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Abstract

Intensified heat treatment, using direct contact condensation (DCC), is applied in the

production of dairy products to ensure a high level of food safety. The key challenge

with DCC is the fouling due to the protein reactions that limits operational efficiency

and sustainability. Using a condensation regime map can improve operational

decision-making. Pilot plant scale experiments were conducted for a wide range of

steam mass fluxes and inlet temperatures at high and low channel pressures. High-

speed images were recorded and analyzed to obtain penetration lengths and plume

area. The experimental data and image analysis supplemented with temperature and

pressure measurement, were processed using machine learning (ML) to develop a

data driven model to predict the regime maps. The linear discriminant analysis (LDA)

was found to be the most suitable model. From the ML models it was also found that

the best parameters to make a condensation regime map are the steam pressure,

channel pressure, subcooling temperature, water Prandtl number, and the relative

velocity ratio between gas and liquid. The condensation outcomes were presented

with various two-dimensional regime maps. New regime maps are proposed using

the Prandtl number and velocity ratio as dimensionless parameters.

K E YWORD S

direct steam condensation, linear discriminant analysis, regime map

1 | INTRODUCTION

The applications of direct contact steam condensation (DCC) vary

from a passive coolant injection system for nuclear power plants1 to

sterilization of dairy products.2 Even though the objective for

nuclear power plants is rapid cooling of steam whereas for dairy

products the focus is rapid heating to achieve sterilization, the prin-

ciple of DCC remains the same. The steam condensates at the equi-

librium temperature and the hot condensate is mixed with the cold

liquid.2 The benefit of using DCC for sterilization is that high

temperatures can be reached in short times and as a result lowers

the degree of browning and nutrient losses that occur when apply-

ing an ultra-high temperature-treatment (UHT) compared to indirect

methods.3 The challenge with DCC is that it can generate a hot sur-

face of steam bubbles upon which milk proteins may aggregate.3,4 It

is therefore important that the flow patterns in the injector are such

that the residence times are as short as possible and that hot con-

densate mixes rapidly with the cold milk. Mapping the behavior of

steam condensation into a condensation regime map can improve

operational decision-making.
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A regime map provides an overview of the type of condensation

behavior that can be observed under certain operational conditions.

The most relevant operational regimes can be found in Table 1. In

addition to the mentioned regimes some researchers also identified

several. However, for many of these subcategories it is not clear at

what exact conditions these experiments were performed.8,9 This was

also reported by Heinze et al.10 when using the experimental data

from Xu et al.11 to validate the model in their work. An overview of

most relevant research is provided in Table 2. Parameters such as

steam pressure and channel pressure are not reported precisely, usu-

ally only as an indicative range or not reported.5,6,12 These parameters

are important because they influence the physical properties of steam

and the saturation temperature of water. Clerx et al.13 reported the

exact experimental conditions per run, however, the results were not

used to generate reliable regime maps.

The goal of the present work is to investigate the critical parame-

ters that determine the boundaries of condensation regimes of direct

steam injection in industrial applications. A data driven model was

used to predict the regime boundaries to elucidate the role of critical

parameters. This study is divided into three parts: (1) producing a con-

densation regime map using a pilot-plant scale setup with industrial

conditions; (2) determining which parameters are most influential in

controlling the condensation regime and finally; and (3) developing a

data driven model to predict the regime map.

2 | MATERIALS AND METHODS

2.1 | Experimental set-up

The experimental setup is schematically represented in Figure 1. As

can be seen from the diagram, the setup has a fully closed water cycle

and a steam generation input. Water is stored in a 339 L cylindrical

stainless steel tank (1) and is fed to the rectangular injection channel

using a Optidrive E3 IP66/NEMA 4X pump with a capacity of 275–

890 L/h. Steam is generated (3) using a CERTUSS E6-72M electrical

steam generator with a capacity of 0–48 kg/h at 9 bar. A pressure

reduce valve (4) is used to control the pressure and mass flow rate

toward the injector. The latter is measured using a Proline Promass

80F Coriolis mass flow sensor. An ADCA FLT16 float and thermo-

static steam trap (5) is introduced before injection into the channel to

remove remaining condensate and inert gases to ensure a steady flow

of saturated steam into the channel. The channel pressure is regulated

using a back pressure control valve (6). The injector channel is illumi-

nated by two LED lights (10) and are placed on both sides of the cam-

era. The condensation phenomenon is recorded using a FASTCAM

SA-Z 2100K-M-128GB high-speed camera at 20 kHz (11) with a

Sigma 105 mm F/2.8 EX DG OS HSM Macro lens. The heated water

is stored in a second 339 L stainless steel water buffer tank (7) before

it is taken on by the heat-exchanger (9) to cool and returned to the

feed tank. An overview of the experimental conditions is reported in

Table 3.

The steam injector is a rectangular channel with two injection

points, as shown schematically in Figure 2. The first segment of the

injector is 415 mm long and is required for flow stabilization. The

length was taken as 40 times the hydraulic diameter. The injection

points are placed after the flow development segment and both have

a diameter of 4 mm. The steam can be directed either through the

top, bottom, or both injectors using valves. The mixing segment is

optically accessible using Sapphire glass, placed on the front and back-

side of the injector. The injector has in total 8 sensor slots placed on

the top side (A) and 8 on the bottom (B). The first sensor after the

injection point is placed 6.5 mm after the injection point. The distance

to the other sensor slots is 19 mm with exception of a 27 mm dis-

tance between sensor slot 6, 7, and 8.

The sensor slots are suitable to place temperature and pressure

sensors. Temperature is measured with type 12 mineral insultated T-

type thermocouples. Pressure is measured with MAKS-6

(X) ultraminiature high temperature pressure transducers from Kulite.

All sensor data are collected using a NI cDAQ-9185 data acquisition

system (12) (with modules NI-9220, NI 9401 and NI 9213), which is

transferred to a computer (13) and logged via LabVIEW-software. The

recordings of the high-speed camera are processed via Photron FAS-

TCAM Viewer 4.

TABLE 1 Description of the distinguished condensation
regimes.5–7

Chugging (C)
Steam–water interface fluctuates around the nozzle
exit and moves in and out of the nozzle

Bubbling (B) Bubble formation around the nozzle exit, cyclic

growth, detachment, and collapse

Jetting (J) Steam velocity was (super)sonic and the steam–water

interface was stable and smooth

TABLE 2 Overview of various research on steam injection into stagnant pool and flowing water bodies.

Injector type Orientation
Water
temperature (�C) Steam mass flux (kg m�2 s�1)

Channel
pressure (bar)

Steam
pressure (bar) References

Stagnant pool Vertical 60–90 0–50 atm NR 6,12

Co-Current Vertical 10–90 0–1500 NR NR 5

Cross flow Vertical 25–74 40–135 2.44–3.16 2.2–3.5 13

Co-current Vertical 20–70 110–500 1.5 2–8 8,11

Co-current Horizontal 20–60 200–650 1–5 1–5 9

Note: Experimental data are listed however not all values are reported (NR).
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2.2 | Image analysis

Objective classification methods for condensation regime determina-

tion are necessary to study the subtle transitions between regimes

that cannot be determined visually and are subjected to operator

biases. To this end, automated processing of the recording is pre-

ferred to analyze and compute relevant condensation characteristics

such as the steam plume length. In this work, the Image Processing

Toolbox in MATLAB R2020b is used to analyze the images and deter-

mine properties such as the plume length, area, and oscillation

characteristics.

The MATLAB scripts loads the original image (Figure 3A) and pro-

ceeds, in the case of jetting and bubbling with binarization (Figure 3B)

of this image, depending on a manually fixed threshold value that is

applied to the complete image. The use of a manually fixed threshold

can be sensitive to a bias affecting the objective regime classification.

For this reason in section 2.3 the sensitivity of this parameter is

assessed. As a result the image is processed such that only the steam

bodies of interest remain. This processing involves two steps; filling

and clearing. First, holes in the image are filled. After the filling step,

small objects that are not of interest are removed resulting in

Figure 3C. When these steps have been performed, the resulting

binary image shows only the steam bodies of interest. These steam

bodies are then labeled to allow for individual analysis. Individually

connected areas where a steam body is present are now labeled with

ascending integers such that the first body is labeled with 1's in the

matrix. Finally, the properties of these regions, such as area, centroid,

and extrema of the steam body are determined. An example can be

found in Figure 3D.

For the chugging regime, some additional processing steps are

required before the binarization of the image. Due to weak internal

reflection of light (see Figure 4A), some steam pockets appear darker

than the background. Therefore, these steam pockets are rejected in

the binarization due to the global thresholding. The visibility of steam

bodies can be improved by using filters and contrasting to enhance

edges of the pockets, and subsequently filling these pockets. Accord-

ingly, a new step is added to the existing procedure: texture analysis,

which is the characterization of various regions by texture in an image.

This is done by quantifying texture qualities (e.g., rough/smooth) as a

function of spatial variation in pixel intensities.14 The images are pro-

cessed using a local standard deviation filtering which returns an

image that has equal dimensions as its original, but each pixel entry is

now the result of the standard deviation of a defined neighborhood,

3-by-3 in this work. On edges in the original image, the local standard

deviation is high due to high local variation in pixel intensity. An exam-

ple is provided by Figure 4B. After rescaling and adjusting the image,

the pixels on the edges have now a high intensity, allowing the edge

to pass the binarization process as shown by Figure 4C. The hole

F IGURE 1 Schematic representation
of the experimental rig. (1) Water tank,
(2) pump, (3) steam generator, (4) pressure
reduce valve, (5) condensate drain,
(6) back pressure valve, (7) hot water tank,
(8) pump, (9) plate heat exchanger,
(10) LED front lighting, (11) high speed
camera, (12) data logger, and
(13) computer.

TABLE 3 Overview of the experimental conditions.

Variable Value Accuracy (%) Unit

Liquid inlet temperature 15–85 0.4 �C

Channel pressure 1.2–4.2 1.1 bar

Steam pressure 1.2–8.2 0.5 bar

Steam mass flux 10–650 0.8 kg/(m2 s)

Subcooling 130–280 0.4 �C
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filling function is especially helpful in the chugging regime where the

absolute pixel intensity of the regions cells are relatively low, but the

variation between the bubble and the background is relatively high.

2.3 | Thresholding verification

In order to apply image binarization it is necessary to determine a

threshold value. This process is susceptible to bias, as employing a low

threshold results in loosened binarization where the steam plume

characteristics could be artificially increased. For each experiment the

appropriate threshold is selected enabling the correct determination

of the plume characteristics.

Figure 5 shows a sensitivity plot for the penetration length for

various thresholds. Applying a low value (i.e., a wide threshold) cap-

tures more gray pixels and increases the binarization area. A high

value (i.e., a narrow threshold) results in a lower penetration length.

The penetration length decreases linearly by increasing the threshold.

After a specific threshold, all pixels are converted to black and no

steam plume can be detected, which is indicated by the abrupt ending

of the graph. The standard deviation however flattens out and

reaches a minimum. This implies that the overall variance of the mea-

surement is minimized at the minimum of the graph. At this threshold

value, the binarization is expected to resemble the original image clos-

est and should therefore be selected. This method is employed for

each digital image analysis to ensure consistency among the experi-

ments and obtain the best possible accuracy in determining the pene-

tration length.

3 | MACHINE LEARNING MODELS

The goal of this work is to investigate the critical parameters that

determine the boundaries of the condensation regimes. In our

study, 299 experiments were conducted with 79 different variables

being logged whereas 2000 frames were recorded and saved per

F IGURE 2 Schematic
representation of the steam
injector. L = 615 mm,
H = 20 mm, and W = 7 mm. The
channel has a 100 mm long
sapphire glass window placed
front and back for optical access
of the injector.

(A) (B)

(C) (D)

F IGURE 3 Steps of image
preprocessing for bubbling and
jetting regimes.
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experiment. These data can be used to find correlations between

various system parameters and the condensation process. Machine

learning (ML) is implemented to facilitate data processing and utilize

algorithms to build a model that can classify samples based on the

input data.

The machine learning methods used in this work focus on statisti-

cal classification and used to assign a specific class (regime) to experi-

mental samples using existing data on explanatory variables termed

features. In this work, three classification models will be implemented

and compared; the k-NN algorithm preceded by principal component

analysis (PCA), linear discriminant analysis (LDA), and quadratic dis-

criminant analysis (QDA).

The general implementation structure is visualized in Figure 6.

The first step in this approach is data preprocessing (1). In this step a

feature selection method is applied to identify the situation where

two or more parameters are highly linearly related, (multi)collinearity.

Additionally, in this step a separation is made in which data are

divided into a training and testing set using a 80/20 ratio.

The next step is to reduce the dimensionality (2) of the data set.

There are several benefits of this step. First, dimensionality reduction

vastly reduces computation time because computation in high-

dimensional data are costly.15 Second, it can remove random noise

from the data and finally it removes unwanted degrees of freedom

and thereby reduces the impact of properties that do not hold much

variance and therefore reduce predictive power of the algorithm.16,17

Feature selection as dimension reduction is applied on the data set for

all models.

Additionally, prior to application of the k-NN model, PCA is imple-

mented, which is one of the most commonly applied dimension reduc-

tion methods in general and for k-NN specifically.18,19 PCA is an

unsupervised model that applies a statistical procedure that computes

linearly uncorrelated variables (principal components [PCs]) as new

features to replace the existing features. The main idea of PCA is to

simplify a high-dimensional data set by computing and selecting the

two PCs as new variables that retain maximum information from the

dimension reduction. The PCs are a linear combination of all features

in the data set with weight coefficients termed loadings, and are all

orthogonal to each other. The PCs have directions that represent the

spread of the data (variance) and have magnitudes that represent how

much variance is captured by the PC. Ideally, all variance is retained

by the first two PCs to ensure no information is lost in the dimension

reduction to two variables. The discriminants in LDA and QDA are

(A) (B)

(C) (D)

(E) (F)

F IGURE 4 Steps of image
preprocessing for chugging
regime.

F IGURE 5 Sensitivity of the penetration length and standard
deviation for a range of thresholds levels from wide to narrow.
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similar in form, but while PCA focuses the PCs to capture maximum

variance in the data set, LDA and QDA compute the discriminants to

have maximum separability between classes.

After the dimension reduction is applied the ML models can be

trained (3). The model performance is analyzed for all three classifica-

tion models using scores for precision, recall, and F1 for each class

together with the amount of samples in the testing set of this class.

4 | RESULTS AND DISCUSSION

4.1 | Machine learning results

Before the models are used, feature selection was performed by

inspection of Pearson and Spearman correlation matrices to reduce

multicollinearity and improve predictive power. From the 79 logged

variables, 26 features were chosen to remain in the data set, which

are shown in Table 4. In the models, the PCs and linear discriminants

(LDs) are comprised of a linear combination of all these features.

After the feature selection the machine learning models are able

to identify the key parameters for determining the condensation

regimes. The main features are listed in Table 5. Three classification

models were implemented and their performance is evaluated. The

parameters for k-NN and QDA were not further investigated for visu-

alizing regime maps due to the poor performance of these models as

will be explained in section 4.3. In addition, a Buckingham Pi analysis

was performed and the outcome of this methodology is also listed in

Table 5.

The first step in evaluating the performance of the k-NN model is

choosing the right method and the optimal value for k. There are two

F IGURE 6 Visual flow
diagram of the machine learning
implementation procedure.
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main methods applied in this work for classifying a new sample; by

majority of neighbors or by also taking their distance into account.

Generally, large k's are less affected by noise and result in smoother

class boundaries.20 Figure 7 shows the total accuracy of the model

based on the method used and the amount of neighbors selected. As

can be observed, the unweighted method yields better accuracy, with

an optimum at k¼10. Generally, the accuracy is largely unaffected by

selecting a different k, as the variation in k only yields an improvement

of a few percent for each method. The general trend and variations

are very common and in line with existing works in literature.20,21

After optimizing the model, the k-NN algorithm preceded by PCA

is still a mediocre model for predicting the regimes. Table 6 shows the

confusion matrix for the model which indicates correct predictions for

each class, leading to the accuracy report shown in Table 7. In this

table, the macro average per score is the regular average of each

score. The weighted average takes into account the support of each

class and averages the value attributed to each score for each class

accordingly.

As can be seen in the diagonal of the confusion matrix, only

40 out of 50 testing samples were correctly predicted, resulting in an

accuracy of 80.0%. Overall, the accuracy of predicting the bubbling

TABLE 4 Features used in data set for models.

Parameter Symbol Unit

Liquid inlet temperature TL,in
�C

Subcooling ΔTsubcool ¼ TL,in�TG,in
�C

Steam mass flux G kg= m2 s
� �

Liquid inlet Reynolds number ReL,in -

Steam inlet pressure PG,in bar

Channel pressure Pchannel bar

Channel pressure coefficient of

variation
CVP,channel ¼ σP,channel

Pchannel
-

Normalized penetration length PL -

Normalized steam plume area AG -

Penetration length coefficient

of variation

CVPL -

Steam plume area coefficient

of variation

CVA,G -

Liquid temperature near the

injector

TL,inj
�C

Liquid outlet temperature TL,out
�C

Temperature increase ΔTout�in ¼ TL,out�TL,in
�C

Inlet liquid specific heat

capacity

cP,L,in J/(kg K)

Outlet density ρL,out kg=m3

Outlet viscosity μL,out kg/(m s)

Outlet enthalpy HL,out J

Outlet entropy of phase i SL,out J/K

Outlet internal energy of

phase i

UL,out J

Outlet specific heat capacity cP,L,out J/(kg K)

Outlet speed of sound of liquid cL,out m/s

Outlet thermal conductivity kL,out J/(m K s)

Outlet surface tension σL,out J=m2

Outlet liquid reduced pressure PR,out -

Liquid outlet mass flow rate _mL,out kg/s

TABLE 5 Overview of the identified defining features per origin.

Method Identified features

k-NN with PCA σout , PG,in, Tout

LDA μout , cp,out , kout , PG,in, ΔTsubcooling

QDA -

Buckingham-pi vG
vL

Note: These features have received the largest coefficient from the ML

models and therefore identified as most important.

F IGURE 7 Accuracy of the k-NN model by method and amount
of neighbors.

TABLE 6 Confusion matrix for the k-NN model.

Predicted

Bubbling Chugging Jetting

Bubbling 28 0 1

Actual Chugging 6 7 0

Jetting 3 0 5

TABLE 7 Accuracy metrics scores for the k-NN model.

Precision Recall F1-score Support

Bubbling 0.76 0.97 0.85 29

Chugging 1.00 0.54 0.70 13

Jetting 0.83 0.62 0.71 8

Accuracy 0.80 50

Macro average 0.86 0.71 0.75 50

Weighted average 0.83 0.80 0.79 50
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regime is good, as 28 of 29 samples are correctly classified as shown

with the recall score of 0.97.

While the bubbling regime can be predicted well with this model,

the chugging and jetting samples, however, are often mislabeled,

mostly as bubbling. One explanation for this specific mislabeling could

be the slightly unbalanced training set, as half of the samples belong

to the bubbling regime. This may lead to a bias toward the bubbling

regime. For the three classification models, this bias is especially prob-

lematic for the k-NN model, as it classifies a new sample based on the

majority of votes. When one class is represented more than the

others, it will become the majority more quickly. Introducing a more

balanced data set could improve the performance of the k-NN model.

An explanation for the general mediocre performance of this

model is the relatively low amount of variance captured by the PCs.

PC1 accounts for 55.5% for the total variance, while PC2 captures

17.5% of variance. This means that 27% of the information from the

variables is lost in the dimension reduction step of PCA.

4.2 | Linear discriminant analysis

LDA performs very well as a classification model for the data set. The

confusion matrix and accuracy scores can be observed in Tables 8 and

9, respectively. As can be observed in the confusion matrix, only two

samples are misclassified, leading to an accuracy of 96%. The jetting

regime scores perfectly, as can also be seen in Table 9. The lowest

score in this table is the recall of the chugging regime with 0.85, which

is still a relatively good score. This implies that LDA is very well suited

as a classification model. An explanation for the improved perfor-

mance compared to the k-NN model can be found in the dimensional-

ity reduction step. While PCA aims to achieve maximum variance

between its axes, LDA tries to maximize separation between the clas-

ses. The explained variance of the LDs can also be compared to the

PCs. LD1 contains approximately 73.1% of total variance and LD2

captures 26.9%, compared to 55.5% and 17.5% of PC1 and PC2,

respectively. Extremely little information is lost in the dimension

reduction step of LDA compared to PCA, which contributes to the

high accuracy of the LDA model. A visual of the high accuracy of the

LDA model can be observed in Figure 8.

4.3 | Quadratic discriminant analysis

The last model, quadratic discriminant analysis, was applied to the

data set and yields average results. Tables 10 and 11, respectively

show the confusion matrix and the accuracy scores for the QDA

model. As shown in the diagonal of the confusion matrix, the model is

fairly good in predicting the classes of the testing set with 86% accu-

racy. The precision for predicting the bubbling regime is the lowest of

the three with 82% (28 out of 34 correct predictions). This result is

TABLE 8 Confusion matrix for the LDA model.

Predicted

Bubbling Chugging Jetting

Bubbling 29 0 0

Actual Chugging 2 11 0

Jetting 0 0 8

TABLE 9 Accuracy metrics scores for the LDA model.

Precision Recall F1-score Support

Bubbling 0.94 1.00 0.97 29

Chugging 1.00 0.85 0.92 13

Jetting 1.00 1.00 1.00 8

Accuracy 0.96 50

Macro average 0.98 0.95 0.96 50

Weighted average 0.96 0.96 0.96 50

F IGURE 8 Linear discriminant analysis decision boundaries.

TABLE 10 Confusion matrix for the QDA model.

Predicted

Bubbling Chugging Jetting

Bubbling 28 1 0

Actual Chugging 4 9 0

Jetting 2 0 6

TABLE 11 Accuracy metrics scores for the QDA model.

Precision Recall F1-score Support

Bubbling 0.82 0.97 0.89 29

Chugging 0.90 0.69 0.78 13

Jetting 1.00 0.75 0.86 8

Accuracy 0.86 50

Macro average 0.91 0.80 0.84 50

Weighted average 0.87 0.86 0.86 50

SAFAVI NIC ET AL. 8 of 12

 15475905, 2023, 9, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18121 by T

echnical U
niversity E

indhoven, W
iley O

nline L
ibrary on [23/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



similar to LDA, but quite different from the relatively high precision

score for bubbling in the k-NN model, which was reasonably good at

predicting the bubbling regime compared to the others. Another sur-

prising detail can be found in the recall of the chugging regime with a

score of 0.69. This means that the model does not perform well in

predicting the chugging regime.

QDA performs worse than LDA, which can be explained in sev-

eral ways. One of the main differences between LDA and QDA is the

way they treat covariance matrices. LDA assumes that all classes

share a common covariance matrix due to the assumption of a multi-

variate Gaussian distribution.22 QDA, however, assumes that each

class has its own covariance matrix. This difference between the

methods leads to a bias-variance trade-off. For QDA, a separate

covariance matrix is calculated for every class, tripling the amount of

parameter estimations in this work. The LDA model becomes linear in

x (amount of measurements) by assuming every class shares the same

covariance matrix. Therefore, LDA becomes a less flexible classifier

and thus has considerably lower variance, which can lead to improved

prediction performance.23 The trade-off is that if the assumption of a

shared covariance matrix is off, the LDA model may suffer from high

bias as it is less flexible. LDA is typically better than QDA with small

data sets and so reducing variance is critical.24

4.4 | Regime maps

The key outputs of the machine learning models, next to the predic-

tive power, are the key process variables that influence these

regimes. The added value of this approach is that it allows us to

redefine the regime maps using objectively chosen process vari-

ables. The variables of interest are the steam pressure Psð Þ,

subcooling (Tsc ¼ Ts�TwÞ, and the water Prandtl number (Equation 1)

at the exit of the injector and the dimensionless velocity ratio

between gas and liquid (Equation 2).

Pr¼ cpμ
k

¼momentum diffusivity
thermal diffusivity

ð1Þ

Πv ¼ vG
vL

ð2Þ

In this research, it has been chosen to work as much as possible

with dimensionless numbers to depict the regime maps as it makes it

less dependent on our specific experimental set-up and operating

conditions. The proposed regime map is a combination of the Prandtl

number and the velocity ratio of gas and liquid. The Prandtl number

was identified by the LDA analysis as a critical parameter for defining

regimes. Figure 9 shows the regime map for two different back pres-

sure settings and shows good separation between the regimes. In

Figure 9A, all three regimes can be discovered. For higher water inlet

temperatures (and as a consequence, lower Prandtl numbers) the

regime switched again from jetting to bubbling. When the back pres-

sure was increased the jetting regime was no longer observed as

shown in Figure 9B. At higher back pressure, the steam pressure also

increased. There are then several combined physical effects that

occur. Firstly at elevated channel pressure, the saturation temperature

is increased. At the same time a higher steam pressure is required,

resulting in a higher degree of subcooling. These effects, combined in

Equation (3), increase the rate of condensation and as a consequence

the steam cavity penetrates less into the channel. Finally, due to the

elevated pressure the gas bubble size distribution decreases, resulting

in a higher interfacial area as shown in Equation (4).

(A) (B)

F IGURE 9 Regime map based on the Prandtl number and dimensionless velocity. Re ¼12,500 at different back pressures.
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mg!l ¼ aif
αl Tsat�Tlð Þþαg Tsat�Tgð Þ

hg,if �hl,if
ð3Þ

aif ¼6εd
d32

ð4Þ

The influence of the channel pressure is also found in the

interphase heat transfer coefficient (αl). This quantity can be esti-

mated using a Nusselt correlation as given by Equations (5) and

(6). The impact of the channel pressure is found in the Reynolds

number (Equation 7) of the dispersed gas phase. The Reynolds

number is not only influenced by the gas bubble size (d32), but also

by the relative vapor velocity which is influenced by the density of

steam.

Nul ¼ αl �db
k

ð5Þ

Nul ¼2þ0:4Re1=2
g Pr1=3l ð6Þ

Reg ¼ ρljvg�vljd32
μl

ð7Þ

The main drawback of working with the Prandtl number and

dimensionless velocity is that these parameters are less intuitive for

the use of regime maps. Another set of parameters identified by the

machine learning are the steam pressure and degree of subcooling,

Figure 10. The benefit of this regime map is that the variables used

are intuitive for operational decision making as well as that it shows

clear distinction between regimes.

4.5 | Impact of elevated liquid temperature

As discussed in section 4.4, when the Prandtl number is decreased the

jetting regime is no longer observed. This is a direct consequence of

increasing the liquid inlet temperature. When the liquid temperature

is increased, the driving force for condensation decreases. This allows

the steam cavity to penetrate deeper into the channel and occupy a

larger area, as shown in Figure 11. Both the penetration length (ls) and

the area (As) are normalized by dividing the values by the injector

diameter (dN) and its area, respectively (AN). As the steam cavity pene-

trates deeper and the surface area increases, more condensation can

occur, in turn reducing the steam cavity size. This effect yields the

bubbling regime instead of the jetting regime and is consistent with

observations in literature.25

(A) (B)

F IGURE 10 Regime map based on the steam pressure and degree of subcooling. Re ¼12,500 at different back pressures.
(

(
)

)

F IGURE 11 Penetration length and area as a function of liquid
inlet temperature at a steam mass flux of 315 kg= m2 s

� �
, channel

pressure=1.7 bar, steam pressure=4.2 bar, and Re ¼12,500.
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5 | CONCLUSION AND FUTURE WORK

The objective of this work was to experimentally investigate which param-

eters play a role in the direct steam condensation process. Pilot plant scale

experiments were conducted for a wide range of steam mass fluxes and

inlet temperatures at high and low channel pressures. The results were

processed using an image analysis protocol to obtain relevant steam cavity

properties and further processed with machine learning models to provide

objective classification and regime prediction possibilities.

The experimental campaign yielded 299 experiments with 79 differ-

ent logged variables and 2000 frames recorded per experiment that

were used to generate the regime maps. These large amount of data

have not been observed in previous research. It was also found that it is

important to properly note, besides steam pressure, the channel pres-

sure as it has a significant effect on the condensation regime bound-

aries. The inlet temperature effect on condensation regime is small, but

it does have a large effect on the steam cavity penetration length.

Regarding machine learning, the k-NN and QDA classification

models perform reasonably well. Moreover, it can be concluded that

LDA is the superior classification model with 96% accuracy, being able

to both classify regimes in an objective fashion and predict the regime

for new samples. A parameter study was performed via the inspection

of the LDs, which led to the insight that the outlet Prandtl number is a

good predictor for condensation regimes. Besides the Prandtl number,

the steam pressure, channel pressure, subcooling, and velocity ratio

are better variables for regime maps than steam mass flux and inlet

temperature, respectively. It is recommended to use steam pressure

and subcooling as key variables for regime maps and to report the

channel pressure.

For future work it is recommended to firstly increase the liquid

viscosity to match the profile of high protein dairy products. It can be

expected that the viscosity of the liquid influences the regime map via

the Prandtl number. It is important to map the regimes using repre-

sentative viscosity profiles which will be subject to further research.

NOTATION

cp specific heat capacity (J=kgK)

μ dynamic viscosity (Pas)

k thermal conductivity (W=mK)

vi velocity of phase “i” (m=s)

Tsat saturation temperature (K)

Ti temperature of phase “i” (K)
hi enthalpy of phase “i” (J=kg)
d32 gas bubble diameter (m)

aif interface area bubble–liquid (m�1)

mg!l condensation volumetric rate (kg=m3s)

αi heat transfer coefficient phase “i” (W=m2K)

εg volume fraction of gas (�)
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