than the matrix method, resulting in both lower
and higher values of output SNR. In terms of the maximum output SNR, the vector method is
substantially superior with maximum values of 7.54 versus 4.97.

Fig. 3. Visual representation of Tt
n,m values over time defined in Eq. (8). Each row and

column corresponds to a different PSG and PSA vector respectively. The x and y axes
correspond to time in microseconds and absolute change in signal, which is measured in
counts.

Table 1. Comparison between the matrix and vector methods.

Max. of output SNR Max. of input SNR Min. of Condition No. Number of subsets

N Matrix Vector Matrix Vector Matrix Vector Matrix Vector

16 4.09 5.63 7.62 7.62 32 24.67 225 7.3079 × 109

20 4.70 7.54 7.93 7.93 28.28 22.18 180 7.3079 × 109

24 4.82 5.17 5.91 6.25 25.30 23.58 30 1.2517 × 109

25 4.97 5.53 6.31 6.32 25 23.10 36 6.0081 × 108

30 4.75 5.25 5.73 6.34 22.36 21.02 12 1.9478 × 106

36 4.40 4.40 4.52 4.52 20 20 1 1
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(a) Condition number. (b) Input SNR

(c) Output SNR

Fig. 4. A comparison between the vector and matrix calculation methods showing the
condition number, input SNR and output SNR achieved with each calculation method and
for each number of measurements used in the calculation. The markers denote the average,
and the top and bottom of each error bar corresponds to the maximum and minimum value.
Please note that the 99th percentile is displayed for Fig. 4(a) due to the extremely large
values produced in the calculation of the condition number.

5. Conclusion

This paper compares the efficacy of increasing the SNR of a time-varying, over-determined
Mueller matrix by using the vector method of calculation versus the matrix method. The data used
was experimentally derived from an investigation into the time-varying signal of an electro-optic
BSO crystal undergoing cyclical impact from a helium plasma ionisation wave. To compare the
two methods we calculated the SNR of the intensity measurements used for calculation and the
SNR of the resulting Mueller matrices, which we denoted input SNR and output SNR respectively.
Alongside this, we calculated the condition number of the matrices used to determine the Mueller
matrices. The results of these three statistics clearly show that the vector method is consistently
better than the matrix method. Specifically, the vector method has a maximum output SNR of
7.54 versus 4.97, maximum input SNR of 8.43 versus 7.93 and consistently lower condition
numbers. We posit that the reason for this superiority is due to the much greater flexibility
afforded by the vector method, which allows for individual intensity measurements to be added or
removed from the calculation. In comparison to the matrix method which has to add or remove
whole rows or columns at a time. We then go on to highlight that the Mueller matrices calculated
by the matrix method are in fact a very small subset of those calculable by the vector method.
Consequently, the vector methodology cannot be worse than the matrix methodology.
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